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Abstract: Rainfall-runoff modeling in ungauged basins continues to be a great hydrological research
challenge. A novel approach is the Long-Short-Term-Memory neural network (LSTM) from the Deep
Learning toolbox, which few works have addressed its use for rainfall-runoff regionalization. This
work aims to discuss the application of LSTM as a regional method against traditional neural network
(FFNN) and conceptual models in a practical framework with adverse conditions: reduced data
availability, shallow soil catchments with semiarid climate, and monthly time step. For this, the
watersheds chosen were located on State of Ceará, Northeast Brazil. For streamflow regionalization,
both LSTM and FFNN were better than the hydrological model used as benchmark, however, the
FFNN were quite superior. The neural network methods also showed the ability to aggregate process
understanding from different watersheds as the performance of the neural networks trained with the
regionalization data were better with the neural networks trained for single catchments.

Keywords: ungauged basins; Long-Short-Term-Memory; semiarid; streamflow

1. Introduction

In semiarid regions, long periods of water stress threat local populations and lead
to economic losses [1], impair water quality [2], and consequently impact on local biodi-
versity [3]. In this scenario, efficient water resources planning and management (WRPM)
are required to assure the sustainable development of the region. One strategy to provide
information for WRPM is the use of rainfall-runoff models to simulate the hydrologic
process in the basins, allowing to fill gaps in streamflow series and to project streamflow
under different climate scenarios.

The basic structures for rainfall-runoff models are classified in (I) physically-based,
(II) conceptual, and (III) empirical, according to the way they describe the natural hydro-
logic processes. Physically-based models rely on the physics to describe the mass and
energy transfers in each cell of the basin, providing detailed information about the ana-
lyzed processes [4]. Consequently, this kind of model demands a large amount of data
(e.g., boundary conditions and meteorological variables) and has high computational cost
that restrains their application to lower dimension problems [5,6].

Conceptual or simplified physically-based rainfall-runoff models, in turn, make ab-
stractions of the hydrologic processes. They simplify these processes, keeping the global
dynamics, as the mass transfers between the different basin compartments, requiring a
further understanding of the water movement in the hydrological cycle. A set of parameters
which represents the average features in the catchment controls the mimicked dynamics
in the conceptual models. Those parameters are calibrated to the targeted basin using
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the available rainfall and streamflow data [7]. Their simplified physics allows them to be
applied with minimal data and computational costs at different scales [8].

Lastly, different from the other kinds of models, numerical rainfall-runoff models or
fully data-driven approaches are not expected to describe the processes at a first moment.
Instead, they are designed to find a numerical relation between the input data and the
targeted streamflow output. In this kind of model, the comprehension of the modeled
processes determines the input data selection. Data-driven models are also quite flexible
and, although as any kind of model, their performance depends on the data availability,
they require much less time for their development, allowing their application in real time
and presenting efficient results for the streamflow prediction [9].

In general, the complexity of the process description in the model is limited by the data
availability. In more complex models, the great number of inputs and parameters tends to
result in uncertainty and inefficiency [10]. For these reasons, physically-based models have
rarely practical use in data-scarce basins. However, even when conceptual or numerical
models are used, a minimum of data is required for reliable streamflow estimation. Hence,
streamflow simulation in ungauged basins (i.e., basins where we do not present satisfactory
hydrological records) continues to be a great hydrological research challenge, since as
pointed out by Sivapalan et al. [11], most basins fall under this definition.

In this aforementioned context, the International Association of Hydrological Sciences
(IAHS) began the 2003–2012 decade with the elaboration of the initiative prediction in
ungauged basins (PUB), which aims to formulate and implement appropriate programs
to stimulate and raise awareness among the scientific community in a coordinated way,
to achieve greater advances in this field [11]. The PUB is characterized by the extrapo-
lation of information from gauged basins and, if possible, combined with the few data
available of an ungauged basin, to allow the prediction of unknown or undocumented
hydrological variables.

One strategy towards PUB is the regionalization of a conceptual model’s parameters,
which allows to estimate the model parameters in ungauged basins through parameter
values calibrated in gauged basins. Different types of regionalization techniques have
been elaborated over the years and applied in different regions. Despite advances in
the area, there is still no model superior to all the others, with performances varying for
different regions and magnitudes [12–14]. At present, three types of flow regionalization are
highlighted: regression-based [15,16], spatial proximity [17,18], and approach by physical
proximity [17,19]. In regionalization, as the number of parameters grows, the difficulty
to train a model increases, thus increasing the level of uncertainty, as the process they
represent and the variables used become more conceptual and may not be physically
relevant [20].

Using an appropriate framework, a data-driven approach can provide a regionalized
rainfall-runoff model that simplifies the rainfall-runoff modeling and regionalization to a
single step with the direct incorporation of proxy variables as input variables, having the
flexibility to resemble a physical-based modeling (with the use of physical characteristics
as a proxy variable) and benefiting a non-strict requirement of a complex set of physical
input data. Several regression approaches, such as Multiple Regression [21], Stepwise [22],
Artificial Neural Networks (ANN) [23–25], and Kernel-based approaches [26] are widely
used in hydrological science with very robust results. In comparison to regression-based
regionalization, the use of an ANN can possibly produce better results due to its ability to
encompass both a linear and non-linear relationship between the proxy variables used and
the streamflow series.

