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This article discusses a fast and efficient classification of non-grain oriented electrical steel

and  its electromagnetic efficiency based on the analysis of the images of the Crystalline Ori-

entation Distribution Function (CODF). The study was carried out on samples of a non-grain

oriented electrical steel, semi-processed with 1.28% silicon, cold rolled with thickness reduc-

tions  of 50.0% and 70.0%, and annealed at 730 ◦C for 12 h. The material was also subjected

to  annealing heat treatment for grain growth at temperatures of 620 ◦C, 730 ◦C, 840 ◦C and

900 ◦C for 1, 10, 100 and 1000 min at each temperature. The database used was comprised

of  32 images. The extractors Gray Level Co-occurrence Matrix (GLCM), Local Binary Patterns

(LBP), Central Moments, Statistical Moments, and Hu’s Moments were combined with the

following classifiers: Bayes, k-Nearest Neighbor (kNN) with 1, 3, and 5 nearest neighbors,

MultiLayer Perceptron (MLP) with two configurations, Support Vector Machines (SVM) with

four different kernel types (linear, polynomial, radial basis function (RBF) and sigmoid). For

all  the using cases the method of partitioning data Hold Out. Measurements of precision,

sensitivity, specificity and positive predictive values, as well as the confusion matrix were

used  to evaluate the classifiers. The SVM with polynomial using the GLCM extractor had

the  highest accuracy rate of 89.00%, specificity of 86.93%, sensitivity of 80.69% and positive

predictive values of 80.34%. The time required for this combination, which was the best,

was only 0.6 ms. The results showed that this approach generated a new methodology for

the analysis of non-grain oriented electrical steels.
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2.1.1.  Crystallographic  texture

F
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j m a t e r r e s t e c h n o l

.  Introduction

here is an incessant search for highly efficient electrical
evices with low magnetic losses [1,2]. Consequently, many
esearchers have turned their attention to electric steels to
btain such characteristics [3–5].

Electrical steels present excellent magnetic properties due
o a higher silicon content in their chemical composition
ompared to ordinary steels. This increase in silicon con-
ributes to higher electrical resistivity and low magnetic
osses [6,7].

Electric steels are present, for example, in transformers and
lectric motors. In electric motors, the class of electrical steels
re non-grain oriented (NGO) [8,9]. The microstructural char-
cteristics of the NGO electrical steels are directly related to
heir electromagnetic performance, and their magnetic prop-
rties are independent of the direction considered, feature
nown as isotropy.

The literature states that the electromagnetic efficiency of
GO electrical steels is evaluated from magnetic hysteresis
urves [9–13], microstructural state [14–18] or the crystal-
ographic texture. Fig. 1 presents the microstructure, the
rystalline Orientation Distribution Function (CODF) and the
ysteresis curve to characterize 1.28% silicon electrical steel
ith a 70.0% thickness reduction, cold rolled and annealed at

00 ◦C.
Magnetic losses are minimized when the grain present in

he microstructure reach an optimal size. This ideal grain
ize is limited to 100 �m and 150 �m [13], which is when
he material has a higher electromagnetic efficiency. The
izes of the grains are directly related to the treatments that
he electric steel is submitted to and to the manufacturing
rocesses.

The hysteresis curve has its own interpretation for the
haracterization, since it shows the amount of energy, dur-
ng a total cycle, dissipated by the Joule effect. The measure of
he internal area of the hysteresis curve of the material shows
he portion of the electric energy consumed due to magnetic
osses [10].

The texture represents the orientation distribution of the
rystals which constitute the metallic materials such as elec-

rical steels. A full description of the texture of electrical steels,
equires the information concerning the planes, directions,
nd volume of each orientation present [19,20].
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ig. 1 – Characterization of the NGO electric steel with 1.28% of s
nnealed at 900 ◦C for 1000 min.
 9;8(1):1070–1083 1071

The characterization of the electrical steel texture can be
through an analysis of the CODF. However, this characteriza-
tion is an activity that requires very careful examination by an
experienced professional to avoid any errors.

On the other hand several techniques of digital image  pro-
cessing (DIP) and pattern recognition have been employed
in various fields of Materials Science to assist professionals
and experts in their analytical activities. Optical microscopy
studies are commonly used for the microstructural char-
acterization and analysis of cast iron [21,22], for graphite
density nodule calculations [23] and for the quantifica-
tion of microstructures in metals using artificial neural
networks.

