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Abstract

The present study assessed biochemical responses as sublethal endpoints in the polychaete Armandia agilis exposed to
contaminated sediments to in order to assess its potential use as a test organism. Sediment samples from several locations
at a dredging site were obtained and used in whole-sediment exposures. Samples were tested with A. agilis to determine
the 10-day toxicity of the 100% sample and the enzymatic activity of catalase (CAT), glutathione-S-transferase (GST) and
acetylcholinesterase (AChE) biochemical measurements made in whole-body homogenates of a subset of the surviving
organisms. Biochemical responses reported in A. agilis were not statistically different from the reference site sediment,
however, the integrated analysis demonstrated that contaminants bound to sediment samples influenced the sublethal effects.
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Polychaete worms constitute one of the most diverse and
abundant groups of marine ecosystems. They occupy a large
variety of benthic habitats from sandy to muddy bottoms,
exhibit different reproductive patterns and feeding strategies,
and are dominant in many aquatic environments. They are
also key links of the marine food web, contributing thus to
the secondary production of benthic environments by act-
ing as an important prey for invertebrates and demersal fish
(Hutchings 1998; Giangrande 1997). Thus, they are impor-
tant route for the transfer of contaminants from sediments
to higher trophic level organisms.

One important trait of polychaetes is that some species
can tolerate and colonize impacted environments by either
natural or anthropogenic stressors, which allow them to be
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considered relevant indicators of ecological status in marine
and estuarine ecosystems (Ugland et al. 2008). Many species
burrow into the sediments for foraging and protection against
predation; and by doing that, these animals actively ingest
particles in order to obtain their nutrients. Since sediments
are considered the sink compartment of different materials
transported in the aquatic systems, the bioturbation caused
by polychaetes results in their contact with contaminants by
dermal tissues and digestive tract producing thus, adverse
biological effects (Hutchings 1998).

Some species of polychaetes are considered sensitive to
contaminants and have been used in whole-sediment toxicity
tests (Yang and Zhang 2013; Maranho et al. 2014) but inves-
tigations using them as models for tropical environments
such as South Atlantic are limited. In Brazil for example, the
estuarine species from muddy sediments Laeonereis acuta
has been employed as test organism in ecotoxicological
studies of nanoparticles (Nunes et al. 2017) and brominated
flame retardants (Diaz-Jaramillo et al. 2016), demonstrat-
ing the potential of polychaetes as a relevant target model.
Recently the polychaete Armandia agilis, which is widely
distributed along the Brazilian coast including the beaches
of Sao Paulo state (Amaral et al. 2010), has been proposed
as a test organism for assessing the acute toxicity of muddy
and sandy sediments (Saes et al. 2018).
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Lethality is considered an ecologically relevant end-
point in sediment toxicity assessment but the application
of sublethal responses as a metric can properly address the
adverse effects with the causal stressors, once other factors
such as sediment physical features can influence in the per-
formance of the test, resulting in false-positive based con-
clusions (Chapman et al. 2002). However, contamination
levels often occurs at chronic effects level and in this case,
biomarker measurements have been considered as more sen-
sitive, indicating a ‘‘early warning’’ indicator of deviation
from the normal status of the organism exposed to chemicals
(Martin-Diaz et al. 2004). In Brazil, contaminated sediments
and dredged materials are regulated by the Resolution No.
454 (Brasil 2012), which recommends toxicity tests as a
complementary line of evidence of sediment quality consid-
ering lethal and sublethal effects. Thus, the main objective of
this study is to evaluate biochemical responses as sublethal
endpoints (e.g. stress indicators) and its correspondence to
acute effects in A. agilis aiming to assess its potential use as
a test organism. Sediment samples from a dredging site were
obtained and used in whole-sediment test exposures. Expo-
sure biomarkers were monitored in whole-body homoge-
nates and the results matched with sediment physical and
chemical profile.

