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Abstract

In this paper, the performance of non-orthogonal multiple access (NOMA) dual-hop (DH)
amplify-and-forward (AF) relaying networks is investigated, where Nakagami-m fading
channel is considered. In order to cover more details, in our analysis, the transceiver hardware
impairments at source, relay and destination nodes are comprehensively considered. To
characterize the effects of hardware impairments brought in NOMA DH AF relaying networks,
the analytical closed-form expressions for the exact outage probability and approximate
ergodic sum rate are derived. In addition, the asymptotic analysis of the outage probability and
ergodic sum rate at high signal-to-noise ratio (SNR) regime are carried out in order to further
reveal the insights of the parameters for hardware impairments on the network performance.
Simulation results indicate the performance of asymptotic ergodic sum rate are limited by
levels of distortion noise.
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1. Introduction

With fifth generation’s (5G’s) massive connected devices and 1000x capacity increment

targets, the exponentially increasing data traffic is becoming a challenging issue of wireless
evolution [1]. To meet this demand, a myriad of technologies have been proposed, such as
multiple-input multiple-output (MIMO) [2] [3], ultra-dense network (UDN) [4], small cell
network (SCN) [5], cooperative cellular network [6], and non-orthogonal multiple access
(NOMA) [7]. Recently, NOMA has received a great deal of interests from both academia and
industry since it has the potential to improve spectral efficiency. In contrast to the traditional
orthogonal multiple access (OMA), NOMA can simultaneously accommodate a plurality of
users to multiplex within the same time and frequency resources by allocating different power
to different user based on the channel conditions. Afterwards, the successive interference
cancellation (SIC) is executed at the receiver side to decode packets that arrive simultaneously
[81 [9].

In literature, a great deal of research contributions in the fields of NOMA based on fading
channels have been established in [10]-[16]. The performance of the cooperative NOMA
relaying networks over independent Rayleigh fading channels was investigated in [10] and
[11], where a suboptimal power allocation scheme for NOMA used at the source was proposed.
Authors in [12] provided the analytical expressions for the outage probability and ergodic sum
rate over frequency-flat block-fading channels, and it is shown that the proposed NOMA
scheme provides remarkable performance gain compared with conventional ones. The
closed-form expressions and asymptotic approximations for the ergodic sum rate and outage
probability over independent Rayleigh fading channels were analyzed in [13]. In [14], the
exact closed-form expressions for outage probability and throughput of NOMA-based
dual-hop (DH) amplify-and-forward (AF) fixed gain relaying networks over Nakagami-m
fading channels were derived. Authors in [15] derived the closed-form expressions on upper
and lower bounds for the outage probability and ergodic sum rate of NOMA-based DH AF
relaying networks over Nakagami-m fading channels. Considering imperfect channel state
information (CSI), [16] presented closed-form expressions on the exact and tight lower bounds
for the outage probability of NOMA-based downlink AF relaying networks over Nakagami-m
fading channels. However, all those previous studies are built on the ideal hardware conditions.
In practice, communication networks suffer from hardware impairments caused by phase
noise, in-phase/quadrature- phase (I/Q) imbalance, high power amplifier non-linearities, and
guantization errors [17]. Although the impact of these hardware impairments may be
somehow mitigated by using compensation algorithms and calibration methods, they cannot
be completely removed due to the estimation error, inaccurate calibration methods and
different types of noise [18]. Therefore, the hardware impairments cannot be simply ignored.

The aforementioned literature lays a solid foundation in terms of NOMA-based relaying
networks with ideal radio frequency (RF). However, the impact of hardware impairments on
the performance of NOMA relaying networks in terms of transceiver hardware impairments is
not considered yet. Motivated by the previous discussion, we herein try to bridge this gap by
exploring the performance of NOMA-based relaying networks in presence of hardware
impairments, where Nakagami-m fading channel is considered since it is a versatile model that
can be widely used to describe various fading channels, such as the Gaussian channel,
Rayleigh channel and Rician channel, etc. In this NOMA DH AF relaying networks, the
source transmits signals to far user through a relaying node, and there is no direct link between
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the source and far receiver due to the severe shadowing fading and path loss. In contrast, the
near user can receive the signals from both the source and relay. More particularly, we derive
exact and approximate expressions for the outage probability and ergodic sum rate of NOMA
relaying networks in the presence of aggregated transceiver hardware impairments. To get
more insights, the asymptotic analyses for the outage probability and the ergodic sum rate are
performed. The primary contributions of this paper are summarised as follows:

1) Considering hardware impairments and Nakagami-m fading channels, we derive the
exact analytical closed-form expressions of outage probability for the far and near users. In
order to obtain more useful insights, the asymptotic expressions of the outage probability for
the two users are derived.

2) We investigate the ergodic sum rate performance of NOMA relaying networks in the
presence of hardware impairments by deriving the approximate expression for the ergodic sum
rate of NOMA relaying networks. We further pursue the asymptotic analysis for the ergodic
sum rate and derive the asymptotic expression for the ergodic sum rate of NOMA relaying
network over Nakagami-m fading channels. For ideal condition, the analytical upper bound of
ergodic sum rate is derived. It indicates that in the case of hardware impairments, the ergodic
sum rate approaches to a constant value as the average signal-to-noise ratio (SNR) increasing.

