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graduação em Matemática da Universidade
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Prof. Dr. Gregório Pacelli Feitosa Bessa

Universidade Federal do Ceará (UFC)
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”The first gulp from the glass of natural sci-

ences will turn you into an atheist, but at

the bottom of the glass God is waiting for

you.”( HEISENBERG, 1974, p. 213)



RESUMO

Este trabalho aborda a evolução pela curvatura média de gráficos de Killing em variedades

de Cartan-Hadamard com condições de Dirichlet assintóticas. Para mostrar a existência

do fluxo, obtém-se estimativas a priori, as quais asseguram o uso da teoria de equações

diferenciais parciais parabólicas. Estuda-se a regularidade da solução obtida, construindo-

se barreiras nos pontos da fronteira assintótica. Tal construção é posśıvel ao considerar-se

um conceito de convexidade no infinito. Esta tese trata ainda, do problema mais geral

da evolução de gráficos por uma função de suas curvaturas principais. Neste caso, sob

algumas condições, obtém-se uma estimativa a priori (interior) de gradiente.

Palavras-chave: variedade de Cartan-Hadamard; fluxo pela curvatura média; fronteira

assintótica; gráficos.



ABSTRACT

This work approach the mean curvature evolution of Killing graphs in Cartan-Hadamard

manifolds with asymptotic Dirichlet conditions. In order to proof the existence of the

flow, a priori estimates are obtained, which ensure the use of the theory of parabolic

partial differential equations. The regularity of the obtained solution is studied, building

barriers at the points of the asymptotic frontier. Such a construction is possible when

considering a concept of convexity at infinity. This thesis also deals with the more general

problem of the evolution of graphs by a function of their principal curvatures. In this

case, under some conditions, an a priori (interior) gradient estimate is obtained.

Keywords: Cartan-Hadamard manifold; mean curvature flow; asymptotic boundary;

graphs.
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1 INTRODUCTION

Many geometric flows have attracted the attention of mathematicians in recent

years. Besides the Ricci flow and the inverse of the mean curvature flow, flows by curvature

functions are important examples of the geometric flows.

We say that a positive differentiable concave function f is a curvature function

if f is symmetric in λi, where λ = (λ1, · · · , λn) belongs to the domain of the function f .

Such a domain has special characteristics, which we present more precisely later. Flow by

a curvature function f is the term that we use to describe the evolution of a hypersurface

whose normal velocity is given by f.

Given P n and Mn+1 Riemannian manifolds and given Ψ0 : P →M an immer-

sion and

Ψ : P × [0, T )→M

a one parameter family of immersions, we say that Ψ defines a flow by function f (f -flow

for short) of Ψ0 if it is solution of ∂Ψ
∂t

(x, t) = f(κ(Ψ(x, t)))N

Ψ(x, 0) = Ψ0(x),
(1)

where N(·, t) is the unit normal vector field of the immersion Ψt := Ψ(·, t) and κ(Ψ(·, t))
is the vector which coordinates are the principal curvatures of the Ψt.

The main examples of curvature functions are the r-th root of the higher order

mean curvature functions

Sr(κ) =
∑

i1<i2<···<ir

κi1κi2 . . . κir .

Among these examples the one by the mean curvature (H1 = S1(κ)) has stood out for

being intensively developed in several directions. For instance, Huisken proved in [17] that

every n-dimensional (n ≥ 2) compact convex hypersurface evolving by mean curvature

flow in Rn+1 must shrink to a round point in finite time. He also proved in [19] that if

Nn+1 is a Riemannian manifold and Σ is a n-dimensional ”convex enough”submanifold

then Σ must shrink to a point. Here, the expression ”convex enough”is used to indicate

that the initial hypersurface must be convex enough to overcome the obstructions imposed

by the geometry of N. Other references for the convergence and regularity of the MCF

are [12], [15], [29], among others.

The study of the singularities of the flow induces a natural interest for a special

type of solutions known as mean curvature flow solitons. This interest is justified by the

fact that in the Euclidean space these solutions provided relevant information about the

singularities. There is a vast literature about this subject. The reference [2] stands out
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for the detailed study of solitons in a large class of Riemannian ambient spaces.

Another interesting topic explored has been the evolution of integer graphics.

In [13], the authors considered Σ0 a entire graph above Rn and they proved that any

polynomial growth rate for the height and the gradient of the initial hypersurface Σ0 is

preserved during the evolution by MCF. They also proved that in the case of Lipschitz

initial data with linear growth, the problem (1) has a solution for all t > 0. Unterberger in

[30], considered as initial surfaces Σ0 which, in the upper half space model of hyperbolic

space, Hn+1, can be written as entire Euclidean radial graphs above Sn+ = Sn+(1), the

Euclidean upper hemisphere of radius one centered at origin. Then, he proved that

Theorem 1.1 ([30], Theorem 3.2) If Σ0 = Ψ0(Bn) is a locally Lipschitz continuous

entire radial graph over Sn+ ⊂ Hn+1, then the problem (1) has a smooth solution Σt =

Ψt(B
n) for all t > 0. Moreover, each Σt is an entire graph over Sn+.

Then, assuming a bound for the gradient and the geodesic height of the initial surface,

Unterberger used hyperspheres as barriers and he also proved the following convergence

result:

Theorem 1.2 ( [30],Theorem 3.3) If Σ0 has bounded gradient and hyperbolic height

over Sn+, then, under MCF, Σt converges in C∞ to Sn+.
We remember that Hn+1 is a Cartan-Hadamard manifold, that is, Hn+1 is a

complete, connected, simply connected Riemannian manifold and its sectional curvature

is non-positive. It is well-known that is possible to define a boundary at infinity for a

Cartan-Hadamard manifold P by addition of a sphere at infinity, which we denote by ∂∞P.

Then, we define a topology in P̄ = P ∪ ∂∞P such that P̄ endowed with this topology is

compact. We call ∂∞A of asymptotic boundary of A, for every A ⊂ P. In this context, a

natural question is what happens to the asymptotic boundary of the initial surface during

evolution by mean curvature. Even if we fix the asymptotic boundary during evolution,

it is interesting to know what is the regularity in P̄ of the solution obtained.

In [23], the authors introduced the modified mean curvature flow (MMCF, for

short) in the upper half space model of hyperbolic space, Hn+1, and as Unterberger, they

considered the entire Euclidean radial graphs above Sn+ as initial hypersurface Σ0. In this

case, the problem studied is
∂Ψ
∂t

(x, t) = (H − σ)NH, (x, t) ∈ Sn+ × [0,+∞)

Ψ(x, 0) = Σ0, x ∈ Sn+
Ψ(x, t) = Ω(x), x ∈ ∂∞Sn+, t ∈ [0,∞)

(2)

where σ ∈ (−1, 1), NH is the normal of the Ψt, H is the scalar mean curvature of the

Ψt with respect to the hyperbolic metric, and Ω = ∂∞Σ0. Under conditions imposed

on the initial hypersurfaces Σ0 and its asymptotic boundary, they showed the existence
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and unicity of solution for the above problem. Moreover, they proved that the solution

is continuous in Sn+ ∪ ∂∞Sn+. In [24], the authors considered the same problem, but they

removed the geometric conditions imposed in the initial surface in [23]. In [24], they proved

that the MMCF starting from an entire locally Lipschitz radial graph exists and remains

radial graph for every t > 0. However, in this case they do not have any information about

regularity of the solution in (x, t) ∈ ∂∞Sn+ × [0,+∞).

In the first part of this thesis, we consider (P n, g) a Cartan-Hadamard manifold

andM = P×%R a Riemannian manifold endowed with the warped metric ḡ = %2(x)ds2+g.

Given a function ϕ ∈ C∞(P ) ∩ C0(P ), under conditions imposed on the geometries of P

and M, we study the evolution by mean curvature of the Killing graph of the ϕ which

we denote by Σ0. In [6], the authors establish some conditions under which the warped

product M = P ×% R is also a Cartan-Hadamard manifold. In this context, it makes

sense to define the Killing graph Γ of ϕ and, in some cases, it is possible to verify that Γ

is the asymptotic boundary ∂∞Σt of each graph Σt in the evolving family. Then, our first

objective is to solve the following problem
∂Ψ
∂t

(x, t) = nH(Ψ(x, t)), in P × (0,∞)

Ψ(x, 0) = Ψ0(x) = Φ(x, ϕ(x)), in P × {0}

Ψ(x, t) = Φ(x, ϕ(x)), on ∂∞P × [0,∞),

(3)

where Φ is the flow map of the Killing vector field X = ∂s. In fact, we will solve the

problem


∂u
∂t

=
(
gij − uiuj

W 2

)
ui;j +

(
1 + 1

%2W 2

)
(log %)iui, in P × [0,∞)

u(x, 0) = ϕ(x), in P × {0}

u(x, t) = ϕ(x) if x ∈ ∂∞P, t ∈ [0,+∞)

(4)

and if u solves (4), then Ψ(x, t) = Φ(x, u(x, t)) solves the problem (3).

In order to investigate the regularity of a solution u of the problem (4) in

P × [0,+∞), we use a concept of convexity at infinity. In [7], the author used the concept

of convex neighborhood to study the regularity of solutions of the Laplacian operator at

infinity. Unfortunately, the technique used there heavily depends on the linearity of the

operator. In view of this, in [28], the authors introduced the notion of strictly convex

manifolds. Basically, if P satisfies the strict convexity condition (SC condition), then for

any point x ∈ ∂∞P we can extract a neighborhood U of the x in P such that P \ U is

convex. Assuming that P satisfies the SC condition, we use this property for building

barriers at infinity and consequently to obtain the regularity of the solution in P×[0,+∞).

Let us summarize the conditions under which we will prove our main result
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and its consequences. We consider P n a Cartan-Hadamard manifold and M = P ×% R a

warped product, with % ∈ C∞(P ) a convex function satisfying (6) and (7). Fixed a point

o ∈ P, suppose that the radial sectional curvatures along geodesics rays issuing from o

satisfies (11) for ξ ∈ C∞([0,∞)) satisfies (10). In addition, we suppose that there exists

positive constants L,L1 such that

Ric ≥ −L1g and Ricg +∇2 log % ≥ −Lg.

In this context, our main result is the following:

Theorem 1.3 Let P and M be Riemannian manifolds satisfying the conditions cited in

the paragraph above. Suppose that P satisfies the SC condition at infinity and its sectional

curvatures satisfies KP ≤ −κ2 < 0. If Σ0 is the Killing graph of ϕ ∈ C∞(P )∩C(P̄ ), then

there exists a unique solution Ψ ∈ C∞(P × (0,∞)) ∩ C(P̄ × [0,∞)) for the problem
∂Ψ
∂t

(x, t) = nH(Ψ(x, t)), in P × (0,∞)

Ψ(x, 0) = Ψ0(x) = Φ(x, ϕ(x)), in P × {0}

Ψ(x, t) = Φ(x, ϕ(x)), on ∂∞P × [0,∞).

(5)

In [28], Ripoll and Telichevesky showed that if P is rotationally symmetric and

satisfieis KP ≤ −κ2 < 0, then P satisfies the SC condition. Moreover, they also proved

that if there exists positive constants κ and ε such that

e2κr(x)

r(x)2+2ε
≤ KP (x) ≤ −κ2 < 0

for every x ∈ P such that r(x) = d(x, o) ≥ R∗, for R∗ large enough, P also satisfies the

SC condition. This gives us the following consequences of the Theorem 1.3:

Corollary 1.4 Let us suppose that P is rotationally symmetric and satisfies KP ≤ −κ2 <

0. If Σ0 is the Killing graph of ϕ ∈ C∞(P ) ∩ C(P̄ ), then there exists a unique solution

Ψ ∈ C∞(P × (0,∞)) ∩ C(P̄ × [0,∞)) for the problem (5)

Corollary 1.5 Suppose that

e2κr(x)

r(x)2+2ε
≤ KP (x) ≤ −κ2 < 0

for every x ∈ P such that r(x) = d(x, o) ≥ R∗, for R∗ large enough, where κ, ε > 0 are

constant. If Σ0 is the Killing graph of ϕ ∈ C∞(P ) ∩ C(P̄ ), then there exists a unique

solution Ψ ∈ C∞(P × (0,∞)) ∩ C(P̄ × [0,∞)) for the problem (5).

In order to prove the Theorem (1.3), we use a process of exhaustion. To do

this, we need to solve the problem in compact parabolic cylinders.



16

Next, we will describe how the thesis is organized. We divide the text in

chapters. The Chapters 2, 3, 4, 5 and 6 are devoted to the prove the Theorem (1.3). In

Chapter 2, we present the initial concepts of the problem, the geometric structure and we

deduce evolution equation for some important functions. In Chapter 3, we obtain a priori

estimates for height, gradient and curvature. For each one, we consider the problem in

BR(o) × [0, T ) and deduce the estimates in the parabolic cylinder BR′(o) × [0, TR) with

0 < R′ < R properly chosen. In Chapter 4, we solve the problem (4) in BR(o)× [0, T ). In

Chapter 5, we show that is possible to build the barriers at infinity. In Chapter 6, we use

an exhaustion argument to construct the function whose graph solves the problem (5).

Then, we use the barriers for proving the regularity in P of the constructed solution. In

Chapter 7, we considerM = P×R a Riemannian product, with P not necessarily a Cartan-

Hadamard manifold, we return to the problem of the flow by general curvature function

and we obtain a priori interior gradient estimate using the technique due Korevaar.
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2 PRELIMINARIES

In this chapter, we fix notations and concepts used in the whole text. It is

also obtained evolution equation for some useful functions.

2.1 The geometric setting

We recall that a Riemannian manifoldN is called a Cartan-Hadamard manifold

if N is simply conneted, connected, complete and has K(q, σ) ≤ 0 for all q ∈ N and σ ⊂
TqN. Throughout the text we denote by P a n-dimensional Cartan-Hadamard manifold

with sectional curvature KP ≤ −κ2 < 0 and Gaussian global coordinates (r, ϑ) ∈ R+ ×
Sn−1 defined with respect to a fixed point o ∈ P. The existence of this global coordinates

system is ensured by Cartan-Hadamard theorem. We consider a function % ∈ C∞(P )

satisfying

%(x) = %(r(x)) = %(dist(o, x)), for x ∈ P. (6)

%(r) > 0, %′(r) > 0 for r > 0, (7)

%(0) = 1, %(2k+1)(0) = 0, for k ∈ N, (8)

lim inf
r→∞

%′(r)

%(r)
> 0. (9)

We also consider ξ ∈ C∞([0,∞)) a function satisfying the following conditions

ξ(r) > 0, for r > 0,

ξ′(0) = 1,

ξ(2k)(0) = 0, for k ∈ N·

(10)

We suppose that the radial sectional curvatures along geodesics rays issuing from o satisfies

K(∂r ∧ v) ≥ −ξ
′′(r)

ξ(r)
(11)

for all r > 0, v ∈ TM, v ⊥ ∂r. It follows from Hessian comparison theorem [1] that

∇P∇P r ≤ ξ′(r)

ξ(r)
(g − dr ⊗ dr) . (12)

We also suppose that ∣∣∣∣∂r%%
∣∣∣∣ ≤ ξ′(r)

ξ(r)
· (13)
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Finally, our ambient manifold is the product

M = P ×% R

endowed with the warped metric ḡ = %2(x)ds2 + g where s is the natural coordinate in R
and g is the induced Riemannian metric in each totally geodesic leaf P ×{s}, s ∈ R. The

coordinate vector field X = ∂s is a Killing vector field whose norm |X| = % is preserved

along the flow lines. We also assume that there exists constants L,L1 > 0 such that

Ric ≥ −L1g and Ricg +∇2 log % ≥ −Lg.

2.2 The mean curvature flow

In order to define the mean curvature flow of the Killing graphs we recall that

the Killing graph of a function u ∈ C2(P ) is by definition the hypersurface in M given by

Σ[u] = {Φ(x, u(x)) : x ∈ P}, (14)

where Φ : P × R −→M is flow map of vector field X.

As we said before, a one parameter family of functions u : P × [0, T ) → R,

T > 0, defines a mean curvature flow of Killing graphs

Ψ(x, t) = Φ(x, u(x, t)) (15)

if and only if

∂tΨ = nH, (16)

where H = HN is the mean curvature vector of the Killing graph Σt := Σ[u(·, t)]. Here,

H is the scalar mean curvature of Σt calculated with respect to the orientation given by

the unit normal vector field

N = N |Ψ(·, t) =
1

W
(%−2X −∇Pu), (17)

where W = (%−2 + |∇Pu|2)
1
2 and ∇P denotes the Riemannian gradient in (P, g). If (xi) is

a coordinate system in P, then the induced metric in Σt = Σ[u(·, t)] and its inverse have

components

σij = gij + %2(x)uiuj and σij = gij − uiuj

W 2
,

respectively. Moreover, the volume element in Σt = Σ[u(·, t)] is given by

dΣt = %
√
%−2 + |∇Pu|2 dP. (18)
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Given a domain Ω ⊂ P we define the constrained area functional

A [u] =

∫
Ω

%
√
%−2 + |∇Pu|2 dP.

For any v ∈ C∞0 (Ω) we have

d

dt

∣∣∣
t=0
A [u+ tv] = −

∫
Ω

(
divP

(∇Pu

W

)
+
〈
∇P log %,

∇Pu

W

〉)
v% dP,

where the differential operators ∇P and divP are taken with respect to the metric g in P .

