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a b s t r a c t 

The World Health Organization estimates that 300 million people have asthma, 210 million people have 

Chronic Obstructive Pulmonary Disease (COPD), and, according to WHO, COPD will become the third ma- 

jor cause of death worldwide in 2030. Computational Vision systems are commonly used in pulmonology 

to address the task of image segmentation, which is essential for accurate medical diagnoses. Segmen- 

tation defines the regions of the lungs in CT images of the thorax that must be further analyzed by 

the system or by a specialist physician. This work proposes a novel and powerful technique named 3D 

Adaptive Crisp Active Contour Method (3D ACACM) for the segmentation of CT lung images. The method 

starts with a sphere within the lung to be segmented that is deformed by forces acting on it towards 

the lung borders. This process is performed iteratively in order to minimize an energy function associ- 

ated with the 3D deformable model used. In the experimental assessment, the 3D ACACM is compared 

against three approaches commonly used in this field: the automatic 3D Region Growing, the level-set 

algorithm based on coherent propagation and the semi-automatic segmentation by an expert using the 

3D OsiriX toolbox. When applied to 40 CT scans of the chest the 3D ACACM had an average F-measure 

of 99.22%, revealing its superiority and competency to segment lungs in CT images. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Several diseases that affect the world population are related to

he lungs, for example: asthma ( Kwan et al., 2015; Wisniewski and

ielinski, 2015 ), bronchiectasis ( Arunkumar, 2012 ) and chronic ob-

tructive pulmonary disease (COPD) ( Mieloszyk et al., 2014; Ra-

alho et al., 2014; Spina et al., 2015 ). 

The World Health Organization (WHO) estimates that 300 mil-

ion people have asthma, and this disease causes about 250 thou-

and deaths per year worldwide ( Campos and Lemos, 2009 ). Also,

10 million people have COPD and more than 300 thousand peo-

le died in 2005 from this disease ( WHO, 2014 ). Recent studies

ave shown that COPD is present in the 20 to 45 year-old-age
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racket, although people over 50 years old are the most commonly

ffected. Additionally, WHO estimates that COPD will be the third

ajor cause of death worldwide by 2030 ( Marco et al., 2004 ). For

xample, in Brazil from 1992 to 2006, 15% of all hospital admis-

ions financed by the national public health system were due to

espiratory diseases, and asthma and COPD together were respon-

ible for 562,016 cases ( Campos and Lemos, 2009 ). 

Hence, early effective diagnosis of lung diseases is urgently

eeded in public health. Among the factors that contribute to

chieve this goal is the increased accuracy of the diagnoses made

y specialized physicians with the aid of computational vision sys-

ems. Additionally, some computational techniques can monitor

atients with asthma and COPD using personal devices. Examples

hat can be highlighted among these techniques are the works of

wan et al. (2015) and Juen et al. (2015) . 

In pulmonology, computed tomography (CT) imaging is of-

en used as a tool for detection and monitoring of diseases.

ence, CT images have been used in the analysis of airways ( Pu

t al., 2011; Lo et al., 2012 ), vessels ( Korfiatis et al., 2011 ), cancer

http://dx.doi.org/10.1016/j.media.2016.09.002
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nodules ( Diciotti et al., 2011 ), pulmonary lobes ( Van Rikxoort et al.,

2010 ), pulmonary emphysema ( Sorensen et al., 2012; Hame et al.,

2014 ), and fibrosis ( Ariani et al., 2014 ) among other lung diseases.

Additionally, computational vision systems have been used as di-

agnostic tools, particularly to address image segmentation, which

is an essential step to assure correct and accurate results, by iden-

tifying the region of the lungs in the CT thorax images that must

be further analyzed by the system or by specialists. 

The segmentation of objects or structures in medical images is

usually more complex than in other types of images. Furthermore,

in the case of lung images, this difficulty is due to the variability of

the structures and the internal organs of the lungs that can be im-

aged from different planes. Also, diseases can affect these organs,

increasing the difficulty even more to develop effective techniques

to segment the images under study ( Rebouças Filho et al., 2011;

2013 ). 

Various lung segmentation techniques have been developed in

recent years. Among these techniques, the 3D Region Growing (3D

RG) approach has been applied to segment the lung and related

internal structures, such as the vessels and airways ( Born et al.,

2009; Irving et al., 2009; Tschirren et al., 2009; Matsuoka et al.,

2010; De Nunzio et al., 2011 ). Commercial software packages com-

monly combine the 3D RG approach and Human Anatomy infor-

mation, like HU density ranges, to aid image-based medical diag-

noses. However, a correct analysis is more difficult when there is

a disease in the lungs. The work of Nemec et al. (2015) studied

and evaluated four software packages commonly used to extract

the lung volume of healthy volunteers from CT images of the chest.

Among the softwares available, OsiriX from the University

of Geneva ( http://osirix-viewer.com/ ) is widely used for viewing

and rendering 3D medical images ( Canas et al., 2007; Martin

et al., 2013; Wink, 2014 ). This software has automatic and semi-

automatic tools for 3D segmentation ( Michael P Chae, 2015; Presti

et al., 2015 ). In semi-automatic segmentation, an expert analyzes

the 3D objects under analysis and removes unwanted objects us-

ing the 3D Toolbox ( Michael P Chae, 2015 ). 

Wang et al. (2011, 2014) developed a fast level-set algorithm

based on the coherent propagation method and assessed its use

on clinical datasets. The results indicated that this algorithm was

about 10 times faster than the ITK Snap software in the segmenta-

tion of medical images. 

Mansoor et al. (2014) presented a solution to segment healthy

and diseased lungs in 3D using fuzzy logic and texture. On other

hand, Wei and Li (2014) presented a 3D lung segmentation solu-

tion based on machine learning techniques, obtaining an accuracy

difference of 2% relatively to experts. 

Sun et al. (2012) proposed the Robust Active Shape Model ap-

proach for the segmentation of lungs showing regions with can-

cer. The evaluation of the approach was very limited; however, it

demonstrated that active contours can be effectively used for this

purpose. 

The method proposed in this work is a new Active Con-

tour Model called 3D Adaptive Crisp Active Contour Method

(3D ACACM). The proposed method aims to increase the accu-

racy and reduce the analysis time and subjectivity in the seg-

mentation and analysis of CT scans of the chest by specialized

physicians. The method has the advantages of the works from

Mansoor et al. (2014) ; Wei and Li (2014) and Sun et al. (2012) , and

combines machine learning techniques with active contours in or-

der to segment lungs efficiently in 3D . 