The remainder of this paper is organized as follows: Section 2 describes the NOMA
relaying network model with impaired hardware. In Section 3, the exact and asymptotic
expressions of outage probability for the far and near users are derived in closed-form. In
Section 4, the approximate analytical expression of the ergodic sum rate is derived, followed
by our asymptotic analysis for impaired hardware and upper bound for ideal hardware.
Numerical results are presented in Section 5 before we concluding the paper in Section 6.

2. NOMA Relaying Networks Model

Source Relay D,
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Fig. 1. System model of NOMA AF relaying network with transceiver hardware impairments

In this work, we consider a NOMA DH AF relaying network that depicted in Fig. 1. The
network consists of a source (s), a relay (R), a far user (D, ) and a near user (D, ), where all

nodes are equipped with a single antenna, and D, and D, are paired together for transmission
in the same resource slot using the NOMA protocol. We assume the direct link between s and
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D, can be established, while the direct link between the s and D, is impossible due to
obstacles and severe shadowing. The channel coefficients of s-to-R, R-to-D,, R-to-D, and
s -to- D, links are denoted as hg, hy, , hy, . hy, , respectively. The transmission powers of s
and R are p, and p,. For convenience, we assume p, =P, =P. Meanwhile, the additive white
Gaussian noise (AWGN) in terms of all the links has zero mean and variance N, [14]. The
communication processes are segregated into two time slots.

The first time slot: leveraging the NOMA protocol, s sends /a,Ps, +./a,Ps, to R and D,,
where a, and a, are the power allocation coefficients satisfying with a, >a, and a, +a, =1.
Meanwhile, s, and s, are the messages sending to D, and D, with E[|s, F1=E[ls, [1=1,
respectively. Thus, the received signals at R and D, are expressed as

Yi :hi( aPss; +4/aPss, +77t‘i)+77r,i +Vi i:{SR,SDn} (1)

where 7, and ,; are distortion noises from the transmitter and receiver, respectively
[19]-[21]. As stated [21], the distortion noises are termed as

“) )

where the design parameters « ,, x, ;>0 characterize the level of impairments at the

transmitter and receiver, respectively. These parameters can be construed as error vector
magnitude (EVM) [22]. As seen from (2), the impairment model in (1) is equivalent to

yizhi( afPsz+1/anPssn+77i)+vi, i={SR, SD,} (3)

where the independent distortion noise obeys .~y (0, «*P), and it can be used to model the

n,,~V 0, «’,P), n,,~CNQO, kP

h,

hardware impairments from both transmitter and receiver with definition «, =./x?, +«’, . Note
that (3) reduces to be the ideal hardware expression for «, =0, i=SR, SD,, thus the ideal system
IS given by

y; =hi( a,Pgs, + anPSsn)+vi,i ={SR,SD,} 4)
where v, are AWGN at the relay and D,, respectively. Meanwhile, n follows Nakagami-m
distribution, such that the channel gains p, = \/yff ~G(a,, B,). Therefore, the probability density

function (PDF) and the cumulative density function (CDF) of the channel gains p, are
expressed as

B X/zi—l A
f (x)= SOE e x>0 (5)
a-la¥p [y 9
F,(x)=1-3 Tl 7 , x>0 (6)
9i=0 it i

where I'(, ) denotes the Gamma function [16]. The received signal-to-interference-plus-noise
ratio (SINR) for D, to decode D, ’s signal is given by

a; 7Psp, (7)

750in = (a‘n + KSZDn )}’pson +1
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where y =P /N, is the transmit average SNR at s . Therefore, the far user’s message s, will be
removed from the observation of D, if it can be successfully decoded. If message s, can be
decoded successfully, then the received SINR at D, will be

zanﬂ/loson (8)
Ksp, 7Psp, +1

The second time slot: the relay amplifies and forwards the received signal to the destination.
Thus the received signal at D, and D, can be expressed as

y; =Gh, (hsm/afpssf +Nse 8PS, + Nargg +VSR)+ hag +vi, :{RDf’ RDn} ©)

where G=JPR/(Ps\h5R\2(1+K§R)+No) is the amplifying gain factor, ,, ~cv (0, «*P) is the distortion

Vsp, =

noise at the user D, or D,, v, represents the complex Gaussian receiver noise. When «, =0,
(9) reduces to the ideal system as

Y, =Ghi(hSR [a,Pgs, +hgqfa,Pss, +vSR)+vi, i={RD,,RD,} (10)

For non-ideal conditions, the received SINR of the user D, is given by

af}’ZPSRpRD, (11)
(an + dl)J’ZPSRpRD, +byog + b27pRD, +1
where d, = ki, +xay, + Kiihp, 0 =1+ x5, b, =1+ x5, , the Eq. (11) consists of four components:

Vrp, =

(a) the desired user D, ’s signal component a,»*pgpoq, » (D) the interference from user D,’s
signal a7’ pgpm, + 705 + 700, » (€)  the  hardware  impairments  component
47 PspPro, + Kin?Psn + K 7Pg0, @Nd (d) the normalized AWGN. We assume that perfect SIC is
employed at D, and D, , then the SINRs for the two users are expressed as

a. 7?2
77RD' _ . 17 PsrPro, (12)
o (an + d2)7 PsrPro, T byog + b37/pRDn +1
ar?
7RDH _ Y PsrPRo, (13)

d,7” PsaPro, +Bi7Pse + by, +1

Where d, = k3, + ki, + Kk, » by =1+ x5, . Note that (7), (8) and (11)-(13) reduce to be the ideal
hardware expressions of SINRS as «g, =k, =xq, =&, =0. Finally, the selection combining
(SC) algorithm is employed at D, .