Then the Euler-Lagrange equation of the functional A is

nH = divP

(
∇Pu

W

)
+

〈
∇P log %,

∇Pu

W

〉
, (19)

where H is the scalar mean curvature of the Killing graph of u. Once differentiating (15)

with respect to t we have

∂tΨ = ∂tuX,

we conclude that (16) is equivalent to

∂tuX =

(
divP

(
∇Pu

W

)
+

〈
∇P log %,

∇Pu

W

〉)
N.

If we take the normal projection on both sides we get

∂tu〈X,N〉 = divP

(
∇Pu

W

)
+

〈
∇P log %,

∇Pu

W

〉
.

Since 〈X,N〉 = 1/W we conclude that (15) defines a mean curvature flow if and only if

u(·, t) satisfies the parabolic equation

∂tu = Q[u], (20)

where

Q[u] = W

(
divP

(
∇Pu

W

)
+

〈
∇P log %,

∇Pu

W

〉)
. (21)

In general, this non-parametric formulation is equivalent to the mean curvature flow (16)

up to tangential diffeomorphisms of the evolving graphs Σt. This equivalence follows from

the fact that we are assuming a fixed gauge, namely the choice of coordinates fixed in

(15).
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2.3 Some auxiliary facts

In this section we deduce evolution equations for some functions which will be

useful in the sequel. In the first result, by abusing of notation, we denote by s : P×R→ R
the projection on the second factor. That is, s denotes the function s(x, s) = s.

Proposition 2.1 If (11) holds, then restrictions of the functions r and s to the graphs

Σt, t ∈ [0, T ), satisfy

(∂t −∆)r ≥ −ξ
′(r)

ξ(r)

(
n− |∇r|2

)
− %2|∇s|2

(
〈∇̄ log %,∇r〉 − ξ′(r)

ξ(r)

)
(22)

and

(∂t −∆)s = −2〈∇̄ log %,N〉〈∇̄s,N〉. (23)

In both expressions, ∇ and ∆ are the intrinsic Riemannian connection and Laplacian in

Σt, respectively, whereas ∇̄ denotes the Riemannian connection in M . Besides, given the

function

ζ(Ψ(x, t)) =

∫ r(Ψ(t,x))

0

ξ(ς) dς (24)

we get

(∂t −∆)ζ ≥ −nξ′(r)− %2|∇s|2ξ(r)
(
〈∇̄ log %,∇r〉 − ξ′(r)

ξ(r)

)
. (25)

Proof. Since ∇̄s = %−2X, we have∇s = %−2X>, where> denotes the tangential projection

onto TΣt. Given a local orthonormal tangent frame {ei}ni=1 in Σt, we get

∆s = 〈∇%−2, X>〉+ %−2

n∑
i=1

〈∇̄eiX, ei〉+ nH〈%−2X,N〉 = 〈∇̄%−2, X>〉+ nH〈∇̄s,N〉

= −〈∇̄%−2, N〉〈X,N〉+ nH〈∇̄s,N〉 = 2〈∇̄ log %,N〉〈∇̄s,N〉+ nH〈∇̄s,N〉.

We also have

∂ts = 〈∇̄s, ∂tΨ〉 = nH〈∇̄s,N〉.

Thus

(∂t −∆)s = −2〈∇̄ log %,N〉〈∇̄s,N〉.

Now one has

〈∇̄X∇̄r,X〉 = 〈∇̄∇̄rX,X〉 =
1

2
∂r|X|2 =

1

2
∂r%

2 = %〈∇̄%, ∇̄r〉.
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Fixed a local orthonormal tangent frame {ei}ni=1 in Σt, we have

∆r =
∑
i

〈∇ei∇r, ei〉 =
∑
i

〈∇̄ei(∇̄r − 〈∇̄r,N〉N), ei〉

=
∑
i

〈∇P
π∗ei

π∗∇̄r, π∗ei〉+
1

%4

∑
i

〈ei, X〉2〈∇̄X∇̄r,X〉 −
∑
i

〈∇̄r,N〉〈∇̄eiN, ei〉

=
∑
i

〈∇P
π∗ei

π∗∇̄r, π∗ei〉+
1

%4
|X>|2〈%∇̄%,∇r〉 −

∑
i

〈∇̄r,N〉〈∇̄eiN, ei〉

=
∑
i

〈∇P
π∗ei
∇P r, π∗ei〉+ |∇s|2〈%∇̄%,∇r〉+ nH〈∇̄r,N〉

where π : M = P ×R→ P is the projection on the first factor, that is, π(x, s) = x for all

(x, s) ∈ P × R. It follows from the Hessian comparison theorem (12) that

∆r ≤ ξ′(r)

ξ(r)

∑
i

(
|π∗ei|2 − 〈ei,∇P r〉2

)
+ |∇s|2〈%∇̄%,∇r〉+ nH〈∇̄r,N〉

=
ξ′(r)

ξ(r)

(
n− 1

%2
|X>|2 − |∇r|2

)
+ %2|∇s|2〈∇̄ log %,∇r〉+ nH〈∇̄r,N〉

=
ξ′(r)

ξ(r)

(
n− %2|∇s|2 − |∇r|2

)
+ %2|∇s|2〈∇̄ log %,∇r〉+ nH〈∇̄r,N〉.

(26)

Thus,

∆r ≤ ξ′(r)

ξ(r)

(
n− |∇r|2

)
+ %2|∇s|2

(
〈∇̄ log %,∇r〉 − ξ′(r)

ξ(r)

)
+ nH〈∇̄r,N〉. (27)

Now, since ∇ζ = ξ(r)∇r and

∆ζ = ξ(r)∆r + ξ′(r)|∇r|2. (28)

we have

∆ζ ≤ nξ′(r) + %2|∇s|2ξ(r)
(
〈∇̄ log %,∇r〉 − ξ′(r)

ξ(r)

)
+ nHξ(r)〈∇̄r,N〉. (29)

On the other hand

∂tr =
〈
∇̄r, ∂tΨ

〉
= nH〈∇̄r,N〉

and

∂tζ = nHξ(r)〈∇̄r,N〉.

Therefore

(∂t −∆)r ≥ −ξ
′(r)

ξ(r)

(
n− |∇r|2

)
− %2|∇s|2

(
〈∇̄ log %,∇r〉 − ξ′(r)

ξ(r)

)
(30)
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and

(∂t −∆)ζ ≥ −nξ′(r)− %2|∇s|2ξ(r)
(
〈∇̄ log %,∇r〉 − ξ′(r)

ξ(r)

)
. (31)

�

Proposition 2.2 If the graphs Σt, t ∈ [0, T ], evolve by the mean curvature flow (15)-(16),

then

(∂t −∆)W = −W (|A|2 + Ric(N,N))− 2W−1|∇W |2, (32)

where W = 〈X,N〉−1 = (%−2 + |∇Mu)|2)1/2 and A is the Weingarten map of Σt.

Proof. We have

∇〈X,N〉 = 〈X,N〉(∇̄ log %)> − 〈∇̄ log %,N〉X> − AX>. (33)

Note that

〈X,N〉(∇̄ log %)> − 〈∇̄ log %,N〉X>

= 〈X,N〉(∇̄ log %− 〈∇̄ log %,N〉N)− 〈∇̄ log %,N〉(X − 〈X,N〉N)

= 〈X,N〉∇̄ log %− 〈∇̄ log %,N〉X.

It follows from the second variation formula for the functional A that

∆〈X,N〉+ |A|2〈X,N〉+ Ric(N,N)〈X,N〉 = −n〈∇H,X>〉,

where |A| stands for the norm of the Weingarten map of Σt and > denotes the tangencial

projection onto TΣt. On the other hand, since X is a Killing vector field we get

∂t〈X,N〉 = 〈∇̄∂tX,N〉+ 〈X, ∇̄∂tN〉 = nH〈∇̄NX,N〉 − n〈X,∇H〉

= −n〈X>,∇H〉,

where ∇̄ denotes the Riemannian connection in M̄. Thus

(∂t −∆) 〈X,N〉 = |A|2〈X,N〉+ Ric(N,N)〈X,N〉

So, using that 〈X,N〉 = 1/W we have

∂tW = −W 2∂tW
−1 = −W 2∂t〈X,N〉

and

∆W − 2

W
|∇W |2 = −W 2∆W−1 = −W 2∆〈X,N〉. (34)
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Therefore

(∂t −∆)W = −W 2 (∂t −∆) 〈X,N〉 − 2

W
|∇W |2 = −W (|A|2 + Ric (N,N))− 2W−1|∇W |2.

�

2.4 Asymptotic boundary

This section is devoted to define the boundary at infinity of a Cartan-Hadamard

manifold P following [10] and we list some important facts and results. For further details,

we refer the reader to [10], [11] and also [6], [7] and [28].

Definition 2.1 Two unit speed geodesic rays α, β : [0,+∞) −→ P are called asymptotic

if supt dist(α(t), β(t)) <∞.

We observe that

(i) If two unit speed asymptotic geodesic rays have a point in common, then they are

the same;

(ii) Given a geodesic ray α and a point p ∈ P, there exists a unique geodesic β such

that β(0) = p and β is asymptotic to α;

(iii) The asymptotic relation is an equivalence relation on the set of all unit speed geo-

desic rays in P. The asymptotic class of α is denoted by α(∞) and α(−∞) denotes

the asymptotic class of the reverse curve of α.

With this equivalence relation we define the asymptotic boundary ∂∞P of P as a smooth

manifold given by the set of the asymptotic classes of unit speed geodesic rays in P. From

now on we will denote P̄ = P ∪ ∂∞P .

We recall that if P is a Cartan-Hadamard manifold, given x ∈ P and y ∈
P \ {x}, there exists a unique unit speed geodesic γxy : R→ P such that γxy(0) = x and

γxy(t) = y where t = dist(x, y). When we have KP ≤ −κ2 < 0, [10] proved the following

more general result.

Proposition 2.3 If the Cartan-Hadamard manifold P has the sectional curvature KP ≤
−κ2 < 0, then for any x, y ∈ P̄ there exists a unique unit speed geodesic γxy joining x and

y.

In order to define a convenient topology in P̄ , we use the following notion

of angle between vectors. Given x ∈ P and (x, v), (x,w) in the unit tangent bundle of

P, we denote the angle between v and w in TxP as ∠(v,w). For any y, z ∈ P̄ we define

∠(y, z) = ∠(γ̇x,y(0), γ̇x,z(0)). Then for fixed δ > 0 and r > 0, we define the cone of opening

angle δ and axis v by

C(x, v, δ) = {y ∈ P̄ \ {x} : ∠(v, γ̇x,y(0)) < δ}
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and the truncated cone of radius r by

T (x, v, δ, r) = C(x, v, δ) \ B̄r(x)

where Br(x) is the geodesic ball of radius r centred at x.

Figura 1: Truncated cone

Source: elaborated by author.

Using these truncated cones in P̄ and the geodesic balls in P we define a special

topology in P̄ . More precisely we have the following

Proposition 2.4 Let x ∈ P fixed. The set of all truncated cones T (x, v, δ, r) with vertice

in x and all geodesic balls Br(y) = {z ∈ P | dist(y, z) < r} in P defines a local basis of

topology in P̄ , which is called the cone topology. The cone topology does not depend on the

choice of x. With this topology, P̄ is a compact manifold. Moreover, under this topology P̄

is homeomophic to the closed ball B̄ ⊂ Rn, P to the open ball B and ∂∞P to the boundary

sphere Sn−1 = ∂B̄.

We remember that our ambient manifold is M = P ×% R. In [4], the authors

proved that the warped function % is convex if and only if M Cartan-Hadamard manifold

as well. In this case, we can associate ∂∞P with a subset of ∂∞M in the following way.

Given x ∈ ∂∞P and γ be a representative of x, we have γ is also a geodesic in M since

P is a totally geodesic submanifold of M. Then there exists x̃ ∈ ∂∞M such that γ is

a representative of x̃. In this sense, we can say that ∂∞P is a subset of ∂∞M. Then,

following [6], we define the Killing graph of the function ϕ ∈ C(∂∞P ) on ∂∞M. Given

x ∈ ∂∞P, we consider the leaf

Pϕ(x) := Φ(P, ϕ(x)) = {(y, ϕ(x)); y ∈ P} ⊂ P × R.

If γx is a geodesic in P representative of x (that is, γx(∞) = x), we consider γ̃x : R→M

given by

γ̃x(t) = Φ(γx(t), ϕ(x)).

Since Φ is a isometry, γ̃x is a geodesic on Pϕ(x) and consequently, on M. Thus, γ̃x define
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a point in ∂∞M which we will denote by (x, ϕ(x)). So, we say that the set

{(x, ϕ(x));x ∈ ∂∞P} ⊂ ∂∞M

is the Killing graph of ϕ.

When the warped function % is not convex, we can associate the Killing graph

of ϕ ∈ C(∂∞P ) with a subset of ∂∞P × R as follow.

Given x ∈ ∂∞P and γx a geodesic in P representative of x, we consider γ̃x :

R→M defined by

γ̃x(t) = Φ(γx(t), ϕ(x)).

As before, γ̃x is a geodesic in the leaf Pϕ(x) := Φ(P, ϕ(x)) = {(y, ϕ(x)); y ∈ P}. Hence, γ̃x

define a point in the ∂∞Pϕ(x) which we denote by (x, ϕ(x)). Thus, we identify the Killing

graph of ϕ with a subset in ∂∞P × R.
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3 A PRIORI ESTIMATES

In this chapter, we get the a priori estimates for a solution of the problem
∂u
∂t

=
(
gij − uiuj

W 2

)
ui;j +

(
1 + 1

%2W 2

)
(log %)iui, in BR × [0, TR)

u(x, 0) = u0(x), in BR × {0}

u(x, t) = ϕ(x) if x ∈ ∂BR, t ∈ [0, TR),

(35)

where R > 0 is fixed and BR(o) ⊂ P is a geodesic ball in P. We want these estimates to be

uniform in BR′ × [0, TR′) for some appropriate 0 < R′ < R. This fact will be fundamental

in the process of exhaustion which we will use in the proof of the Theorem 1.3.

3.1 Height estimate

In order to obtain a height estimate for a solution of the problem (35) we will

use graphs as barriers. We can find the construction of these graphs and some facts about

them in [26]. However, for a better understanding we chose to repeat it here.

Let us consider P+ be a complete, non-compact, n-dimensional model manifold

with respect to a fixed pole o+ ∈ P+ in the sense that the Riemannian metric in P+ can

be expressed in Gaussian coordinates (r, ϑ) ∈ R× Sn−1 centered at o+ as

g+ = dr2 + ξ2(r) dϑ2 (36)

where dϑ2 denotes the round metric in Sn−1 and ξ ∈ C∞([0,∞)) is the function mentioned

in (10).

We define the warped metric in P+ × R as

%2(r)ds2 + dr2 + ξ2(r) dϑ2. (37)

We denote

A(r) = %(r)ξn−1(r), V (r) =

∫ r

0

%(ς)ξn−1(ς) dς. (38)

and we also define

H(r) = − 1

n

A(r)

V (r)
· (39)

Given x ∈ P+ we denote the geodesic distance between o+ and x by r(x) =

dist(o+, x) . For R > 0, we consider BR(o+) be the closed geodesic ball centered at o+

with radius R. Then x ∈ BR(o+) if and only if r(x) ≤ R. We remember that the mean
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curvature of the Killing cylinder over the geodesic sphere ∂Br(o+) is given by

Hcyl(r) =
1

n

(
(n− 1)

ξ′(r)

ξ(r)
+
%′(r)

%(r)

)
. (40)

In this context, we have the following result.

Proposition 3.1 For each R > 0, the graph of the function

vR(x) =

∫ r(x)

R

nH(R)V (ς)

%(ς)(A2(ς)− n2H2(R)V 2(ς))
1
2

dς (41)

defined in BR(o+) has constant mean curvature H(R) and its boundary is the geodesic

sphere ∂BR(o+).

Proof. For R > 0 fixed, we consider vR the radial solution of the Dirichlet problem for

the constant mean curvature equation div+

(
∇+vR
W+

)
+ g+

(
∇+ log %, ∇

+vR
W+

)
= nH(R) in BR(o+),

vR|∂BR(o+) = 0,
(42)

where the differential operators div+ and ∇+ are defined with respect to the metric (36)

in P+ and

W+ = (%−2(r) + v′2R(r))
1
2 ,

with ′ denoting derivatives with respect to r. Then we have(
v′R(r)

(%−2(r) + v′2R(r))1/2

)′
+

v′R(r)

(%−2(r) + v′2R(r))1/2

(
%′(r)

%(r)
+ (n− 1)

ξ′(r)

ξ(r)

)
= nH(R). (43)

We can also rewrite (42) in terms of a weighted divergence as

div− log %

(
∇+vR
W+

)
.
=

1

%
div+

(
%
∇+vR
W+

)
= nH(R). (44)

Integrating with respect to the density % dP+ yields∫
Br(o+)

nH(R) % dP+ =

∫
Br(o+)

div+

(
%
∇+vR
W+

)
dP+

=

∫
∂Br(o+)

g+

(
∇+vR
W+

, ∂r

)
% d∂B(r),

(45)

for r ≤ R. Thus vR is the solution of the first order equation

v′R(r)

(%−2(r) + v′2R(r))1/2
%(r)ξn−1(r) =

∫ r

0

nH(R)%(ς)ξn−1(ς) dς, (46)
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with initial condition vR|r=R = 0. Solving this expression for v′R, we obtain

v′R(r) =
nH(R)V (r)

%(r)(A2(r)− n2H2(R)V 2(r))1/2
· (47)

The graph ΣR of vR is a rotationally invariant hypersurface which can be parametrized

in terms of coordinates (s, r, ϑ) as ς 7→ (s(ς), ϑ, r(ς)), where ς can be taken as the arc

lenght parameter. If φ denotes the angle between the coordinate vector field ∂r and a

given profile curve ϑ = constant in ΣR, we have

ṙ = cosφ, %ṡ = sinφ.