Active Contour Models (ACMs) can be divided into parametric

and geometric models. Parametric ACMs move the segmentation

curve by minimizing the energy required based on its shape and

image information ( Moallem et al., 2015; Ge et al., 2016; Moreira

et al., 2016 ). There are several 2D versions of parametric ACMs in

the literature, which are commonly known as Snakes. On the other
and, geometric ACMs move the curve by minimizing the energy

equired based on a function of statistical probability ( Leninisha

nd Vani, 2015; Mesejo et al., 2015; Rebouças et al., 2016 ). There

re different versions of these models in 2D and 3D, which are

ommonly called Level Set models, including the Geodesic model

 Diciotti et al., 2011; Qiu et al., 2015 ) and other models developed

o optimize performance ( Wang et al., 2011, 2014) . 

This paper proposes a new parametric 3D active contour model

pecifically to segment complex objects such as the lung, and not

nly objects with cylindrical topology and regular shape, as the

ne proposed in Schmitter et al. (2015) . The proposed method is

nnovative in terms of 3D segmentation, because the points of the

D model are moved using information based on the 3D shape of

he model and image voxel information, which is different com-

ared to the existing 3D ACMs for complex shapes based on geo-

etric modeling. The results show the gain in terms of computa-

ion time and accuracy against to the related 2D version due to the

ew formulation used, and its superiority in comparison to other

D methods that are commonly used for the same purpose. 

In the experimental assessment, the 3D ACACM is compared

gainst three methods commonly used in this field: the auto-

atic 3D Region Growing (3D RG), the level-set algorithm based on

he coherent propagation method (LSCPM) and the semi-automatic

egmentation by an expert using the 3D OsiriX. All methods are

ompared in terms of F-measure and processing time to segment

ungs in 3D CT images of the thorax. 

. Proposed method 

In this section, a new 3D segmentation method based on the

rinciples of Active Contour Models, called 3D Adaptive Crisp ACM,

s described. All the steps of the new 3D method proposed, us-

ng information from 3D medical images, are described in this sec-

ion from the initialization to the stabilization of the segmentation

odel. 

Unlike other parametric ACMs, the proposed method moves

he points of the model using information from image voxels and

odel shape. Thus, one point m ( s ) is moved by minimizing the en-

rgy of the 3D Adaptive Crisp ACM E CA 3 D 
, which is given by: 

 CA 3 D [ m (s )] = E int adap 3 D 
[ m (s )] + τE ext ACEE 3 D 

[ m (s )] , (1)

here E int adap 3 D 
[ m (s )] is the 3D Adaptive Internal Energy and

 ext ACEE 3 D 
[ m (s )] is the 3D Adaptive Crisp External Energy, which are

oth proposed in this work. A point m of the 3D model has as co-

rdinate a C curve in a slice i of the axis z . Thus, m (s ) = [ c(s ) , z i )] ,

here c ( s ) is composed of the [ x ( s ), y ( s )] coordinates, and z i is the

lane of the curve c . The position of point c ( s ) is on the axis z . 

As aforementioned, the proposed method follows the concept of

he 2D method presented in Rebouças Filho et al. (2013) . However,

he energies of the new 3D model were reformulated to increase

he segmentation speed and the stability. This the first parametric

CM proposed to efficiently segment complex objects in 3D. 

.1. 3D adaptive internal energy 

The internal energy of the proposed 3D parametric ACM is cal-

ulated based on 3D model information: 

 int adap 3 D 
[ m (s )] = βF cont 3 D [ m (s )] + αF adap 3 D [ m (s )] , (2)

here F cont 3 D [ m (s )] is called 3D Continuity Force, F adap 3 D 
[ m (s )] is

he Adaptive Force, and β and α are weights to set the importance

f these forces in the final internal energy of the model E int adap 3 D 
. 

.1.1. 3D continuity force 

The reformulation of this energy in the proposed method aimed

o keep the points of the 3D model equidistant considering not

http://osirix-viewer.com/
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Fig. 1. Illustration of the distances used to calculate the 3D Continuity Force, with 

the distances used in Eq. 5 in green (slice i), and the distances used in Eqs. 6 and 

7 in red (slices i − 1 and i + 1 , respectively). 
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nly the neighboring points in the same slice, but also maintaining

he distance between the points of the neighboring slices. There-

ore, by increasing the distance of the closest points and reducing

he distance of the furthest ones, the 3D continuity force tends to

ncrease the stability of the model. 

The calculation of the 3D Continuity Force F cont 3 D is performed

y using a distance between two 3D points using the coordinates

, y and z , given by: 

 3 D = 

√ 

�x 2 + �y 2 + �z 2 , (3) 

here �x, �y and �z correspond to the differences of the point

oordinates on the axes x, y and z , respectively, which leads to: 

 cont 3 D [ x (s ) , y (s ) , z i ] = F cont 3 D z i 
[ x (s ) , y (s ) , z i ] + F cont 3 D z i −1 

[ x (s ) , y (s ) , z i ] 

+ F cont 3 D z i +1 
[ x (s ) , y (s ) , z i ] , (4) 

here F cont 3 D z i 
, F cont 3 D z i −1 

and F cont 3 D z i +1 
are obtained from regions of

he slices i , i − 1 and i + 1 , respectively, and: 

 cont 3 D z i 
[ x (s ) , y (s ) , z i ] 

= 

∣∣∣∣AD −
√ 

[ x (s ) z i − x (s − 1) z i ] 
2 + [ y (s ) z i − y (s − 1) z i ] 

2 

∣∣∣∣
+ 

∣∣∣∣AD −
√ 

[ x (s ) z i − x (s + 1) z i ] 
2 + [ y (s ) z i − y (s + 1) z i ] 

2 

∣∣∣∣, (5) 

 cont 3 D z i −1 
[ x (s ) , y (s ) , z i ] 

= 

∣∣∣∣AD −
√ 

[ x (s ) z i − x p z i −1 
] 
2 + [ y (s ) z − y p z i −1 

] 
2 + d z 

2 

∣∣∣∣, (6) 

nd 

 cont 3 D z i +1 
[ x (s ) , y (s ) , z i ] 

= 

∣∣∣∣AD −
√ 

[ x (s ) z i − x p z i +1 
] 
2 + [ y z (s ) − y p z i +1 

] 
2 + d z 

2 

∣∣∣∣. (7) 

In Eqs. 5, 6 and 7 , AD is the average distance among the 3D

odel points, [ x ( s ), y ( s ), z i ] are the coordinates of point [ x ( s ), y ( s )]

f the z i curve in the slice where the force is calculated. The

 x p z i −1 
, y p z i −1 

] and [ x p z i +1 
, y p z i +1 

] points are the [ x ( s ), y ( s )] in i − 1

nd i + 1 slices, respectively, and d z is the distance between the

urves in different slices in the z axis, which is constant for each

ataset. Note that [ x (s − 1) , y (s − 1)] and [ x (s + 1) , y (s + 1)] are

eighbors of point [ x ( s ), y ( s )] in the z i slice; therefore, F cont 3 D z i 
does

ot have dz in the calculation. 