The work of [18] carried out a computational study to
classify the electromagnetic efficiency of non-grain oriented
electrical steel through the microstructure analysis of the
material using Computational Vision. As a complement to
that work, this work studies and classifies the same material
as [18]; however, now the analysis is based on the crystallo-
graphic texture of the electric steel.

The present work aims to present an analysis of the recrys-
tallization electrical steel texture after the heat treatments
for grain growth and to carry out a DIP based computational
study to classify the texture of the electrical steel using CODF
images. Also, the scientific basis for the interaction between
the microstructure and the texture of the electric steel is
explored.

2.  Literature  review

This section begins with a review of the literature on materi-
als science and is followed by a review of the computational
aspects.

2.1.  Material  science  review

In this section we  present a review of the literature on crystal-
lographic texture, the CODF and the crystallographic texture
in electric steel.
Metals have polycrystalline structures formed by a large
number of microcrystals. The way crystal orientations are dis-
tributed in a polycrystalline material is the crystallographic
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ilicon with a thickness reduction of 70.0%, cold rolled, and
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Fig. 2 – Crysta

texture. A non-textured material is a material where the
orientation of the crystals in the polycrystalline aggregate is
totally random. Fig. 2a and b represent materials with crystal-
lographic texture and no crystallographic texture, respectively.

Solidification, plastic deformation and recrystallization in
metals lead to the formation of a preferred orientation. In this
orientation, certain crystallographic axes are defined geomet-
rically in relation to the macroscopic directions of the metallic
body.

The texture can be represented by an orientation of the
crystals considered ideal, which is called the component. For
a laminated sheet, the component is represented by a crys-
talline plane (hkl), which is parallel to the plane of the sheet,

and by the direction [uvw] belonging to the plane (hkl), which is
parallel to the rolling direction (RD). Consequently, the orienta-
tion of the crystals with respect to the RD, transverse direction
(TD) and normal direction (ND) axes of the plate is established.

Φ1

ϕ2= 0.0

ϕ2= 25.0

ϕ2= 50.0

ϕ2= 75.0 ϕ2= 80.0 ϕ2= 85.0

ϕ2= 55.0 ϕ2= 60.0

ϕ2= 30.0 ϕ2= 35.0

ϕ2= 5.0 ϕ2= 10.0

Φ

Fig. 3 – CODF of the annea
aphic texture.

A more  complete description of texture requires data about
the distribution of its crystallographic orientations. The Crys-
talline Orientation Distribution Function is used to describe
the plans, directions, and volume of each orientation present.
In addition, the CODF characterizes the probability density of
finding certain orientations in a sample of a steel plate, for
example.

The DF of the crystalline orientations is determined by a
relation between the RD of the sample, the TD and the ND
with the axes of the unit cell (x, y, z). This relation is through
the angles of Euler (�1, �, �2).

The CODF is represented in sections of constant �, as
shown in Fig. 3. Each section is a sequence of significance lev-

els that are interpreted by the abacus as a whole. An example
of this abacus is shown in Fig. 4.

According to Bunge [24], the �2 = 45◦ section has the main
information about the crystallographic planes and directions

Φ1

ϕ2= 90.0

ϕ2= 65.0 ϕ2= 70.0

ϕ2= 40.0 ϕ2= 45.0

ϕ2= 15.0 ϕ2= 20.0

Φ

90

90

Level 1: 1.0
Level 2: 2.0

Level 3: 4.0
Level 4: 6.0
Level 5: 7.4

led copper strip. [25].
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ture, is obtained through attribute extractors. These attributes
he �2 = 45◦ section along with the fibers ˛, � and � [26].

f electric steel. These planes and directions can be inter-
reted through the abacus as shown in Fig. 4, with these three
haracteristic fibers  ̨ (DR), � (DN) and � (DT). The fiber  ̨ is of
he family of directions 〈110〉 parallel to the rolling direction
RD); since the fiber � is of the family of directions 〈111〉 par-
llel to the normal direction (ND) and to the rolling direction
RD); and fiber � to family of directions parallel to the normal
irection (ND) and the rolling direction (RD).

