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Abstract. Oil and gas production is moving deeper and further offshore as energy companies seek new sources,
making the field layout design problem evenmore important. Althoughmany optimizationmodels are presented
in the revised literature, they do not properly consider the uncertainties in well deliverability. This paper aims at
presenting aMonte Carlo simulation integrated with a genetic algorithm that addresses this stochastic nature of
the problem. Based on the results obtained, we conclude that the probabilistic approach brings new important
perspectives to the field development engineering.
1 Introduction

The field layout design problem is a growing concern for the
offshore sector. As the water depth of oil fields increases,
difficulties in operating at high pressures and low temper-
atures appear. In order to reduce the huge investment and
operational costs, it is important to develop a detailed plan
to lower the losses involved. A potential approach is to
place and allocate the main facilities such as platforms and
manifolds in an optimum manner in order to avoid the
pressure loss in flowlines, so the reservoir energy can be
fully exploited.

The field design problem is related to many factors,
such as seabed topography, reservoir volume, well flow
rates, drilling and facilities costs. Several authors studied
this problem, among which the following can be highlight-
ed. Rothfarb et al. (1970) initially proposed techniques and
heuristic procedures to minimize the investment and
operational costs through the optimization of pipeline
diameter, network and expansion of gas fields. Devine and
Lesso (1972) wrote the seminal paper on the field design
problem, which considered the trade-offs between platform
capacity and drilling costs through an iterative two-stage
algorithm. Frair and Devine (1975) presented a nonlinear
mathematical model that besides including the location-
allocation of platforms, it considered the scheduling of
oilfield operations and production rates for different time
periods, although assuming a linear production decline
nding author: leonardosales@alu.ufc.br

pen Access article distributed under the terms of the Creative Com
which permits unrestricted use, distribution, and reproduction
curve for each reservoir. Dogru (1987) proposed a nonlinear
mixed-integer programming model to optimize platform
and well locations and to maximize the total productive
potential. However, the calculations became prohibitive
after five platforms and 1 000 possible well locations.
Grimmett and Startzman (1988) presented an integer
programming model which used the binary implicit
enumeration method in order to determine the size,
location and allocation of major offshore facilities.
However, such model had to consider an exponential
quantity of solutions as the number of variables increased.
Hansen et al. (1992) formulated the optimal well assign-
ment to platforms as a multicapacitated plant location
problem, both as an integer programmingmodel and a tabu
search heuristic. The exact model faced many numerical
difficulties above 30 possible locations for platforms and
100 wells.

Carvalho and Pinto (2006) maximized the Net Present
Value (NPV) of several oil field development plans through
a proposed mixed integer model integrated with a bilevel
decomposition algorithm in order to solve large-scale
problems. The master problem determined the assignment
of platforms to wells and a planning subproblem calculated
the timing for the fixed assignments. Multiple reservoirs
were also considered within the model. Although it could
solve problems of realistic dimension, further studies on
more efficient methods for dealing with investment
constraints were recommended by the authors.

Rosa (2006) aimed to maximize the NPV of a field
development project by optimizing the platform location in
a grid through an exhaustive search model, determining for
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each solution the production rate based on the pressure
drop across the production lines, having also considered
risers and flowlines costs. As the method requires
exhaustive search, the computational time increased
drastically with the number of nodes considered. Rosa
and Ferreira Filho (2012) broadened this study by also
considering the location of manifolds and the interconnec-
tions between manifolds and wells.

Wang et al. (2012) proposed a mathematical model for
the layout optimization of cluster manifolds and pro-
grammed its algorithm in MATLAB. Numerical analyses
were performed and discussed for a case study of subsea
wells partition to verify the accuracy of the model and the
feasibility of the algorithm. Wang et al. (2014) further
studied this problem by optimizing the layout of cluster
manifolds with pipeline end manifolds, where a mathemat-
ical model and its dedicated algorithm in MATLAB were
also proposed. Both papers concluded that the optimiza-
tion layout problem can be described accurately by the
presented mathematical models and the convergence rate
of the given algorithms is efficient.

Rodrigues et al. (2016), in order to minimize the
development costs of an oil field, proposed a binary linear
programming that integrated interconnected decisions
such as the number and location of wells and platforms,
the location of manifolds, the well geometry and the
production capacity of the platforms and its interconnec-
tion between manifolds and wells. Two case studies were
proposed, and the results were consistent with reality.

Zhang et al. (2017) proposed a mixed-integer linear
programming model to optimize the production of a well
fluid gathering system by minimizing the total investment.
Feeding terrain and obstacle conditions to the model along
other operational constraints, the optimal topological
structure, position of the central processing facility,
diameter and route of each pipeline were obtained
integrally by solving this model with GUROBI solver.
Two virtual oil-gas fields and a real-world gas field were
taken as case studies in order to verify the reliability and
practicality of the model.

The usual approach of field layout design studies is to
minimize the investment costs of oil and gas facilities, as
well as maximize the NPV of the project, as presented in
T�upac et al. (2002), Sales (2010), Souza (2011), and
Rahmawati et al. (2012). The location of facilities is a hard
decision process because it involves different and some-
times conflicting criteria, besides significant savings among
each possible alternative.