Recently, ANNs with sophisticated multilayer architectures have become famous
with the name of Deep Learning (DL) due to their ability to solve complex computational
problems [27]. To improve the ability of neural networks to learn time series, the Long-Short-
Term Memory (LSTM) emerges as a State-of-Art ANN architecture that, different from the
traditional Feedforward Neural Network (FFNN), is designed to learn time dependency
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information which is key in hydrological processes (e.g., for the storage in rainfall-runoff
transformation) [28].

Few works have been done to address the application of LSTM to rainfall-runoff
modeling. We highlight the works of Hu et al. [29], Xiang et al. [30], and Fan et al. [31] for
individual catchments and Kratzert et al. [28] for streamflow regionalization. Hu et al. [29]
and Xiang et al. [30] applied LSTM to predict hourly streamflow for flood estimation
and compared its performance with widely used methods. The authors found that the
LSTM models improved the accuracy of the predictions as they were superior to classical
regression methods [30] and to FFNN model [29]. The results also show that the LSTM
models are able to predict flood for catchments of different sizes and shapes. Fan et al. [31]
compared the performance of LSTM models for daily rainfall-runoff modeling and found
that the LSTMs performed better than FFNNs and the well-known SWAT model.

Kratzert et al. [28] applied LSTM to model daily streamflow in 291 catchments from the
public CAMELS dataset [32] and found that the LSTMs, as individual catchment models,
performed better mainly in snow-driven catchments and worse in arid basins as the long-
term dependencies are more important for snow-driven processes (e.g., snow accumulation
and snowmelt). The LSTM model also performed slightly better than the conceptual model
used as a benchmark. As regional models, the researchers found that LSTM has competing
performance against individual catchments models. However, no other regional model
was used as a benchmark for comparison.

Kratzert et al. [28] is, up to now, the only work that discusses the application of LSTMs
as regional models for ungagged basins. Although their results show that the performance
of LSTM is better for snow-driven catchments where the long-term memory has a key role
in the hydrological transformation, it is not clear if its application should be restrained
to this case or if simpler ANN architectures would outperform them in situations where
long-term memory is not a major factor.

The main purpose of this work is to discuss the application of LSTM as a streamflow
regionalization method against traditional Feedforward ANN and conceptual models in a
practical framework for the Brazilian semiarid conditions such as reduced data availability,
high precipitation variability, shallow soil catchments, and intermittent rivers.

Specifically, our goal is to answer the following questions:

1. Can the LSTM be used as a hydrological and/or streamflow regionalization model in a
semiarid region? Does it outperform a conceptual hydrological model and the FFNN?
How does their performance change with the amount of data in each catchment?

2. Can simple alterations in FFNN be done to include short-term memory results in a
model that outperforms the LSTM in hydrological modeling and streamflow regional-
ization in a semiarid region with shallow soils and intermittent rivers?

The questions in 1. are mainly related to the reduced data availability that may limit the
application of both FFNN and LSTM due to their higher parameter number in comparison
to conceptual hydrological models. The question in 2. arises from the short memory of
the streamflow of the studied catchments due to the semiarid climate and shallow soil
characteristics that cause the depletion of the soil storage during the dry season. In a short
memory process, an FFNN with a simple alteration such as including streamflow lags
as input variables may be more efficient (performance vs. number of parameters) than a
deeper approach such as LSTM.

2. Materials and Methods
2.1. Case Study and Data

The proposed framework for PUB was applied to streamflow estimation in 25 basins
in the semiarid region of the State of Ceará. The State of Ceará is located in the northeast of
Brazil, its area is about 148,826 km2 and a major part of the State is semiarid, which has the
caatinga as the main native vegetation, a semiarid biome. The climate is predominantly
semiarid, where most of the rainfall concentrates in 3 or 4 months, reaching less than
500 mm yearly in some regions. On the State coast, tropical weather predominates with an



Water 2022, 14, 1318 4 of 21

average annual rainfall around 1000 mm. In the humid and high mountains, the caatinga
gives way, as the altitude rises, to the Atlantic Forest. Evapotranspiration, which is much
more intense than in the Country Depression, ranges from 1000 mm to over 2000 mm
annually. In these humid islands, temperatures also vary more than in the rest of the state:
in colder months (particularly July), lows may reach below 15 ◦C, but in warmer months
(notably December), temperatures can reach close to 35 ◦C. On the coast, the mangroves and
typical coastal vegetation predominate. Even at very low altitudes, rainfall and humidity
are higher than in the Country Depression. Daily average temperatures range from about
22 ◦C to 32 ◦C.

The plateaus and coasts bordering the territory of Ceará are sedimentary by formation,
while the various mountain ranges found in the interior of the depression, particularly the
distance from the coast, are ancient massifs of crystalline rock origin. The average coastal
temperature is 24 ◦C to 28 ◦C. In the mountains, the temperature is 20 ◦C to 25 ◦C and
in the Country Depression, the temperature is 26 ◦C to 29 ◦C. The state presents uniform
geomorphological characteristics, almost 74% of the state has shallow soils with crystalline
embasement, which results in low base flows and a reduced importance of the long-term
memory of the storage process in the rainfall-runoff transformation.

Rainfall and streamflow data were collected in the HidroWeb/ANA database provided
by the National Water Agency (ANA). Streamflow data were obtained from 25 stream
gauges in the State of Ceará, selected from ANA dataset by avoiding gauges with large
upstream dams, since they can significantly modify the natural flow regime. The observed
streamflow time series are heterogeneous, and their range varies according to the beginning
of each station data record, in which some stations have almost 100 years of record and less
than 20 years in others. Figure 1 shows a general view of the area studied and the location
of the stations.
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It is expected that catchments with similar characteristics behave similarly, so it
is important to pass these components into the regionalization models. All catchment
characteristics used in this study can be found in Table 1 and have been published [33].
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Table 1. Basins’ physical characteristics.