Fig. 1 shows an example of the points and the distances in-

olved in the calculation of the force F adap 3 D 
described by Eq. 4 tak-

ng a point C i as a reference. This figure illustrates the distances

sed in Eq. 5 in green (slice i), and the ones in Eqs. 6 and 7 in red

slices i − 1 and i + 1 , respectively). 

The resultant force F cont 3 D uses the average distance between the

oints in the model ( AD ). This parameter is used as a target of the

nalyzed distances, generating forces that increase the distances

hat are inferior to AD and reduce the distances that are superior to

D . Thus, the 3D continuity model force tends to make the connec-

ions between the model points equally spaced in 3D. The average

istance AD needs to be updated at each iteration, because when

he points of the 3D model are moved, the distances between them

hange. As result, this energy prevents that the points of the model

rom moving uncoordinatedly not only in relation to the neighbor-

ng points in the same slice, but also in relation to the neighboring

oints in the slices above and below ( Fig. 1 ). 

This strategy tends to improve the stability of the model. 
.1.2. 3D adaptive balloon force 

In the proposed method, the reformulation of this energy to

D aimed to keep the scope of the segmentation in different di-

ections, but with an even faster rate than in the 2D method

 Rebouças Filho et al., 2013; Rebouças Filho et al., 2014 ). This is

ossible by using information from neighboring slices to boost the

ovement of the model points. 

The 3D Adaptive Balloon Force proposed in this work uses the

opology of each point to move it, and takes into account the in-

ormation of neighboring slices in the calculation of this force that

ill expand the model to 3D. Thus, this force must use the topol-

gy of 3 slices to move each point, increasing the convergence of

ach point towards the object of interest. The quality of informa-

ion on the object of interest improves when the proposed model

ses three consecutive slices into account, i , i − 1 and i + 1 , where

 is the slice of the point being analyzed. 

Thus, the 3D Adaptive Balloon Force F adap 3 D 
at a given

oint [ c ( s )] belonging to the slice z i , whose coordinates are

 x (s ) z i , y (s ) z i ] , is given by: 

 adap 3 D [ c(s ) , z i ] = F adap 3 D z i 
[ c(s ) , z i ] + F adap 3 D z i −1 

[ c(s ) , z i ] 

+ F adap 3 D z i +1 
[ c(s ) , z i ] , (8) 

here F adap 3 D z i 
, F adap 3 D z i −1 

and F adap 3 D z i +1 
use the nearest point of

 ( s ) in the curves from slices i , i − 1 and i + 1 , respectively, and are

efined as: 

 adap 3 D z i 
[ c(s ) , z i ] = 

√ ∣∣x (s ) z i ± x m z i 

∣∣2 + 

∣∣y (s ) z i ± y m z i 

∣∣2 
, (9) 

 adap 3 D z i −1 
[ c(s ) , z i ] = 

√ ∣∣x (s ) z i ± x p z i −1 

∣∣2 + 

∣∣y (s ) z i ± y p z i −1 

∣∣2 
, (10) 

nd 

 adap 3 D z+1 
[ c(s ) , z i ] = 

√ ∣∣x (s ) z i ± x p z i +1 

∣∣2 + 

∣∣y (s ) z i ± y p z i +1 

∣∣2 
, (11) 

here point [ x m z i 
, y m z i 

] is the center point of the neighboring of

oint c ( s ) from the curve in slice i of z axis as they are in the

ame slice, while points [ x p z i −1 
, y p z i −1 

] and [ x p z i +1 
, y p z i +1 

] are near-

st to curve in slice i − 1 and i + 1 of the z axis, respectively. Points

 x p z i −1 
, y p z i −1 

] and [ x p z i +1 
, y p z i +1 

] are the same as those used in the

alculation of the 3D Continuity Force described by Eq. 4 . The signs

f Eq. 9 are positive when the center point [ x m z i 
, y m z i 

] is internal
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Fig. 2. Illustration of the 3D Adaptive Balloon Force F M B i D i 
, F C i −1 

and F C i +1 
from slices 

i , i − 1 and i + 1 , respectively, where i is the position on axis z . 
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to curve c of slice z , and negative otherwise. On the other hand,

the signs of Eqs. 10 and 11 are defined by points [ x p z i −1 
, y p z i −1 

] and

[ x p z i +1 
, y p z i +1 

] , respectively. Therefore, the signs are positive when

these points are internal to curve c of slice i and negative other-

wise. 

The 3D Adaptive Force expands the model based on two pieces

of information to calculate the energy of each point. The first is

determined by the nearest points of the model when it comes to

the neighboring slices, i − 1 and i + 1 , and is determined by the

center point of the neighbors when it comes to the same slice i

of axis z . These points are analyzed by extruding or attracting the

point according to their self-analysis, using the solution suggested

by Berg et al. (1975) , which defines if the point is inside or outside

the model. 

An example of the performance of the components of force

F adap 3 D 
acting on a point C i , as described in Eq. 8 , is shown in Fig. 2 .

In this figure, the first component defined in Eq. 9 uses the cen-

ter point of its neighbors M B i D i 
, as shown in red in Fig. 2 . This is

achieved by averaging its neighboring points B i and D i . Analyzing

this point by the Jordan Curve Theorem ( Berg et al., 1975 ), this

point is taken as the internal point of the slice i , resulting in force

F M B i D i 
presented in yellow in Fig. 2 . 

The second and the third components of force F adap 3 D 
are

obtained from the nearest points of the neighboring slices by

Eqs. 10 and 11 . Eq. 10 defines the component from slice i − 1 , us-

ing the point closest to point C i defined in Fig. 2 as being point

 i −1 . This point is analyzed based on the Jordan Curve Theorem,

Berg et al. (1975) , changing the sign of Eq. 10 to positive, and push-

ing point C i , as shown for force F C i −1 
presented in green, so that it

is inside the curve of slice i. Similarly, Eq. 11 uses point C i +1 in the

calculations so that this is the nearest to C i in slice i + 1 . In Fig. 2 ,

this point is internal to the curve of slice i , changing the sign of

Eq. 11 to positive, which causes force F C i +1 
, displayed in blue in

Fig. 2 , to push point C i . 

The movement of each point in the proposed 3D model is

therefore influenced by the curves in the neighboring slices whilst

in the 2D model, only slice i is analyzed by expanding the curve

in this slice ( Fig. 2 ). Consequently, the movement of each point of

the 3D model towards the objects of interest resultant from the

proposed energy is optimized as more information is taken into

account. 

2.2. 3D adaptive crisp external energy 

The 3D Adaptive Crisp External Energy (3D ACEE) detects the

origin of the edges of the lungs based on the analysis of pulmonary

densities in the neighborhood of a voxel along with a Multi Layer

Perceptron (MLP) artificial neural network to determining the ori-
in of the edges found in the 3D traditional external energy, which

n this work is based on the Sobel gradient in 3D ( Al-Dossary and

l-Garni, 2013 ). 