It follows from (43) that

− d

dς
(%ṡ)

dς

dr
− %ṡ

(
%′(r)

%(r)
+ (n− 1)

ξ′(r)

ξ(r)

)
= nH(R),

or yet,
dφ

dς
+ sinφ

(
%′(r)

%(r)
+ (n− 1)

ξ′(r)

ξ(r)

)
= −nH(R).

Therefore, a profile curve of ΣR is given by the solution of the first order system
ṙ = cosφ,

%ṡ = sinφ,

φ̇ = −nH(R)− nHcyl(r) sinφ,

with initial conditions r(0) = R, s(0) = 0, φ(0) = π
2
. Then we can rewrite (46) as

%(r)A(r)ṡ = −nH(R)V (r)

where · indicates derivatives with respect to the parameter ς. We note that when the

coordinate r attains its maximum value, that is, when r = R, we have ṙ = 0 and %ṡ = 1.

This is consistent with the choice of H(R) in (39). Moreover, when r → 0+ we have ṡ→ 0

and ṙ → 1. �

In order to get a suitable one-parameter family of graphs which we will use as

barriers, we fix r0 > 0 and we consider for R ≥ r0 the variable µ = R−r0. We note that µ

can be considered as the geodesic distance between the geodesic spheres ∂Br0(o) = ∂Σr0

and ∂BR(o) = ∂ΣR. Thus ∇µ|∂BR(o)
= ∂r |r=R . So, we set a time parameter t ∈ [0,∞)

given by 
dµ
dt

= −nH(R) = −nH(µ+ r0),

µ(0) = 0.
(48)
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This means that µ = µ(t) is implicitly defined by∫ µ(t)+r0

r0

V (ς)

A(ς)
dς = t. (49)

We denote R(t) = µ(t) + r0. We want to use the one-parameter family of constant mean

curvature graphs {ΣR(t)}t≥0 as barrier. For this we claim that {ΣR(t)}t≥0 evolves by the

(negative) mean curvature flow

∂tΨ
+ = −nH(R(t))Nt, (50)

where

N(t) =
1

W
(%−2(r)X − v′R(r)∂r) = − ṙ

%
X + %ṡ ∂r.

In fact, this means that ΣR(t) = Ψ+
t (Σr0). In particular, we must have

∂BR(t) = ∂ΣR(t) = Ψ+
t (∂Σr0) = Ψ+

t (∂Br0).

In other words, we must choose the time parameter t in a way that the geodesic spheres

evolve as ∂BR(t) = Ψ+
t (∂Br0). Since ṙ = 0 and %ṡ = 1 at r = R(t) it follows from (50)

that

dµ

dt
= 〈∂tΨ+,∇+µ〉 = 〈∂tΨ+, ∂r|r=R(t)〉 = −nH(R(t))〈Nt, ∂r〉|r=R(t)

= −nH(R(t)) = −nH(r0 + µ(t))

what means that t coincides with the parameter defined in (48) and then satisfying the

condition that ∂BR(t) = Ψ+
t (∂Br0). Note that R(t) ≥ r0 for t ≥ 0. So the one-parameter

family of functions u+(x, t) = vR(t)(r(x)) defined on the common domain Br0(o) defines a

solution of the geometric flow (50). Thus, we set

Ψ+(x, t) = (x, u+(x, t)), x ∈ Br0(o). (51)

We conclude that u+ satisfies the parabolic equation

∂tu+ = −(%−2(r) + |∂ru+|2)1/2

(
∂r

(
∂ru+

(%−2(r) + |∂ru+|2)1/2

)
+

∂ru+

(%−2(r) + |∂ru+|2)1/2

(
%′(r)

%(r)
+ (n− 1)

ξ′(r)

ξ(r)

))
.

(52)

Now, we use this information for to prove that u+ is a supersolution to the

mean curvature flow in M .
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Proposition 3.2 The one-parameter family of functions

u+(x, t) = vR(t)(x) = vR(t)(r(x)), x ∈ Br0(o), t ∈ [0,∞) (53)

is a supersolution of the mean curvature flow in M = P ×% R.

Proof. Denoting W = (%−2 + |∇Pu+|2)1/2 we have

Q[u+] + ∂tu+ = W

(
divP

(
∇Pu+

W

)
+

〈
∇P log %,

∇Pu+

W

〉)
+ ∂tu+

= (%−2 + u′2+(r))1/2

(
∂r

(
u′+(r)

(%−2 + u′2+(r))1/2

)
+

u′+(r)

(%−2 + u′2+(r))1/2

(
∆P r + 〈∇P log %,∇P r〉

))
+ ∂tu+,

where ∆P is the Laplace-Beltrami operator in (P, g). However

〈∇P log %,∇P r〉 =
∂r%

%
=
%′(r)

%(r)
·

Furthermore (12) implies that

∆P r ≤ (n− 1)
ξ′(r)

ξ(r)
·

Since u′+ = v′R ≤ 0 we have

Q[u+] + ∂tu+ ≥ (%−2 + u′2+(r))1/2

(
∂r

(
u′+(r)

(%−2 + u′2+(r))1/2

)
+

u′+(r)

(%−2 + u′2+(r))1/2

(
%′(r)

%(r)
+ (n− 1)

ξ′(r)

ξ(r)

))
+ ∂tu+ = 0.

Thus u+ is a supersolution of the mean curvature flow in M . �

Proposition 3.3 If u is a solution of (35), then we have the following height estimate

|u(x, t)| ≤ supBr0 (o)|u|+ vR(T )(o)− vr0(r(x)). (54)

More precisely,

|u(x, t)| ≤ supBr0 (o)|u(·, 0)|+
∫ 0

R(T )

nH(R(T ))V (ς)

%(ς)(A2(ς)− n2H2(R(T ))V 2(ς))
1
2

dς

−
∫ r(x)

r0

nH(r0)V (ς)

%(ς)(A2(ς)− n2H2(r0)V 2(ς))
1
2

dς.

(55)

for (x, t) ∈ Br0(o)× [0, T ].

Proof. By construction, the graph Σr0 of u+(·, 0) = vr0 is defined in the geodesic ball
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Br0(o). For T > 0 we have that Ψ+
T (Σr0) is the graph ΣR(T ) of u+(·, T ) = vR(T )

∣∣
Br0 (o)

with

∫ R(T )

r0

V (ς)

A(ς)
dς = T.

For ε > 0 we have

−u+(x, T ) + u+(o, T ) + supBr0 (o)u+ ε > u(x, 0)

for all x ∈ Br0(o). We also have

vε(x, t) := −u+(x, T − t) + u+(o, T ) + supBr0 (o)u+ ε > u(x, t)

for all (x, t) ∈ ∂Br0(o)× [0, T ]. It follows from the Proposition 3.2 that

∂tvε −Q[vε] = ∂tu+ +Q[u+] ≥ 0 (56)

in the parabolic cylinder Br0(o)× (0, T ). Then the parabolic maximum principle implies

that

u(x, t) ≤ v(x, t) ≤ v(x, T )

in Br0(o)× [0, T ] where

v(x, t) = −u+(x, T − t) + u+(o, T ) + supBr0 (o)u. (57)

So

u(x, t) ≤ v(x, T ) = u+(o, T )− u+(x, 0) + supBr0 (o)u.

Thus

u(x, t) ≤ supBr0 (o)u+ vR(T )(o)− vr0(r(x)) (58)

for (x, t) ∈ Br0(o)× [0, T ]. In a similar way we can prove that

u(x, t) ≥ w(x, t) ≥ w(x, T )

in Br0(o)× [0, T ] where

w(x, t) = u+(x, T − t)− u+(o, T ) + infBr0 (o)u. (59)

Thus

u(x, t) ≥ infBr0 (o)u− vR(T )(o) + vr0(r(x)) (60)
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in Br0(o)× [0, T ] and we have

|u(x, t)| ≤ supBr0 (o)|u|+ vR(T )(o)− vr0(r(x)).

�

Now we obtain an uniform estimate for C0 bounds of the functions u+(·, t).
Proposition 3.4 Let r0 > 0 be a fixed constant and R0 : [0,∞)→ [r0,∞), be the function

implicitly defined in (49). If `0 > 0 satisfies

R0(t) ≤ `0r0 for all t ∈ [0, T ]

then

supBr0 (o)×[0,T ]u+(x, t) = sup[0,T ]u+(o, t) ≤ c(r0, `0, %, ξ).

Proof. It follows directly from (41) and (53) that

u+(x, t) = vR0(t)(r(x)) =

∫ R0(t)

r(x)

−nH(R0(t))V (ς)

%(ς)
(
A2(ς)− n2H2(R0(t))V 2(ς)

) 1
2

dς

≤
∫ R0(t)

0

−nH(R0(t))V (ς)

%(ς)
(
A2(ς)− n2H2(R0(t))V 2(ς)

) 1
2

dς = vR0(t)(o).

Moreover

−nH(R0(t))V (ς)

%(ς)
(
A2(ς)− n2H2(R0(t))V 2(ς)

) 1
2

=
−nH(R0(t))V (ς)

−H(R0(t))A(ς)%(ς)
(

1
H2(R0(t))

− 1
H2(ς)

) 1
2

= − 1

H(ς)%(ς)

(
1

H2(R0(t))
− 1

H2(ς)

)− 1
2

= − H2

%H ′
H ′

H3

(
1

H2(R0(t))
− 1

H2
(ς)

)− 1
2

≤ −sup[0,`0r0]

(
H2

%H ′

)
H ′

H3

(
1

H2(R0(t))
− 1

H2(ς)

)− 1
2

,

where in the right hand side of the inequality above we use that nH(r) = −A(r)
V (r)

is an

increasing function. Note that

nH ′ = −A
′

A

A

V
+
A

V

V ′

V
= −nH

(
V ′

V
− A′

A

)
.

Therefore
%H ′

H2
= − %

H

(
V ′

V
− A′

A

)
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Using the change of variables

η =

(
1

H2(R0(t))
− 1

H2(ς)

) 1
2

one gets

vR0(t)(o) =

∫ R0(t)

0

−nH(R0(t))V (ς)

%(ς)
(
A2(ς)− n2H2(R0(t))V 2(ς)

) 1
2

dς

≤ −
(

sup
[0,`0r0]

H2

%H ′

)∫ R0(t)

0

H ′

H3

(
1

H2(R0(t))
− 1

H2(ς)

)− 1
2

dς

= −
(

sup
[0,`0r0]

H2

%H ′

)∫ 0

− 1
H(R0(t))

dη

= −sup[0,`0r0]

(
H2

%H ′

)
1

H(R0(t))
≤ −

(
sup

[0,`0r0]

H2

%H ′

)
1

H(`0r0)
.

Thus we have

sup
Br0 (o)×[0,T ]

|u+(x, t)| = sup
[0,T ]

u+(o, t) ≤ c(r0, `0, %, ξ).

�

A consequence of this proposition is an a priori height estimate that does not depend on

the maximum time of the solution.

Corollary 3.5 Let u be a solution of (35) in Br0 × [0, ε] and R0 : [0,∞) → [r0,∞) be

the function implicitly defined in (49). For τ > ε, if `0 > 0 satisfies

R0(t) ≤ `0r0 ∀ t ∈ [0, τ ]

then

|u(x, t)| ≤ supBr0 (o)|u|+ c(r0, τ, `0, %, ξ)− vr0(r(x)).

Proof. In fact, for (x, t) ∈ Br0 × [0, ε], we have

|u(x, t)| ≤ supBr0 (o)|u|+ vR(ε)(o)− vr0(r(x))

≤ supBr0 (o)|u|+ |u+(o, ε)| − vr0(r(x))

≤ supBr0 (o)|u|+ c(r0, τ, `0, %, ξ)− vr0(r(x)).

�

Now, let’s see how the height estimate we obtained in some cases as follows.

Example 3.1 In the case where M = Rn+1 with P = Rn and X is a parallel vector field

with % = 1 we have

H(r) = −1

r
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and

vR(x) = −
∫ r(x)

R

R−1ςn

(ς2(n−1) −R−2ς2n)
1
2

dς = −
∫ r(x)

R

ς

(R2 − ς2)
1
2

dς = (R2 − r2(x))1/2.

Therefore the suitable time parameter defined by

dµ

dt
=

n

R(t)
=

n

µ(t) + r0

is given explicitly by

R(t) = (r2
0 + 2nt)1/2, t ∈ [0,∞).

For T > 0 fixed and `0 :=

√
1 +

2n

r2
0

T we have

R(t) ≤ `0r0 ∀ t ∈ [0, T ].

Hence

supBr0 (o)×[0,T ]u+(x, t) = sup[0,T ]u+(o, t) = vR(T )(o) = R(T ) = `0r0 := c(`0, r0). (61)

Figura 2: Graph of vR(0)

Source: elaborated by author.

Example 3.2 Now we consider the case where M is the hyperbolic space Hn+1 which has

been already considered in the references [30] and [24]. We can define a mean curvature

flow of geodesic spheres in Hn+1 defining a time parameter by the ODE

dR

dt
= n

cosh(R(t))

sinh(R(t))

whose general solution has the form

coshR(t) = ent cosh r0,
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where r0 > 0 is the radius of the geodesic sphere at time t = 0. For T > 0 fixed, if we

take

`0 :=
arccosh(enT ) cosh(r0)

r0

we have

R(t) ≤ `0r0 ∀ t ∈ [0, T ].

Then

u+(x, t) = vR(t)(r(x)) =

∫ R(t)

r(x)

−H2(ζ)

%(ζ)H ′(ζ)

H ′(ζ)

H3(ζ)

(
1

H2(R(t))
− 1

H2(ζ)

) 1
2

dζ

=

∫ R(t)

r(x)

− cosh(ζ)
H ′(ζ)

H3(ζ)

(
1

H2(R(t))
− 1

H2(ζ)

) 1
2

dζ

≤
(

sup
[0,`0r0]

cosh(t)

)∫ R(t)

r(x)

−H
′(ζ)

H3(ζ)

(
1

H2(R(t))
− 1

H2(ζ)

) 1
2

dζ

= cosh(`0r0)

(
1

H2(R(t))
− 1

H2(r(x))

) 1
2

= cosh(`0r0)

(
tanh2(R(t))− tanh2(r(x))

) 1
2

≤ cosh(`0r0) tanh(R(t)) ≤ sinh(`0r0) := c0(`0, r0).

3.2 Gradient estimates

Our task now is to produce a priori gradient estimates for the problem (35).

First we will to do that on the boundary ∂BR(o)× [0, T ]. For this we will use barriers of

the form v = ũ0 +h(d) where ũ0 is a extension of u0 in a neighborhood of ∂BR(o)× [0, T ]

in which the function d(x) = R− r(x) is a smooth distance function.

3.2.1 Boundary gradient estimate

In order to obtain a gradient estimate in ∂BR(o)× [0, T ], we consider

KR = {Ψ(x, t);x ∈ ∂BR(o), t ∈ [0,+∞)}

be the Killing cylinder over ∂BR(o) and we consider the function d(x) = dist(x, ∂BR(o)) =

R− r(x) for x ∈ BR(o). Then we define the function d in BR(o)× [0,+∞) as

d(x, t) = dist(Ψ(x, t), KR) = d(x)
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and Ωα = {x ∈ BR(o); d(x) < α} for α > 0. So we take the neighborhood Ωε of ∂BR(o)

where ε > 0 is such that d is a smooth function in Ωε.

Proposition 3.6 Let u be a solution of (35) defined in BR(o) × [0, T ] for R > 0 and

T > 0. Then there exists a constant C > 0 such that

sup
∂BR(o)×[0,T ]

|∇u| ≤ C.

Proof.

We consider

v(x, t) = ũ0(x) + h(d(x))

where d(x) = R − r(x) for x ∈ BR(o), ũ0 is a local extension of u0 defined for d < ε and

h is a function to be choose latter. Denoting

W =
√
%−2 + |∇Pv|2 =

√
%−2 + h′2(d) + 2h′(d)〈∇Pd,∇P ũ0〉+ |∇P ũ0|2

we have

∂tv −Q[v] = ∂tv −∆Pv +
1

W 2
〈∇P
∇P v∇

Pv,∇Pv〉 −
(

1 +
1

%2W 2

)
〈∇P log %,∇Pv〉.

Then

W 2(∂tv −Q[v]) = −W 2(∆P ũ0 + h′′(d) + h′(d)∆Pd)

+ (ũi0 + h′(d)di)(ũj0 + h′(d)dj)(〈∇P
∂i
∇P ũ0, ∂j〉+ h′(d)〈∇P

∂i
∇Pd, ∂j〉+ h′′(d)didj)

− 〈∇P log %,∇P ũ0 + h′(d)∇Pd〉(%−2 +W 2).