Stream-flow
Station Declivity—D (%)

Contribution
Area of the

Fluviometric
Station—A (km2)

Total Drainage
Length—CTD

(km)

Drainage
Density—DD

(km−1)

Soil Water
Storage Capacity

(CAD) (mm)

Average Curve
Number—CN

(mm)

Basin
Compact-ness

Coefficient
(Kc)—Kc

Portion of the
Basin in the
Crystalline
Rock—Cr

34730000 0.069 897.372 528.790 0.589 59.483 56.774 1.990 0.000
34740000 0.065 2221.989 356.001 0.160 51.100 59.941 1.085 0.000
34750000 0.056 19,185.920 10,051.126 0.524 73.315 73.945 2.560 0.588
35050000 0.092 997.264 606.451 0.608 71.461 82.375 1.950 0.534
35125000 0.081 1501.237 1501.190 1.000 65.377 84.315 1.902 0.921
35170000 0.081 3967.244 3523.080 0.888 69.009 79.753 2.217 0.770
35210000 0.071 1566.680 1574.683 1.005 74.984 82.767 2.772 0.957
35223000 0.082 693.135 636.738 0.919 82.157 84.314 2.178 0.763
35240000 0.100 1532.777 1309.706 0.854 66.220 85.743 2.467 0.913
35260000 0.078 2875.183 2690.396 0.936 61.125 82.961 2.493 0.934
35263000 0.077 587.889 547.171 0.931 82.225 83.172 1.975 0.773
35668000 0.082 495.859 364.205 0.734 76.364 82.358 2.876 0.926
35880000 0.086 4085.575 3084.452 0.755 85.831 82.799 2.431 0.875
35950000 0.037 2027.716 1442.687 0.711 85.603 80.000 2.090 0.815
36020000 0.053 5852.006 4284.214 0.732 77.478 83.589 2.336 0.923
36125000 0.080 3533.321 2492.858 0.706 84.805 81.209 2.285 0.733
36130000 0.083 5996.827 3935.060 0.656 87.925 81.907 2.388 0.737
36160000 0.072 20,664.322 14,792.266 0.716 75.959 82.330 2.845 0.818
36210000 0.078 1665.995 1106.796 0.664 97.794 82.833 2.070 0.401
36220000 0.028 1564.877 355.644 0.227 88.639 84.871 2.588 0.153
36250000 0.055 4240.717 2596.731 0.612 80.005 80.765 2.680 0.457
36270000 0.070 8869.966 6943.068 0.783 77.104 81.294 2.118 0.605
36290000 0.067 12,381.522 9914.359 0.801 79.707 82.338 2.424 0.689
36470000 0.085 998.024 1332.280 1.335 66.302 78.687 2.102 0.988
36520000 0.080 7035.737 7678.188 1.091 65.151 85.408 2.169 0.978

The Declivity represents the Average Catchment Slope, and with the Drainage density (DD) and the compactness coefficient (Kc) express the water transport in the catchment. The
Contribution area of the fluviometric station (A) and the Total drainage length (CTD) may provide the information about the volume of water in the Catchment. Values of Portion of the
basin in the crystalline bedrock (Cr) and Average Curve Number (CN) can represent the soil storage capacity and infiltration-runoff relationships.
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2.2. Methodology

This section represents the methodology used in this work and it is organized in four
parts. In the first section, the models used for the rainfall-runoff modeling and streamflow
regionalization are described: (i) Soil Moisture Account Modeling (SMAP) which is the
benchmark conceptual model, (ii) the traditional Feedforward Neural Network (FFNN)
and (iii) the Long-Short-Term Memory neural network (LSTM). The second part describes
the feature selection procedure used for the ANN regional models. The third part describes
the design of the experiments that will base the results and discussions. The fourth part
describes the performance evaluation metrics used in the analysis of the models. All models
analyzed and described in this article calculate flow with monthly time step.

In this study, we propose the application of two different ANN architectures, a Feedfor-
ward Neural Network (FFNN) and a Long-Short-Term Memory (LSTM), both regionalized
in one single step. The difference between the two approaches lies in how the monthly
dependency is incorporated. LSTM by construction is a recurrent neural network (RNN),
incorporating explicit time dependency. In contrast, time dependency in FFNNs can be
only implicitly incorporated by including streamflow and rainfall lags as proxy variables.
All ANN were written using Python’s framework TensorFlow 2.0 [34].

2.3. Rainfall Runoff and Streamflow Regionalization Models
2.3.1. Soil Moisture Account Modeling (SMAP)

Soil Moisture Accounting Procedure (SMAP) [35] is a lumped conceptual model that
is widely used by water resources agencies in Brazil [33,36]. SMAP, in its monthly version,
tries to represent the storage and water mass balance in the basin through two fictional
linear reservoirs (subsurface and ground water) and uses observations of the catchment’s
average precipitation and evapotranspiration as inputs.