Starting from the Analysis of Pulmonary Densities (APD)

 Rebouças Filho et al., 2011 ) method performed in a 3D neighbor-

ood of a voxel, the percentages of 6 classes vi , in which i varies

rom 0 to 5, are: air hyper-inflated ( −10 0 0 to −950 HU), normally

ir inflated ( −950 to −500 HU), low air inflated ( −500 to −100

U), non-air inflated (100 to 100 HU), bone (600 to 2000 HU) and

reas not classified, which are the densities that do not fit in the

revious ranges. From the definition of these classes, a CT lung is

onsidered as a set of overlapping images, i.e. slices. This analysis

 has dimension l × c × a , where l × c is the dimension of the

lices and a the number of slices of the exam under study. 

Considering that the voxel under analysis has coordinates ( x, y,

 ), the function that determines the number of voxels with densi-

ies present in each class v i is defined as: 

f (x, y, z, v i ) = 

n ∑ 

l= −n 

n ∑ 

m = −n 

n ∑ 

o= −n 

R (x − l, y − m, z − o) , (12)

here n is the size of the analyzed neighborhood and R ( x, y, z ) is

iven by: 

 (x, y, z) = 

{
1 , lim in f (v i ) < T (x, y, z) < lim sup (v i ) , 
0 , otherwise , 

(13)

here lim inf ( v i ) and lim sup ( v i ) are the lower and upper limits of the

ensity range, in HU, for the class v i . 

Using Eq. 12 , it becomes possible to calculate the percentage

 i 3 D 
of each class i as: 

 i 3 D (x, y, z) = 

f (x, y, z, v i ) ∑ 4 
j=0 f (x, y, z, v i ) 

. (14)

After exhaustive testing, it was concluded that by increasing n ,

he image detection quality is increased, because the neighborhood

ize is proportional to n . However, a value of n above 7 increases

he processing time considerably, without any significant improve-

ents in the results. Therefore, the value 7 was used for n in the

xperiments. 

The new 3D external energy uses an MLP artificial neu-

al network in order to determine the origin of each edge

ound in the CT scans of the thorax. This neural network has,

s inputs, the percentage of each class vi found by the ADP

ethod ( Rebouças Filho et al., 2011 ), and a topology of 6/4/1

 Rebouças Filho et al., 2013 ). Its output indicates if an edge found

n the thorax CT image belongs to the lung wall or not. Thus, a

atabase is built from the voxel percentages extracted from exam-

nations of COPD, cystic fibrosis and healthy patients. 

A dataset was built manually, searching for the greatest possible

epresentation of lung structures. Hence, 10 CT lung exams used

s part of diagnostic investigations with approximately 50 0 0 slices

ere analyzed. The percentage P i 3 D was extracted for 500 voxels

n each slice. Each set of inputs for these percentages was labeled,

ndicating which of the edges found in the 3D traditional exter-

al energy belonged to lung walls and which did not. Emphasizing

hat the 3D traditional external energy was calculated using the

obel 3D operator, which calculates an average of the gradients

ound throughout the neighborhood being analyzed. The dataset

uilt was validated by a cross-validation method ( Haykin, 1999 ). 

The following function is the output of the MLP network in ex-

cution, before its training phase: 

f mlp 3 D (v ) = 

{
1 , edge similar to lung wall , 
0 , otherwise , 

(15)

here v consists of the 6 percentages P i 3 D , where i varies from 0

o 5. 
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Fig. 3. Definition of the initialization parameters for the 3D model. 
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Fig. 4. Automatic initialization of the 3D segmentation model in each of the lungs 

a) and one of the final models built b). 

Fig. 5. Illustration of a 3 × 3 neighborhood for the analysis of the energy and the 

movement of a point c ( s ) belonging to slice i , wherein slices i − 1 and i + 1 are just 

used to define the shifting, addition and removal of points in a 3D model. 
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Using f mlp 3 D 
in order to determine the origin of the edges found

n the CT lung images, the external energy is given by: 

 ext ACEE 3 D 
(x, y, z) = 

{
Sobel 3 D (x, y, z) , for f mlp 3 D (v ) = 1 , 

1 , otherwise , 
(16)

nd v is the percentage vector of the ADP 3D method obtained

rom Eq. 12 using coordinates ( x, y, z ) from the analyzed voxel. 

Using Eq. 16 , the MLP network determines the walls that are

ung edges or not returning the value 1 using the function f ml p 3 D 
.

hen this function returns the value 0, it indicates that it is not a

ung edge, and then the associated region receives the maximum

risp adaptive energy. Small objects presented only in a few num-

er of slices now have less importance in the 3D model than in

he related 2D model, as the energy is calculated with information

rom multiple slices. 

.3. 3D adaptive crisp ACM automatic initialization 

The 3D model automatically starts inside the lungs. The method

etermines the initialization voxels in the right and left lungs,

alled 3D Right-hand initial voxels ( RIP 3 D ) and 3D Left-hand initial

oxels ( LIP 3 D ), respectively. Each one of these voxels has coordi-

ates ( x ini , y ini , z ini ). To carry this out, all the slices on the input CT

can are analyzed by the 2D initialization method in order to de-

ermine the exact initialization voxels ( Rebouças Filho et al., 2013 ).

he values of the z coordinates of all slices that find a successful

D automatic initialization are stored, then the average coordinate

s adopted as z ini and coordinates ( x ini , y ini ) obtained by the 2D

ethod of this slice are used as the initialization coordinates of

oxels RIP 3 D and LIP 3 D . As such, the method tends to start in the

enter of each lung. 

Fig. 3 shows two curves presented in individual slices, where

he distance between each voxel, in red, from the center of the 3D

odel is given by R ; the blue line shows the centroid used in all

lices and r is the radius of the slice separated by a distance d z of

he plane z ini in the center of the slice I considering only the axis

 . 

Fig. 3 depicts that each slice has a different distance from the

entroid for each voxel. So, given slice z ini that belongs to the cen-

er of the 3D model, it follows that the distance from the centroid

or each voxel is the actual value. When the curve is on another

lice, value r must be calculated that is the radius of this further

lice, and this value decreases as d z increases. 

The algorithms used in the 3D display system used in this study

ere developed in C and C ++ languages and run on the OpenGL

ibrary ( Astle and Hawkins, 2009; Sellers et al., 2015 ). The GLU li-

rary is used to represent objects in 3D. GLUT library is used to

reate windows and receive user commands, and is multiplatform

 Astle and Hawkins, 2009; Sellers et al., 2015 ). Fig. 4 shows an au-

omatic initialization example of the 3D model, where voxels RIP 3 D 
nd LIP 3 D were found in a CT scan with 900 slices. This initializa-

ion took 15 slices, using 30 voxels in each slice and a distance of

0 voxels between each voxel and the center of each lung, in which
he starting voxels were RIP 3 D and LIP 3 D of the right and left lung

odels, respectively. These lung models are shown in “lung” color

n Fig. 4 (a), and Fig. 4 (b) displays one of the final lung models built

ig. 5 . 