Rearranging some terms one gets

W 2(∂tv −Q[v]) = −h′′(d)W 2 + h′′(d)(ũi0 + h′(d)di)(ũj0 + h′(d)dj)didj

−W 2(∆P ũ0 + h′(d)∆Pd) + (ũi0 + h′(d)di)(ũj0 + h′(d)dj)(〈∇P
∂i
∇P ũ0, ∂j〉

+ h′(d)〈∇P
∂i
∇Pd, ∂j〉)− 〈∇P log %,∇P ũ0 + h′(d)∇Pd〉(%−2 +W 2).

We have

W 2 − (ũi0 + h′(d)di)(ũj0 + h′(d)dj)didj = %−2 + |∇P ũ0 + h′(d)∇Pd|2

− 〈∇P ũ0 + h′(d)∇Pd,∇P ũ0 + h′(d)∇Pd〉 = %−2.

Since

W 2 = %−2 + |∇P ũ0|2 + 2h′(d)〈∇Pd,∇P ũ0〉+ h′2(d)
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and didj〈∇P
∂i
∇Pd, ∂j〉 = 0 we also have

−W 2(∆P ũ0 + h′(d)∆Pd) + (ũi0 + h′(d)di)(ũj0 + h′(d)dj)(〈∇P
∂i
∇P ũ0, ∂j〉+ h′(d)〈∇P

∂i
∇Pd, ∂j〉)

= −(%−2 + h′2(d))h′(d)∆Pd− h′2(d)(∆P ũ0 + 2〈∇Pd,∇P ũ0〉∆Pd− didj〈∇P
∂i
∇P ũ0, ∂j〉)

− h′(d)(|∇P ũ0|2∆Pd− ũi0ũ
j
0〈∇P

∂i
∇Pd, ∂j〉+ 2〈∇Pd,∇P ũ0〉∆P ũ0 − 2diũj0〈∇P

∂i
∇P ũ0, ∂j〉)

− %−2∆P ũ0 − |∇P ũ2
0|∆P ũ0 + ũi0ũ

j
0〈∇P

∂i
∇P ũ0, ∂j〉.

Gathering these expressions and requiring that h′ > 0 and h′′ < 0, one gets

W 2(∂tv −Q[v]) ≥ −h′′(d)%−2 − (%−2 + h′2(d))h′(d)∆Pd

− 〈∇P log %,∇P ũ0 + h′(d)∇Pd〉(%−2 +W 2)

− h′2(d)(∆P ũ0 + 2|∇P ũ0||∆Pd|+ |∇P∇P ũ0|)

− h′(d)(|∇P ũ0|2|∆Pd|+ |∇P ũ0|2|∇P∇Pd|+ 2|∇P ũ0||∆P ũ0|

+ 2|∇P ũ0||∇P∇P ũ0|)− C(%−2 + |∇P ũ0|2)|∇P∇P ũ0|,

where C here and in what follows stands for a positive constant that depends on n and

on the first and second derivatives of d. Hence,

W 2(∂tv −Q[v]) ≥ −h′′(d)%−2 − (%−2 + h′2(d))h′(d)∆Pd

− 〈∇P log %,∇P ũ0 + h′(d)∇Pd〉(%−2 +W 2)− Ch′2(d)(|∇P ũ0|+ |∇P∇P ũ0|)

− Ch′(d)
(
|∇P ũ0|2 + |∇P ũ0||∇P∇P ũ0|

)
− C(%−2 + |∇P ũ0|2)|∇P∇P ũ0|

= −h′′(d)%−2 − h′(d)〈∇P log %,∇Pd〉%−2 − (%−2 + h′2(d))h′(d)
(
∆Pd+ 〈∇P log %,∇Pd〉

)
− h′(d)〈∇P log %,∇Pd〉

(
|∇P ũ0|2 + 2h′(d)〈∇Pd,∇P ũ0〉

)
− (%−2 +W 2)〈∇P log %,∇P ũ0〉

− Ch′2(d)(|∇P ũ0|+ |∇P∇P ũ0|)− Ch′(d)
(
|∇P ũ0|2 + |∇P ũ0||∇P∇P ũ0|

)
− C(%−2 + |∇P ũ0|2)|∇P∇P ũ0|.

It follows from (12) and (13) that

−
(
∆Pd+ 〈∇P log %,∇Pd〉

)
= ∆P r + 〈∇P log %,∇P r〉 ≥ −nξ

′(r)

ξ(r)
≥ −nB,

where B := supBR(o)
ξ′(r(x))
ξ(r(x))

.
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Therefore,

W 2(∂tv −Q[v]) ≥ −h′′(d)%−2 − h′(d)|∇P log %|%−2 − nBh′3(d)

− Ch′2(d)

(
|∇P log %||∇P ũ0|+ |∇P ũ0|+ |∇P∇P ũ0|

)
− Ch′(d)

(
nB%−2 + |∇P log %||∇P ũ0|2 + |∇P ũ0|2 + |∇P ũ0||∇P∇P ũ0|

)
− C

(
%−2 + |∇M ũ0|2

)(
|∇P log %||∇P ũ0|+ |∇M∇M ũ0|

)
.

For L > 0, we fix d0 <
1
L

and d0 < d∗ and take

A =
L

1− Ld0

·

Then

L =
A

1 + Ad0

.

We consider

h(d) =
1

L
log(1 + Ad)

for d ∈ [0, d0] and we note that

h′(d) =
1

L

(
A

1 + Ad

)
, and h′′(d) = −Lh′2(d).

Thus

W 2(∂tv −Q[v]) ≥
(

1

L

A2

(1 + Ad)2
− 1

L

A

1 + Ad
|∇M log %|

)
%−2 − nB 1

L3

A3

(1 + Ad)3

− L̃
(

1

L2

A2

(1 + Ad)2
+

1

L

A

1 + Ad
+ 1

)
,

where

L̃ = C

(
n,B, %, |∇P log %|, |∇P ũ0|, |∇P∇P ũ0|

)
.

More precisely,

W 2(∂tv −Q[v]) ≥ 1

L

{
− nB 1

L2

A3

(1 + Ad)3
+

(
%−2 − L̃

L

)
A2

(1 + Ad)2

−
(
|∇P log %|%−2 + L̃

)
A

1 + Ad
− LL̃

}
,

For d ∈ [0, d0] we have
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L =
A

1 + Ad0

≤ A

1 + Ad
and − LL̃ ≥ −L̃ A

1 + Ad
.

So

W 2(∂tv −Q[v]) ≥ 1

L

A

1 + Ad

{
− nB 1

L2

A2

(1 + Ad)2
+

(
%−2 − L̃

L

)
A

1 + Ad

−
(
|∇P log %|%−2 + 2L̃

)}
≥ L̃

L

A

1 + Ad

{
− 1

L2

(
A

1 + Ad

)2

+

(
L

%2L̃
− 1

)
1

L

(
A

1 + Ad

)
− 3

}

If we choose L > 5L̃ supBR(o) %
2 we have

D = L2

(
L

%2L̃
− 1

)2

− 12L2 > 0.

As D is the discriminant of the inequality

−z2 +

(
L

%2L̃
− 1

)
Lz − 3L2 ≥ 0

we can choose d0 <
1
L

such that

−
(

A

1 + Ad

)2

+

(
L

%2L̃
− 1

)
L

(
A

1 + Ad

)
− 3L2 ≥ 0

for d ∈ [0, d0]. Then we get

W 2(∂tv −Q[v]) ≥ L̃

L

(
A

1 + Ad

){
− 1

L2

(
A

1 + Ad

)2

+

(
L

%2L̃
− 1

)
1

L

(
A

1 + Ad

)
− 3

}
≥ 0

for all (x, t) with d(x) ∈ [0, d0].

Hence v = ũ0 +h(d) is an upper barrier. If we take ω = −ũ0−h(d) we get a lower barrier.

Therefore there exists a constant C > 0 such that

sup
∂BR(o)×[0,T ]

|∇u| ≤ C.

�
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3.2.2 Interior gradient estimate

In this subsection we will use a technique due to Korevaar and Simon [21], and

further developed by Wang [31] to prove an interior gradient estimates.

Given R > 0, andT > 0, let

CR,T =
{

Ψ(x, t); ζ(r(Ψ(x, t))) + t ≤ ζ(R), x ∈ BR(o), t ∈ [0, T ]
}
.

If R′ ∈ (0, R) is such that ζ(r) < 1
4
ζ(R) for all r ≤ R′ we get BR′(o)× [0, TR′ ] ⊂ CR,T with

TR′ = min
{

1
2
ζ(R), T

}
.

Proposition 3.7 Let u be a positive solution of (35) defined in BR(o)× [0, T ] for R > 0

and T > 0. Let L ≥ 0 be a constant such that Ricg−∇2 log % ≥ −Lg in BR(o) and suppose

that (11) holds. Then for (x, t) in BR′(o)× [0, TR′ ] either

|∇Pu(x, t)| ≤ exp

128

(
1 + minBR(o) %

)2

minBR(o) %
M sup

BR(o)

ξ(r)

ζ(R)

 (62)

or

|∇Pu(x, t)| ≤ exp

64

(
1 + minBR(o) %

)2

minBR(o) %
MC0

 ,

where M = supBR′ (o)×[0,TR′ ]
u, and

C0 = sup
BR(o)

%2

µ

{
5

4
+ nM

ξ′(r)

ζ(R)
+ 2
√

1− β ξ(r)
ζ(R)

+

(
M(6− 5β)

ξ(r)

ζ(R)
+ 2
√

1− β
)
%′

%

}
.

Proof. Suppose initially that u is C3 positive solution of (35) in BR(o)× (0, T ) ⊂ P ×R.

Let η be a nonnegative and smooth function with η = 0 in P ×R\BR(o)×R. We consider

a function

χ = ηγ(u)ψ(|∇u|2), (63)

defined in BR(o)× [0, T ] where η, γ and ψ are functions to be specified later.

If χ attains its maximum value in BR′(o) × [0, TR′ ] at point (x0, t0), and

η(x0, t0) 6= 0, we have

(logχ)j =
ηj
η

+
γ′

γ
uj + 2

ψ′

ψ
ukuk;j = 0 (64)

at (x0, t0). Then

2
ψ′

ψ
ukuk;j = −

(
ηj
η

+
γ′

γ
uj

)
. (65)
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Moreover, the matrix

(logχ)i;j = (log η)i;j +

(
γ′

γ

)′
uiuj +

γ′

γ
ui;j + 2

ψ′

ψ
(ukuk;ij + uk;iuk;j) + 4

(
ψ′

ψ

)′
ukuk;iu

`u`;j

is non-positive at (x0, t0). Applying the Ricci identities for the Hessian of u we have

uk;ij = ui;kj = ui;jk +R`
kjiu`,

and this yields

(logχ)i;j =
ηi;j
η

+
γ′′

γ
uiuj +

γ′

γ
ui;j +

γ′

γ

(
ηi
η
uj +

ηj
η
ui

)
+ 2

ψ′

ψ
(ukui;jk + uk;iuk;j)− 2

ψ′

ψ
R`
jkiu

ku` + 4

((
ψ′

ψ

)′
− ψ′2

ψ2

)
ukuk;iu

`u`;j.

On the other hand, denoting

f(x) = ∂tu−
〈
∇̄ log %, ∇̄u

〉(
1 +

1

%2W 2

)
(66)

and differentiating both sides in (20) we get

σijui;jk = fk − σij;kui;j. (67)

After contraction of (67) with uk, we have

σijukui;jk = fku
k +

1

W 2
uk(ui;ku

j + uiuj;k)ui;j

− 2

W 4
uiujui;j

(
− %−2(log %)ku

k + uku`u`;k
)
.

Using the previous identity, (106) and noticing that

σijR`
jkiu

ku` = −Ricg(∇Pu,∇Pu),
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after some computations we obtain

0 ≥ σij(logχ)i;j = σij
ηi;j
η

+
γ′′

γ
σijuiuj +

γ′

γ
∂tu−

γ′

γ

(
1 +

1

%2W 2

)〈
∇P log %,∇Pu

〉
+ 2

γ′

γ

1

%2W 2

〈
∇Pη

η
,∇Pu

〉
+ 2

ψ′

ψ
uk∂tuk +

4|∇Pu|2

%2W 2

ψ′

ψ

〈
∇P log %,∇Pu

〉2

− 4

%2W 4

〈
∇Pη

η
+
γ′

γ
∇Pu,∇Pu

〉〈
∇P log %,∇Pu

〉
− 2

ψ′

ψ

(
1 +

1

%2W 2

)
∇2 log %(∇Pu,∇Pu)(

1 +
1

%2W 2

)〈
∇P log %,

∇Pη

η
+
γ′

γ
∇Pu

〉
+ 4

((
ψ′

ψ

)′
− ψ′2

ψ2
+

3

2

1

W 2

ψ′

ψ

)
σi`ujukuk;iuj;`

+ 2
ψ′

ψ
Ricg(∇Pu,∇Pu) + 2

ψ′

ψ
σi`σjkuk;iuj;`.

We also have

∂t logχ =
∂tη

η
+
γ′

γ
∂tu+ 2

ψ′

ψ
uk∂tuk.

Thus

0 ≤ ∂t logχ− σij(logχ)i;j

=
∂tη

η
− σij ηi;j

η
− γ′′

γ
σijuiuj +

γ′

γ

(
1 +

1

%2W 2

)〈
∇P log %,∇Pu

〉
− 2

γ′

γ

1

%2W 2

〈
∇Pη

η
,∇Pu

〉
− 4|∇Pu|2

%2W 4

ψ′

ψ

〈
∇P log %,∇Pu

〉2
+

4

%2W 4

〈
∇Pη

η
+
γ′

γ
∇Pu,∇Pu

〉〈
∇P log %,∇Pu

〉
+ 2

ψ′

ψ

(
1 +

1

%2W 2

)
∇2 log %(∇Pu,∇Pu)−

(
1 +

1

%2W 2

)〈
∇P log %,

∇Pη

η
+
γ′

γ
∇Pu

〉
− 4

[(
ψ′

ψ

)′
− ψ′2

ψ2
+

3

2W 2

ψ′

ψ

]
σi`ujukuk;iuj;` − 2

ψ′

ψ
σi`σjkuk;iuj;l − 2

ψ′

ψ
Ricg(∇Pu,∇Pu)

We note that

4
ψ′2

ψ2
σi`ujukuk;iuj;` =

∣∣∣∣∇Pη

η
+
γ′

γ
∇Pu

∣∣∣∣2 ≥ 1

%2W 2

∣∣∣∣∇Pη

η
+
γ′

γ
∇Pu

∣∣∣∣2
g

=
|∇Pu|2

%2W 2

∣∣∣∣ ∇Pη

|∇Pu|η
+
γ′

γ

∇Pu

|∇Pu|

∣∣∣∣2
g

.
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So, the previous estimate yields

ψ2

ψ′2

((
ψ′

ψ

)′
− ψ′2

ψ2
+

3

2W 2

ψ′

ψ

)
|∇Pu|2

%2W 2

∣∣∣∣ ∇Pη

|∇Pu|η
+
γ′

γ

∇Pu

|∇Pu|

∣∣∣∣2
g

+
γ′′

γ
σijuiuj + 2

ψ′

ψ
σi`σjkuk;iuj;`

≤ ∂tη

η
− σij ηi;j

η
+
γ′

γ

(
1 +

1

%2W 2

)〈
∇P log %,∇Pu

〉
+ 2

γ′

γ

1

%2W

|∇Pu|
W

∣∣∣∣∇Pη

η

∣∣∣∣
− 4|∇Pu|2

%2W 4

ψ′

ψ

〈
∇P log %,∇Pu

〉2
+

4

%2W 4

〈
∇Pη

η
+
γ′

γ
∇Pu,∇Pu

〉〈
∇P log %,∇Pu

〉
− 2

ψ′

ψ

[
Ricg(∇Pu,∇Pu)−∇2 log %(∇Pu,∇Pu)

]
+

2

%2W 2

ψ′

ψ
∇2 log %(∇Pu,∇Pu)

−
(

1 +
1

%2W 2

)〈
∇P log %,

∇Pη

η
+
γ′

γ
∇Pu

〉
Discarding a non-positive term in the right hand side, we get

ψ2

ψ′2

((
ψ′

ψ

)′
− ψ′2

ψ2
+

3

2W 2

ψ′

ψ

)
|∇Pu|2

%2W 2

∣∣∣∣ ∇Pη

|∇Pu|η
+
γ′

γ

∇Pu

|∇Pu|

∣∣∣∣2
g

+
γ′′

γ

|∇Pu|2

%2W 2

≤ ∂tη

η
− σij ηi;j

η
+ 2

γ′

γ

1

%2W

|∇Pu|
W

∣∣∣∣∇Pη

η

∣∣∣∣+ 4
ψ′

ψ

|∇P log %|2

%2

|∇Pu|4

W 4

+ 4
|∇P log %|

%2

(∣∣∣∣∇Pη

η

∣∣∣∣ |∇Pu|2

W 4
+
γ′

γ

|∇Pu|3

W 4

)
− 2

ψ′

ψ

[
Ricg(∇Pu,∇Pu)−∇2 log %(∇Pu,∇Pu)

]
+ 2

ψ′

ψ

|∇2 log %|
%2

|∇Pu|2

W 2
+
∣∣∇P log %

∣∣∣∣∣∣∇Pη

η

∣∣∣∣(1 +
1

%2W 2

)
.

If |∇Pu(x0, t0)| ≤ α for some α > 0, we take ψ(s) = s and η, γ such that

η(x, t) ≤ β <∞ and 1 + min
BR(o)

% ≥ γ(x, t) ≥ 1 in BR(o)× [0, T ]

and we obtain

|∇u(x, t)|β ≤ χ(x, t) ≤ χ(x0, t0) ≤ β(1 + inf
BR(o)

%)α.