Fig. 1 Sediment sampling 38°31'W

Materials and Methods

Adults of A. agilis (15 to 20 mm total length) were col-
lected at Engenho D’4gua Beach (Ilhabela, north coast of
Sd@o Paulo state) during the low tide by using a manual
dredge coupled with a 0.4 mm sieving mesh. Sediment
samples were obtained from 3 sites from the Harbor area of
Mucuripe Bay, located in Fortaleza city (Ceara state, north-
east Brazil) in two surveys: beginning (a; January 24, 2011)
and at the end of dredging operations (b; July 29, 2011)
(Fig. 1). A ‘pristine’ site located in Icapui (Cear4 state) was
used as reference. The selection of these sites was based on
the potential use of A. agilis as a model to assess impacts of
dredging according recommendations of the Brazilian fed-
eral normative CONAMA no 454/12, which regulates the
disposal of dredged sediments (Brasil 2012).

The bathymetry (underwater depth) of each site was
determined and sediment samples were analyzed for par-
ticle size according to the wet sieving method to separate
mud (fine particles, silt+clay <63 pm particle diameter)
from sand fractions (McCave and Syvitski 1991) and total
organic carbon (TOC) were obtained in an analyzer model
TOC-VTOC model SSM-5000A (Shimadzu). Major ele-
ments (Al and Fe) and trace elements (Cd, Cr, Cu, Ni, Pb,
and Zn) were analyzed in sediment digested in HNO;, H,0,
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and HCI (3:1:1) following the EPA 3050B protocol (USEPA
1996). Elements were detected by Flame Atomic Absorp-
tion Spectrometry (FAAS) (Shimadzu AA 6200) and a back-
ground correction with a deuterium lamp. Concentrations
of aliphatic hydrocarbons (AHs) and polycyclic aromatic
hydrocarbons (PAHs) were determined in extracts using
a mixture of n-hexane and dichloromethane (1:1) (UNEP
1992). Samples were fractionated and compounds quanti-
tatively analyzed using an Agilent 6890 gas chromatograph
coupled to a 5973N mass spectrometer (GC/MS). Analy-
ses of surrogates standards, reference materials, and blank
samples were carried out to validate methods. The detection
limits were 0.01% for Al, Fe and TOC, 0.01 pg/g for Cd,
0.5 pg/g for Zn, 0.1 pg/g for Cu, 1 pg/g for Pb, 2 ug/g for Cr
and Ni, and 1 ng/g for PAHs.

Whole-sediment exposures were based in method devel-
oped for the species (Saes et al. 2018). The chambers were
set up in 3 replicates of polyethylene containers (1L) con-
taining 100 mL of sediment sample and 400 mL of filtered
seawater (35%o salinity, 0.45 um pore size filters). After the
equilibrium period, 10 organisms per replicate were exposed
for 10 days at 25 +2°C with photoperiod of 24 h light in
order to induce negative phototaxis and ensure the interac-
tion of worms with the samples. At the end of exposure time,
lethal effects were estimated and the surviving organisms
euthanized on ice and kept at —80°C for biochemical analy-
ses. Whole-body homogenates were prepared by homogeniz-
ing tissue samples composed by the surviving animals which
were pooled into 3 to 5 subset of samples in a buffer solution
(pH 7.6) containing TRIS (50 mM), EDTA (1 mM), dithi-
othreitol (DTT, 1 mM), Sacarose (50 mM), KCI (150 mM),
and phenylmethylsulfonyl fluoride (PMSF, 1 mM). Extracts
were centrifuged at 4°C and a 9000 g for 45 min, then sepa-
rated in aliquots for the analysis of enzymatic activity and
determination of total proteins (Bradford 1976).