In addition, at the start of the development project,
there is insufficient information about the reservoir to
estimate oil production accurately (Serapião et al., 2012;
Touzani and Busby, 2014). Hence, deterministic
approaches for the field layout design problem may not
perform well in the presence of these uncertainties because
they address poorly or even ignore completely the many
possible scenarios that could occur in the future. In order
to evaluate problems of the petroleum industry considering
uncertainties, statistical analyses and statistical simulators
were proposed, which we highlight Murtha (1994),
Huffman and Thompson (1994), Gilman et al. (1998),
Kitchel et al. (1997), Cheng et al. (2010) and Can and
Kabir (2012). However, no studies about the field layout
design regarding the uncertainty aspect are known to the
authors. Therefore, this paper aims at presenting a genetic
algorithm to obtain adequate solutions considering the
probabilistic nature of the field layout design problem
through a Monte Carlo simulation. A greedy algorithm is
employed to evaluate the performance of the genetic
algorithm. We also provide a set of instances to allow
comparison among future work.

The remainder of this paper is structured as follows: in
the next section, the problem is stated in details; in the
third section, the proposed approach is presented; in the
fourth section, case studies are presented; finally, in the
fifth section the computational results are discussed.
2 Problem statement

As already mentioned, the field layout design depends on
well flow rates, which depends on the pressure drop of the
flowlines and therefore of the energy balance of the system,
shown in its differential form in equation (1) (Economides
et al., 1994):

dp

r
þuduþ gdzþ 2ffu

2dL

D
þdWs ¼ 0; ð1Þ

in which p is the pressure in the tube, r is the density of the
fluid, u is the fluid velocity, g is the gravitational constant,
ff is the Fanning friction factor, L and D are respectively
the length and the internal diameter of the tube, andWs is
the shaft work realized in the system.

Since wewill not consider any device that does shaft work
in the flowlines, Ws=0. Considering that the tube walls are
thermally insulated, the oil temperature can be considered
constant during its production, thus variations in viscosity
and in density of the fluid are negligible. In this paper, we also
consider an incompressible monophasic oil flow. Then, we
can integrate the last equation, resulting in equation (2)

Dp ¼ rgDzþ rDu2

2
þ 2ffru

2L

D
; ð2Þ

where Dz is the height difference between the extremes of
the tube. The three main components of the pressure drop
are on the right-hand side of the equation, being
respectively the potential energy, the kinetic energy and
the pressure drop. The higher the pressure drop, the higher
will be the energy requirements to produce fluids.

The tube diameter, both for pipelines (tubes that
connect the platform to the coast) and flowlines (well-
platform, well-manifold and platform-manifold connec-
tions) are considered constant. Given the variations in
height between the seabed and the sea surface are negligible
for this study, we adopt a constant average value for it.

If the water column and the density of the fluid are
constant, the potential energy is also constant. Besides,
there are no variations in kinetic energy for an incompress-
ible fluid flowing through a constant cross-sectional area.
Thus, based on the mentioned considerations, analyzing
kinetic and potential energy is unnecessary.
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The pressure drop is a function of flow rate and tubing
length. Having in mind that the flow rate is the main aspect
of the Monte Carlo simulation applied in this study and the
tubing length is directly related to the location of platforms
and manifolds (which will be further addressed in this
paper as receivers), here we will address the field layout
design problem byminimizing the sum of the friction loss in
the flowlines and pipelines as shown in equation (3):

min z ¼
X
i∈P

Dpm;i ¼
X
i∈P

32ff;irðqiÞ2Li

p2Di
5

; ð3Þ

where P is the set of all segments of pipe in the oil field, qi is
the flow rate in pipe i, Li is the pipe i length and Di is the
internal diameter of the pipe i. This approach agrees with
Rosa (2006), which states that platform location should be
chosen considering the pressure loss in flowlines so the
reservoir energy is fully exploited. The Fanning friction
factor ff,i of the flow in tube i is a function of the Reynolds
number (Rei) and of the relative roughness of tube i (ei),
being usually calculated using Colebrook-White equation
or its graphical form, the Moody’s chart. A non-iterative
and accurate approach to calculate ff is given in equation
(4) (Chen, 1979):

1ffiffiffiffiffi
ff

p ¼ �4log
e

3:7065
� 5:0452

Re
log

e1:1098

2:8257
þ 7:149

Re

� �0:8981
" #( )

ð4Þ
For laminar flow, the friction factor is determined by

equation (5) (Moody and Princeton, 1944):

ff ¼ 16

Re
: ð5Þ

The Reynolds number for the pipe is calculated through
equation (6) (Economides et al., 1994):

Re ¼ 4qr

pDm
; ð6Þ

where m is the fluid viscosity. As relative roughness,
density, internal diameter and viscosity are considered
constant, the objective function of the problem is a mere
function of flow rate and pipe length.

3 Proposed approach

3.1 Monte Carlo simulation

The Monte Carlo simulation, developed by Metropolis and
Ulam (1949), is a process that runs a model numerous
times, randomly selecting each variable value according to
its probability distribution curve in order to create many
possible scenarios. Computers allow the model to run
thousands of times in a feasible time. The analysis of the
resultant scenarios may show the most probable case along
with statistical data which allows the understanding of the
uncertainty involved. The Monte Carlo simulation is an
alternative to deterministic approaches.
Our objective is to generate many production scenarios
of an oil field usingMonte Carlo simulation. To this end, we
must assign flow rates to the wells using a flow rate
probability distribution curve. These many scenarios will
then be compiled in an instance to be solved by the genetic
algorithm.