.4. Movement, adding and removing points 

In this section, the dynamics of displacement, adding and re-

oving ACM points in the proposed 3D segmentation method are

escribed. The displacement of points is analyzed in a unique

eighborhood, and the point coordinates that generate a lower en-

rgy E 3 D set are its new coordinates. Hence, the point coordinates

re updated in order to minimize the total model energy given by

q. 1 . 

Fig. 6 illustrates a 3 × 3 neighborhood of a point c ( s ) belonging

o a slice i considering the axis z of the 3D model. Slices i − 1 and

 + 1 are only used for the calculation of the 3D energy that con-

ributes to the total energy of the ACM Crisp 3D Adaptive ( E CA 3 D 
).

hus, the displacement of a point belonging to a given slice will

nly occur in z i of this slice. Therefore, not only the points be-

ween distant neighbors in the same slice should be added, but

lso the points in neighboring slices. This is necessary so that the

D model can detect an object that is present in several slices, and

ot all slices have a curve initially. 

The addition of points occurs through two distinct methods.

he first method adds points between neighborhoods of a slice

hat have a distance greater than the maximum allowed. The sec-

nd method adds points between neighboring slices. This method

nalyzes the curves present in two slices, the first and last slices

f the 3D model. This analysis is based on the perimeter of these

urves, wherein a maximum circumference ( P max ) is initially con-

gured, and the method adds a new curve where one of these

forementioned curves exceeds the value of the predefined P max . 
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Fig. 6. Adding slices to a 3D model: a) 3D model with areas larger than the ones 

defined in the first and last slices; b) top view of the model in a); c) 3D model after 

adding the new slices; and d) top view of the model in c). 

Fig. 7. Calculation of the angle between a point and its neighbors on the same slice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Illustration of the parameters used for calculating the angles formed be- 

tween a point of slice i with its nearest neighbor in slices i − 1 and i + 1 : a) and b) 

show the definition of angles θ1 and θ2 , respectively. 
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Considering that the first slice is slice f and the last one is slice

l , then when the first slice has a perimeter larger than P max , a new

curve is added to slice f − 1 . However, when the last slice of the

model has a perimeter larger than P max , a new curve is added to

slice l + 1 . This new curve is added using the centroid of the curve

in the analysis as a reference. When adding a curve in slice f − 1

it is used the centroid of f and when adding a curve to slice l + 1

the centroid of the curve from slice l is used. 

Fig. 6 illustrates the application of this method using 30 as the

maximum perimeter P max and the initialization parameters assum-

ing the value 10 as the distance from each point to the centroid

and 30 as the number of vertices. In Fig. 6 (a), the upper and lower

slices have greater perimeters than P max ; Figure Fig. 6 (b) shows the

visualization of this model with an internal view of the top slice.

The results of applying the points addition method in the upper

and lower slices are shown in Fig. 6 (c). Fig. 6 (d) shows the exter-

nal and internal views of the model, respectively, after the addition

of the points. 

Another important step in the proposed method is the removal

of points from the 3D model. Analogously to the method of addi-

tion of points, this step is also based on two methods. The first

method uses information of the neighbors of a point in the same

slice as illustrated in Fig. 7 . The angle formed between the an-

alyzed point and its neighbors in this slice is calculated as α =
arccos ( a 

2 + b 2 −c 2 

2 bc 
) , and if this angle is less than a predefined an-
le, this point is removed from the model and model is reordered.

n summary this method removes the model points that are mis-

ligned with their neighbors. 

The second method follows the same principle to remove points

rom its neighbors, but expanding the principle to 3D. This is possi-

le using the closest points in neighboring slices. Thus, considering

 point belonging to slice z i , the nearest point of slice z i −1 and the

losest point of slice z i +1 used, as illustrated in Fig. 8 with points

 i , C i −1 and C i +1 belonging to slices i , i − 1 and i + 1 , respectively. 

The analysis for the removal of points is based on the angle

ormed between the neighbor points that is compared with a pre-

efined minimum angle θmin . An analyzed point is removed when

he angle between the point and the closest ones in the neighbor-

ng slices is less than θmin . Given the model shown in Fig. 8 , one

an see the point C i forming an angle θ with C i −1 and C i +1 , where

hese are the closest points in slices i − 1 and i + 1 , respectively. 

Angle θ1 shown in Fig. 8 (a) is greater than angle θ2 in Fig. 8 (b).

his is because C i is less aligned with C i −1 and C i +1 in the forma-

ion of θ2 , which does not occur in the formation of θ1 . The angle

formed between a point and its closest points in the neighbor-

ng slices is given by θ = arccos ( a 
2 + b 2 −c 2 

2 bc 
) , where a, b and c are

he parameters identified in Fig. 8 . 

Thus, the removal methods tend to exclude the misaligned

oints from the other slices. The points removed are points that

re misalignment relative to their neighbors in the same slice or

elative to the points in curves present in the neighboring slices.

his makes the model smoother and avoids gross errors in the 3D

egmentation. 
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Fig. 9. Flowchart for implementing the 3D Adaptive Crisp ACM. 
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.5. Automatic segmentation of lungs in thorax CT scans 

The automatic segmentation of the lungs in a CT scan of the

horax uses the methods previously described for the automatic

nitialization of the 3D model, addition and removal of points and

he 3D Adaptive Crisp ACM. The methods are executed according

o the flowchart shown in Fig. 9 , which also includes examples re-

ated to each step involved. 

The first step in segmenting the lungs automatically in a CT ex-

mination is to open all the DICOM images. To carry this out, the

ree library DCMTK is used to read the image and its parameters

nd to identify and order the CT scan slices. Then, the whole ex-

ernal energy is calculated using the 3D Adaptive Crisp method for

etecting the origin of the edges obtained by the 3D traditional

xternal energy. The edges detected inside the lungs are excluded

rom the external energy. The centroid of the 3D model with coor-

inates x ini , y ini and z ini is determined by the slice of the average

oordinate z i , considering all slices i , where the lung was found us-

ng the 2D method suggested in Rebouças Filho et al. (2013) . The

D model under goes successive iterations of the 3D Adaptive Crisp

CM method in order to decrease the energy of the model by mov-
ng its points. In each of the iterations, the methods of 3D points

emoval and addition are applied. 

The model is stable when the volume does not increase after

wo consecutive iterations. When this happens, the segmentation

f the lung is complete. Fig. 10 shows an example of a segmenta-

ion obtained by the proposed method, from the initialization to

he stabilization of the 3D model. 