For each Precipitation event (P), a mass balance is made. There are 4 major parameters
that must be calibrated: Soil Saturation Capacity (SAT), superficial runoff rate (PES), the
recharge coefficient of the aquifer (CREC), and the depletion rate (Kkt) of the water reservoir
(RSub). For basins located in the State of Ceará, only two (SAT and PES) of these parameters
are useful for hydrological analysis as the shallow soils result in CREC = 0 and makes the
output of the model to be without sensitivity for Kkt [37]. Other studies used SMAP in
Ceará catchments [38,39] and in Brazil [40,41].

Barros et al. [33] used SMAP to calculate SAT and PES for the same catchments used in
this study. Once with the calibrated parameters, they used physiographical characteristics
of the basins to generate a linear equation for the regionalization of the SAT and PES
parameters by three different Multiple Linear Regression approaches. The regression
methods used were: (I) Generalized Linear Model (GLM) using a normal distribution to
estimate the coefficients of physical-climatic variable; (II) GLM similar to (I) but using a
gamma distribution, and (III) Robust Regression. They found that the best linear equations
for the regionalization of the model in the State would be:

SAT = 3021.6− 2026.74×Cr (1)

PES = 5.405742 + 42.286774×D − 3.803776×DD − 2.51601×Cr (2)

where Cr is the portion of the basin over the crystalline bedrock (%), D is the basin mean
declivity (%), DD is the drainage density (km−1).

2.3.2. Feedforward Neural Network (FFNN)

Although ANNs’ basis was formulated by McCulloch and Pitts in 1943 [42], its use
was only possible in the mid-1980s and 1990s with the increase of the processing power of
computers and the availability of data. Its conceptualization is based on the elaboration
of an algorithm that tries to mimic the functioning of the human neuron. Haykin [43]
defines a neural network as a massively distributed processor in parallel that has a natural
propensity for storing knowledge and making it available for use. It resembles the brain



Water 2022, 14, 1318 7 of 21

in two aspects: knowledge is acquired by the network through a learning process and
the forces of the interneural connection, known as synaptic weights, are used to store
knowledge. According with “universal approximation theorem” a neural network of
one layer can approximate any linear function; a two layers network, with the necessary
number of hidden neurons, can approximate any continuous function, and with three or
more layers, it can approximate any function, including discontinuous, respecting the range
of Inputs and Outputs [43]. However, it should be noted that the choice for deep networks
is not always necessarily better because larger networks often lead to overfitting and have
higher computational cost, justifying the choice for a simpler architecture.

Each layer has a set of nodes (neurons), nodes from one layer are fully connected to
the nodes of the next through a vector of weights, and the final layer is the output known
as output layer. The general form of a Feedforward Neural Network can be expressed as:

y = f

(
n

∑
i=1

xiwi + bi

)
(3)

where y is the output of a node, f is the activation function, and xi, wi and bi are the
input, weights, and bias vectors, respectively. The role of an activate function is to decide
if a neuron’s input contains relevant information for the prediction or not and to add
non-linearity to the neural network.

The activation function of the hidden layers used was rectified linear unit (ReLU),
since it is scale-invariant and computational efficient, as it only compares, adds, and
multiplies and has fewer vanishing gradient problems if compared with other major
activation functions, such as sigmoid and tanh.

f(x) = x+ = max(0, x) (4)

The flux of information in a neural network is divided in two phases: the first is
the Feedforward, where the input is processed from the layer-to-layer until the output
layer and a backpropagation phase, where the error (i.e., the difference of predicted and
measured values) is discounted of the synaptic weights of every node thrown at the gradient
descendent algorithm.

2.3.3. Long-Short-Term Memory Neural Network (LSTM)

This type of network was first introduced by Ref. [44] and was designed for sequence
dependent problems, once their application became popular not only for time dependency
modeling, but also for image captioning, language modeling, translation, and speech
recognition.

The LSTM neural network’s main characteristic is their Long-Term Memory, that al-
lows the network to “remember” important information for a long time when compared to
simple Recurrent Neural Networks (RNN). These are also known as Elman’s Networks [45],
which are subject to the vanishing Gradient Problem [46] by not being able to store lagged
information through long periods of time; usually Elman’s networks do not save infor-
mation for more than 10 steps. The capacity of storying Long-Term Memory is due to its
internal state that, for each time step, calculates the output and contains weight parameters
for it as well as for the input. The Memory Cell contains gates which are weighted functions
that handle the flow of information into and out of the cell.

2.3.4. LSTM Model Explanation

Figure 2 is a graphical representation of the mathematical operations present in an
LSTM Cell. Given an input vector x = [x1, x2, . . . , xn], “n” being the consecutive time steps
of an independent variable (in this study, we use precipitation data). The model processes
the data sequentially and for a step t (1 ≤ t ≤ n), the input xt produces an output ht. The
model “decides” which it “saves” or “discards” information through its “gates”. In a LSTM
Cell, there are three gates: the forget gate (ft), the input gate (it), and the output gate (ot).
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The forget gate concatenates the input vector xt and the previous output ht−1, and
defines which information is removed from the memory (cell state). Wf and bf are tensors
of learnable parameters. Then, a sigmoid function is applied returning a tensor of numbers
between 0 and 1 that multiplies the previous cell state Ct−1. If a value outputs 0, it will
be completely forgotten and if its value is 1, it will be entirely kept. In the first step, the
hidden state ht−1 is initialized by a vector of zeros with the same length of the series.

ft = σ(Wf · [ht−1, xt] + bf) (5)