In order to study well flow rates in a stochastic scenario,
the decline exponential curve, presented in equation (7),
which relates the well flow rate q at a given time t, can be
used in a Monte Carlo simulation in a similar manner as
Gilman et al. (1998), addressing the decline rate (a) and the
initial flow rate (q0) as random variables:

q ¼ q0exp� at: ð7Þ
Therefore, the decline exponential curve does not appear as
a single curve, but as a probabilistic region.

In order to avoid processing computationally expen-
sive well models and reservoir simulations to obtain a
probability distribution curve for the decline rate, we
defined the well and reservoir coupling by a simple
Productivity Index (PI) model. For a volumetric oil
reservoir at pseudo-steady state flow, the decline rate can
be defined as presented in equation (8), where k is the rock
permeability, h is the reservoir net pay, m is the fluid
viscosity, Ni is the initial oil in place in the well drainage
radius (re), rw is the well radius, ct is the total
compressibility of the reservoir, and s is the well skin
factor (Guo et al., 2007). It is important to note that this
PI model is employed here for the sake of simplicity. That
is, we chose a simpler PI model because it represents the
reality in a sufficient level of detail for the objectives of
this paper. Therefore, PI models that consider prior
geological knowledge such as compartmentalized and
unconventional reservoirs, as presented in Shahamat
et al. (2016), or PI models that analyze interwell
connectivities by assessing the coupling of wells between
themselves and the geological formation, as presented by
Noetinger (2016), are recommended for a more detailed
analysis.

a ¼ 2pkh

mctNi
ln

0:472re
rw

� �
þ s

� ��1

: ð8Þ

Based on data from many points of an oil field, it is then
possible to define probability distributions for each one of
these properties, therefore enabling a Monte Carlo
simulation.

After carrying out the Monte Carlo simulation, flow
rates for each well were drawn from the resulting flow rate
probability distribution curve, creating what is called here
a universe, which is a scenario of producing wells that is
possible to happen in the oil field.

3.2 Greedy algorithm

An algorithm is classified as greedy if it always chooses, at
each step of generating a solution, the best option available
at the moment. For example, a greedy algorithm for the
field layout problem will always allocate the receiver to the
best well cluster available. More information about greedy



Fig. 1. Greedy algorithm used.

Table 1. Numeric representation of the example given.

Receiver Numeric representation

Platform 1 0
Platform 2 1
Manifold 1 2
Manifold 2 3
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algorithms can be found in Cormen et al. (2009). The main
reason we compared our genetic algorithm with a greedy
one is because there are no similar approaches to the field
layout design problem in the literature that we could
compare to our method. Thus, we relied on comparing to
how a decision maker would solve this problem nowadays,
considering uncertainties. It happens that the greedy
algorithm is a close approximation of how humans make
decisions over complex problems, such as in the knapsack
problem (Murawski and Bossaerts, 2016). Albeit simple by
definition, the greedy algorithm is similar to the method a
human would use when designing an oilfield layout with
dozens of wells in such conditions and thus an interesting
comparison.

In order to evaluate and compare the solutions obtained
by the genetic algorithm, we use a greedy algorithm as
described in Figure 1. It can be divided into two phases: the
location and allocation of (i) manifolds and (ii) platforms.

In the greedy algorithm, themanifolds are placed on the
seabed by descending order of production capacity, one by
one. To easily understand the algorithm, an analogy
between the flow rate of the wells and the mass of objects in
a physical system can bemade. First, the “center of mass” of
the well layout is calculated as shown in equations (9) and
(10), where T is the set of all wells in the oil field, qi is the
flow rate of well i, (xi, yi) are the Cartesian coordinates of
the well i, ai∈ (0, 1) is equal to 0 if the well i was already
allocated, and 1 otherwise:

x ¼
X

i∈T
aiqixiX

i∈T
aiqi

: ð9Þ

y ¼
X

i∈T
aiqiyiX

i∈T
aiqi

: ð10Þ

The biggest manifold (in terms of production capacity)
available is then placed in the center of mass determined,
ending its location procedure.

Next, the wells are allocated to the manifold, which are
selected by ascending order of distance to the manifold.
When the manifold cannot connect to the next well due to
capacity restraints, its allocation ends. These steps repeat
to all manifolds available.
The procedures for the platform location and allocation
are similar. The platforms are placed by descending order of
production capacity, one by one. The main difference is in
how the center of mass is determined: it now considers all
non-allocated wells and manifolds in the oil field. The
biggest production platform will be placed in the deter-
mined center of mass, and then the closest wells and
manifolds will be assigned to it up to the point the platform
cannot handle the additional production. The location and
allocation of the platform are then complete. This procedure
repeats for all available platforms, thus completing the
greedy solution. Finally, its fitness is evaluated.

3.3 Solution codification

The codification for both greedy and genetic algorithms is
the same, having one vector (technically addressed as the
chromosome in a genetic algorithm) for allocation and
another for location. The allocation is represented by a
vector~a ¼ a1; a2; :::aw; b1; b2; :::bmf g, wherew is the number
of wells in the oilfield, and m is the number of available
manifolds. For example, the i-th well connects to receiver ai,
and the j-th manifold connects to the platform bj.