Catalase activity of the extracts (CAT) was monitored at
240 nm in a buffer solution containing Tris—HCI (0.05 M),
EDTA (0.025 mM), and H,0, (10 mM) (Monserrat et al.
2006). Conjugation activity of glutathione-S-transferases
(GST) was also analyzed in the extracts at 34 nm in a potas-
sium phosphate buffer containing 1-Chloro-2,4-Dinitroben-
zene Solution (CDNB, 42 mM), glutathione (GSH, 1 mM)
(Martin-Diaz et al. 2009). Enzymatic activity of acetylcho-
linesterase (AChE) was monitored in the homogenates at
412 nm in a potassium phosphate buffer (0.1 M, pH 7.6)
containing acetylcholine iodide (0.075 M) and 5,5-dithio-
bisnitrobenzene acid (DTNB, 10 mM) (Monserrat et al.
2006). Results are expressed in umol/mL/mg of protein.
Statistical differences in the responses of A. agilis exposed
to samples from those of reference site were determined
using one-way ANOVA followed by Dunn’s comparisons
test (p <0.05). Biological responses were integrated with the
chemical profile using multiple correlations analysis. After
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that, a matrix of data was constructed using the median (50th
percentile) of each variable per site and then, lethal and sub-
lethal responses were integrated with physical-chemical pro-
file of samples by means of principal component analysis
(PCA). Statistical analyses were performed using package
Past 3.20 (Hammer et al.2001).

Results and Discussion

Sediment samples from Mucuripe Bay were sandy, but
muddy particles occurred in MD1, which is related to the
low energy zone induced by the jetties (Maia et al. 1998). As
aresult, different materials and chemicals were found at high
levels, especially Cr, Cu, Pb, AH, and PAHs. Samples of
MD1 were also toxic considering acute effects, indicating an
effect of contaminants on A. agilis. These results corroborate
those produced in previous studies by using similar analyti-
cal methods. Enriched levels of Hg, Cd, Cu, Ni and Zn were
found and elevated concentrations of AHs, PAHs and tribu-
tyltin (TBT) reported in deposits within the Bay, originated
from harbor activities and industrial effluent discharges (oil
refinery) causing toxicity in amphipods from the species
Tiburonella viscana and also effects on the macrobenthic
organisms (Moreira et al. 2017). However, concentrations
of metals and PAHs in Mucuripe Bay were found below the
threshold levels of sediment quality guidelines applied in
Brazil for the management and disposal of dredging materi-
als (Brasil 2012).

The antioxidant activity of the enzyme CAT increased
twofold (average) in animals exposed to MD1 compared to
Icapui (reference site), but no statistical difference compared
to reference site was observed. The exposure to contami-
nants can induce the formation of reactive oxygen and nitro-
gen species (RONS), causing oxidative stress (Di Giulio and
Meyer 2008). Changes in the antioxidant defense responses
of the polychaete L. acuta treated with Cd were observed,
but the activity of CAT was not affected (Sandrini et al.
2008). An increased activity of CAT in the polychaete Nereis
diversicolor was documented as a response to trace metals
such as Cu (Sole et al. 2009). Another study also reported
the increased activity of CAT in the species Perinereis nun-
tia correlated with Cu exposure over the time, leading to an
inhibitory effect at higher concentrations (Won et al. 2012)
(Table 1).

The activity of GST was also elevated in MD1 in both
samples but again, no significant difference was reported
in comparison to reference site. This enzyme plays role in
phase II in the detoxification mechanism by catalyzing the
conjugation of GSH with contaminant substrates originated
in phase I, related to the biotransformation of organic com-
pounds of (Stegeman and Livingstone 1998). In polychaetes,
GST activity may be induced or inhibited in response to a
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Table 1 Profile of physical and chemical characteristics of sediments from Mucuripe Bay, Fortaleza in January (a) and July 2011 (b) and bio-
logical responses measured in A. agilis expressed as mean values + standard deviation. Reference site located at Icapui