Thus,

|∇u(x, t)| ≤ (1 + inf
BR(o)

%)α in BR(o)× (0, T ).

Then, we supose that |∇Pu(x0, t0)|2 > 1 and following [31], we set

ψ(τ) = log τ, (68)

where τ = |∇Pu|2. We have

|∇Pu|2

W 2

ψ2

ψ′2

((
ψ′

ψ

)′
− ψ′2

ψ2
+

3

2

1

W 2

ψ′

ψ

)
=

τ

W 2

(
log τ

1
2
τ − %−2

τ + %−2
− 2

)
.
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Now we consider k > 0 be a constant such that |∇Pu(x0, t0)|2 > ek and we fix a constant

max

{
3

4
,

%2ek

1 + %2ek

}
< β < 1.

We can suppose that
τ

W 2
=
|∇Pu|2

W 2
≥ β (69)

at (x0, t0). We also consider 1
%2

β
1−β =: eδ

′
, δ = 3

2
β − 1 and µ := 2β δδ

′−2
δ′

, and we note that

1

8
< δ <

1

2
, k < δ′ ≤ log τ µ >

3

16

(
k − 16

k

)
> 0,

if k > 16. We get

µ log |∇Pu| 1
%2

∣∣∣∣ ∇Pη

|∇Pu|η
+
γ′

γ

∇Pu

|∇Pu|

∣∣∣∣2
g

+
γ′′

γ

|∇Pu|2

%2W 2

+ 2
ψ′

ψ
|∇Pu|2

(
Ricg

(
∇Pu

|∇Pu|
,
∇Pu

|∇Pu|

)
−∇2 log %

(
∇Pu

|∇Pu|
,
∇Pu

|∇Pu|

))
≤ 1

η

(
∂t −∆

)
η + 2

√
1− β 1

%

γ′

γ

∣∣∣∣∇Pη

η

∣∣∣∣+
4

δ′
(1− β)|∇P log %|2

+

∣∣∣∣∇Pη

η

∣∣∣∣(6− 5β)|∇P log %|+ 4
γ′

γ

1

%

√
1− β|∇P log %|+ 2

δ′
(1− β)|∇2 log %|.

Now, we choose η in CR,T as

η = (ζ(R)− ζ(r)− t)2 (70)

where r = d(o, ·).

It follows from Proposition 2.1 that

1

η

(
∂t −∆

)
η = −2

√
η

η

(
∂t −∆

)
ζ − 2

1

η
|∇ζ|2 − 2

√
η

η

≤ 2
√
η

(
nξ′(r) + %2|∇s|2ξ(r)

(〈
∇̄ log %,∇r

〉
− ξ′(r)

ξ(r)

))
− 2ξ(r)2

η
|∇r|2 − 2

√
η

η
.

Since
〈
∇̄ log %,∇r

〉
≤
∣∣∣∣∂r%% ∣∣∣∣ ≤ ξ′(r)

ξ(r)
implies in

%2|∇s|2ξ(r)
(〈
∇̄ log %,∇r

〉
− ξ′(r)

ξ(r)

))
≤ 0,
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we obtain
1

η

(
∂t −∆

)
η ≤ 2n

ξ′(r)
√
η
.

Furthermore,

∣∣∣∣∇ηη ∣∣∣∣ ≤ 2 ξ(r)√
η
.

Finally, we set as in [31]

γ(u) = 1 +
1

S
( min
BR(o)

%)u

where S = supBR(o)×[0,T ]u > 0. Then γ′′ = 0 and thus

µ log |∇u| 1
%2

∣∣∣∣ ∇η|∇u|η +
γ′

γ

∇u
|∇u|

∣∣∣∣2
g

− 2L
ψ′

ψ
|∇u|2 ≤ 1

S
√
η

[
2nSξ′(r) + 4

√
1− βξ(r)

+
2

δ′
(1− β)

(
2|∇ log %|2 + |∇2 log %|

)
S
√
η + 2Sξ(r)(6− 5β)|∇ log %|

+ 4
√
η
√

1− β
∣∣∇ log %

∣∣]
where L ≥ 0 is a constant such that

Ricg −∇2 log % ≥ −Lg (71)

in BR(o). Using that 1
log t
≤ 1

δ′
and η ≤ ζ(R)2 we obtain

µ log |∇u| 1
%2

∣∣∣∣ ∇η|∇u|η +
γ′

γ

∇u
|∇u|

∣∣∣∣2
g

≤ ζ(R)

Sη

[
2ζ(R)SL

δ′
+ 2nSξ′(r) + 4

√
1− βξ(r)

+
2

δ′
Sζ(R)

(
1− β

)(
2|∇ log %|2 + |∇2 log %|

)
+ 2Sξ(r)(6− 5β)|∇ log %|

+ 4ζ(R)
√

1− β|∇ log %|
]
.

We can to rewrite the inequality above as

η log |∇u|
∣∣∣∣ ∇η|∇u|η +

γ′

γ

∇u
|∇u|

∣∣∣∣2
g

≤ ζ(R)%2

µS

{
2

δ′
LSζ(R) + 2nSξ′(r) + 4

√
1− βξ(r)

+
2

δ′
(1− β)Sζ(R)

(
2|∇ log %|2 + |∇2 log %|

)
+ 2S(6− 5β)ξ(r)|∇ log %|

+ 4ζ(R)
√

1− β|∇ log %|
}
.

We consider first the case ∣∣∣∣ ∇η|∇u|η
∣∣∣∣ ≤ γ′

4γ
.
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Then we have

η log |∇u| ≤ 2S2γ2

min %2

%2ζ(R)

µS

{
2

δ′
ζ(R)LS + 2nSξ′(r) + 4

√
1− βξ(r) + 4ζ(R)

√
1− β|∇ log %|

+
2

δ′
(1− β)Sζ(R)

(
2|∇ log %|2 + |∇2 log %|

)
+ 2S(6− 5β)ξ(r)|∇ log %|

}
≤ 2

(
1 + min %

min %

)2

Sζ2(R)
%2

µ

{
2

δ′
LS + 2nS

ξ′(r)

ζ(R)
+ 4
√

1− β ξ(r)
ζ(R)

+
2

δ′
(1− β)S

(
2|∇ log %|2 + |∇2 log %|

)
+ 2

(
(6− 5β)S

ξ(r)

ζ(R)
+ 2
√

1− β
)
|∇ log %|

}

If τ > ek with k = max

{
SL, supBR(o)

(
2|∇ log %|2 + |∇2 log %|

)}
, then δ′ > k implies

2

δ′
(1− β)S

(
2|∇ log %|2 + |∇2 log %|

)
≤ 2(1− β) <

1

2
and

2

δ′
SL ≤ 2.

Thus

η log |∇u| ≤ 4

(
1 + min %

min %

)2

Sζ2(R)C0,

where

C0 = sup
BR(o)

%2

µ

{
5

4
+ nS

ξ′(r)

ζ(R)
+ 2
√

1− β ξ(r)
ζ(R)

+

(
S(6− 5β)

ξ(r)

ζ(R)
+ 2
√

1− β
)
%′

%

}
On the other hand, if

γ′

4γ
≤
∣∣∣∣ ∇η|∇u|η

∣∣∣∣
we have

η|∇u| ≤ 8γ

γ′
√
η|∇ζ| =

8γS
√
ηξ(r)

minBR(o) %

and consequently

η log |∇u| ≤
8γS
√
ηξ(r)

minBR(o) %
≤ 8

(
1 + minB̄R(o) %

minB̄(o,R) %

)
Sζ2(R) sup

BR(o)

ξ(r)

ζ(R)
.

Hence at (x0, t0)

η log |∇u| ≤4

(
1 + minB̄R(o) %

minB̄R(o) %

)2

Sζ2(R) max

{
2 sup
BR(o)

ξ(r)

ζ(R)
, C0

}
.
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Since η(x, t) > 1
16
ζ2(R) and γ(x, t) ≥ 1 for (x, t) ∈ BR′(o)× [0, TR′ ] we conclude that

log |∇Pu(x, t)| ≤ 16

ζ2(R)
η(x, t)γ(x, t) log |∇Pu(x, t)| ≤ 16

ζ2(R)
γ(x0, t0)η(x0, t0) log |∇Pu(x0, t0)|

≤ 16

ζ2(R)

(
1 + min

BR(o)
%

)
4

(
1 + minB̄R(o) %

minB̄(o,R) %

)2

Sζ2(R) max

{
2 sup
BR(o)

ξ(r)

ζ(R)
, C0

}

= 64

(
1 + minBR(o) %

)2

minBR(o) %
Smax{2 sup

BR(o)

ξ(r)

ζ(R)
, C0}

unless |∇u(x0, t0)| ≤ 1.

We can deal with H2+α functions using a standard approximation argument. Moreover,

we can remove the assumption that u > 0 translating u upwards by M .

�

Corollary 3.8 If 0 < R′ < R1 < R2 such that ζ(r) < 1
4
ζ(R1) < 1

4
ζ(R2) for all r ≤ R′ and

u be a solution of (35) defined in BR2(o)×[0, T ] for T > 0, then for (x, t) in BR′(o)×[0, TR′ ]

either

|∇Pu(x, t)| ≤ exp

128

(
1 + minBR1

(o) %
)2

minBR1
(o) %

S sup
BR1

(o)

ξ(r)

ζ(R1)

 (72)

or

|∇Pu(x, t)| ≤ exp

64

(
1 + minBR1

(o) %
)2

minBR1
(o) %

SC0

 ,

where S = supBR1
(p)×[0,T ] u,

C0 = sup
BR1

(o)

%2

µ

{
5

4
+ nS

ξ′(r)

ζ(R1)
+ 2
√

1− β ξ(r)

ζ(R1)
+

(
S(6− 5β)

ξ(r)

ζ(R1)
+ 2
√

1− β
)
%′

%

}

and TR′ = 1
2
ζ(R1).

Proof. In fact, if we choose

ψ(|∇Pu|2) = log(|∇Pu|2), γ(u) = 1 +
1

S
( min
BR1

(o)
%)u,

with S = supBR1
(o)×[0,T ]u and we define η = (ζ(R1)− ζ(r)− t)2 in

CR1,T =
{

Ψ(x, t); ζ(r(Ψ(x, t))) + t ≤ ζ(R1), x ∈ BR1(o), t ∈ [0, T ]
}
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we have the estimates announced.

�

3.3 Curvature estimate

Given R > 0 and T > 0 we want to estimate |∇m|A|| for m ≥ 0 in the parabolic

cylinder BR′(o)× [0, TR′ ], where R′ ∈ (0, R) is such that ζ(r) < 1
4
ζ(R) for all r ≤ R′ and

TR′ = 1
2
ζ(R). For this, we will proceed as Ecker-Huisken in [14] studying the evolution of

the function

f = ψ(W 2)|A|2, (73)

where

ψ(W 2) =
W 2

γ − δW 2
(74)

with

γ = infBR(o)
1

%2
and δ =

1

2

γ

supBR(o)×[0,T ]W
2
.

Initially, we need to deduce evolution equations for the second fundamental form and its

squared norm, a variant of the classical Simons’ formula.

Lemma 3.9 The squared norm |A|2 of the second fundamental form of the graphs Σt,

t ∈ [0, T ], evolve as

1

2
(∂t −∆)|A|2 + |∇A|2 = |A|4 + |A|2Ric(N,N)

+ gk`(∇̄iR̄kj0` + ∇̄kR̄`i0j)a
ij + 2gk`(aisR̄

s
kj` + askR̄

s
`ij)a

ij.
(75)

Proof. We have

∂taij = n∇i∇jH − nHaisasj + nHR̄i00j.

Since

∂tg
ij = 2nHaij

we get

1
2
∂t|A|2 = gj`aijak`∂tg

ik + gikgj`ak`∂taij = 2nHaika`iak`

+aij(n∇i∇jH − nHai`a`j + nHR̄i00j). (76)

Then
1

2
∂t|A|2 = nHaika`iak` + naij∇i∇jH + nHaijR̄i00j. (77)

We also have

∆aij = n∇i∇jH + nHasiasj − aij|A|2 − gk` (∇iLkj` +∇kL`ij) + gk`(R̄s
ik`asj + R̄s

ikja`s)
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and

1

2
∆|A|2 − |∇A|2 = aij∆aij = naij∇i∇jH + nHasiasja

ij − |A|4

− gk` (∇iLkj` +∇kL`ij) a
ij + gk`(R̄s

ik`asj + R̄s
ikja`s)a

ij
(78)

where L is the (0, 3)-tensor in Σt defined by Lijk = 〈R̄(∂i, ∂j)N, ∂k〉. Thus

1

2
(∂t −∆)|A|2 + |∇A|2 = |A|4 + nHaijR̄i00j

+ gk` (∇iLkj` +∇kL`ij) a
ij − gk`(R̄s

ik`asj + R̄s
ikja`s)a

ij.
(79)

Since

∇iLkj` +∇kL`ij = ∇̄iR̄kj0` + ∇̄kR̄`i0j + aikR̄0j0` + aijR̄k00` + aisR̄
s
kj`

+ak`R̄0i0j + akiR̄`00j + aksR̄
s
`ij

we have

gk`(∇iLkj` +∇kL`ij)a
ij = gk`(∇̄iR̄kj0` + ∇̄kR̄`i0j)a

ij − a`iaijR̄j00` + |A|2Ric(N,N)

+aisa
ijgk`R̄s

kj` − nHaijR̄i00j + a`ia
ijR̄`00j + gk`aijaskR̄

s
`ij.

Cancelling and grouping some terms one has

gk`(∇iLkj` +∇kL`ij)a
ij = gk`(∇̄iR̄kj0` + ∇̄kR̄`i0j)a

ij + |A|2Ric(N,N)

+aisa
ijgk`R̄s

kj` − nHaijR̄i00j + gk`aijaskR̄
s
`ij.

Since

−gk`(R̄s
ik`asj + R̄s

ikja`s)a
ij = aijgk`(aisR̄

s
kj` + askR̄

s
`ij)

we conclude that

1

2
(∂t −∆)|A|2 + |∇A|2 = |A|4 + |A|2Ric(N,N)

+ gk`(∇̄iR̄kj0` + ∇̄kR̄`i0j)a
ij + 2gk`(aisR̄

s
kj` + askR̄

s
`ij)a

ij.
(80)

�

Now, we consider

CR,T = {Ψ(x, t); ζ(r(Ψ(x, t))) + t ≤ ζ(R), x ∈ BR(p), t ∈ [0, T ]}

and we observe that BR′(o) × [0, TR′ ] ⊂ CR,T with TR′ = min
{

1
2
ζ(R), T

}
. We want to
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prove the following estimate.

Proposition 3.10 Let u be a solution of (35) defined in BR(o) × [0, T ]. If there exists

L1 > 0 such that Ric ≥ −L1g, then

sup
BR′ (o)×[0,TR′ ]

|A| ≤ 4√
δ

[
1 + L1 + C̃ + C +

ER′

ζ2(R)
+

1

2T

] 1
2

(81)

where ER, C and C̃ are non-negative constants depending on ξ, % and its derivatives.

Moreover, for m ≥ 1

sup
BR′ (o)×[0,TR′ ]

|∇mA| ≤ Cm

(
sup

BR(o)×[0,T ]

W 2, ξ(R), ζ(R), L1, C, C̃, ER′

)
. (82)

In order to prove this proposition we will study the evolution of the function f =

ψ(W 2)|A|2.
Lemma 3.11 If there exists constant L1 > 0 such that Ric ≥ −L1g, then

(∂t −∆) f ≤ −2δf 2 + 2(L1 + C̃)f + 2C
√
ψ
√
f − 2γ

W 3
ψ〈∇W,∇f〉 − 2δψ′|∇W |2f (83)

where C and C̃ are non-negative constants depending on % and its derivatives.

Proof. We have

(∂t −∆)f = 2|A|2ψ′W (∂t −∆)W + ψ(∂t −∆)|A|2 − 2|A|2(2ψ′′W 2 + ψ′)|∇W |2

−2〈∇ψ,∇|A|2〉

= −2|A|2ψ′W
(
W (|A|2 + Ric(N,N)) + 2W−1|∇W |2

)
+2ψ

(
|A|2(|A|2 + Ric(N,N))− |∇A|2 +R

)
− 2|A|2(2ψ′′W 2 + ψ′)|∇W |2

−2〈∇ψ,∇|A|2〉

= 2
(
ψ|A|2 − |A|2ψ′W 2

) (
|A|2 + Ric(N,N)

)
− 2ψ|∇A|2 + 2ψR

−2|A|2
(
3ψ′ + 2ψ′′W 2

)
|∇W |2 − 2〈∇ψ,∇|A|2〉

where in the second equality we used (32) and (75) and we denote

R := gk`(∇̄iR̄kj0` + ∇̄kR̄`i0j)a
ij + 2gk`(aisR̄

s
kj` + askR̄

s
`ij)a

ij.

In an appendix of [26] was showed that there exists non-negative constants C and C̃

depending on % and its derivatives such that R ≤ C|A|+ C̃|A|2. Then,

2ψR ≤ 2C
√
ψ
√
f + 2C̃f.
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The Kato’s inequality implies to

−2ψ|∇A|2 ≤ −2ψ|∇|A||2.