Then, the next gate decides if either a value is updated (added) or not to the cell state,
by multiplying it by a sigmoid and a tanh (hyperbolic tangent) function, creating the vector
C̃t with values to be added to the state. After that, both vectors are multiplied and added
to the previous cell state. Therefore, it is a vector in the range (0, 1) and C̃t is a vector in the
range (−1, 1), and Wi, bi, Wc and bc are a set of learnable parameters:

it = σ(Wi · [ht−1, xt] + bi) (6)

C̃t = tan h(Wc · [ht−1, xt] + bc) (7)

The updated cell state can be calculated with the previous results:

Ct = ft ×Ct−1 + it × C̃t (8)

To calculate the output of the cell (i.e., hidden state), the new cell state passes through
tanh to its values which fit between −1 and 1, and is multiplied by the output of the
output gate (Ot), being Wo and bo, a set of learnable parameters. This gate defines which
information of the cell state is used as output.

ot = σ(Wo · [ht−1, xt] + bo) (9)

ht = ot · tan h(Ct) (10)

2.4. Feature Selection for the Streamflow Regionalization Models

The features were selected by Recursive Feature Elimination (RFE) [47] with cross-
validation (RFECV) using a linear rainfall-runoff model that is fitted by minimizing a
regularized empirical loss with Stochastic Gradient Descent (SGD). The RFE reduces the
number of features by building a model with the entire set of features and computes the
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importance score for each feature (e.g., the coefficients of a Linear Model), then it eliminates
the least important attribute. This procedure is repeated recursively on the pruned set
until the desired number of features is reached. The RFECV consists of an RFE that uses a
cross-validation loop to find the optimal number of features.

2.5. Experimental Design
2.5.1. Experiment 1: LSTM and FFNN as Rainfall-Runoff Models

The first experiment seeks to evaluate the general skill of the LSTM and FFNN to model
the monthly rainfall-runoff processes in each of the studied catchments. One LSTM network
and one FFNN network are trained separately for each catchment. The Feedforward model
received inputs the previous six months of Precipitation (mm), while LSTM model received
three months; once its performance with three months was superior to its performance
with six. The FFNN used 2 hidden layers with 30 neurons each and the recurrent model
used two LSTM layers with 15 neurons and one Dense Layer with 25 neurons.

2.5.2. Experiment 2: LSTM and FFNN as Streamflow Regionalization Models for
Ungauged Basins

The second experiment investigates the capability of LSTMs for regional modeling.
Three regional models were elaborated: FFNN-2, FFNN-3, and LSTM-rg. The differences
between all FFNN models are shown in the set of inputs in Table 2. The inputs for FFNN-3
and LSTM-rg are the same.

Table 2. Representation of models’ inputs.

Experiment Model D CT A P CTD DD CAD CN Kc Cr E Precipitation
Lags

Streamflow
Lags

1
FFNN-ic
LSTM-ic
SMAP-ic

2

FFNN-2
FFNN-3
LSTM-rg

SMAP
* Green cells indicate the presence of a given attribute in the model and red cells indicate the absence.

As inputs, all 3 models require three previous months of precipitation as meteorologi-
cal inputs and catchment area (A), total drainage length (CTD), average Curve Number
(CN), and portion of the basin in the crystalline bedrock (Cr) as physical inputs. Model
FFNN-2 also require two previous months of streamflow. The inputs of each of the regional
models are presented in Table 2.

For the network design, both FFNN models used 2 hidden layers with 50 neurons
each. Since LSTM cells only read a series of data, it is not recommended to pass the physical
data into it, so it was passed into two Feedforward layers, also known as Dense Layers,
with 15 neurons each, and the pluviometric lag of the 3 previous months into two LSTM
layers with 15 neurons each. Then, those 2 layers were concatenated and passed through
another Dense Layer with 40 neurons. For all Dense layers, ReLU was used as an activation
function. Figures 3 and 4 represent the FFNN and LSTM models’ architectures, respectively.

2.6. Model Calibration and Evaluation

The calibration/validation data split for the models of experiment 1, i.e., models for
individual catchments, was defined by separating data through time, using the first 80%
of data to calibration and the last 20% to validation. Both models will be compared to the
benchmark model SMAP, calibrated for the same time interval.
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For experiment 2, the core concept behind the training process was to set the maximum
number of basins in the training step to decrease the difference of information in the learning
phase of each model. To achieve a more descriptive model, the calibration/validation data
split was defined using a cross-validation technique known as leave-one-out, in which each
basin used in the study was used as the only pseudo-ungauged basin in a single sampling,
while the others were used for the model calibration; this method has already been used in
other studies in the area [14,15,18,48–50].
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This cross-validation procedure simulates the single basin left out of the calibration
split as an ungauged basin, allowing the direct evaluation of the performance of the
regionalization models for ungauged basins. The resulting models from this experiment
were also compared with the benchmark SMAP regional model for their validation basin.
SMAP results were obtained with the application of Equations (1) and (2) to obtain the
regionalized parameters of SAT and PES.

The learning process of an ANN is only an adjustment for the model’s weights to
optimize the network output. The learning algorithm chosen for every ANN was the
RMSProp [51], the main advantage of this algorithm compared to common Gradient
Descendent is that it uses concepts such as momentum and adaptive learning rate to
prevent the model from local minimums. It was not used with regularization techniques
such as Dropout [52] and regularizer L1 and L2, since preliminary tests showed that its use
was impairing the performance of the network.