3. Outage Probability Analysis

In this section, the outage probability and the asymptotic performance for the two users of
NOMA relaying networks over Nakagami-m fading channel are investigated. Furthermore,
regardless of non-ideal/ideal hardware, the method of outage probability is the same, but the
difference is that when the aggregate level of impairments «, =, =xy, =&, =0, the outage

probability expressions simplify into the ideal ones at D, and D, on ideal system. Therefore,

we are not going to elaborate on the classical process from the special case of ideal hardware in
this section.
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3.1 Exact Outage Behavior

This section derives the closed-form expressions for the exact outage probability, so the
outage probability at D, and D, are denoted by p>\ and P2, respectively. In addition, we

consider that the target SINRs of the two users are determined by their channel condition. In
the following, the outage probability is derived for the two time slots over Nakagami-m fading.
1) Outage Probability for D,

The outage events will occur at D, if D, fails to decode its own signal. In this case, the
outage probability at D, can be expressed as
pt?u(t = Pr(77RDf < 7’thf) (14)
where y,. denotes the outage threshold at D, .
The following theorem provides new closed-form expressions for D, in the presence of

transceiver hardware impairments.
Theorem 1: For Nakagami-m fading channels, the exact closed-form expression for the
outage probability of D, in presence of hardware impairments is given as

* Non-ideal condition (g, =, #0)

A b2 a1 49 9ro¢
PD, Jni -1 2 e Bsr b2 Prog R‘i il [aSR _1J gRD, A
out T4 a. :
F(asg) R Upp, =0 1=0 1=0 J n bzﬂRD,

A (ch)"(bl)gR”""[WM] 2 an{Z ﬂ“(blmc)]

(15)

Iro, ! B, Bro, b, Bz Bro,
where 4 =b,cy, /(a; —a .y —dy ) With 7, (a, +d,)<a,, and c=1/y. K,(-) denotes the vth-order

modified Bessel function of the second kind as defined in [23].
Proof: See Appendix A.
+ Ideal condition (g =xy, =0)

N P 1\( 9 9roy
POt _q_ 2 o P P Z Z Op — oy A
out r s .
(aSR) SR Upp, =0 120 n=0 J n ﬂrzDf

j—n+1

PSS T PYCEES) O W e
Oro, ! e Bz Bro,

where 4 =cy,, /(af —a,7, ) With a necessary condition a y,, <a, . If the condition is not satisfied,
the user D, cannot decode its signal successfully irrespective of the channel SNR.
Proof: Follows trivially by substituting (11) into (14) and letting «g, =, =0.

Remark 1: As seen from Theorem 1, we observe that owing to the impact of hardware
impairments, the outage probability of (15) is determined by the distortion noise and fading
parameters, while result of (16) is only determined by the fading parameters. In addition, the
outage performances of (15) and (16) are limited by the relay.

2) Outage Probability for D,

At D,, the received signals are processed by using SC algorithm, which the maximal SINR
is selected between 7,, and 7, . The outage event will occur for b, if D, cannot decode

D, ’s signal or also cannot decode its own signal during the two time slots. Therefore, the

(16)
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outage probability of D, can be expressed as follows:

P = |:1_ Pr(fso,% 2 Vit :7750" Z Vi )}[1_ Pr(?RDH,\ 2 Vit :77RDn 2 i )} (17)

I, Iy

where »,. denotes the outage threshold at D, .
* Non-ideal condition (xy, = ks, =Ky =K, #0)
The following theorem provides new closed-form expressions for D, in the presence of

non-ideal hardware impairments.
Theorem 2: For Nakagami-m fading channels, the exact closed-form expression for the
outage probability of D, in presence of hardware impairments is given as

asp -1 1 T 9spy, 2 [ b0
. n T z‘ T
PIUDJ[,m _ l— Z e ﬁsDn 1_ - e Bsr bsﬁRDn
9e, =0 Jsp, ! IBSDn F(aSR )ﬂSF?R

o a%&ai:‘l% [(JtsR._]—j(gpon ]( 6 J - O *1;1' (blg . C)" (18)

9o =0 10 n=0 J n b3ﬂRD" g

RDy

9rp, —N 0 SR 0 %M 9 9
Gl B

where r=max(z,.7,), 7, :c;/m/(a, — (@ +xd, ) 7ot ) 7= Can (80 = 25, Yin )5 0= Max(6,,6,),6, =0,y /(2= (2, =, ) 7 )
6, =bcyy,/(a, —d,y, ) - Note that (18) is obtained by assuming the following condition holds
Vo (an + K%, ) >ay, VynKip, > 8y -

Proof: See Appendix B.