.6. Statistical measures 

In order to analyze the segmentation performance, three well-

nown measures were employed: recall, precision and F-measure,

hose definitions are briefly described here: 

Recall (aka Sensitivity) is the ratio between the number of cor-

ectly segmented voxels of a given class and the total number of

oxels in the CT scan of the thorax under analysis, including those

hat were incorrectly segmented: 

ecall = 

true positives 

true positives 
+ false negatives , (17) 
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Fig. 10. Lung segmentation in CT scans by 3D Adaptive Crisp ACM: a) automatic initialization of the 3D model; b) to e), evolution of the 3D model, and f) final result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Description of the CT chest exams used to analyze the 3D algorithms. 

CT scan Number of Pathology 

number images 

1 456 Normal 

2 282 Normal 

3 269 Normal 

4 301 Normal 

5 344 COPD 

6 382 Normal 

7 241 Fibrosis 

8 232 Normal 

9 279 Fibrosis 

10 299 Normal 

11 299 COPD 

12 229 Bronchiectasis 

13 228 Bronchiectasis 

14 220 Bronchiectasis 

15 268 Nodular calcification 

16 260 Normal 

17 248 COPD 

18 224 Bronchiectasis and Fibrosis 

19 228 Nodular calcification and COPD 

20 276 calcification 

21 224 Fibrosis 

22 224 Parenchymal bands 

23 228 Bronchiectasis and calcifications 

24 240 Bronchiectasis and calcifications 

25 256 Fibrosis and calcifications 

26 228 Bronchiectasis 

27 180 Bronchiectasis and Fibrosis 

28 256 Normal 

29 224 Bronchiectasis and Fibrosis 

30 256 Normal 

31 300 Parenchymal bands 

32 256 Calcification and COPD 

33 232 Bronchiectasis and Parenchymal bands 

34 228 Calcification and COPD 

35 248 Normal 

36 244 Normal 

37 224 Bronchiectasis and calcifications 

38 252 Bronchiectasis and calcifications 

39 268 Bronchiectasis 

40 264 Atelectasis and COPD 

 

t  

p  

e  

τ  

n  

t

where true positives and false negatives stand for the number of

voxels of a given class correctly and incorrectly segmented, respec-

tively. 

Precision (aka Positive predictive value) means the ratio be-

tween the number of correctly segmented voxels of a specific class

and the total number of voxels in the CT scan of the thorax under

analysis as belonging to that class: 

precision = 

true positives 

true positives 
+ false positives , (18)

where true positives and false positives denote the number of voxels

correctly and incorrectly segmented as belonging to the considered

class, respectively. 

The F-measure ( F m 

) for a given class is calculated as the har-

monic mean of the Recall and precision values for that specific

class, resulting in a more global parameter for evaluating the per-

formance of a classifier on each class. More formally: 

F m 

= 2 

(
Recall × precision 

Recall + precision 

)
. (19)

3. Experimental results 

In this section, we present the results in terms of computational

cost and performance of each lung segmentation method under

comparison. The tests were performed on a notebook with an Intel

Core i5 1.4 GHz, 4 GB of RAM, and running MAC OS X 10.10.5. 

In the evaluation, the computational cost (processing time),

positive predictive value (precision), sensitivity (recall) and F-

measure were used to calculate the similarity between the shapes

under comparison. 

3.1. Images acquisition 

The CT systems used to acquire the experimental 40 chest CT

scans of healthy volunteers and patients with various types of

pathology were of high resolution. The acquired images have a res-

olution of 512 × 512 with 16 bits. Table 1 indicates the character-

istics of these exams, which were obtained in partnership with the

Walter Cantidio University Hospital, in Brazil, and used in an ear-

lier study ( Rebouças Filho et al., 2011, 2013 ). 

3.2. Definition of the optimal parameters 

In this section, the definition of the optimal parameters to be

used with the proposed method for segmenting the lungs in the

experimental CT scans of the chest is described. 
The energies involved in a parametric active contour model, ei-

her in 2D or 3D, need to be parameterized and each energy com-

onent has a different importance in the calculation of the total

nergy for each pixel or voxel. As such, the parameters α, β and

define the weights of the 3D Adaptive Balloon Force, 3D Conti-

uity Force and 3D Adaptive Crisp External energy, respectively, in

he calculation of the total energy. 
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Fig. 11. Results of the F-measure and processing time obtained by cross-validation varying α, β and τ in order to define the weights of the 3D Adaptive Balloon Force, 

3D Continuity Force and 3D Adaptive Crisp External energy, respectively. The grey bar column is β = 0 . 5 , black column β = 1 . 0 and white column β = 1 . 5 . The optimal 

configuration is indicated by a red line. 
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The optimal parameters were defined by cross-validation vary-

ng each parameter and considering the sum of all as equal to 1

one). The graphs of Fig. 11 depict the results of the F-measures

nd processing times. Three columns are shown for three different

eights for 3D Continuity Force, the gray column is β = 0 . 5 , black

olumn β = 1 . 0 and white column β = 1 . 5 . The x-axis shows the

alues of parameter α and the τ value is the complement of the

um between α and β to 1 ( τ = 1 − α − β). These results were ob-

ained using 6 CT scans considering different clinical cases: normal

CT scans 1 and 4), calcification (CT scans 15 and 20), bronchiecta-

is (CT scan 26), and parenchymal bands (CT scan 31). 

Analyzing Fig. 11 (a), one can verify that if alpha is increased,

he F-measure value will increase until it stabilizes; yet, it starts to

rop from α = 0 . 5 . However, analyzing Fig. 11 (b), one can see that

he higher the alpha value is, the faster the lung segmentation in

T scans tends to be. Therefore, the optimal configuration was ob-

ained using β = 0 . 05 (grey column) with α = 0 . 60 , and τ = 0 . 35 ,

s indicated by the red line shown in Fig. 11 . This option will lead

o the shortest possible processing time and highest efficiency. 

.3. Numerical contribution of the proposed 3D method compared to 

he 2D method 

To evaluate numerically the contribution of the pro-

osed 3D method compared to the 2D method proposed in
ebouças Filho et al. (2013) , we used the optimal configuration

btained for both methods on the same 6 CT scans ( Fig. 11 ).

he 2D method obtained an F-measure of 96.33% ± 0.42 and

 processing time of 12.52 ± 2.10 minutes. The proposed 3D

daptive Crisp Active Contour obtained an F-measure of 99.14% ±
.18 and a processing time of 3.20 ± 0.38 minutes. These results

emonstrate that the novel 3D energy accelerates the convergence

f the 3D model, thus reducing the processing time, with the

ombination of each new 3D energy making the proposed 3D

ethod 3.91 times faster than the 2D method compared under

he same experimental settings and conditions. 

The use of the Sobel 3D operator resulted in the F-measure av-

rage value obtained by the proposed 3D model being 3.5% higher

han the one obtained by the 2D method. Also the proposed 3D

ethod is more stable, which can be confirmed by analyzing the

tandard deviations of the F-measure. 