Since

ψ|A|2 − |A|2ψ′W 2 =
(
1− γ

γ − δW 2

)
f = −δψf,

we have

2
(
ψ|A|2 − |A|2ψ′W 2

) (
|A|2 + Ric(N,N)

)
= −2δf 2− 2δψfRic(N,N) ≤ −2δf 2 + 2δψL1f.

Therefore

(∂t −∆)f ≤ −2δf 2 + 2δψL1f − 2ψ|∇|A||2 + 2C
√
ψ
√
f + 2C̃f

−
(
6ψ′ + 4ψ′′W 2

)
|A|2|∇W |2 − 2〈∇|A|2,∇ψ〉.

We note that

−2〈∇|A|2,∇ψ〉 = −〈∇|A|2,∇ψ〉 − ψ−1〈∇ψ, ψ∇|A|2〉

= −4ψ′W |A|〈∇W,∇|A|〉 − ψ−1〈∇ψ,∇f〉+ ψ−1|A|2|∇ψ|2

= −ψ−1〈∇ψ,∇f〉+ 4ψ−1|A|2ψ′2W 2|∇W |2 − 4ψ′W |A|〈∇W,∇|A|〉.

Using Young’s inequality, we obtain

4ψ′W |A|〈∇W,∇|A|〉+ 2ψ|∇|A||2 + 2ψ−1ψ′
2
W 2|A|2|∇W |2 ≥ 0.

Therefore

−2〈∇|A|2,∇ψ〉 ≤ −ψ−1〈∇ψ,∇f〉+ 6ψ−1|A|2ψ′2W 2|∇W |2 + 2ψ|∇|A||2

hence

(∂t −∆)f ≤ −2δf 2 + 2(δψL1 + C̃)f + 2C
√
ψ
√
f − ψ−1〈∇ψ,∇f〉 (84)

−
(

6ψ′
(

1− ψ′

ψ
W 2

)
+ 4ψ′′W 2

)
|A|2|∇W |2.

Since

ψ − ψ′W 2 =
W 2

γ − δW 2

(
1− γ

γ − δW 2

)
= − δW 2

γ − δW 2
ψ = −δψ2,

we have

−
(

6ψ′
(

1− ψ′

ψ
W 2

)
+ 4ψ′′W 2

)
= −

(
6
ψ′

ψ
(−δψ2) +

8γδ

(γ − δW 2)3
W 2

)
= −2δψ′ψ.
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Hence

−
(

6ψ′
(

1− ψ′

ψ
W 2

)
+ 4ψ′′W 2

)
|A|2|∇W |2 = −2δψ′f |∇W |2. (85)

Moreover

ψ−1∇ψ = 2ψ′ψ−1W∇W = 2
γ

(γ − δW 2)2

γ − δW 2

W 2
W∇W =

2γ

W 3
ψ∇W (86)

and

0 ≤ δψ =
δW 2

γ − δW 2
≤

γ
2

γ − γ
2

= 1. (87)

Therefore, using (85), (86) and (87) we can rewrite (84) as

(∂t −∆)f ≤ −2δf 2 + 2(L1 + C̃)f + 2C
√
ψ
√
f − 2δψ′|∇W |2f − 2γ

W 3
ψ〈∇W,∇f〉.

�

Now, we can prove the Proposition 3.10.

Proof. Let η be a smooth function defined in CR,T by

η(Ψ(x, t)) =
(
ζ(R)− ζ(r(Ψ(x, t)))− t

)2
.

We have by Proposition 2.1 and (13) that

(∂t −∆)η = −2
√
η
(
∂t −∆

)
ζ − 2

√
η − 2|∇ζ|2

≤ 2
√
η

(
nξ′(r) + %2|∇s|2ξ(r)

(
〈∇ log %,∇r〉 − ξ′(r)

ξ(r)

))
− 2
√
η − 2|∇ζ|2

≤ 2nξ′(r)
√
η.

Then

(∂t −∆)(ηf) = η(∂t −∆)f + f(∂t −∆)η − 2〈∇f,∇η〉

≤ −2δηf 2 + 2(L1 + C̃)ηf + 2C
√
ψ
√
fη − 2γ

W 3
ψη〈∇W,∇f〉

−2δψ′|∇W |2ηf + 2nξ′(r)
√
ηf − 2〈∇η,∇f〉.

We observe that

−2〈∇η,∇f〉 = −2η−1〈∇η, η∇f〉 = −2η−1〈∇η,∇(ηf)〉+ 2η−1|∇η|2f

= −2η−1〈∇η,∇(ηf)〉+ 8ξ2(r)f

and
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−2γW−3ψη〈∇W,∇f〉 = −2γW−3ψ〈∇W, η∇f〉

= −2γW−3ψ〈∇W,∇(ηf)〉+ 2γW−3ψf〈∇W,∇η〉

≤ −2γW−3ψ〈∇W,∇(ηf)〉+ 2δψ′ηf |∇W |2 + 2
γ

δW 2
ξ2(r)f,

in which we used Young’s inequality. Therefore

(∂t −∆)(ηf) ≤ −2δηf 2 + 2(L1 + C̃)ηf + 2C
√
ψη
√
f − 2γW−3ψ〈∇W,∇(ηf)〉

+2δψ′ηf |∇W |2 +
2γ

δW 2
ξ2(r)f − 2δψ′|∇W |2ηf

2nξ′(r)
√
ηf − 2η−1〈∇η,∇(ηf)〉+ 8ξ2(r)f

= −2δηf 2 + 2(L1 + C̃)ηf + 2C
√
ψη
√
f − 2

〈
γψ

W 3
∇W +

∇η
η
,∇(ηf)

〉
+2

(
γ

δW 2
ξ2(r) + nξ′(r)

√
η + 4ξ2(r)

)
f.

It follows from γ
W 2 ≤ 1 and

√
η ≤ ζ(R) in CR,T that

(
γ

δW 2
+4

)
ξ2(r)+n

√
ηξ′(r) ≤

(
1

δ
+4

)
sup

BR′ (o)×[0,TR′ ]

ξ2(r)+nζ(R) sup
BR′ (o)×[0,TR′ ]

|ξ′(r)| := ER′

in BR′(o)× [0, TR′ ]. Thus

(∂t −∆)(ηf) ≤ −2δηf 2 + 2(L1 + C̃)ηf +
2C√
δ
η
√
f + 2ERf − 2

〈
γψ

W 3
∇W +

∇η
η
,∇(ηf)

〉
.

So

(∂t −∆)(ηft) = t(∂t −∆)(ηf) + ηf

≤ −2δηf 2t+ 2(L1 + C̃)ηft+
2C√
δ
η
√
ft+ 2ER′ft

−2

〈
γψ

W 3
∇W +

∇η
η
,∇(ηft)

〉
+ ηf.

Let (x0, t0) be the point where the function ηft attains a maximum value MR in BR′(o)×
[0, TR′ ]. We can suppose that t0 6= 0 and we note that

2δηf 2t0 ≤ 2(L1 + C̃)ηft0 +
2C√
δ
η
√
ft0 + 2ER′ft0 + ηf.

Thus multiplying by ηt0/2δ and grouping the terms we have
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M2
R ≤

L1 + C̃

δ
ηt0MR +

C

δ
3
2

η
3
2 t

3
2
0

√
MR +

ER
δ
t0MR +

η

2δ
MR

≤
[(

L1 + C̃

δ
ζ2(R) +

ER
δ

)
T +

ζ2(R)

2δ

]
MR +

C

δ
3
2

ζ3(R)T
3
2

√
MR

where in the last inequality we used that t0 ≤ T and η ≤ ζ2(R) in CR,T .
Therefore (√

MR

ζ(R)

)3

− 1

δ

[(
L1 + C̃ +

ER
ζ2(R)

)
T +

1

2

]√
MR

ζ(R)
− C

δ
3
2

T
3
2 ≤ 0

or yet

[(√
MR

ζ(R)

)2

− 1

δ

[(
L1 + C̃ +

ER
ζ2(R)

)
T +

1

2

]]√
MR

ζ(R)
− C

δ
3
2

T
3
2
R ≤ 0

In this case, either (√
MR

ζ(R)

)2

− 1

δ

[(
L1 + C̃ +

ER
ζ2(R)

)
T +

1

2

]
≤ CT

δ

which leads us to
√
MR

ζ(R)
≤ 1√

δ

[(
L1 + C̃ + C + ER

ζ2(R)

)
T + 1

2

] 1
2

,

or

CT

δ

√
MR

ζ(R)
≤ C

δ
3
2

T
3
2 .

Thus √
MR

ζ(R)
≤ max

{
1√
δ

[(
L1 + C̃ + C +

ER
ζ(R)2

)
T +

1

2

] 1
2

,
T

1
2

√
δ

}
:= CR.

Hence,

√
ηft

ζ(R)
(x, t) ≤

√
ηft

ζ(R)
(x0, t0) ≤ CR ∀ (x, t) ∈ BR′(o)× [0, TR′ ].

That is (
1− ζ(r) + t

ζ(R)

)√
ψ|A|t

1
2 ≤ CR in BR′(o)× [0, TR′ ].

Since ψ = W 2

γ−δW 2 ≥ %−2

γ−δ%−2 ≥ 1
1−δ ≥ 1 and ζ(r) + t < 3

4
ζ(R) in BR′(o)× [0, TR′ ] we have√

TR′ |A|(x, t) ≤ |A|
√
t ≤ 4CR in BR′(o)× [0, T ′R],
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hence

sup
BR′ (o)×[0,TR′ ]

|A| ≤ 4√
TR′

CR.

Therefore

sup
BR′ (o)×[0,TR′ ]

|A| ≤ 4√
δ

max

{(
L+ C̃ + C +

ER
ζ(R)2

+
1

2TR′

) 1
2

, 1

}

≤ 4√
δ

(
1 + L+ C̃ + C +

ER
ζ(R)2

+
1

2TR′

) 1
2

.

For the estimate in (82), we proceed inductively as Ecker-Huisken in [14] and Borisenko-

Miquel in [5]. We suppose that for each k = 0, 1, . . . , `− 1 there exists a constant Ck such

that

|∇kA| ≤ Ck

where Ck depends on the bounds of |∇mA|, on the tensors ∇̄mR̄ for 0 ≤ m ≤ k − 1 and

on the geometric data in BR(o)× [0, T ].

As in [14] and [5] we will use variants of the Simons’ inequality for higher order covariant

derivatives of A which have the form

1

2
(∂t −∆)|∇`A|2 + |∇`+1A|2 ≤ D`(|∇`A|2 + 1) (88)

where the constant D` depends on the bounds of |∇kA| and on the tensors ∇̄kR̄ for

0 ≤ k ≤ `− 1 in BR(o)× [0, T ]. We consider the function

h = |∇`A|2 + β|∇`−1A|2

where β is a positive constant to be chosen later. Setting β ≥ 2D` one has

1

2
∂th ≤

1

2
∆|∇`A|2 − |∇`+1A|2 +D`(|∇`A|2 + 1)

+
1

2
β∆|∇`−1A|2 − β|∇`A|2 + βD`−1(|∇`−1A|2 + 1)

≤ 1

2
∆h+ (D` − β)|∇`A|2 + βD`−1|∇`−1A|2 +D` + βD`−1

≤ 1

2
∆h− β

2
|∇`A|2 + βD`−1|∇`−1A|2 +D` + βD`−1

≤ 1

2
∆h− β

2
h+

β2

2
|∇`−1A|2 + βD`−1|∇`−1A|2 +D` + βD`−1.

Choosing β ≥ 2D`−1 we obtain

(∂t −∆)h ≤ −βh+ β2C̃` + D̃`, (89)
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where C̃` = 2|∇`−1A|2 and D̃` = 2D` + 2βD`−1 . Again, we consider η defined in CR,T as

η(ψ(x, t)) = (ζ(R)− ζ(r(ψ(x, t)))− t)2. Then, we have

(∂t −∆) η = −2
√
η (∂t −∆) ζ − 2|∇ζ|2

≤ 2 sup
BR(o)×[0,T ]

nξ′(r)
√
η − 2|∇ζ|2 := 2CR

√
η − 2|∇ζ|2

and

(∂t −∆) (ηh) = h (∂t −∆) η + η (∂t −∆)h− 2〈∇η,∇h〉

≤ 2CR
√
ηh− 2h|∇ζ|2 + (−βh+ β2C̃` + D̃`)η − 2

〈
η−1∇η,∇(ηh)− h∇η

〉
.

Therefore

(∂t −∆) (ηh) + 2
〈
η−1∇η,∇(ηh)

〉
≤ (2CR

√
η − 2|∇ζ|2 + 2η−1|∇η|2)h+ (−βh+ β2C̃` + D̃`)η.

It follows from −2|∇ζ|2 + 2η−1|∇η|2 = 6|∇ζ|2 that

(∂t −∆) (ηh) + 2
〈
η−1∇η,∇(ηh)

〉
≤ (2CRζ(R) + 6|∇ζ|2 − βη)h+ (β2C̃` + D̃`)η.

We have at a maximum point of ηh that

(βη − 2CRζ(R)− 6ξ2(r))h ≤ (β2C̃` + D̃`)ζ
2(R)

Since that η ≥ ζ2(R)/16 in BR′(p)× [0, TR] we have(
β

16
− 2CR
ζ(R)

− 6
ξ2(R)

ζ2(R)

)
h ≤ β2C̃` + D̃`.

Choosing

β ≥ max

{
2D`, 2D`−1,

32

ζ2(R)

(
CRζ(R) + 6ξ2(R)

)}
we get

h ≤ 1

6

ζ2(R)

ξ2(R)

(
β2C̃` + D̃`

)
.

Thus

|∇`A|2 ≤ 1

6

ζ2(R)

ξ2(R)

(
2β2|∇`−1A|2 + D̃`

)
− β|∇`−1A|2. (90)

A suitable choice of a large enough β yields the desired estimate in (82). �

Corollary 3.12 Let L1 > 0 be a constant such that Ric ≥ −L1g. If 0 < R′ < R1 < R2

are such that ζ(r) < 1
4
ζ(R1) < 1

4
ζ(R2) for all r ≤ R′ and u be a solution of (35) defined
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in BR2(o)× [0, T ] for T > 0, then

sup
BR′ (o)×[0,TR′ ]

|A| ≤ 4√
δ

[
1 + L1 + C̃ + C +

ER1

ζ2(R1)
+

1

2T

] 1
2

(91)

where ER1 , C and C̃ are non-negative constants depending on ξ, % and its derivatives. Mo-

reover, for m ≥ 1

sup
BR′ (o)×[0,TR′ ]

|∇mA| ≤ Cm

(
sup

BR1
(o)×[0,T ]

W 2, ξ(R1), ζ(R1), L1, C, C̃, ER1

)
. (92)

Proof. In fact, if we define

h = |∇`A|2 + β|∇`−1A|2 in BR1(o)× [0, T ]

and

η = (ζ(R1)−ζ(r)−t)2 in CR1,T =
{

Ψ(x, t); ζ(r(Ψ(x, t)))+t < ζ(R1), x ∈ BR1(o), t ∈ [0, T ]
}

we have the estimates announced.

�
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4 EXISTENCE OF THE FLOW IN COMPACT CASE

Now, we are ready to solve the problem (35) which we call R-approximate

problem.

Theorem 4.1 For R > 0, let BR = B(o,R) ⊂ P be a geodesic ball and Ψ0 : BR → M

a smooth immersion. Suppose that Ψ0(BR) = Σ0 is the graph of ϕ ∈ C∞(BR). Then the

initial value problem
∂Ψ
∂t

(x, t) = H(Ψ(x, t)), in BR × (0, TR)

Ψ(x, 0) = Ψ0(x) = Φ(x, ϕ(x)), in BR × {0}

Ψ(x, t) = Φ(x, ϕ(x)), on ∂BR × [0, TR]

(93)

has a unique smooth graph solution in BR × [0, TR] with TR = 1
2
ζ(R).

It’s enough to prove that there exists u ∈ C∞(BR × (0, TR))∩C(BR × [0, TR])

such that u solves the following problem
∂u
∂t

=
(
gij − uiuj

W 2

)
ui;j +

(
1 + 1

%2W 2

)
(log %)iui, in BR × (0, TR)

u(x, 0) = ϕ(x), in BR × {0}

u(x, t) = ϕ(x) if on ∂BR × [0, TR].

(94)

Then we have that Ψ(x, t) = Φ(x, u(x, t)) solves (93). The uniqueness of Ψ follows from

the uniqueness of u.

Proof. We have that the problem (94) with TR = 1
2
ζ(R) is uniformly parabolic, by our a

priori gradient estimates. Then there exists ε > 0 such that the problem
∂u
∂t

=
(
gij − uiuj

W 2

)
ui;j +

(
1 + 1

%2W 2

)
(log %)iui, in Ωε := BR × (0, ε)

u(x, 0) = u0(x), in BR × {0}

u(x, t) = ϕ(x) on ∂BR × [0, ε]

(95)

has a solution uε (see Theorem 8.2 in [22]). Moreover uε ∈ C∞(Ωε)∩C(Ωε) (by Theorem

8.2, Theorem 5.14 in [22] and linear theory). We note that for ε > 0 such that the problem

95 has a solution uε, our a priori gradient estimate gives us a Holder estimate (by [22],

Theorem 12.10) for uε which is independent of ε, by Corollary 3.5. Thus, there exists a

solution u for the problem (94) (see Theorem 8.3 in [22]). Moreover, this solution u is

unique by the parabolic comparison principle and u ∈ C∞(BR× (0, TR))∩C(BR× [0, TR])

by Schauder estimates.