2.7. Performance Evaluation and Objective Function

The objective function used to minimize the loss in the training step was Root Mean
Squared Error (RMSE) and the evaluation metric chosen was Nash-Sutcliffe Efficiency
Coefficient (NSE) and Relative Absolute Error (RAE), and Pearson Correlation Coefficient
was used for feature selection, as follows:

1. Pearson Correlation Coefficient—Represents the intensity of linear dependency of
two variables, it will indicate how similar some of the features are and if they are
strongly linear dependent; one of these variables with two features does not need to
be included in the model:

r = ∑ (x− x)(y− y)√
∑ (x− x)2 ∑ (y− y)2

(11)

x: Variable 1
y: Variable 2

2. Nash-Sutcliffe Efficiency Coefficient—the index varies from (−∞, 1], values close to
1 indicate that the model fits perfectly with historical series, while values close to
0 would indicate that the model is as representative as the mean. Negative values
indicate that the mean is more representative than the model. Its mathematical
representation is given by:

NSE = 1− ∑T
t=1
(
Qt

m − Qt
o
)2

∑T
t=1
(
Qt

o −Qo
)2 (12)

Qt
m: Modeled discharge at time t

Qt
o: Observed discharge at time t

Qo: Mean of observed discharges

3. Root Mean Squared Error—used to indicate the magnitude of the error, and its value
represents the average vertical distance between observed and predicted values.

RMSE =

√√√√ n

∑
i=1

(yi − yi)
2

n
(13)

yi: Observed value at time i
yi: Predicted value at time i
n: Number of predictions

4. Relative Absolute Error—used to indicate a relative measure of the performance of
the model with a naïve model that uses only the mean of the observed variable. It
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is similar to NSE, in a way. If RAE ≥ 1, it would be better to use only the mean to
describe the target variable:

RAE =
∑n

i=1|yi − ŷi |
∑n

i=1|yi − y| (14)

yi: Observed value at time i
ŷi: Predicted value at time i
y : Average of observed value
n: Number of pr edictions

3. Results
3.1. Selected Features

Figure 5 indicates the cross-validation scores for each number of features. The optimal
number of features is nine and were: Catchment Area (A), Total drainage length (CTD),
Longest drainage length (CT), Curve Number (CN), Portion of the basin in the crystalline
rock (Cr)—the catchment features, and the monthly average evapotranspiration along with
the precipitations of the previous three months as the climate features.
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Although the RFECV indicates the optimal number of attributes for the model as nine,
it is important to highlight a couple of points: (I) the main gain of information is from
one to three attributes and the difference from three to nine is marginal; (II) a non-linear
relationship of a feature and the streamflow is not incorporated into the analysis, and (III) a
high collinearity among the variables may skew the results, and it may not be necessary to
use all of the highly correlated variables in the final model.
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Thus, models using sets of three to nine variables were trained with an FFNN and
the results obtained with the number with eight features were satisfactory. The final
set of attributes were A, CTD, CN, Cr, the monthly average evapotranspiration, and the
precipitation of the previous three months.

Figure 6 presents a correlogram of the physiographical characteristics and the average
streamflow (Q_avg) of the basins, and indicates that CT, A, P, and CTD are highly correlated.
That is in accord with point (III) and can justify removal of CT in the final model.
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3.2. Results of Models

The results of the different ANN architectures for regional and individual catchment
models and SMAP models are presented in Table 3. Due to the negative skewness of the
distribution of the NSE, since it varies from (−∞, 1], it was to be used as the median as a
measure of central tendency, and the Bootstrap technique was used to obtain the standard
error of the medians for a 95% confidence interval. These results are shown in Table 4 along
with the Bootstrapped results of RMSE and RAE. The RMSE and RAE values for both SMAP
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models are empty since these metrics were not used in Ref. [33]. For this, 1000 bootstrapped
datasets were used. Moreover, aiming to obtain a fairer comparison, only the results of
basins used on the regionalization step in Barros et al. [33] were compared.

Table 3. Models’ performances per basin.

Basin n obs
Experiment 1 Experiment 2

FFNN-ic LSTM-ic SMAP-ic FFNN-2 FFNN-3 LSTM-rg SMAP-rg

34730000 475 0.192 0.101 −0.304 −3.559 −4.854 −3.216
34740000 92 0.199 0.624 −31.361 0.505 0.440 0.564
34750000 514 0.747 0.751 0.653 0.883 0.881 0.823 0.427
35050000 115 0.680 0.912 0.760 0.542 0.477 0.367 0.233
35125000 328 0.896 0.890 0.814 0.915 0.903 0.885 0.883
35170000 462 0.939 0.923 0.617 0.895 0.863 0.785 0.854
35210000 578 0.910 0.943 0.503 0.925 0.874 0.814 0.806
35223000 130 0.069 0.172 0.230 0.278 0.100 0.182
35240000 421 0.455 0.496 0.538 0.739 0.509 0.615
35260000 504 0.770 0.687 0.666 0.604 0.714 0.855 0.788
35263000 287 0.790 0.817 0.817 0.832 0.805 −0.564 0.817
35668000 319 0.335 0.835 0.019 −0.750 0.151 −1.522
35880000 287 0.048 0.123 0.435 0.893 0.816 0.873 0.748
35950000 386 0.881 0.631 −0.413 0.863 0.760 0.786 0.778
36020000 762 0.544 0.641 0.274 0.703 0.644 0.536 0.602
36125000 440 0.748 0.724 0.481 0.825 0.854 0.795 0.680
36130000 302 0.823 0.858 0.697 0.905 0.901 0.904 0.728
36160000 1007 0.743 0.764 0.686 0.771 0.802 0.767 0.703
36210000 431 0.744 0.728 0.769 0.796 0.755 −0.070 0.613
36250000 454 0.918 0.866 0.281 0.796 0.780 0.810 0.620
36270000 172 −0.871 0.197 0.747 0.875 0.798 0.806 0.745
36290000 607 0.961 0.908 0.843 0.869 0.804 0.854 0.845
36470000 274 0.878 0.790 0.070 0.767 0.432 0.574
36520000 353 0.891 0.875 0.617 0.934 0.898 0.865 0.847

Table 4. Median of models’ performances.