For example, an instance with 11 wells, 2 manifolds and
2 platforms could be encoded according to Table 1. A
chromosome for the allocation subproblem of this instance
could be: {0, 1, 0, 3, 3, 2, 2, 2, 3, 1, 1, 1, 0}, whichmeans that
the first well is connected to platform 1, the second well is
connected to the platform 2, the third well is connected to
platform 1, the fourth well is connected to manifold 2
(represented by number 3) and subsequently up to the last
two values, which represent the manifold connections. The
manifold 1 is connected to platform 2, while manifold 2 is
connected to platform 1. This example is illustrated in
Figure 2. The well index (in red) refers to which receiver the
well is allocated to, while the manifold index (in blue) refers
to which platform the manifold is allocated to.

The codification for the location subproblem consists of
a coordinates vector ~c ¼ fðX1;Y1Þ; ðX2;Y2Þ; ðX3;Y3Þ; . . . ;
ðXr;YrÞgwhere r is the number of receivers. Following the
example given, possible coordinates for the receivers could
be {(0.00,3.47) ; (2.58,3.82) ; (3.00,6.40) ; (0.50,5.00)}. A set
of one allocation chromosome and one location chromosome
will be addressed here as a solution to the problem.

3.4 Genetic algorithm

The genetic algorithms, initially proposed by Holland
(1975), were deeply studied over the years, especially in
engineering after the work of Goldberg (1989). Today,
genetic algorithms are very popular in several areas, such as



Fig. 2. Scheme of the allocation chromosome example.

Fig. 3. Genetic algorithm used.
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operational research (Kadri and Boctor, 2018; Masmoudi
et al., 2017), thermodynamics (Ahmadi et al., 2016, 2017 )
and petroleum engineering (Ghorbani et al., 2016;
Sheremetov et al., 2018), as they combine deterministic
and stochastic elements in order to generate high-quality
solutions. In a genetic algorithm, a solution is represented
by what is called an individual. The individuals have one or
more chromosomes, which are binary strings (or some other
codification) that represents a feasible solution. The
element of a string is called a gene. Several individuals
are generated, randomly or not, creating a set of individuals
called population. Each individual has its fitness evaluated
relative to the fitness function adopted. Then, the
algorithm randomly selects individuals and crosses them,
meaning that the individuals’ genome is recombined (and
possibly mutated) into a new offspring, thus forming a new
generation. The offspring may replace a chromosome of the
population. The process of creating a new generation
iterates until the decision-maker is satisfied with the
quality of the fittest individual of the population.

The genetic algorithm pseudocode applied here is
presented in Figure 3. It can be divided in population
generation, binary tournament, fusion crossover and
chromosome replacement.

3.4.1 Population generation

In order to generate the initial population, we tried to use a
grid-based technique, calculating each node probability of
receiving a platform or a manifold proportionately to the
wells and manifolds’ flow rate in a given radius, and then
applying the classical assignment method seen on Ghoseiri
and Ghannadpour (2007). However, this technique proved
to be very time-consuming in dense grids. Therefore, a grid-
less technique was employed, similar to the GRASP
metaheuristic seen on Feo and Resende (1989, 1995). The
chromosomes are built from a randomized version of the
greedy algorithm employed here. The difference in the
randomized version is that manifolds and platforms are
randomly chosen and the wells in the manifold allocation
and the wells and manifolds in the platform allocation are
randomly allocated.

3.4.2 Binary tournament

For all F generations, the binary tournament is performed,
comparing the fitness of two randomly chosen solutions in a
pool. There are two pools (or arenas). The best solution in
their respective pool will be selected for crossover.

3.5 Fusion crossover

The crossover method used here is the fusion crossover
proposed by Beasley and Chu (1996), both for allocation
and location chromosomes. For each gene in the chromo-
some, given that parent 1 fitness is a1 and parent 2 fitness is
a2, the child has a probability p1 ¼ a1

a1þa2
of receiving parent

1 gene and p2 ¼ a2

a1þa2
of receiving parent 2 gene. In Figure 4

is illustrated the binary tournament and the fusion
crossover procedures. The solutions randomly selected in
the population are highlighted in orange, while the
solutions with the highest fitness in the binary tournament
are colored in green. The blue color represents the parent 1
genes passed on to the offspring, and the red color, the
parent 2 genes.

3.5.1 Mutation

There is a probability of mutation in the offspring for
both allocation and location chromosomes, where a
random gene is shifted to a random value between the
gene’s feasible range. Figure 5 illustrates the mutation
procedure.

3.5.2 Chromosome replacement

The distances between receivers, wells and other receivers
are calculated for the offspring. The fitness of the offspring
is then evaluated, and if it has a greater fitness than the
parent with the lowest fitness, the offspring replaces this
parent.



Fig. 4. Scheme of the binary tournament and the fusion crossover.

Fig. 5. Mutation for the allocation chromosome.

Fig. 6. Diagram of the proposed approach.

Fig. 7. Histogram of the possible flow rates of a well at the
Wilmington-Rosa field.
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3.5.3 Algorithm tuning and hardware

The algorithm parameters were tuned manually in order to
obtain an optimum solution in a feasible computational
time. The population size was set to 1 000; the number of
generations was set to 100 000 and the mutation probabili-
ty, both for location and allocation subproblems, was set to
2%.

The greedy algorithm was initially implemented in
Microsoft Excel using Visual Basic for Applications,
however the computational time required for a single
universe was greater than 10 s, a value extremely high
compared to solving the same universe in a greedy
algorithm implemented in C language, as seen further.
Therefore, greedy and genetic algorithms were imple-
mented in C and executed on an Intel i5-5200U with 8 GiB
RAM, using the Debian GNU/Linux 8.6 operating system.
The instances used here are available at Sales et al. (2017b),
while the source code of the algorithms is available at Sales
et al. (2017a).