* Ideal condition (g =y, = Kpp =K, =0)

The following theorem provides new closed-form expression for D, in the presence of ideal
hardware.

asp, -1 1 T Ysop A arp, ~L argp ~19ro, 1
D,,id _ Bso, 2 2 Bsr Pro, Xsp —
R T LMY
950, =0 Jsp, * IBSD" (aSR) SR Grp, =0 =0 n=0 J

j-n+l

9ro, g 1 Rl 2
X[gmj 0 " 9P (6+¢) K |2 6(6+c)
n ﬂRDn ngn ! ﬂRDn ﬂSRIBRDn

where 7 = maX(vaz)' ) :Cythf/(af — &7t )v T, = Clyn /3y 0= max(@l,ez), 6 :Cythf/(ai_azythf )1 0, = Clypn /2, -
Note that (19) is obtained by assuming the following condition holds ay,, > a, .

Proof: Follows trivially by substituting (7), (8), (12) and (13) into (17) and letting
Ksp = Krp, = Krp, = Ksp, = 0.

Remark 2: Although the results of Theorem 1 and Theorem 2 can be expressed in
closed-form and can be efficiently evaluated, they do not offer the insights of fading
parameters and distortion noise on the outage probability. In the following, the asymptotic
outage behaviors for D, and D, are examined.

(19)

3.2 Asymptotic Outage Behavior

In order to gain more insights, we focus on the asymptotic analysis for the outage probability
at high SNR regime by characterizing the CDF of the channel gains in the high SNR regime.
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For high SNR regime, the asymptotic CDF of the channel gain p, can be given by [14]
. 1(x)
Py ()= ai!(ﬂi\J (20)
Based on (6), the CDF F, (x) can be approximated dominant term F*(x). Therefore, the
asymptotic outage probability for D, and D, are presented in Corollary 1 and Corollary 2,
respectively.
* Non-ideal condition (xy, = xup, =Ky =K, #0)

Corollary 1: For Nakagami-m fading channels, the asymptotic closed-form for the outage
probability of D, is given as

Poo‘ni - 1 [l}asa . 1 aﬁi[aRDiJ ﬂ QRD¢
> ag !\ P F(aSR)ﬂSaRSRaRD, Pl j bZﬂRD, (21)

* (g —1= )(bA+c) (Bg) ™ (b)™

Proof: See Appendix C.
Corollary 2: For Nakagami-m fading channels, the asymptotic closed-form for the outage
probability of D, is obtained as

Pwvni . 1 aRi [aRDn j 9 RD, T sp,
> F(aSR )ﬁsaRSR aSD,, !aRD" ! i=0 J b3ﬂRD" ﬂSDn (22)

(g —1- ) (00 +c) (Be) ™" (b))

Proof: See Appendix D.

* Ideal condition (g, =y, = Kep =K, =0)

The following theorem provides the asymptotic outage probabilities for D, and D, in the
presence of ideal hardware.

wi 1 R (0! -1- J)l “roy o 2 ot | o
Po ~ | = ' A+¢) (Be)™ 23
! OISR![ﬁSR] F(Olsre) She Crp, ! Jzt;[ j J[ﬁm, ] ( ) (ﬂs ) ( )
PE’id I~ (aSR -1- J)| pct [aRDn ][ 0 J - [ 4 ] h f+c ! ﬂ R g~ 24
h F(aSR)ﬁSaRSR aSDn !aRDn | ; J ﬂRDn ﬂSDn ( ) ( S ) ( )

Proof: The proof follows trivially by taking g, = gy, =#p =&, =0 in (21) and (22), we

can obtain (23) and (24) after some simplifications.

Remark 3: From (22)-(24), we can observe that at high SNR regime, the effect of fading
parameters on the outage probability can be decomposed. In addition, the above results
indicate that the outage probability of the user D, only depends on the fading parameters of

relay link (ag, , aw, + B+ Bro, )»  While the outage probability of user D, is limited by the
fading parameters of both direct and relay links (o, , o, » @y + Brs Bro, + Pro, )-

4. The Ergodic Sum Rate of NOMA

In this section, the ergodic sum rates of NOMA relaying networks over Nakagami-m fading
channels with ideal hardware and hardware impairments are investigated.
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4.1 Approximate Analysis
We consider that the target SINRs of two users are determined by the users’ channel condition.
In this case, 7., =7, May not be correct when p., <py, [24]. Therefore, the achievable

rate of D, and D, can be written as
1

RDf :E|092(1+77RD, ) (25)

. %logz(1+ max[iSDniRDnJ), if Pro, > Pro, (26)

"1 N :
> log, (1+ 7sp, )r if Pro, < Pro,
The ergodic sum rate of the two users can be expressed as
o, 1 3
Rave _EE|:Iogz(l+}/RDf ):| (27)

Ra?/"e = Pr(pRD" > Pro, )E|:%|092 (1+ max[?so,‘ ’77RDn J)}
iy (28)

+ Pr(pRDn < Pro, )E|:E log, (1+ 77513n ):|

NS

Dn,2
Rave

By applying the approximation E{log2(1+x/y)}~log2(1+E{x}/E{y}), the ergodic sum rate
over Nakagami-m fading channels by extracting out the average fading power as E, {p,} = &3
is provided in the following theorem.