Metrics FFNN-ic LSTM-ic SMAP-ic FFNN-2 FFNN-3 LSTM-rg SMAP-rg

NSE 0.780 ± 0.091 0.790 ± 0.105 0.659 ± 0.103 0.866 ± 0.045 0.804 ± 0.045 0.808 ± 0.055 0.747 ± 0.07
RMSE (m3/s) 10.197 ± 3.548 9.706 ± 4.692 11.282 ± 3.990 10.765 ± 6.243 12.541 ± 6.617 11.730 ± 6.532 14.670 ± 7.213

RAE (%) 0.325 ± 0.088 0.350 ± 0.057 0.466 ± 0.071 0.306 ± 0.050 0.344 ± 0.040 0.374 ± 0.091 0.414 ± 0.046

Regarding the individual catchment models (experiment 1), both ANN models outper-
formed the conceptual model SMAP in all three metrics. The LSTM outperform the FFNN
in two of the three metrics, presenting a lower error in magnitude, but higher in relative
difference. As shown in Figure 7, increasing the number of observations tends to converge
performance. When both models obtained a negative value of NSE, it was considered a
“tie”, regardless of the magnitude of the value, since by design, a negative value of NSE
represents that the model has a worse predicting performance than the simple use of the
series average. When a model had an NSE > 0 and the other had an NSE ≤ 0, the score
was 1 or −1, depending on if the model is in numerator or denominator, respectively. In
smaller series, the NSE tends to be zero and small variations may give the impression
that one model is strongly superior to the other, even if the difference is marginal; this
particularity can be observed in Figure 7.

For the regional models in experiment 2, Figure 8 indicates that the LSTM performed
equally to the FFNN, but with a smaller variance, when the models used the same inputs.
Although, when streamflow’s lag is used as input for the FFNN, the FFNN model becomes
the one with the better performance in this study. Equally as experiment 1, all the neural
network models performed better than the benchmark model, and they also presented



Water 2022, 14, 1318 15 of 21

a smaller variance. This also supports the idea that neural networks may be better in
streamflow regionalization than conceptual models, at least for the case study.
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The model FFNN-2, on average, performed better than all others. As Table 4 shows,
the LSTM can perform better or not than the Feedforward models depending on the
composition of the FFNN. This result may be answered by the fact that as the model
became deeper, with more neurons and more complex architecture, it became harder to
train its parameters and define its hyperparameters for data available.

Once both models are equally simple, the recurrent model scored negative fewer times
and presented the smallest magnitude error, evidencing that using recurrence may increase
the model’s performance, but these gains are not so significant. Figure 7 also shows that
the increasing of observations converged the individual catchment model’s performance.

Figure 9 compares the regional models FFNN-2 and FFNN-3 with LSTM-rg and SMAP
while Figure 10 compares model FFNN-2 with LSTM-rg for the different basin character-
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istics. It is possible to see, from Figure 9, that both Feedforward models outperform the
Recurrent, and Figure 10 shows that the basin composition does not explain the difference
of a model’s performance; even though it is expected that the LSTM learn the short- and
long-time dependencies, this does not convert into informational gains. A possible explana-
tion is that the hydrological memory in the region is considerably short, due to its location
in semiarid weather and shallow soil composition.
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In Figure 11, it is possible to see that FFNN-2 tends to outperform FFNN-ic consid-
erably better in the first 25 years of data, but this difference tends to decrease with the
increase in data availability for the individual catchment models. The same tendency can
be observed when comparing the LSTMs’ regional and individual catchment models. This
corroborates to the hypothesis that for basins with low data availability, a data-driven
streamflow regionalization approach may perform better than an individual catchment
hydrological model approach.
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Figure 11. The y-axis represents the logarithm of ratio of the NSE index of the FFNN-2 and LSTM-ic
over the NSE index from the FFNN-ic and LSTM-ic models, respectively, against the number of data
observations in the basin (x-axis).

Figure 12 illustrates the difference of predicted values versus the measured values for
streamflow discharge of basin 36520000 of regional and individual catchment models in
the validation set; since the regional models use the entire series for validation and the
individual catchment only the last 20%, the time series length were different. The series for
the FFNN-2 model was also smaller than the rest of the regional models because it uses the
discharges as input, so any measured value error that was discarded would discount three
instances in the dataset. In the graph, is possible to observe that the Feedforward models
correctly predict peak discharges in location and intensity, whereas the LSTM and SMAP
models, sometimes, predict a discharge peak when it does not occur.
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4. Discussion

The LSTM cells demonstrated their capacity to explain the hydrological process of
streamflow in semiarid regions, performing better than the Feedforward model in the
individual catchment and the conceptual model in both experiments. Regarding the
Feedforward models in regionalization, when using the same input set, both models
have practically the same performance (LSTM-rg: NSE = 0.808, RMSE = 11.730 m3/s,
RAE = 0.374; FFNN-3: NSE = 0.804, RMSE = 12.541 m3/s, RAE = 0.344). However, the
use of streamflow lags proved to be the single major increment of models’ performances
(FFNN-2: NSE = 0.866, RMSE = 10.765 m3/s, RAE = 0.306). It is important to point out that
FFNN-2 and FFNN-3 use less parameters, 3151 and 3051, respectively, than the LSTM-rg,
4491, so it performs as good or as better with least computational cost.