.4. Results and discussion 

In the experimental assessment, the 3D ACACM was compared

gainst three common approaches used in this field: the auto-

atic 3D Region Growing (3D RG) algorithm, the level-set algo-

ithm based on the coherent propagation method (LSCPM) and the

emi-automatic segmentation performed by an expert using the 3D

siriX toolbox (EUOT). 
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Fig. 12. Lung segmentation in CT scans by the methods under comparison: a), b) and c) 3D Adaptive Crisp ACM; d), e) and f) 3D Region Growing; g), h) and i) Level-set 

algorithm based on the coherent propagation method; j), k) and l) semi-automatic segmentation by an expert using the 3D OsiriX toolbox. 
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The 3D Adaptive Crisp ACM method was configured with the

parameters (as described in Section 3.2 ) α = 0 . 60 , β = 0 . 05 and

τ = 0 . 35 in the calculation of the total energy. After the initializa-

tion, the centroids were determined. To build the initial 3D model,

30 voxels per slice with a radius value of 50 voxels for the distance

to the centroid were used. The maximum distance d among voxels

considered in the addition of new voxels was equal to 5 voxels and

the minimum angle between a voxel and its neighbors considered

in the removal of voxels was defined as 45 degrees. 

The 3D RG algorithm used the same initialization as 3D Adap-

tive Crisp ACM, with the entire internal region of the ACM ini-

tialization polygon used as seed. The neighboring regions addition

method uses lung anatomy information, only adding voxels that

are on intensity edges within the lung, which are: normally aer-
ted, slightly aerated or hyper-inflated. This addition occurs by suc-

essive iterations, ending when no more voxels can be added. Two

pdates are made in this method. First of all, the trachea and the

ilum are targeted separately by removing the voxels of this region

rom the result of the segmentation of the lungs. Finally, if the re-

ions of both lungs are tending to merge, the frontier between the

wo lungs is updated to avoid segmenting regions of one lung as of

he other lung. This frontier is moved to the location of the small-

st diameter between the regions. Assuming that the voxels where

he two lungs merge looks like an hourglass, the frontier is moved

o the middle of the hourglass. 

There are several types of commercial medical software with

lugins and toolboxes that can be used to compare the pro-

osed method. We used one that is mostly used in hospitals
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Table 2 

Statistical analysis of the F-measure (FM) values obtained for the lung segmentation methods 

on the experimental CT scans in terms of healthy lungs (HL), lungs with disease that increase 

or decrease the HY density (DID and DDD, respectively), and global results (GR). 

Segm. Right lung Left lung Both lungs Time(min) 

Method FM(%) FM(%) FM(%) 

HL 3D ACACM 99 .93 ± 0.19 98 .82 ± 0.22 99 .22 ± 0.14 3 .54 ± 0.79 

3D RG 98 .19 ± 0.74 98 .28 ± 0.77 98 .57 ± 0.54 2 .51 ± 0.55 

EUOT 98 .03 ± 1.16 97 .92 ± 1.27 98 .53 ± 0.99 4 .38 ± 0.89 

LSCPM 98 .26 ± 1.25 98 .08 ± 1.36 98 .73 ± 1.04 1 .18 ± 0.26 

DDD 3D ACACM 98 .90 ± 0.11 98 .69 ± 0.23 99 .19 ± 0.08 3 .04 ± 0.47 

3D RG 98 .40 ± 0.55 98 .16 ± 0.84 98 .70 ± 0.43 2 .15 ± 0.33 

EUOT 98 .02 ± 1.01 97 .68 ± 1.35 98 .65 ± 0.84 3 .72 ± 0.56 

LSCPM 98 .07 ± 1.14 97 .65 ± 1.50 98 .76 ± 0.92 1 .01 ± 0.15 

DID 3D ACACM 98 .94 ± 0.25 98 .78 ± 0.28 99 .22 ± 0.16 2 .91 ± 0.32 

3D RG 94 .49 ± 7.61 93 .49 ± 10.67 96 .43 ± 5.06 2 .06 ± 0.22 

EUOT 93 .78 ± 8.64 92 .68 ± 11.35 96 .08 ± 5.97 3 .69 ± 0.38 

LSCPM 92 .92 ± 10.21 91 .74 ± 13.43 95 .56 ± 7.46 0 .97 ± 0.10 

GR 3D ACACM 98 .94 ± 0.21 98 .77 ± 0.26 99 .22 ± 0.14 3 .11 ± 0.57 

3D RG 96 .50 ± 5.60 95 .99 ± 7.36 97 .59 ± 3.67 2 .20 ± 0.40 

EUOT 96 .01 ± 6.37 95 .39 ± 8.28 97 .39 ± 4.35 3 .89 ± 0.66 

LSCPM 95 .68 ± 7.56 94 .98 ± 9.81 97 .22 ± 5.43 1 .03 ± 0.19 
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fi  
nd also in recent researches. Hence, the level-set algorithm

ased on the coherent propagation method (LSCPM), proposed by

ang et al. (2011, 2014) , was used in this work for lung segmenta-

ion via the MIA plugin for OsiriX ( http://www.mia-solution.com ). 

Another segmentation approach possible is the semi-automatic

egmentation by an expert using the 3D OsiriX toolbox (EUOT). In

his approach, the expert visualizes the 3D objects presented in the

nput exam, and removes undesired objects ( Michael P Chae, 2015 ).

he use of EUOT is in fact widely adopted by many doc-

ors; however, this tool is based on simple segmentation tech-

iques such as thresholding and region growing. Thus, when

he lung under analysis has some disease, manual corrections

hould be made in each slice of the CT dataset; however, this

ool does not allow this straightforward procedure. Fig. 12 shows

xamples of the segmentations obtained by the methods under

omparison. 

The segmentations obtained by each method under comparison

ere evaluated using 40 CT scans of the chest. Each CT scan was

ssessed along its length from the apex to the base of the lung,

emoving one in eight slices. 

The segmentations used as ground truth were built semi-

utomatically using commercial software and manual corrections

ere subsequently carried out by a medical expert on the existing

rrors. 

Table 2 shows the statistical results obtained for the 40 CT

cans in terms of healthy patients and patients with diseases. In

he case of the diseased CT scans, there are two groups, the first

roup with decreased HU density in some regions of the lung such

s those due to COPD and bronchiectasis, and the second group

ith increased HU densities such as those due to fibrosis, calcifi-

ation and atelectasis. 

This study adopted the F-measure as the quality metric because

his measure takes into account only the lung region in the calcu-

ations. Many authors use the accuracy as an evaluation metric, but

n this case, this metric does not lead to accurate results, since the

ung is just a small part of the total imaged volume, and accuracy

onsiders the whole volume under examination, which can lead to

rroneous analysis of the results. 

Regarding the results presented in Table 2 , there are four ana-

yzes. The first one evaluates healthy patients, and here the average

-measure by the proposed method is better for both lungs with a

alue of 99.22% ± 0.14, followed by the Level-set algorithm based

n the coherent propagation method with a value of 98.73% ± 1.04
or this metric, then the 3D RG with 98.57% ± 0.54 and finally, the

emi-automatic segmentation by an expert using 3D OsiriX toolbox

ith 98.53% ± 0.99. 