Theorem 3: Considering p.,, and p,, independent identically distributed random variables,

we have Pr(pu, > pro, ) = Pr(pro, < e, ) =3/2 - Therefore, for Nakagami-m fading channels, the
approximate closed-form expression for the ergodic sum rate of NOMA relaying network in
the presence of hardware impairments is expressed as
* Non-ideal condition (xy, = xup, =Ky =K, #0)
. a7 P
R;\l/l:‘\fm zl 2log, | 1+ _ :7 pSRpRIi)\, _
4 (an + d1)7 PsrPro, T byy0gs + bzprD, +1

ayp a7 P
+log,| 1+ max . n%f)SDn , — 0V pSR’\pRDn i (29)
Ksp, 7Psp, +1 dyy PsrPro, +byos +b37pRDn +1

avb
+log, 1+2"y¢
Ksp, ¥Psp, T1

where j, =a,8 for ie{sR,RD,, RD,, SD,}.

* Ideal condition (xg = xpp =z, = kg =0)

W 1 27" P
R;l/l;ﬂ_ld ~ 2'092 1+ —— f SRA RD¢ _
4 8,7 PsrPro, + 7Psr + WPro, +1

(30)

N BN, .
+log, | 1+ max anypSDn,w +I0g2(l+ an;/pSDn)
TP + WPro, +1

Remark 4: Although the result of Theorem 3 can be expressed in closed-form and can be
efficiently evaluated, it does not offer the insights of fading parameters and distortion noise on
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the sum rate. In the following, the asymptotic ergodic sum rate for NOMA DH AF relaying
networks in presence of hardware impairments is examined. For comparison, the upper bound
with ideal conditions is also analysed.

4.2 Asymptotic and Upper Bound Analyses

In this subsection, we focus on the asymptotic analysis in terms of the ergodic sum rate with
hardware impairments and the upper bound for ergodic sum rate of ideal hardware as follows.
Corollary 3: Under the assumption of i.i.d. Nakagami-m channel, when y -« the ergodic
sum rate of NOMA DH AF relaying networks can be obtained as
* Non-ideal condition (xy, = xup, =Ky =K, #0)

sum_ni 1 a 1 a‘n 1 a‘n
Reum-. zzlogz(ha fd]+logz(l+lzj+4logz[l+ i J (31)

n + 1 4 SD,
where k=min(x%, . d,).

Proof: See Appendix E.
From Corollary 3, we can acquire that R*"-" is a constant and independent of the channel

ave

condition. In addition, the value of R2"-" depends on the power allocation coefficients and the

level of impairments in the high SNR regime.

In the case of ideal hardware, it is difficult to obtain the asymptotic expression for the
ergodic sum rate of ideal hardware due to the high complexity of integrals. Therefore, an upper
bound for the ergodic sum rate is given in the following corollary.

* Ideal condition (g =y, = Kep =K, =0)

Corollary 4: In the case of ideal hardware, when y —s with a finite non-zero ratio, the
upper bound for the ergodic sum rate will be

asp, -1
Rs“m‘dszlogz[l+?}+ ! > ! (f)" @, + !

ave

2In2 o 9sp, ! 4In2
agg 1 rp, 1 1 agg 1 rp, —1
{ ——(B)" ()™ e, 3 > (32)
sz =0 Grp, =0 Jsr 'gRD,, - sz =0 Grp, =0
asp, -1 1
x D = f)* () (f,)"™ @,

9sp, =0 Osr !gRD,\ !gson !

Proof: See Appendix F.

Remark 5: For non-ideal conditions, there is a rate ceiling for the ergodic sum rate, which
is irrelated to the average transmit SNR. It means that it is not always beneficial to the ergodic
sum rate by increasing the average transmit SNR. For ideal conditions, the ergodic sum rate
increases when the average grows into infinity.

5. Numerical Results

In this section, the correctness of the theoretical analytical results is verified by a set of
numerical simulations. Meanwhile, the performance of NOMA relaying networks with ideal
hardware is also provided. Unless otherwise specified, we set the power allocation coefficients
a, =3/4,a,=1/4, y,, =1, 7., =3. In addition, we consider the variance of AWGN N, =1, and

the design parameters g, =y, =y =Ky =& -
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Fig. 3. Outage probability against the level of impairments

Fig. 2 shows the outage probability of NOMA relaying networks versus the transmit SNR
with different levels of impairments « <{0,0.1, 0.17} , where the value of fading parameters are
Set aS: ag =4, apy =y, =gy =2 B = Pro, = B, =1 Pro, =4 . IN addition, we set the transmit
power p, =P, =P. It is noticed that the curves of analytical expressions in (15), (16), (18) and

(19) are perfect agreement with Monte-Carlo simulation results, which demonstrate the
correctness of our analyses in Section 3. Furthermore, we compare the asymptotic outage
probability of (21)-(24) with the analytical outage probability for different level of
impairments. For D, , we can observe that the curves of ideal analytical outage probability and

impaired analytical outage probability overlap with the asymptotic outage probability when
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SNR>10dB. For D,, we can observe that the outage probability gap between ideal hardware

and hardware impairments curves becomes larger as average SNR get larger. All these reasons
are that hardware impairments can degrade the performance of communication systems. In
addition, it can be readily noticed from Fig. 2 that the asymptotic outage probability curve is
sufficiently tight across the analytical expressions in the high SNR. When the aggregate level
of hardware impairments « becomes large, the gap between ideal analytical and impaired
analytical outage probability curves becomes large for the same average SNR due to the large
distortion noise.