Fig. 8. Rosa (2006) well coordinates.

Table 2. Parameters of the Wilm-Rosa case study.

Number of platforms available 2 2
Number of manifolds available 2 2
Number of wells available 22 22
Number of universes 10 000 10,000
Production capacity of platform 1 40 000 bbl/d 7.36� 10�02m3/s
Production capacity of platform 2 150 000 bbl/d 2.76� 10�01m3/s
Production capacity of manifold 1 7 000 bbl/d 1.29� 10�02m3/s
Production capacity of manifold 2 7 000 bbl/d 1.29� 10�02m3/s
Pipeline diameter 6 in 0.1524m
Flowline diameter 18.5 in 0.47m
Absolute roughness of the pipeline 0.024 in 6.10� 10�04m
Absolute roughness of the flowline 0.024 in 6.10� 10�04m
Fluid density 17.7°API 948.39 kg/m3

Fluid viscosity 89.7cP 0.0897Pa.s
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The general approach presented here is illustrated in
Figure 6. Probability curves of fluid and reservoir
properties were fed to a Monte Carlo simulation, generat-
ing a flow rate probability distribution curve. Then, flow
rates for each well were drawn from this curve in order to
generate a universe. Several universes were generated,
creating an instance problem. The greedy and genetic
algorithms solved this instance, and its raw results were
converted to information through statistical analysis of the
mean, standard deviation and the use of heat maps. The
information now displayed in tables and heat maps were
subjected to statistical inferences and conclusions.

4 Results

4.1 Case study 1: Wilmington-Rosa

For the first case study presented, fluid and reservoir
properties of the Wilmington field were taken from
National Energy Technology Laboratory (1984) database,
which were used for generating probability distribution
curves for many variables (fluid viscosity, rock porosity
and permeability, reservoir area, net pay, oil formation
volume factor, number of producing wells, and initial oil
saturation) since fluid and reservoir properties of
Rodrigues et al. (2016) instances were unavailable to
the authors. The probability distribution curves of the
variables were selected through Akaike Information
Criterion, verifying its p-values through the Kolmogorov–
Smirnov test.

The Monte Carlo simulation was then performed,
obtaining a probability curve for the flow rate of the wells,
given a time t=5 years and considering a normal probability
distribution for the initial flow rate, with an average of
700 bbl/d (1.29� 10�3 m3/s) and a standard deviation of
150 bbl/d (2.76� 10�4 m3/s). In Figure 7 it is presented the
histogram of the flow rate q. In order to perform a relevant
statistical analysis, we sampled 10000 universes, based on
the illustrated histogram. The algorithm solves each one of
these universes, recording the obtained solutions for the field
layout design problem. The oil field has a maximum output
of 160 000bbl/d(2.94� 10-1m3/s), so the sum of the flow
rates of a universe must be below this value, otherwise the
universe is generated again.

The coordinates of each well are mentioned in Rosa
(2006) and illustrated in Figure 8. There are 22 wells
distributed in an oil field of 15� 15 squared kilometers with
an average water depth of 1.3 kilometers. The terminal
which receives the oil production is at coordinate (14, 0.3,
0.02), expressed in kilometers. This instance is composed of
satellite wells.

Other case study parameters, as the number of
available receivers and their production capacities, the
diameter and other tube proprieties, as well as fluid
proprieties, are presented in Table 2.

Due to the large quantity of solutions obtained (10 000),
they will not be fully reproduced here. Instead, a summary
of the results will be presented. Table 3 shows themean and
the standard deviation of the Objective Function (OF) and
of the Computational Time (CT) for the 10 000 universes,
for each algorithm.



Fig. 9. (a) Relative gaps of the objective function, (b) Absolute gaps of computational time. Wilm-Rosa gaps for each universe.

Table 3. Wilm-Rosa instance results for the genetic and
greedy algorithm.

Greedy
algorithm

Genetic
algorithm

OF average 1287.28 850.75
OF standard deviation 340.42 254.87
CT average per universe
(seconds)

0.000015 0.59

CT standard deviation per
universe (seconds)

0.000004 0.01

Total time required (seconds) 0.038 1475.51
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The genetic algorithm presented a mean and a standard
deviation much smaller than the greedy algorithm. The
pthreads library (Buttlar et al., 1996) allowed the
algorithms to process 4 universes simultaneously in the
single processor, thus solving the whole problem in a
feasible computational time (0.038 s required for the greedy
algorithm and 25min for the genetic algorithm). Using
integer linear programming models, Rosa (2006) solved a
similar instance with a single universe in 960min and
Rodrigues et al. (2016) in 5.3min. We must note that the
hardwares, operational systems solvers, etc. used in these
studies are different, and also that these are a single
benchmark. Therefore, it is not possible to directly
compare the computational times.

In Figures 9a and 9b it is plotted, respectively, the OF
relative gaps and the CT absolute gaps for each universe.
By absolute gap, wemean the value obtained by the genetic
algorithm minus the value obtained by the greedy
algorithm. By relative gap, we mean the absolute gap
divided by the value obtained by the greedy algorithm.