Variable Reference MDI a MD2 a MD3 a MDI b MD2b MD3 b
Physical and  Bathym- 0 11 6 5 13 6 8
chemical etry (m)
?h?racter— Sand (%) 95.9 37.9 82.7 91.6 36.6 57.6 87.9
istics Fine parti- 4.6 62.2 19.1 10.0 63.5 44.4 13.4
cles (%)
TOC (%) 0.10 0.49 0.07 0.06 0.69 0.04 0.06
Al (%) 0.09 0.96 0.24 0.25 0.96 0.06 0.08
Fe (%) 0.13 1.06 0.25 0.26 1.08 0.14 0.21
Cd (ug/g) 0.19 0.16 0.16 0.15 0.15 0.14 0.14
Cr (ug/g) <20 25.9 15.5 13.4 2.5 <2.0 <2.0
Cu (ug/g) 0.4 13.6 14 1.6 11.1 2.0 22
Ni (ug/g) 2.1 8.0 1.6 2.2 10.1 4.2 35
Pb (ug/g) 9.8 22.0 15.9 19.4 229 13.9 224
Zn (pgl/g) 0.7 25.8 2.5 2.8 21.0 1.1 2.1
AH (ugg) 0.6 655 1.0 0.8 408 0.5 0.5
PAH (ng/g) <1.0 1160 3.0 <1.0 691 <1.0 <1.0
Biological CAT (umol/  45.77+33.48 111.15+£69.39 116.70+32.86 79.62+75.40 136.78+126.62 81.38+15.15 70.35+48.62
responses mL/mg of
protein)
GST (umol/  0.98+0.31 1.58+0.12 0.64+0.15 1.14+0.50 1.56+0.71 0.94+0.22  0.83+0.15
mL/mg of
protein)
AChE (umol/  1.0+0.06 1.57+0.73 1.14+0.27 1.51+0.17  0.83+0.71 0.93+0.16  0.62+0.25
mL/mg of
protein)
Toxicity (%  73£25 40424 93+7 100+ 0% 4448% 96 +4 96 +4
survival)

Bathymetry (m) underwater depth of site

TOC total organic carbon, AH aliphatic hydrocarbons, PAHs polycyclic aromatic hydrocarbon, CAT catalase enzymatic activity, GST glu-
tathione-S-transferases enzymatic activity, AChE acetylcholinesterase enzymatic activity

* significant difference from reference site (p <0.05)
toxic sample

mixture of contaminants in sediments as observed in the
species Perinereis gualpensis and L. acuta (Ledo et al. 2008;
Diaz-Jaramillo et al. 2016). However the activity of GST
was induced in P. nuntia and Hediste diversicolor exposed
to Cu and pharmaceutical products, respectively (Won et al.
2012; Maranho et al. 2014). Increased activity of GST corre-
lated with dichlorodiphenyltrichloroethane (DDT) in tissues
of N. diversicolor was reported in animals collected in sites
affected by multiple sources of contaminants, suggesting a
detoxification activation of lipophilic compounds including
polychlorinated biphenyls (PCBs), DDTs, and PAHs (Solé
et al. 2009). For our results, a moderate stress and response
on GST activity in A. agilis are considered, since elevated
levels of AH and PAH were present at MD1.

The activity of the neurotoxicity marker AChE was also
evaluated and no statistical changes were observed in ani-
mals exposed to sediments from Mucuripe Bay compared

to the reference site. This enzyme acts at the nerve end-
ings by catalyzing the hydrolysis of the neurotransmitter
acetylcholine forming thus acetate and thiocholine, allow-
ing the cholinergic receptor to return to an initial condition
(Andreescu and Marty 2006). It is also known that neuro-
toxic compounds such as pesticides can inhibit Ache activ-
ity and in polychaetes, such effects have been reported in
N. diversicolor (Douhri and Sayah 2009; Solé et al. 2009).
Thus, our results indicated that no effects are related to neu-
rotoxic substances in A. agilis.