Fig. 3 shows the impact of hardware impairments on the outage probability for NOMA DH
AF relaying network when ag, = ag, =7, ags, =6, ay =3 By =3, B, =1 frp. = Brn, =7, and the

transmit SNR=15. In addition, the outage threshold at D, and D, are denoted by, =2 and

7mn = 3.5 . A specific observation is that the performance of outage probability decreases as the

level of impairments increasing. When « is larger than 0.2, the outage probability of the two
users are zeros due the severe hardware impairments. Fig. 3 also indicates that the outage
probability of the user D, is better than the user D, in the low level of the impairments due to

the large power allocation factor.

8 1 1 1 1 1 I
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Fig. 4. Ergodic sum rate against transmit SNR

Fig. 4 plots the ergodic sum rate of the NOMA DH AF relaying networks with ideal
hardware and hardware impairments where the values of parameters are set as:
U =y =2, Ay =T, 0y =4 Bog = Pro, = Pep, =1 Bro, =4 aNd x={0,0.05,0.17} .

From Fig. 4, we note that hardware impairments have a small impact on the sum rate at low
SNRs, but have a significant difference at high SNRs. In addition, we note that for non-ideal
conditions, there are rate ceilings for the sum rate, which are irrelated to the average SNR. For
ideal conditions, the sum rates grow logarithmically with the average SNR. The upper bound
of the sum rate is shown to be tightly bound in the high SNR regime. Moreover, for the same
SNR, as the coefficient of hardware impairments becomes smaller, the ergodic sum rate
achieves large.
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Fig. 5 investigates the impact of hardware impairments on the ergodic sum rate for NOMA
DH AF relaying network with different average SNR < {30, 40} . For comparison, the ideal

hardware impacts to the ergodic sum rate are also taken into consideration. In this simulation,
WE SBt oy = app, =2, tpp, =gy =T: Bg = Pro, =20 Bro, =1 Bsp, =1. We can observe that the curves

of impaired rate ceiling for ergodic sum rate between the average SNR=30dB and SNR=40dB
are almost overlapped for all values of x except «=0 which is irrelevant to the SNR. In
addition, the ergodic sum rate of ideal hardware is a fixed value, and the impaired ergodic sum
rate approaches to zero when the level impairments get larger due to the severe hardware
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impairments. The figure also points out that the impaired ergodic sum rate decrease rapidly
when the level of impairments is below 0.5.

Fig. 6 shows the ergodic sum rate of the NOMA DH AF relaying networks versus the
average SNR. In this simulation, we set oy =ay, =2, ap =7, @ =4 B = Bro, =B, =7 »

B, =4 and «=0.17. For comparison, the performance with ideal conditions is also taken into
account. More precisely, It is noticed from Fig.6 that the ideal sum rate of D, approaches to a

constant value in the high SNR regime which is saturating and approaching %log{hgj, as
proved by Corollary 4. The ideal sum rate of user D, increases linearly with the transmit SNR.
Finally, we can also observe that there are rate ceilings for the sum rate of user D, and D, due

to the hardware impairments, which means that add the average SNR is not always beneficial
to the system performance.

5. Conclusion

In this paper, the performance of relaying networks using NOMA under the condition that
ideal and impaired hardware were investigated. The exact closed-form expressions for the
outage probability and ergodic sum rate were derived. Based on the analytical results, the
upper bound for the outage probability have been obtained. Additionly, the asymptotic
analyses at high SNR for the outage probability and ergodic sum rate are examined. It is
observed that the ergodic sum rate degraded in NOMA relaying networks due to the exist of
hardware impairments. Moreover, the performance of these two users was compared in terms
of outage performance and ergodic sum rate, it is noteworthy that the outage probability of the
user without the direct link to the source is better than the user with a direct link to the source
in the low SNR due to the allocated power, which means that NOMA can improve the fairness
among serviced users.

APPENDIX A
PROOF OF THEOREM 1
Substituting (11) into (14), the outage probability of D, turns out to be

a7
PO _ PI’[ 7 PsrPro, <7{hf]

Dm (an + dl)J/ZPSRPRD, +byog + szPRD, +1

b,c ) +C
=Pr| pgg < ——— Voo =1 +P{pm, <7(blpSR ),pSR >/1]
Ay — a7 — Ol bz(pSR _ﬂ*)

Abry+c)

o B Yro¢
. RD{ 1 b, Broy (Y=4) ﬂ.(bly + C)
O P P _ABYTE) L gy (A1)
( SR ) L Psr ( ) QR;O gRDf | [bzﬁRD, (y —ﬂ)
) hi o . 9ro¢ i
1 T b o & [asn —1j{gm ] A A
=1-—— e ' i '
F(aSR) N QEZO JZ::; nzzf; J n bZﬁRDc 9ro, !

y _AMbate)

(bl/'i + C)n (bl)gRDt -n J‘: yjfne_g b, Bro; ¥ dy
I

where c=1/y, P is based on the condition of 7. <2;/(a,+d,). (A.1) follows Binomial
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theorem, 1, is obtained by using [Eq.(3.471.9)] in [25], so I, can be rewritten as

=2 B (bA+c)| ? K, o2 A(bA+c) (A2)
bZﬂRD, bZﬂSRﬁRD,

Substituting (A.2) into (A.1), we can obtain (15).