The results of this study are also in accord with what we find in the literature. As
mentioned in the introduction, Ref. [28] found that LSTM cells performed better for snow-
driven than for arid catchments. In the context of Evapotranspiration, Ref. [53] showed
that LSTM-based models outperformed NARX-based models in the humid, subtropical
climate of southern Florida but underperformed the latter for the semiarid climate of
Central Nevada.

The aforementioned may be due to the fact the rainfall-runoff hydrological memory
in regions such as the State of the Ceará is short due to its semiarid weather, its shallow
soil, and the diminished baseflow, decreasing the importance of the long-term memory if
compared with short-term memory. Furthermore, the increasing number of parameters
required by the use of LSTM cells increases the difficulty to train the ANN for the avail-
able observed data which is not justified without a gain of information or performance.
Although, this does not mean that the use of LSTM cells should not be used in semiarid
regions as Ref. [54] used a hybrid Bi-LSTM for the forecast of short-term daily reference
under limited meteorological variables, and other studies found that LSTM performed
better than three benchmark models for drought modeling by standard precipitation index
(SPI) in a daily series of four Iranian stations [55].

For the individual catchment models, even with the embedded information in the
structure of the conceptual models regarding the hydrological process, the ANNs per-
formed better for this region with data scarcity.

Comparing the results, we see that the decrease of variables improved the performance
of the network. In this case, Contribution area of the fluviometric station (A), Total drainage
length (CTD), Average Curve Number (CN), and Portion of the basin in the crystalline
bedrock (Cr) can represent basins located on semiarid regions with high fidelity, since A
and CTD influences the dimension of the water volume presented on each catchment while
CN and Cr represent the soil storage capacity and infiltration-runoff relationships.

It is important to highlight that the two basins with the smallest portion of the basin
in the crystalline rock (34730000, 34740000) and the basin with the smallest area (35668000)
performed poorly compared to the others, which may indicate that hydrological processes
of these basins are different from the others.

Although ANNs involve more complex concepts, the use of modern frameworks
such as Tensorflow make ANN models significantly easier to train and to be implemented.
Beyond that, ANNs are more scalable, allowing the use of a pre-trained model to regionalize
an entire region, even for a site extremely poor in data.

Furthermore, as SMAP and other conceptual models’ regionalization procedure evalu-
ates the streamflow with a two-step method (i.e., it first estimates its parameters for the
observed basins and later regionalizes the value of the parameters for the whole region),
the procedure is submitted to two uncertainty causes: the intrinsic uncertainty of the
conceptual model and the uncertainty generated by the regionalization of its parameters,
while the ANN models are only subjected to the first uncertainty.

From the comparison between the ANN regional and individual catchment models, it
is notable that for catchments with less than 25 years of streamflow records, the regional
model outperforms the individual catchment model. This fact implies that for certain
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regions, with some well-documented catchments, the use of an ANN regional model can
be more economically efficient for WRPM and perform better than setting up a new fluvio-
metric station on an ungauged basin for a substantial amount of time records. For regions
such as the State of Ceará, located in the semiarid region with poor fluviometric stations
data, but with a wide coverage area of pluviometric stations, the use of ANN models may
assist governments and civil institutions in the WRPM with low implementation costs.

5. Conclusions

An accurate prediction of streamflow in ungauged basins is essential for water re-
sources planning and management. The advance of powerful computers allowed us to
explore the potential of Deep Learning in Hydrology. In this paper, we presented an
application of LSTM as a streamflow regionalization method for a case study with strong
challenges: reduced data availability and harsh hydrological conditions, such as intermit-
tent rivers, high precipitation variability, and catchments with shallow soil characteristics.
Its performance was analyzed against a traditional Feedforward ANN and conceptual
models to evaluate if it is a suitable and robust streamflow model and a regionalization
method for a semiarid region.

In general, all ANNs used for regionalization outperformed the benchmark model,
including the LSTM, although its use was not justified since its performance was as good
as the FFNN-3, a model that used the same inputs, and inferior to FFNN-2, that used the
previous two months of streamflow lags. In the comparison with FFNN-2, the difference in
the basin’s characteristics did not influence the model’s performance, possibly because, in
general, the basins used in this study are homogeneous. Both FFNN-ic and LSTM-ic were
able to outperform the benchmark model, and the LSTM-ic performed better than FFNN-ic.

As for the applicability of LSTM for streamflow regionalization in a semiarid region,
although performing good, this study showed that a simpler ANN may be a choice as good
as or, with small changes, can outperform the LSTM.

The data limitation seems to be a major drawback for the use of LSTM architecture in
our study, so we encourage other researchers to implement a streamflow regional LSTM
model for other semiarid regions with larger datasets or to use hybrid methods with LSTM
and other models for regionalization of ungauged basins in a different timescale. The use
of new ANN architectures such as Transformers are also encouraged to be implemented as
a model for streamflow regionalization.

The results obtained by this study can be extended to most of the Brazilian Northeast-
ern semiarid region as its overall characteristics are very similar to the region used in this
case study.
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