Examining Figure 9a, the genetic algorithm usually
obtains solutions 30–40% better than the ones obtained in
the greedy algorithm. Figure 9b shows that there are small
and uncommon CT gaps in this instance.
In order to evaluate if there are more representative
solutions for the allocation than others, we determined
their frequency, finding that 1238 solutions were found for
all universes. We also observed that 82.7% of the solutions
indicate that the allocation of the first 15 wells must be to
platform 2 or some manifold. Then, the decision that
must be made is whether the first 15 wells should be
allocated to platform 2 or a manifold, and whether the
remaining 7 wells should be allocated to platform 1 or a
manifold.

Besides, we also evaluated the solutions for the location
subproblem. As already mentioned, the algorithm records
the position of the receivers in each universe. After solving
all universes, it is possible to plot heat maps and evaluate
the regions that receive platforms and manifolds with
higher frequency. In Figures 10a and 10b the heat maps of
platforms 1 and 2 are respectively presented. The color
intensity varies according to the scale of each heat map.
The color scheme ranges from blue (lesser density) through
white and purple (greater density). The black circles are
the wells locations. Both platforms were employed in all
universes.

We observe that the platforms have narrow ranges of
positions, concentrating especially into the coordinates
(12, 4) and (4, 5). Similar to the allocation subproblem, there
is a small set of solutions that appear on most universes.

Rodrigues et al. (2016) found a solution to one platform
the coordinate (4,5) and Rosa (2006) at coordinate (4,4).
These coordinates obtained through exact methods also
were indicated by the genetic algorithm, pointing to the
robustness of the proposed approach.

The heat maps of manifolds 1 and 2 are respectively
shown in Figures 11a and 11b. Rodrigues et al. (2016)
found a solution to one manifold at the coordinate (4,5)
and Rosa (2006) at coordinate (4,4), which are close to a
hot region. In this case study, 71.62% of the universes
employed at least one manifold, and 24.01% used both
manifolds. The probabilistic method proposed here shows
there are two regions where the manifold could be
installed.



Fig. 10. Heat map of platforms for Wilm-Rosa instance. a) Platform 1, b) Platform 2.

Fig. 11. Heat map of manifolds for Wilm-Rosa instance. a) Manifold 1, b) Manifold 2.
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4.2 Case study 2: Jubarte

The second case study is based on the Brazilian Jubarte oil
field, located 80 kilometers from the coast of Espírito Santo,
below a water column of 1.3 kilometers. The instance used
here is based on the data presented in Rodrigues et al.
(2016). In order to study a situation that only the range of
the flow rate of the wells is known, and to allow a
comparison with Rodrigues et al. (2016) study, a uniform
distribution between 3 000 and 20 000 bbl/d
(5.52� 10�3m3/s and 3.68� 10�2m3/s) was used to assign
flow rates to each well, for each universe. As in the first case
study, there is a maximum field output of 250 000 bbl/d
(4.60� 10�1m3/s) of oil.
The coordinates of each well considered here are present
in Rodrigues et al. (2016) and illustrated in Figure 12.
There are 27 wells distributed in an oil field of 11� 11
squared kilometers and an average water depth of
1.295 kilometers. The terminal which receives the oil
production is at coordinate (77, 0.3, 0.02), expressed in
kilometers. This instance is also composed of satellite wells.

Other case study parameters, as the number of
available receivers and their production capacities, the
diameter and other tube proprieties, as well as fluid
proprieties, are presented in Table 4.

Table 5 shows the mean and the standard deviation of
the objective function and the computational time for the
10 000 universes, for each algorithm. The integer linear



Table 5. Results comparison for the genetic and greedy algorithms for Jubarte instance.

Greedy algorithm Genetic algorithm

OF average 4569.29 3341.02
OF standard deviation 322.77 268.86
CT average per universe (seconds) 0.000024 1.12
CT standard deviation per universe (seconds) 0.000005 0.06
Total time required (seconds) 0.06 2810.06

Table 4. Parameters of the Jubarte case study.

Number of platforms available 2 2
Number of manifolds available 2 2
Number of wells available 27 27
Number of universes 10 000 10,000
Production capacity of platform 1 60 000 bbl/d 1.10� 10�01m3/s
Production capacity of platform 2 250 000 bbl/d 4.60� 10�01m3/s
Production capacity of manifold 1 6 000 bbl/d 1.10� 10�02m3/s
Production capacity of manifold 2 12 000 bbl/d 2.21� 10�02m3/s
Pipeline diameter 6 in 0.1524m
Flowline diameter 18.5 in 0.47m
Absolute roughness of the pipeline 0.024 in 6.10� 10�04m
Absolute roughness of the flowline 0.024 in 6.10� 10�04m
Fluid density 17.7°API 952.86 kg/m3

Fluid viscosity 68.5 cP 0.0685Pa.s

Fig. 12. Jubarte well coordinates.
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programming model presented on Rodrigues et al. (2016)
took 826.01 s to solve a single universe of this case study.
Again, no direct comparison can be done, since hardware,
operational system, methods, etc. are different, and also
because this is a single benchmark.

In Figures 13a and 13b it is plotted, respectively, the
OF relative gaps and the CT absolute gaps for each
universe. Examining Figure 13a, the genetic algorithm
usually obtains solutions 25% to 30% better than the ones
obtained by the greedy algorithm. Compared to the Wilm-
Rosa instance, the relative gap between the OF averages
has decreased, while the total time required has increased
for both algorithms, indicating a loss of performance by the
genetic algorithm. Figure 13b shows that there are also
small and uncommon CT gaps in this instance.