APPENDIX B
PROOF OF THEOREM
Substituting (7), (8), (12) and (13) into (17), the outage probability of D, is expressed as

a a
out =|1-Pr ;7pSDn 2 Vit o 2 nypSDn 2 Vtn
(an + Ksp, )Vpson +1 Ksp, 7Pso, +1

N (B.1)

17 PsrPro Y PsrPRro
x| 1—Pr 2 2 Vit T2 2 Vin
(an + d2)7 PsrPro, T b yog + b:«x}’pRDn +1 d,y PsrPro, 7o b37pRDn +1

Iy

I, and I;are calculated as follows:

Vi © V€
I,=1-Pr Psp, > 5 =7, |Pr Pso, > 7“'2 =1,
&y 7(an + Ksp, )ythf 8, — Ksp, in

=1—Pr(pSDn ZmaX(Tl,‘[Z)ZT) (B.2)
agp, -1 1 T 9sp,

=1— Z —~ e Bso, L
9sp, =0 gso,, ! ﬂSDn

a [blpSR + C] > 0, -0 J
1SR = -1
b3(pSR - 91) a17_(a2 - dz)Wthf

o, c
> Z[blpSR + ] o > b3 :92]

I,=1- Pr[pRDn >

b3(pSR 792) ’ - 8,7 — ¥

=1—PT[PRDn 26’[b1p;R_+C],pSR > max(@l,é’z):H] (B.3)

9ro,
1 ﬂsR bsﬂRD ety (aSR ]{QRDHJ H
l-— 7
F(OCSR) solRSR gRDZ:*U JZ‘; nzf; n bSﬂRDn

Hasn . 7L7€(b1€+c)

g (b19+c) X(bl)gabn*“ I:yj—ne Bse bsfro, Y dy

Iy

1, is obtained by using [Eq.(3.471.9)] in [25], so 1, can be rewritten as

I,=2 HﬂSR(bﬂ"’C) TKJ_?n+1 2 6(b10+c) (B4)
bsﬁreon bsﬂSRlBRDn

Substituting (B.4) into (B.3), then substitute (B.3) and (B.2) into (B.1), we can obtain (18).

APPENDIX C
PROOF OF COROLLARY 1
Based on (14), a high-SNR approximation of D: is defined as
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P* —pr af}/zpsmoreof <
> (an + d1)72p5RpRD, +byog + bz?’pRD, +1 "

b,c A +cC
_Pr[pSR<27thf_ﬂ +Pr[pRD, <(b1pSR)’pSR>2’J
Ay — a7 — 0l bz(pSR _ﬁ“)

- A(by+c)
=Pr(pg <A)+ L £, (y) Lﬁ(w) o, (X) dxdly (C.2)

1 [ l ]O‘SR 1 %Rp¢ aRDf /1 RO}
I
ag!\ Bw r(aSR)ﬂSRSRaRD, Pl bzﬂnof

. - _y+A
x (b +c) b jo (y+2)= "y F= dy
4

Note that Is is supposed to the classical integration formulas in (C.2) when » -,

Yy
16 — J‘: yaSR ’1’"e Bsr dy (C2)
Taking integer values on [25], we can obtain the I; as follows:
I = (aSR -1- j)!ﬂ:resrj (CS)

Substituting (C.3) into (C.1), we can obtain (21).

APPENDIX D
PROOF OF COROLLARY 2
Based on (17), a high-SNR approximation of I, and I; are defined as

I, —1-Pr| pg > Tur N {7 — T R
af?’*(an + Ksp, )Wmf &Y = Ksp, Wi

:1—Pr(pSD" > maX(Tl,TZ)ZT) (D.1)
1 T o
Qyp, ! ﬂson
6, [bl,OSR + C] D.CY
L,=1-Pr| poy >— Per = =6,
’ [ o b3(P5R_91) * a1_(az_dz)7thf '
6, b +¢] b,cy,
XPr| oy > P 2 — = g
[ o bS(pSR _‘92) * a, — g ’
0[b,ps +¢]
=1-P >3 > 6,0,)=0
r[pRD" b3(pSR —9) Psr max( 1 2)
- 1 [0(by+bo+c) i (02)
:_[0 fPsR(y+0) ] dy
Orp, - by Bro, ¥

— 1 = aRDn 0 - j
B r(asR)ﬂSaRfRaRDn ! ]Z:;{ ] j[bSﬂRDn ] (b19+ C)
o vt _y+0
xbf*”ﬂ"jo (y+0)= " yle % dy
Note that I is supposed to the classical untegration formulas in (D.2) when » =« and it is
lucky to get a formula equals to the (C.2). Therefore, substituting (C.3) into (D.2), then (22) is
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obtained by combining (D.1) and (D.2).

APPENDIX E
PROOF OF COROLLARY 3
At high SNRs (y — =), the asymptotic ergodic sum rate Ry, and R. can be rewritten as

ave ave

ni a 72
R;/;' _ 1|ng 14 : 17 PsrPro,
2 (an + d1)7 PsrPro, + b yog + bz7pRD, +1

a
zllog2 1+ —
2 a,+d;

" &, ay’
Ruw ™ = %Iogz (1+ max|: 7Pso, 7 PsrPro, D

(E.1)

2

Ksp, 7Psp, +1 dz}/szRpRDn +byypgs + b37pRD" +1

1 a a
~=log,| 1+ max| ——,—" E.2
; gz[ {KSZDH dzD (E.2)
1 a
zf|0 1+Tn
Jiog, 1%

where k =min[ %, . d, |

. a
R:,:zym :Elogz 1+ > nypSDn
2 Ksp, 7Psp, +1

1 a
~=log,|1+—2
b 102

Finally, combining (E.1), (E.2) and (E.3), the asymptotic ergodic sum rate can be
derived as (31).