�
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5 BARRIER AT INFINITY

In order to study the behavior of the solutions of (4) at infinity we use a notion

of regularity at infinity with respect to operator ∂t−Q for the set P×[0,∞). Proceeding as

Ripoll-Telichevesky in [28], we prove that when P satisfies the strict convexity condition,

P × [0,∞) is regular at infinity with respect to ∂t −Q.
We say that P satisfies the strict convexity condition (SC condition for short)

if for any x ∈ ∂∞P and a relatively open subset W ⊂ ∂∞P containing x, there exists a

C2 open subset U ⊂ P̄ such that x ∈ int(∂∞U) ⊂ W and P \ U is convex.

Figura 3: SC condition

Source: elaborated by author.

We recall that a function η ∈ C0(P × [0,∞)) is said a supersolution of ∂t −Q
if given any bounded domain U ⊂ P × [0,∞) and u ∈ C0(Ū) such that (∂t −Q)(u) = 0

in U with u|∂U ≤ η|∂U we have u|U ≤ η|U . If U ⊂ M is an open set, v ∈ C2(U) and

(∂t − Q)(v) ≥ 0 then v is a supersolution of ∂t − Q. Then we define a upper barrier as

follows

Definition 5.1 Given (x0, t0) ∈ ∂∞P×[0,∞), a constant C > 0 and open subsets U ⊂ P ,

I ⊂ [0,∞) such that x0 ∈ ∂∞U and t0 ∈ I, a function η ∈ C0(P × [0,∞)) is an upper

barrier for ∂t −Q relative to (x0, t0) and U × I with height C if

i. η is a supersolution for ∂t −Q;

ii. η ≥ 0 and η(x, t)→ 0 as (x, t)→ (x0, t0);

iii. η|P×[0,∞)\U×I ≥ C.

In a similar way, we define subsolutions and lower barries.

We define the regularity at infinity of the operator P × [0,∞) as following.

Definition 5.2 We say that P × [0,∞) is regular at infinity with respect to ∂t − Q if

given a point (x0, t0) ∈ ∂∞P × [0,∞), a constant C > 0 and open subsets W ⊂ ∂∞P

I ⊂ [0,∞) with x0 ∈ W, t0 ∈ I there exist open subsets U ⊂ P, J ⊂ I such that x0 ∈
int(∂∞U) ⊂ W, t0 ⊂ J and there exist upper and lower barriers η̄, η for ∂t − Q relatives

to (x0, t0) and U × J with height C. Here int(∂∞U) denotes the interior of ∂∞U in ∂∞P .
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In this context, we have

Proposition 5.1 Let P be a Hadamard manifold with sectional curvature KP ≤ −κ2 < 0

satisfying the SC condition and suppose that % satisfies (7). Then P × [0,∞) is regular at

infinity with respect to ∂t −Q.
Proof. Given (x0, t0) ∈ ∂∞P × [0,∞), a constant C > 0 and open subsets W ⊂ ∂∞P

and I ⊂ [0,∞) with x0 ∈ W , t0 ∈ I, we consider a C2 open subset U ⊂ P such

that x0 ∈ int(∂∞U) ⊂ W and P \ U is convex. Then we define d : U → R as the

distance function to ∂U in U which is a C2 function by regularity of U . Note that for

y = (x, s) ∈ KU = {(x, s) : x ∈ U, s ∈ R} one has

dist((x, s), K∂U) = dist(x, ∂U)
.
= d(x).

Hence we also denote by d the distance function to the Killing cylinder over ∂U defined

in KU . Recall that r(x) denotes the radial distance dist(x, o) in P and in the same way,

we extend the function r to M as r(x, s) = r(x).

In order to construct a upper barrier for ∂t −Q relative to (x0, t0) and U × I
with height C, we consider a function

w(x, t) = f(d(Ψ(x, t))) = f(d(x))

in U × I where f(d) = C1 exp(−αd) where C1 and α are positive constants to be fixed

later. Indicating derivatives with respect to d by · one has ∂tw = ḟ(d)∂td = 0. Hence we

have to choose constants C1 and α such that

Q[w] = ∆w − 1

W 2

〈
∇∇w∇w,∇w

〉
+

(
1 +

1

%2W 2

)〈
∇ log %,∇w

〉
≤ 0.

It follows from ∇w = ḟ(d)∇d, W 2 = %−2 + ḟ 2(d) and ∆w = ḟ(d)∆d+ f̈(d) that

〈∇ log %,∇w〉 = ḟ(d)
%′(r)

%(r)
〈∇r,∇d〉

We also have 〈
∇∇w∇w,∇w

〉
= ḟ 2〈∇∇dḟ∇d,∇d〉 = ḟ 2f̈

where we used that ∇∇d∇d = 0. Hence

Q[w] = ḟ∆d+ f̈ − ḟ 2

W 2
f̈ +

(
1 +

1

%2W 2

)
%′

%
〈∇r,∇d〉ḟ

= ḟ∆d+
1

%2W 2
f̈ +

(
1 +

1

%2W 2

)
%′

%
〈∇r,∇d〉ḟ
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Since P \ U is convex and KP ≤ −κ2 < 0, we have 〈∇r,∇d〉 > 0 and

∆d ≥ (n− 1)κ tanh(κd)

in U, where in the last inequality we used comparison theorems (see Theorems 4.2 and

4.3 of [7]). Thus,

Q[w] ≤ 1

%2W 2
f̈ + (n− 1)κ tanh(κd)ḟ +

(
1 +

1

%2W 2

)
%′

%
〈∇r,∇d〉ḟ

≤ f̈ +

(
(n− 1)κ tanh(κd) +

%′

%
〈∇r,∇d〉

)
ḟ =

(
(n− 1)κ tanh(κd) +

%′

%
〈∇r,∇d〉 − α

)
ḟ

in U × I. Using that lim infr→∞
%′(r)
%(r)

> 0, we take d0 ≥ 2 and U0 = {x ∈ U ; d(x) ≥ d0}
such that infU0

%′(r)
%(r)
〈∇r,∇d〉 > 0. Let also consider

U1 = {x ∈ U ; d(x) > d0 − 1} and U2 = U1 \ U0.

If we choose

0 < α ≤ infU0

%′(r)

%(r)
〈∇r,∇d〉 and C1 = Ceαd0

we have Q[w] ≤ 0 in U0 and

infU2×Iw(x, t) = infU2Ce
αd0e−αd(x) = C = f(d0).

Setting

w̃(x, t) =

w(x, t) if x ∈ U0, t ∈ I

C, if x ∈ U2, t ∈ I

one has a continuous function w̃ in the open subset U1 × I that can be extended to

P × [0,∞) as

η(x, t) =

ω(x, t) if x ∈ U0, t ∈ [0,∞)

C, if x ∈ P \ U0 t ∈ [0,∞).

which is an upper barrier for ∂t − Q relative to (x0, t0) and U × I with height C. In a

similar way, we obtain a lower barrier relative to (x0, t0) and U × I with height C. Hence,

P × [0,∞) is regular at infinity with respect to ∂t −Q.
�

Corollary 5.2 Let P be a Cartan-Hadamard manifold satisfying KP ≤ −κ2 < 0 and

suppose that % satifies (7). If P is rotationally symmetric, then P × [0,∞) is regular at

infinity with respect to ∂t −Q.
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Corollary 5.3 Suppose that P is a Cartan-Hadamard manifold satisfying

e2κr(x)

r(x)2+2ε
≤ KP (x) ≤ −κ2 < 0

for every x ∈ P such that r(x) = d(x, o) ≥ R∗, for R∗ large enough, where κ, ε > 0 are

constant and suppose that % satifies (7). Then P × [0,∞) is regular at infinity with respect

to ∂t −Q.

As we said before, in [28], the authors proved that under the conditions of the

above corollaries, P satisfies SC condition. So, such results are immediate consequences

of the Proposition 5.1.
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6 EXISTENCE OF THE FLOW

This section is devoted to prove that the problem


∂u
∂t

=
(
gij − uiuj

W 2

)
ui;j +

(
1 + 1

%2W 2

)
(log %)iui, in P × [0,∞)

u(x, 0) = ϕ(x), in P × {0}

u(x, t) = ϕ(x) if x ∈ ∂∞P, t ∈ [0,∞).

(96)

has a solution C∞(P × [0,∞))∩C0(P̄ × [0,∞)), when ϕ ∈ C∞(P )∩C(P ) is given. Then

we take Ψ(x, t) = Φ(x, u(x, t)) in P × [0,∞) and obtain a solution for (5).

From now on, if R > 0 we denote by uR the solution of the R-approximate

problem that is, the problem (94) inBR(o)×[0, TR), which existence is ensured by Theorem

4.1. We also denote

ΨR
t (x) = Φ(x, uR(x, t)) and ΣR

t = ΨR
t (BR(o)).

For a fixed r0 > 0, we consider ε0 > r0 the smallest integer belonging to the set{
ε; ε > r0, ζ(r) < 1

4
ζ(ε) ∀ r ≤ r0

}
and we take

I0 =

{
ε; ε ≥ ε0, ζ(r) <

1

4
ζ(ε) ∀ r ≤ r0

}
.

If ε ∈ I0 we denote uε,0 := uε,

Kt,ε,ε0 = Σε
t ∩Bε0(o)× [0,+∞) and Kt,ε0,ε0 = Σε0

t ∩Bε0(o))× [0,+∞).

Figura 4: Restriction of the graph to the cylinder Bε0(o)× [0,+∞]

Source: elaborated by author.
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We note that K0,ε,ε0 = K0,ε0,ε0 since the initial condition for r−approximate problem is

ϕ|Br(o) for all r > 0. Since K0,ε,ε0 is compact, there exists hypersurfaces M1,M2 such that

M1 is a translation of the Killing graph of the function vε0 , M2 is a reflection of M1 with

respect to the leaf P ×{0} and K0,ε,ε0 is in the strip bounded above and below by M2 and

M1, respectively.

Figura 5: Initial data in between M1 and M2

Source: elaborated by author.

We take T0 = 1
2
ζ(ε0) and

`0 = min
{
` ∈ N; R0(t) ≤ `ε0 ∀ t ∈ [0, T0]

}
where R0(t) = µ(t) + ε0 is implicitly defined by (49). By using the comparison principle

for the mean curvature flow and the Proposition 3.4 we have

sup
Br0 (o)×[0,T0]

|uε,0(x, t)| ≤ sup
Bε0 (o)×[0,T0]

|uε,0(x, t)| ≤ c0,

for all ε ∈ I0, where the constant c0 depends of ε0, `0, supBε0 (o) |u0|, %|Bε0 (o)
, ξ|Bε0 (o)

and

ζ(ε0).

Moreover, it follows from the Corollary 3.8 and Corollary 3.12 that for all

ε ∈ I0 we get

sup
Br0 (o)×[0,T0]

|∇uε,0(x, t)| ≤ c1,

and for m > 1

sup
Br0 (o)×[0,T0]

|∇muε,0| ≤ cm
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where c1 is a constant which depends of c0 and on the geometric data restrict to Bε0(o) and

cm is a constant which depends on cm−1,W
2
|Bε0 (o)×[0,T0]

and on the geometric data restricted

to Bε0(o). By using the Arzelà-Ascoli Theorem, we have that there exists a sequence (ε`)`

in I0 with ε` → ∞ as ` → ∞ and such that uε`,0 converges uniformly in C∞ to some

v0 ∈ C∞(Br0 × [0, T0]) which solves (94).

Now, let us consider a sequence {rk}∞k=0 such that r0 < r1 < · · · and rk →∞
as k → ∞. For each k ≥ 1 we consider εk the smallest integer belonging to the set{
ε; ε > rk, ζ(r) < 1

4
ζ(ε) ∀ r ≤ rk

}
and we take

Ik =

{
ε; ε ≥ εk, ζ(r) <

1

4
ζ(ε) ∀ r ≤ rk

}
and Tk =

1

2
ζ(εk).

Note that

I0 ⊃ I1 ⊃ · · · ⊃ Ik ⊃ Ik+1 ⊃ . . .

and Tk →∞ as k →∞.
We claim that is possible to get functions vk ∈ C∞(Brk × [0, Tk]) solving (94)

such that vk is the uniform limit of some sequence {uεj ,k}∞j=1 and vk|Br`×[0,Tl]
= v` for all

0 ≤ ` ≤ k.

We will use induction for to prove this claim. For k = 0, we was done above.

Let us suppose that we have a function vk ∈ C∞(Brk × [0, Tk]) solving (94) such that

vk is the uniform limit of some sequence {uε`,k}∞`=1 with ε` ∈ Ik. Our interior estimates

imply that we have uniform bounds of uε and its derivatives on Brk+1
× [0, Tk+1] for all

ε ∈ Ik+1. Then we choose a subsequence of uε`,k (which will also denote by uε`,k) such

that ε` ∈ Ik+1. By using the Arzelà-Ascoli Theorem for this subsequence we know that

there exist a subsequence {uε`,k+1}` of {uε`,k}∞`=1 such that uε`,k+1 converges uniformly for

some vk+1 ∈ C∞(Brk+1
× [0, Tk+1]) as ` → ∞. Since Brk × [0, Tk] ⊂ Brk+1

× [0, Tk+1] and

{uε`,k+1}` is a subsequence of {uε`,k}` we must have vk+1
|Brk×[0,Tk]

= vk.

Now, for (x, t) ∈ P × [0,∞), we take k ≥ 0 such that (x, t) ∈ Brk × [0, Tk] and

we define u(x, t) = vk(x, t). If (x, t) ∈ ∂∞P × [0,∞), we define u(x, t) = ϕ(x). It follows

from our construction that u is well-defined and u ∈ C∞(P × [0,∞)). We need to show

that u is continuous in (x, t) as x ∈ ∂∞P.
Given (x0, t0) ∈ ∂∞P×[0,∞) and ε > 0, there exists an open subset W ⊂ ∂∞P

such that x0 ∈ W and ϕ(y) < ϕ(x0) + ε
2

for all y ∈ W. Since P × [0,∞) is regular at

infinity with respect to ∂t − Q there exists open subsets U ⊂ P and J ⊂ [0,∞) such

that x0 ∈ int(∂∞U) ⊂ W, t0 ∈ J and η : P × [0,∞) −→ R upper barrier with respect to

(x0, t0) and U × J with height C := 2 maxP |ϕ|.
Let ω(x, t) = η(x, t) + ϕ(x0) + ε and ω̃(x, t) = ϕ(x0)− η(x, t)− ε be functions
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defined in P × [0,∞). We want to prove that

ω̃(x, t) ≤ u(x, t) ≤ ω(x, t), for (x, t) ∈ U × J.

Then we will have

|u(x, t)− u(x0, t0)| = |u(x, t)− ϕ(x0)| < ε+ η(x, t)

for all (x, t) ∈ U × J, which implies that

lim sup
(x,t)→(x0,t0)

|u(x, t)− ϕ(x0, t0)| ≤ ε.

Therefore u is continuous in (x0, t0) and consequently, u ∈ C∞(P×[0,∞))∩C0(P̄×[0,∞)).

For to prove that ω̃ ≤ u ≤ ω in U ×J we use the sequence {uε` = uε`,0}` where

each uε` is solution of
(∂t −Q)[u] = 0 in Bε` × [0, Tε` ]

u(x, 0) = ϕ(x), x ∈ Bε`

u(x, t) = ϕ(x), x ∈ ∂Bε` and t ∈ [0, Tε` ].

(97)

Since ϕ(x) is continuous, we can choose `0 >> 1 such that ∂Bε` ∩ U 6= ∅ and

|ϕ(x)− ϕ(x0)| < ε

2
∀ x ∈ ∂Bε` ∩ U,

when ` ≥ `0. We claim that uε` ≤ ω in Bε` × [0, Tε` ] ∩ (U × J) for ε` ≥ `0. In fact, it is

enough to prove that uε` ≤ ω in

∂
(
Bε` × [0, Tε` ] ∩ (U × J)

)
=

(
∂Bε` × [0, Tε` ] ∩ U × J

)
∪
(
Bε` × [0, Tε` ] ∩ ∂U × J

)
.

Since η is a supersolution, we get the inequality in Bε` × [0, Tε` ] ∩ (U × J) for ε` ≥ `0.

For (x, t) ∈ ∂Bε` × [0, Tε` ] ∩ U × J we have

uε`(x, t) = u0(x) < ϕ(x0) +
ε

2
≤ ω(x, t)

due to the choise of `0. If (x, t) ∈ Bε` × [0, Tε` ] ∩ (∂U × J) we get

uε`(x, t) ≤ max
∂Bε`

ϕ̃ ≤ 2 max
P∪∂∞P

|ϕ̃|+ ϕ(x0) ≤ ϕ(x0) + η(x, t) ≤ ω(x, t).

Thus, we conclude that vk ≤ ω in Brk× [0, Trk ]∩U×J ∀ k and consequently u ≤ ω

in U × J. In a similar way, we prove that u ≥ ω̃ in U × J and we conclude the proof of
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the Theorem 1.3.

We note that the Corollary 1.4 is a consequence of the Corollary 5.2 and the

Theorem 1.3. The same way, we have that the Corollary 1.5 is a consequence of the

Corollary 5.3 and the Theorem 1.3.
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7 CURVATURES FUNCTION FLOW

In this chapter we establish a priori interior gradient estimate for the solution

of a equation associated to the problem of normal deformation of a hypersurface by a

function curvature.