In order to evaluate if there are more representative
solutions for the allocation than others, we determined
their frequency. The frequency of each solution of the
genetic algorithm is more even between the universes
comparing to the first case study, with the 20most frequent
solutions being found only for 5.89% of the universes.

As for theWilmington-Rosa instance, we also evaluated
the solutions for the location subproblem. In Figures 14a
and 14b, it is presented the heat maps of platforms 1 and 2,
respectively. Both platforms were employed in all uni-
verses.

The density distribution seems to concentrate into the
coordinates (3, 8) for platform 1 and (6, 3) for platform 2.
Similar to the location subproblem of the first case study,
there is a small set of coordinates that appear on most
solutions. Rodrigues et al. (2016) found a solution to one
platform at coordinate (4,5), which is close to the hottest
point of platform 2.

The heat maps of manifolds 1 and 2 are respectively
shown in Figures 15a and 15b. Rodrigues et al. (2016) found
a solution for one manifold at coordinate (4,5), which is close
to the hottest density for both manifolds. Themanifolds had
a broader probabilistic region for positioning, being



Fig. 13. Jubarte gaps for each universe. a) Objective function, b) Computational time.

Fig. 14. Heat map of platforms for Jubarte instance. a) Platform 1, b) Platform 2.
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employed at least one in 73.10% of the universes and both in
27.50%. As Rodrigues et al. (2016) state that their results
were consistent with reality, we can imply that ours also are.

4.3 Case study 3: Stafjord

In order to evaluate the performance of the algorithm with
a different well layout, the third case study is based on the
Norwegian-British Stafjord oil field, located 180 kilo-
meters from Norway’s coast, below a water column of
157meters. As fluid and reservoir properties were not
available to the authors, the instance used the Wilming-
ton probability curves of the first case study except for the
parameters of the normal probability distribution for the
initial flow rate, which was considered an average of
28 000 bbl/d (5.15� 10-2m3/s) and a standard deviation
of 2 000 bbl/d (3.68� 10-3m3/s). The main objective of
this case study is to evaluate how the algorithms perform
over an oil field composed of clustered wells.

The coordinates of each well considered here are present
in Norwegian Petroleum Directorate (2016) database and
illustrated in Figure 16. There are 69 wells distributed in an
oil field of 24� 2 squared kilometers and an average water
depth of 157meters. The terminal which receives the oil
production is at coordinate (24.92, 2.41, 0.013), expressed
in kilometers. There are three well clusters in this instance.

Other case study parameters, as the number of
available receivers and their production capacities, the
diameter and other tube proprieties, as well as fluid
proprieties, are presented in Table 6.



Fig. 15. Heat map of manifolds for Jubarte instance. a) Manifold 1, b) Manifold 2.

Table 6. Parameters of the Wilm-Stafjord case study.

Number of manifolds available 3 3
Number of wells available 69 69
Number of universes 10 000 10,000
Production capacity of platform 1 833 400 bbl/d 1.53m3/s
Production capacity of platform 2 833 400 bbl/d 1.53m3/s
Production capacity of platform 3 833 400 bbl/d 1.53 m3/s
Production capacity of manifold 1 200 000 bbl/d 3.68� 10�01m3/s
Production capacity of manifold 2 150 000 bbl/d 2.76� 10�01m3/s
Production capacity of platform 3 150 000 bbl/d 2.76� 10�01m3/s
Pipeline diameter 10 in 0.2540 m
Flowline diameter 22 in 0.559 m
Absolute roughness of the pipeline 0.024 in 6.10� 10�04m
Absolute roughness of the flowline 0.024 in 6.10� 10�04m
Fluid density 39°API 829.91 kg/m3

Fluid viscosity 40 cP 0.0400 Pa.s

Fig. 16. Wilm-Stafjord well coordinates.
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Table 7 shows the mean and the standard deviation of
the objective function and of the computational time for
the 10 000 universes, for each algorithm. The genetic
algorithm took 3 h and 20min to solve all 10 000 universes.
Although slower, it obtains better solutions than the
simpler greedy algorithm.

In Figures 17a and 17b it is plotted, respectively, the
OF relative gaps and the CT absolute gaps for each
universe. The results show that the genetic algorithm
obtains solutions 44–49% better than the greedy algo-
rithm, which indicates that the greedy algorithm has
difficulties in obtaining good solutions at a clustered wells
scenario. The genetic algorithm required a reasonably
greater computational time, compared to the previous two



Fig. 17. Wilm-Stafjord gaps for each universe. a) Relative gaps of the objective function, b) Absolute gaps of computational time.

Fig. 18. Heat map of platforms for Wilm-Stafjord instance. a) Platform 1, b) Platform 2, c) Platform 3.

Table 7. Results comparison for the genetic and greedy
algorithms for Wilm-Stafjord instance.

Greedy
algorithm

Genetic
algorithm

OF average 579.16 312.24
OF standard deviation 51.91 25.38
CT average per universe
(seconds)

0.000068 4.80

CT standard deviation per
universe (seconds)

0.000005 0.12

Total time required (seconds) 0.17 11992.16
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case studies. This is clearly due to the increased number of
receivers and wells. However, for strategical level prob-
lems, such as the field layout problem, this computational
time is too small in the long term and therefore is not
relevant.
In Figure 18 the heatmaps for the three platforms of the
instance are presented, which all were employed in all
universes. Since less than 1% of the instances employed
manifolds, we considered that they were not used.