The second analysis concerns patients with diseases. The pres-

nce of exams with diseases that decrease the HU density in some

ung regions does not change significantly the results of the meth-

ds: as to the average F-measure, the 3D ACACM has a value of

9.19% ± 0.08, LSCPM of 98.76% ± 0.92, 3D RG of 98.70% ± 0.43,

nd EUOT of 98.65% ± 0.84. However, this behavior does not oc-

ur for diseases that increase the HU density in some regions of

he lung. In these cases, the 3D ACACM results remain practically

onstant with a value of 99.22% ± 0.16 for the average F-measure;

owever, the other methods had lower performances: 3D RG ob-

ained a value of 96.43% ± 5.06, LSCPM of 95.56% ± 7.46, and EUOT

f 96.08% ± 5.97. Fig. 13 presents boxplots of the most critical case

ssociated to the existing methods, i.e. the segmentation of lung

iseases that tend to increase the values of HU tissue density. 

The boxplots in Fig. 13 show that in cases of DID, the existing

ethods have considerably variations of hit rate. This is because

hese diseases make the unhealthy lung tissue very dissimilar to

ealthy lung tissue. However, the proposed method remains ro-

ust with an almost constant hit rate, obtaining results similar for

ealthy volunteers and patients with DDD and DID. 

Fig. 14 shows the results considering healthy and unhealthy

ungs and illustrates common errors that can occur in this field.

he results are presented according to the following: the first row

hows healthy lungs; the second row shows lungs with COPD;

he third row presents lungs with Bronchiectasis and Parenchymal

ands; the fourth row shows lungs with Bronchiectasis and Fibro-

is; the fifth row shows lungs with Nodular calcification and COPD.

he results are presented with true positives in green, false nega-

ives in red, and false positives in orange and blue (blue is used in

he cases where the border between the 2 lungs is unclear), and

he original grayscale represents true negatives. 

Regarding Fig. 14 , the results in the first row indicate that all

ethods obtained correct segmentations. The slices in the third,

ourth and fifth rows, are associated to lung diseases that in-

rease the HU density which confounds inside lung regions with

uter lung regions. The methods compared against the proposed

D ACACM method had lower performance in segmenting these

lices. Instead, the proposed method had a stable performance in

ll of these cases due to its external energy and integration of arti-

cial intelligence that enhances its performance even more. The in-

http://www.mia-solution.com
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Fig. 13. F-measure (FM) boxplots of the values obtained for the lung segmentation methods on the experimental CT scans in terms of disease that increase the HU density 

(DID). 

Fig. 14. Examples of lung segmentations in CT scans obtained by the different methods under evaluation: a), f), k), p), u) original images; b), g), l), q) and v) 3D Adaptive 

Crisp ACM; c), h), m), r) and w) 3D Region Growing; d), i), n), s) and x) Level-set algorithm based on the coherent propagation method; and e), j), o), t) and y) semi-automatic 

segmentation by expert using the 3D OsiriX toolbox. 
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L  
ernal energy makes segmentation of objects with different shapes

ossible, building the correct 3D segmented model due to its inte-

ration with the appropriate external force. 

In the fifth row of Fig. 14 , there are small blue regions in the

esults obtained by the existing methods, meaning an uncertainty

f where the border between the two lungs is; however, the pro-

osed method performed very well also due to the adopted ex-

ernal energy. Furthermore, the proposed internal energy becomes

ore regular and stable in the 3D model and thus reduces gross

egmentation errors. Note that this behavior of the 3D ACACM en-

rgy can also cause minor errors, as shown in yellow in these

lices, because the 3D model is more stable and therefore, very

mall objects presented in a few slices may be ignored, such as

lood vessels and internal lung airways. 

The last analysis is the global analysis that reflects the same ob-

ervations of the previous analysis: the proposed method obtained

n average F-measure of 99.22% ± 0.14, 3D RG of 97.59% ± 3.67,

UOT of 97.39% ± 4.35, and LSCPM of 97.22% ± 5.43. Thus, one

an say that the current methods under comparison attained aver-

ge F-measure values higher that 98.5% in the healthy patients and

n the patients with diseases that tend to diminish the HU density

n some lung regions. However, the proposed method was more

table and obtained an average F-measure over 99% in all tests in-

ependently of the type of disease presented. 

Regarding the segmentation time, the most efficient methods

n ascending order were the Level-set algorithm based on the co-

erent propagation method with 1.03 ± 0.19 minutes, 3D RG with

.20 ± 0.40 minutes, 3D ACACM with 3.11 ± 0.57 minutes, and

he semi-automatic segmentation by an expert using the 3D OsiriX

oolbox with 3.89 ± 0.66 minutes. The proposed method obtained

n average result of 3 minutes, which is three times the time re-

uired by the automatic commercial plugin software used to build

he ground truth and 1.5 times of the 3D RG time. However, the 3D

CACM is eight times faster than the expert, which took 25 min-

tes on average in using the semi-automated commercial software

ith subsequent manual improvements. 

The experimental dataset used and the results obtained are

vailable at lapisco.ifce.edu.br/?page _ id=131 . 

. Conclusion 

This work proposes a method called 3D Adaptive Crisp that is

 new technique of automatic segmentation of lungs in CT scans

f the thorax. The main contributions achieved by the proposed

ethod are related to the new 3D Adaptive Crisp external energy,

he novel 3D Adaptive Balloon internal energy and the robust 3D

utomatic initialization. 

As secondary contributions, but also important to the quality of

he results obtained, are the developed solutions for the addition,

emoval and initialization of points, which were not successfully

vercome by previous studies. The use of the Sobel 3D operator

llows better analysis of the objects present in the input image

ataset through the proposed external energy. These contributions

ive a parametric method of active contour, such as Snakes, the

bility to have results similar to the ones obtained by geometri-

al methods of active contours, such as Level Set, even when com-

ared against an optimized Level-Set algorithm. 

The 3D Adaptive Crisp was compared against three methods

ommonly used by specialists in the segmentation of CT scans of

he thorax both from healthy and diseased patients, using a ground

ruth built by a medical expert. 

The proposed method was comparatively more stable than the

ther methods independently of the diseased presented, obtaining

n average F-measure over 99% in all tests. The findings confirmed

hat the proposed method is superior to the other methods un-

er comparison, and its suit- ability to be used in clinical routine
iagnosis, since it requires less than 4 minutes to accomplish the

egmentation in a common personal computer. 

As to future works, we intend to apply other computational in-

elligence and pattern recognition techniques to identify the origin

f edges found in the lungs, to adapt the methods developed for

he detection of other organs, and to investigate methods for the

ecognition of lung or other organ diseases. 
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