7.1 The flow by a curvature function

Now, our ambient manifold is (M = P × R, ḡ) with ḡ = g + ds2 and (P, g) a

n-dimensional complete Riemannian manifold. As before, given Ω a bounded domain in

P, the Killing graph of a function u ∈ C2(Ω) is the hypersurface in M given by

Σ[u] = {Φ(x, u(x));x ∈ Ω},

where Φ is the flow generated by Killing vector field X := ∂s. Fixed a coordinate system

in P the components of the induced metric in Σ[u] and of its inverse are given by σij =

gij + uiuj and σij = gij − 1
W 2u

iuj, respectively. The second fundamental form of Σ[u] has

components

aij = 〈∇̄XjXi, N〉 =
ui;j
W

,

where W =
√

1 + |∇Pu|2 and ∇P denotes the Riemannian connection in P. Moreover,

we consider in Σ[u] the orientation determined by the unit normal vector field N =
1
W

(
X − Φ∗∇Pu

)
.

Let us consider Γ an open convex cone with vertex at the origin in Rn, contai-

ning the positive cone Γ+ = {λ ∈ Rn;λi > 0}. Suppose that the positive λi axes does not

belong to ∂Γ and

λ = (λi) ∈ Γ =⇒ (λπ(i)) ∈ Γ ∀ π ∈ Pn

where Pn is the set of all permutations of order n. Then we have

Γ ⊂ {λ ∈ Rn;
n∑
i=1

λi > 0}.

We say that a positive differentiable function f defined in Γ is a curvature function if

f(λi) = f(λπ(i)) ∀ π ∈ Pn.

A one parameter family of functions

u : Ω× [0, T ) −→ R T > 0

defines a flow by curvature function f,
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Ψ(x, t) = Φ(x, u(x, t))

if and only if (
∂Ψ

∂t
(x, t)

)⊥
= f(k[u])N (98)

where k[u] denotes the principal curvatures of Σt := Σ[u(·, t)] calculated with respect to

the orientation given by the unit vector field N = 1
W

(
X −∇Pu

)
.

Note that

f(k[u])N =

(
∂Ψ

∂t
(x, t)

)⊥
=

(
∂

∂t
Φ(x, u(x, t))

)⊥
= utX

⊥

implies in

f(k[u]) = 〈X,N〉ut =
1

W
ut.

Then (98) defines a flow by f if and only if, u satisfies

− ut +Wf(k[u]) = 0. (99)

Following the literature, we say that a function u ∈ C2(Ω× [0, T )) is admissible if k[u] ∈ Γ

at each point of its graph.

In order to study the equation (99) some conditions must be imposed on f. We

suppose that f satisfies the following conditions:

fi =
∂f

∂ki
> 0

f is a concave function

fi(k) ≥ v0 for k ∈ Γ with ki < 0

(100)

where v0 is a positive constant. We note that since f is concave and Γ is convex we have

n∑
i=1

∂f(λ)

∂λi
(µi − λi) ≥ f(µ)− f(λ), ∀ λ, µ ∈ Γ. (101)



70

7.2 Auxiliary results

In this subsection we list some useful facts about the curvature function f. We

can see these results in detail in [16], [8] and [9].

For each t, let St be the space of all symmetric covariant tensors of rank two

defined in (Σt, σ) and SΓt be the open subset of those symmetric tensors a ∈ St for which

the eigenvalues with respect σ, are contained in Γ. (For simplicity, we will omit the index

t.) We define F : SΓ −→ R by setting

F (a) = f(λ(a))

where λ(a) = (λ1(a), · · · , λn(a)) are the eigenvalues of a. The mapping F is as smooth as

f (see [16]) and can be viewed as F (a]) = F (a, σ). In terms of coordinates, we have

F (aji ) = F (aij, σij)

where aji = σjkaki. We denote the first derivatives of F by

F ij =
∂F

∂aij
and F j

i =
∂F

∂aij

and the second derivatives of F are indicated by

F ij,kl =
∂2F

∂aij∂akl
.

Let us to extend the cone Γ to the space of the symmetric matrices of order n

which also we denote by S. For p ∈ Rn we define

Γ(p) = {r ∈ S : λ(p, r) ∈ Γ}

where λ(p, r) denotes the eigenvalues (calculated with respect to the Euclidean inner

product) of the matrix

A(p, r) =
1√

1 + |p|2

(
I − p⊗ p

1 + |p|2

)
r. (102)

We obtain the matrix A(p, r) from the Weingarten map with (p, r) in place of (∇u,∇2u)

and δij in place of σij. Now, introducing the notation

G(p, r) = F (A(p, r)) = f(λ(p, r))

we can write (99) in the form
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G(∇u,∇2u) = F [u] = f(k[u]) =
1

W
∂tu. (103)

The next lemma give us informations about the second derivatives of F. We

can find its proof in [16] and [9].

Lemma 7.1 Let {ei} be a local orthonormal basis of eigenvectors for a ∈ SΓ with corres-

ponding eigenvalues λi. Then, the matrix (F ij) is also diagonal with positive eigenvalues

fi. Moreover, F is concave and its second derivatives are given by

F ij,k`ξijξk` =
∑
k,`

fk`ξkkξ`` +
∑
k 6=`

fk − f`
λk − λ`

ξ2
k`.

Note that if we denote Gi = ∂G
∂pi

and Gij = ∂G
∂rij

, we have

Gij(∇u,∇2u) =
∂G

∂uij
=

∂F

∂a`k

∂a`k
∂uij

=
1

W

∂F

∂aij
=

1

W
F ij.

Hence, {Gij(∇u,∇2u)} is a positive-definite matrix.
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7.3 Interior gradient estimate

In this subsection we establish a priori interior estimate to the gradient of a

solution of (1).

Theorem 7.2 Let u be a admissible function such that solves the problem

 G(∇u,∇2u) = F [u] = f(k[u]) = 1
W
∂tu in Ω× (0, T )

u(x, t) = ϕ(x) in ∂Ω× [0, T ]
(104)

with Ω a bounded domain of P, T > 0 and ϕ ∈ C1(P ). If u is bounded in Ω̄× [0, T ) and

there exists a constant c1 > 0 such that sup∂Ω×[0,T ] |∇u(x, t)| ≤ c1, then

|∇u(x, t)| ≤ C

for (x, t) ∈ Ω×(0, T ), where C is a constant which depends of v0, c1 and c0 = supP×[0,T ) |u|.

Before to prove this theorem, we need an auxiliar result which gives us a useful formula

involving the second and third derivatives of a solution of (99).

Lemma 7.3 Let u be an admissible solution of (103). Then

Gijuk;ij = WGija`ju`ui;k +WG`jai`ujui;k +
1

W
G`ja`ju

iui;k

−GijRi`kju
` +

1

W
∂tuk −

1

W 3
u`u`;k∂tu.

Proof. Deriving (103) in the k − th direction with respect to the metric σ, we have

ut∂k

(
1

W

)
+

1

W
∂kut =

∂G

∂ui;j
ui;jk +

∂G

∂ui
ui;k = Gijui;jk +Giui;k.

Since

∂k

(
1

W

)
= −∂k(W )

W 2
= − 1

W 3
u`u`;k

and the Ricci identity gives us

ui;jk = ui;kj +Ri`kju
` = uk;ij +Ri`kju

`,

we get

Gijuk;ij = − 1

W 3
u`u`;kut +

1

W
∂kut −GijRi`kju

` −Giui;k. (105)
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Using that F (aji [u]) = G(∇u,∇2u) we compute

Gi =
∂G

∂ui
=
∂F

∂asr

∂asr
∂ui

= F r
s

∂

∂ui

(
σs`a`r

)
= F r

s ar`
∂

∂ui
(σs`) + F r

s σ
s` ∂

∂ui
(ar`).

Note that

F r
s ar`

∂σs`

∂ui
= F rησηsar`

∂σs`

∂ui
= WGrηar`σηs

∂σs`

∂ui

and σηsσ
s` = δ`η implies in

σηs
∂σs`

∂ui
= −σs` ∂

∂ui

(
gηs + uηus

)
= −σs`

(
δisuη + δiηus

)
= −σi`uη − δiησs`us.

Then

F r
s ar`

∂σs`

∂ui
= −WGrηar`

(
σi`uη + δiησ

s`us
)

= −WGiju`a
`
j −WG`juja

i
`.

In addition, it follows from

∂

∂ui

( 1

W

)
= − 1

W 2

∂

∂ui

(√
1 + gs`usu`

)
= − ui

W 3
,

that

F r
s σ

s`∂ar`
∂ui

= F r`ur;`
∂

∂ui

( 1

W

)
= − 1

W

F r`

W

ur;`
W

ui = − 1

W
Gr`ar`u

i.

Hence,

Gi = −WGija`ju` −WG`jai`uj −
1

W
G`ja`ju

i

and consequently,

Gijuk;ij = WGija`ju`ui;k +WG`jai`ujui;k +
1

W
G`ja`ju

iui;k

−GijRi`kju
` +

1

W
∂kut −

1

W 3
u`u`;kut.

�

In order to prove the Theorem 7.2 we will use the technique due to Korevaar

for to obtain interior gradient estimate.

Proof. [of the Theorem 7.2 ] We consider χ = γ(u)η(|∇u|2) defined in Ω× [0, T ) with

γ(s) = exp(2As) and η(s) = s where A > 0 is a constant to be choose later. Let (x0, t0)

be a maximum point of χ. If (x0, t0) ∈ ∂Ω × [0, T ), then we use that |∇u(x0, t0)| ≤ c1

and we obtain a bound for |∇u(x, t)| with (x, t) ∈ Ω× (0, T ). Hence, we can suppose that

(x0, t0) ∈ Ω× (0, T ). We can also suppose that |∇u(x0, t0)| 6= 0.

Since

χi = γ′ηui + 2η′γukuk;i = 2γ
(
Aηui + ukuk;i

)
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and

χt = γ′ηut + 2η′γuk∂tuk = 2γ
(
Aηut + uk∂tuk

)
,

at (x0, t0), we get

ukuk;i = −Aηui and uk∂tuk = −Aηut. (106)

Computing the second derivatives of χ we have

χi;j = γ′′ηuiuj + 2γ′uiu
`u`;j + γ′ηui;j + 2γ′uju

kuk;i + 2γuk;juk;i + 2γukuk;ij

= 2γ

{
2A2ηuiuj + 2Auiu

`u`;j + Aηui;j + 2Auju
kuk;i + ukjuk;i + ukuk;ij

}
.

Using (106), we obtain

χi;j(x0, t0) = 2γ

{
2A2ηuiuj − 2AuiAηuj + Aηui;j − 2AujAηui + ukjuk;i + ukuk;ij

}
= 2γ

{
Aηui;j − 2A2ηuiuj + ukjuk;i + ukuk;ij

}
.

Since Gij is definite positive and (x0, t0) is a local maximum point of χ, we have

0 ≥ 1

2γ
Gijχi;j = AηGijui;j − 2A2ηGijuiuj +Gijukjuk;i +Gijukuk;ij.

It is follows from Lemma 7.3 and the relations in (106) that

Gijukuk;ij = WGija`ju`u
kui;k +WG`jai`uju

kui;k +
1

W
G`ja`ju

iukui;k

−GijRi`kju
ku` +

1

W
uk∂tuk −

1

W 3
u`uku`;k∂tu

= −2AηWGija`ju`ui −
1

W
Aη2G`ja`j −GijRi`kju

`uk − 1

W 3
Aηut.

Therefore,

0 ≥ AηGijui;j − 2A2ηGijuiuj +Gijukjuk;i − 2AηWGija`ju`ui

− 1

W
Aη2G`ja`j −GijRi`kju

`uk − 1

W 3
Aηut

=
1

W
AηGijaij − 2A2ηGijuiuj +Gijuk;juk;i − 2AηWGija`ju`ui

−GijRi`kju
`uk − 1

W 3
Aηut,

where in the last step of the inequality above we use that aij =
ui;j
W
.
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Now, we fix a normal coordinate system {xi} in P centered at x0 such that

∂

∂x1
∣∣
(x0,t0)

=
∇u(x0, t0)

|∇u(x0, t0)|
.

In terms of these coordinates one has

u1(x0, t0) = |∇u(x0, t0)| > 0 and uj(x0, t0) = 0, j > 1.

Since the matrices {gij}|(x0,t0) and {gij}|(x0,t0) are diagonal in this frame, using (106) one

obtains at (x0, t0)

uk = uk, ∀ k

u1;1 = −Aη, u1;i = 0, if i > 1

σ11 =
1

W 2
, σjk = δjk, if j > 1.

After a rotation of the coordinates {x2, . . . , xn} we may assume that ∇2u(x0, t0) = {ui;j}
is diagonal. Then

a11 = −Aη
W
, aij = aji = 0 if i 6= j

a1
1 = −Aη

W 3
, aii = aii =

ui;i
W

if i > 1.

It is follows from

Gij =
∂G

∂ui;j
=

∂F

∂ak`

∂ak`
∂ui;j

=
1

W

∂F

∂aij
=

1

W

∂F

∂ak`

∂ak`
∂aij

=
1

W
σkiF j

k

and the Lemma 7.1 that Gij is also diagonal and we have

G11 =
1

W 3
f1, Gii =

1

W
fi if i 6= 1, Gij = 0 for i 6= j.

Thus,

0 ≥ 1

W
AηGiiaii − 2A2η2G11 +Gii(ui;i)

2 − 2Aη2WG11a1
1 −

1

W 3
Aηut.

As a11 = −Aη
W
< 0 implies in G11a11 ≥ 1

W
f1a11, we get

1

W
AηGiiaii −

1

W 3
Aηut ≥

Aη

W 2

[ n∑
i=1

fiaii −
ut
W

]
=
Aη

W 2

[ n∑
i=1

fi(k)ki − f(k)

]
.
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Taking µ = (µ1, 0, · · · , 0) ∈ Γ such that µ1 < 1 and f(µ) ≤ v0, it follows from (101) that

n∑
i=1

fi(k)(ki − µi)− f(k) ≤ −f(µ) ≤ f(µ).

Then we obtain

1

W
AηGiiaii −

1

W 3
Aηut ≥

Aη

W 2

[ n∑
i=1

fi(k)(ki − µi)− f(k) + f(µ)− f(µ) + f1(k)µ1

]
≥ Aη

W 2

[
f1(k)µ1 − f(µ)

]
≥ Aη

W 2
(µ1 − 1)f1(k)

where in the last step of the inequality above we use (100).

So

0 ≥ −
(

2A2η2 − (u1;1)2 + 2AWη2a1
1

)
G11 +

Aη

W 2
(µ1 − 1)f1.

Now, using that

2A2η2 − (u1;1)2 + 2AWη2a1
1 = 2A2η2 − A2η2 − 2Aη2 Aη

W 2
=
−A2η3 + A2η2

W 2

we have

0 ≥
A
(
η2 − η

)
W 2

Aη
1

W 3
f1 −

Aη

W 2
f1(1− µ1)

or equivalent
A(u4

1 − u2
1)

W 3
≤ 1− µ1.

If we choose A ≥ 2(1− µ1) we obtain

u4
1 − u2

1 −
1

2
(1 + u2

1)
3
2 ≤ 0.

Since u1 > 0, we have a bound for u1 and consequently for χ(x0, t0). Hence, when (x0, t0) ∈
Ω× (0, T ), there exists a constant C̃ which depends of v0 and supΩ×(0,T ) |u| such that

|∇u(x, t)| ≤ C̃

for any (x, t) ∈ Ω× (0, T ). Consequently, there existe a constant C > 0 which depends of

v0, c0 and c1 such that

|∇u(x, t)| ≤ C

for (x, t) ∈ Ω× (0, T ). �
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8 CONCLUSION

In this thesis, we considered the problem of the evolution of Killing graphs by

a curvature function. In the first part, we restricted to the study of the mean curvature

flow in a warped product space M = P ×% R, where P is a Cartan-Hadamard manifold.

More precisely, given a function ϕ ∈ C∞(P ) ∩C(P ), we investigated the existence of the

mean curvature flow starting from the Killing graph of ϕ and such that for every time,

the solution is also a Killing graph.

Under conditions imposed on the geometry of P and on the geometry of M,

we obtained a priori estimates for the height of the solution and for its derivatives of

all orders in compact parabolic cylinders as well. Such estimates allowed us to use the

standart theory of parabolic partial differential equations to solve the problem of mean

curvature flow in compact parabolic cylinders with initial data ϕ. Hence, by using an

exhaustion argument, we guaranteed the existence of a solution to the problem


∂u
∂t

=
(
gij − uiuj

W 2

)
ui;j +

(
1 + 1

%2W 2

)
(log %)iui, in P × [0,∞)

u(x, 0) = ϕ(x), in P × {0}

u(x, t) = ϕ(x) if x ∈ ∂∞P, t ∈ [0,∞).

(107)

By using a concept of convexity at infinity introduced in [28], we built barriers that assured

us that the solution obtained is continuous on the asymptotic boundary.

In the last part of this thesis, we considered the more general problem of the

evolution of Killing graphs by a curvature function. The ambient space considered was

a Riemannian product M = P × R. In this context, we obtained an a priori (interior)

gradient estimate.

As next steps, we hope to obtain higher order a priori estimates and, under

conditions on the geometry of the considered domain, investigate the existence of a solu-

tion for the flow by curvature function. We can also ask about the existence of solitons

for specific cases of curvature functions.
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