(E.3)

APPENDIX F
PROOF OF COROLLARY 4
In the high-SNR regime, we have

; a7’ PP
R =Liog, 14— PP
2 8.7 PsrPro, + 7Psr + WPro, +1

1 a
~—log,|1+—
o, 112
. a 2
RPuM — | 1Iog 1+ max| a yp ,7”7 PsrPro,
ave 2 n//’sb,
2 YPsp + ¥Pro, +1

E{Tizln(H a,y max[pSD" ,min| pg. pro, ﬂ)}

is obtained by the inequality [24]

72pSRpRDn
YO + Voro, +1

Denote W = maX[pSDnl Min( ses Pro, )} the upper bound for RY:™ can be calculated as

(F.1)

(F.2)

IA

i

where R

< min[}’per 7Pro, ] (FS)
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ave

i 1
R2:M <El ——In(1
[ZInZ n( +anyw)}

:ﬁ_[: fy (W)In(1+a,yw)dw (F.4)

»1-F
— an7 W(W)dW
2In27° 1+a yw

To approximate the ultimate expression, we need to calculate the CDF of W , which is given
by the following analysis.

Fy(w)= Pr(max[pwn, min (g, Pro, )J < w)

=Pr(pg, sw)[l—Pr(pSR >W)Pr( pro, >W):|

asp, -1 W 9500 g1 oy -1 W W
=1- Z ie Pson l _ N ;e Bz Bro,
200sp ! P 002091 0rp !
9sp, =0 IsD, SD, 95z =0 rp, =0 ISR * YRD, (F 5)

w 9sr w Iroy agg -1 arp, ~1 asp, 1 1
] | ]
ﬂSR ﬂRD,, 95z =0 gro, =0 gsp, =0 Osr 'gRD,, : gson '

W W W Isr 9ro, 9so,
xp Pon P ﬁmn( W J W w
B ﬁRD" ﬂson

Dy ,.id

It is noted that by substituting (F.5) into (F.4), and defining v=a,yw, R:** can be attained
as

v
R Dy id - 1 ‘13:’1 1 1 9son J_w e a,7Bsp, VgSD" asg -1 arp, —1
¥ 7 2In2 0

9spy, gSDn ! an7ﬂSDn l1+v 9sr =0 grp, =0
@,
L
1 1 Isr 1 9rony ©@ 2,7k 8 Bro, vgsR +0rp,
x I dv
Osr ! ro, 1\ @78z 3, %Bro, 0 1+v
@, (FG)
agg —1 @ro, ~1 asp, -1 1 1 Ysr 1 Fron
952 =0 gro, =0 9sp, =0 Isr * Oro, * s, * 2Bsr n?’:BRDn
L S
1 Gson @ a,7Bsr  an¥Bro, @nPspy, VgSR +0rp, *Ysp,
X ‘[ dv
an}’ﬂson 0 1+v
)

Defining f.=YaBx, . f.=1a1x. fs=YaBy, | then with the aid of [25] [Eq. (3.352.4)] and
[Eq.(3.353.5.7)], we can arrive the expressions of ®,,®, and ;.
-e"Ei(-f,), gy =0

(1)1: — 9sp, 9sp, —L N (F?)
(1) "e"Ei(=f)+ 2 (L-)(-1)  (f) " 9s >0
[
_efﬁfaEi(_fz - f3), 9sr + Oro, = 0
9sr +0ro,
@, ={(-1)" T e R (-, — £,)+ Y. (L-1)! (F.8)
1

X(_]‘)gwgmfL ( f,+ fs)iL ' Osr + Orp, >0
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_ef1+f2+f3Ei(_ f,—f, - fs)’ Osr + Oro, T Ysp, =0

9sr +9ro, 9D,

d)3 _ (_1)95R+9R0n*gspnflef1+f2+f3Ei(_fl_ fz _ f3)+ Z (L—l)' (Fg)
L=1
x (_]')QSRJngDnJ(gSDn _L( fi+f,+ fs)_L v O+ g, +9sp, >0
Next, we note that Ry*" can be expressed as follows:
; 1
Rae'™ = E{Elogz (1+a7m6, )} (F.10)

Denote W = o5, , and W follows the Nakagami-m distribution , the CDF of W turns out to be
Fy (W)= Pr(pSDn < w)
o 950, F.11
—1- Z 1 W/ B, [W] ( )
9sp, =0 gson ! ﬂSD,,
Therefore, R2*™ can be rewritten as

i «1-F, (W
;;‘ZIM — an}/ W( )dW
2In2°0 1+a,yw

Asp, 1 1 % w eian;fso,, VgsDn (F 12)
= dv
z [anyﬂson ] J

1
0
95Dy, gSDn ! 1+v

1

According to (F.7), Rex*"“ is obtained. Finally, combine (F.1), (F.6) and (F.12), we can
acquire the upper bound for ergodic sum rate of ideal hardware in (32).
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