We observe that the platforms have narrow ranges of
positions, concentrating especially into the coordinate
(23.56, 0.75). This is the optimal place found for all three
platforms since it lowers the sum of the pressure loss in the
tubes.Theuse of a bigger platform insteadof threeplatforms
should be considered in order to lower investment costs. The
real solution employed in the field was placing a platform
above eachwell cluster.We believe that it wasmostly due to
huge production capacity of the platforms considered, along
with economic andoperational issueswhichwerenot studied
in this paper, such as anticipated production, construction
availability, environmental regulations, logistics, subsea
geology and technology, etc.

As in the first two case studies, representative solutions
for the allocation were evaluated. In this case study, each
universe had a unique solution, therefore the allocation
frequency will not be reported.
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5 Conclusion

The genetic algorithm presented here considered the
probabilistic nature of the field layout design problem
through a Monte Carlo simulation, and in contrast to the
existing literature, it obtains relevant results and optimum
solutions to many possible production scenarios. The
provided set of instances will allow comparison among
future work.

Although the greedy algorithm is much quicker, the
time required by the genetic algorithm is feasible for its
application in the development of oil fields, since few CPU
hours are not relevant for strategical planning problems
such as the field layout design problem. In contrast to the
existing literature, a grid-less approach has proven out to
be more suitable in performance terms.

Although exact methods, such as mixed-integer
programming models, guarantee to find the optimum
solution of a given problem,metaheuristicmethods, such as
the proposed genetic algorithm, return high-quality
solutions, however without an optimality proof. Neverthe-
less, the time required by an exact method to find the
optimum solution to a difficult problem is much greater
than the metaheuristic one (Martí and Reinelt, 2011), as
exact methods usually employ exhaustive search. Dogru
(1987), Grimmett and Startzman (1988), and Hansen
et al. (1992) report many numerical difficulties in their
exact methods after increasing instance size, and we also
noted such difficulties in Rosa (2006) and Rodrigues et al.
(2016). If we apply these exact methods to real cases with
several dozens of platforms and hundreds of wells using
Monte Carlo simulation, it would take months or even
years to obtain results for a single run. Even though larger
instances would take days to solve, our method would still
be computationally feasible. Besides, the computational
effort would be small compared to the benefits of such
robust analysis of uncertainty, as it enhances the decision
making.

We found that a small set of location patterns is
responsible for the majority of optimum solutions. Similar
conclusions are seen in cutting stock problems, where a
small set of cutting patterns are responsible for the
majority of the obtained solutions (Araujo et al., 2014).
This phenomenon is commonly stated as a Pareto’s Law
case (Defeo and Juran, 2010).

By analyzing the results, it is possible to state where the
wells should be allocated and the demand of platforms and
manifolds, as noted in the three case studies. Some results
are similar to what was already found in the literature, as
the trend to install manifolds below platforms (Rosa, 2006;
Rodrigues et al., 2016). However, the stochastic approach
goes beyond, quantifying the uncertainty of the optimum
location of platforms and manifolds.

Examining Figures 9b, 13b and 17b, we note that some
computational time gaps are remarkable. In these
universes, the genetic algorithm struggles to generate
feasible solutions because of their particular character-
istics, for example in allocation or crossover procedures.
Regardless of these high variations, these gaps have a low
frequency, and therefore its influence in the total
computational time is negligible.

It is important to note that the results presented here
should be taken as a support for the decision-making, since
there are other factors not studied here that influence the
final development project and therefore the field layout
design problem, such as economic analyses, production
facilities, drilling, and environmental criteria (Morooka
and Galeano, 1999).

Compared to traditional knowledge, the genetic algo-
rithm applied here avoids the negative effects of human
factors and provides a more scientific, quantitative and
probabilistic means for the field layout design problem.
Compared to the traditional deterministic methods, the
Monte Carlo simulation employed here considers many
feasible production scenarios, thus allowing maximum
information about the possible outcomes, providing more
knowledge about the decision problem and enhancing the
decision making. Combined, the uncertainty estimation in
Monte Carlo simulation with the high performance optimi-
zation of genetic algorithms provided a robust method for
solving the field design problem considering uncertainties.
Thecouplingofbothmethodscombinedtheirperks,andthus
they are equally important to attain optimized solutions.

The following ideas are suggested as future enhance-
ments for this work: (i) studying the possible trend of the
allocation solutions increasing uniqueness as the instance
size grows, (ii) add the subproblem of optimizing the
diameter of the pipes, (iii) insertion of a broader model for
the coupling between the wells and the reservoir, (iv)
insertion of a multiphase flow model to consider water and
gas phases in pressure loss calculations, (v) estimate well
flow rates according to the well type (horizontal, vertical or
directional) and completion, and (vi) a multi-objective
approach to the problem.

Nomenclature
p
 pressure inside the tube

r
 density of the fluid in the tube

u
 average fluid velocity in the tube

Ws
 shaft work realized in the system

g
 gravitational constant

ff
 Fanning friction factor

L
 length of the tube

D
 internal diameter of the tube

m
 fluid viscosity in the tube

k
 rock permeability

h
 reservoir net pay

Re
 Reynolds number

e
 relative roughness

a
 decline rate

q0
 initial flow rate

rw
 well radius

re
 well drainage radius

Ni
 initial oil in place in the well drainage radius

ct
 total compressibility of the reservoir
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s
 well skin factor

w
 number of wells in the oilfield

m
 number of available manifolds

r
 number of receivers
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