Significant positive correlations (p < 0.05) were found for
toxicity and GST activity with TOC, Cu, Ni, Zn, AH, and
PAHSs. The activity of AChE was correlated positively with
Cr. CAT activity was not significantly correlated with any of
the chemicals (Table 2). The results including physical prop-
erties were also integrated with sediment variables in a PCA
analysis, in order to observe associations and correlations
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Table 2 A matrix of correlation

" . Toxicity AChE GST CAT PAH AH Zn Pb Ni Cu Cr Cd

coefficient between physical
and chemical characteristic TOC *0.87 008 *0.88 072 *0.87  0.88 **0.93 0.57 *¥0.94 **0.92 0.20 0.00
sediments (Mucuripe Bay cd 042 023 —002 —033 002 002 —004 —061 —024 —0.11 0.09
and reference) and biological
responses measured in A agilis ~ Cr 024 *0.86 025 039 056 055 049 029 011 046

Cu  *0.82 027 *0.87 070 *0.98 *0.99 *#0.99 065 *+0.93

Ni 078 —002 *0.87 067 *0.85 *0.86 *0.90 0.62

Pb 023 004 052 059 056 057 063

Zn  *0.85 032 *0.88 070 *0.98 *0.99

AH  *0.86 037 *0.85 0.62 **1.00

PAH *0.85 039 *0.84 0.6l

Significant correlations marked in bold (* p <0.05, ** p<0.01)

between biological effects and contaminants based on the
maximum variance of data projected in a multidimensional
space. The first two axis (eigenvectors) explained 86.58% of
variability and negative correlations in Axis 1 were found
for bathymetry (—0.89), mud (—0.90), TOC (- 0.92), Cu
(—0.99), Ni (—0.94), Pb (—0.72), Zn (—0.98), AH(— 0.96),
and PAH (—0.95). Acute toxicity (—0.76), CAT (—0.75) and
GST (—0.85) activities were also correlated with Axis 1.
Axis 2 represent positive correlations for bathymetry (0.40)
and Pb (0.50) contrasting with negative correlation found for
Cd (- 0.92), acute toxicity (—0.52) and Ache (—0.51). The
bi-dimensional ordination clearly separates the most con-
taminated and toxic site (MD1) from uncontaminated ones
(MD2, MD3 and reference), with axis 2 separating sam-
ples by sampling campaign (Fig. 2). A good representation

of data in PCA is obtained by 2D ordination with samples
separated far from the origin (zero) as observed for MDI1.
In this case, the results suggest an influence of sediment
contamination in the responses observed A. agilis. Pereira
et al. (2014) transplanted the oyster Crassostrea rhizophorae
and the mussel Perna perna to transplanted contaminated
sites at Santos Port Channel and Bay, and reported a change
in biochemical status correlated with sediment toxicity
and reduced richness and diversity of benthic community
using multivariate techniques, indicating a correspondence
between sediment contamination and the effects at the dif-
ferent level of biological organization.

The establishment of a relationship between effects
at lower levels of biological organization such as bio-
chemical responses with those at higher levels including

~
F X
<
.MD3 b
1.5t
MD2 b
.
MDI b
.MD3 a
CAT, Axis |
-5 -3 GST 1 MD2 a 3
MDI a Toxicity Ache
1,54
[capui
-2,5

Fig.2 2D ordination based on PCA results separating MD1 from remaining sites by variables correlated to axis 1 and sampling surveys in Janu-

ary (a) and July (b) by variables correlated to axis 1, except for MD3 a
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individual-level represents a key issue to be addressed in
risk assessment and management of contaminated sites
(Chapman et al. 2002). Sublethal responses reported in A.
agilis in our study were slightly changed (not significantly)
compared to reference site but the results of PCA analysis
demonstrated that contaminants bound to sediment samples
influenced such effects and they are associated with acute
toxicity. The findings of this study provide relevant informa-
tion for the development of new models in sediment quality
evaluations, and also the polychaete A.agilis is a suitable
test organism for studies assessing both lethal and sub-lethal
responses.
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