The crystallographic texture in metallic materials may be
ue to several factors. Among the most important are the
exture resulting from the plastic deformation and the tex-
ure resulting from the recrystallization of the metal. When a
eformed metal is subjected to an annealing heat treatment,
ecovery and/or recrystallization may occur. The occurrence
f recrystallization may generate crystallographic orientations
tterly different from those caused by the deformation. This
ecrystallization can either lead to the absence of texture or to
he development of powerful texture components or simply
ot alter the texture of the deformation.

.1.2.  Crystalline  Orientation  Distribution  Function
-ray diffraction and Electron Backscatter Diffraction (EBSD)

echniques are distinct ways to determine the Crystalline Ori-
ntation Distribution Function.

The X-ray diffraction (XRD) technique evaluates the crys-
allographic texture in a macro manner, that is, it takes into
ccount a considerable volume of crystals of the material. The
RD technique obtains pole figures, based on stereographic
rojections. An X-ray beam strikes a sample, and part of the
eflected radiation is collected by a detection system that pro-
esses the signal and then provides the pole figures that will
ive rise to the CODF. The incidence of radiation on the sample

ccurs at the same rate as the diffraction angle 2� increases.

The EBSD technique is used when the texture shows few
rystals or even a single crystal. This procedure is based on the
Fig. 5 – Goss texture formation [28].

acquisition of images through scanning electron microscopy
(SEM).

In addition to CODF, the crystallographic texture of a metal-
lic material can also be evaluated through the inverse pole
figures. In most cases, they are calculated through the con-
ventionally obtained CODF, but can also be calculated directly
by the diffraction methods already mentioned. Through the
inverted pole figures it is possible to obtain the numerical
values on the level curves that establish the intensity of the
direction.

2.1.3.  Crystallographic  texture  of  electrical  steels
One of the major challenges for the producers of NGO elec-
trical steels is to obtain a crystallographic texture that is
favorable to the magnetic properties. This can be done by
decreasing the fraction of undesirable texture components
such as [111]//ND and increasing the percentage of favorable
components such as [100]//TD and [100]//RD.

In pursuit of the best texture for electrical steels, Goss
[27] has developed and patented a method of manufacturing
oriented grain steels which confer excellent magnetic perme-
ability in the rolling direction as a result of the formation of a
strong texture (110)[001]. This texture is called the Goss texture
component and Fig. 5 illustrates its formation.

The production process developed by Goss is used to man-
ufacture NGO electric steels, and requires that the machines
and equipment producing such material be mounted so that
the magnetic flux is parallel to the rolling direction of the
sheet.

2.2.  Computational  review

This section presents a review of the literature on attribute
extractors, pattern recognition, as well as the confusion
matrix and evaluation metrics.

2.2.1.  Feature  extraction
Relevant information about an image,  such as shape and tex-
highlight the differences and similarities between the objects
present in the images [29]. They are stored in a vector and are
usually input data for a classifier [30].
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The Central Moment extractor performs a description of
the shape of the objects present in the image  or its regions.
This representation is possible due to its function of transla-
tional invariance. For the construction of the attribute vectors,
this extractor uses the center of gravity of the object as the
reference point. Despite its invariance to translation, this
extractor is dependent on the scale and rotation of objects
[31,32].

Statistical Moments perform the extraction based on the
distribution of gray levels present in the image  under analysis.
The statistical distribution of these gray levels is obtained from
the histogram of the input image  [33].

One of the main problems present in the classification of an
object is the variation of the characteristics of scale or rotation.
Such questions are solved using the Hu Moments extractor
[33]. In this case the extraction is independent on the orienta-
tion, size, and position of the object. Mathematical equations
are responsible for constructing the attribute vector. In this
way, it is possible to describe two-dimensional geometric fig-
ures based on two-dimensional invariants [34–36].

Haralick et al. [37] stated that the texture of an image  is
an innate property of virtually all surfaces. The texture has
essential information about the structural arrangement and
its relation to the surrounding environment. Haralick pro-
posed an extraction based on the texture of the image.  This
extractor uses the resources derived from the Gray Level Co-
occurrence Matrix (GLCM) calculations that serve as the basis
for the preparation of the statistical measures known as Har-
alick Descriptors [38,39].

Ojala et al. [40] proposed a local Binary Patterns (LBP)
extractor. In this extractor, each pixel in the image  is assigned
a label from a local adaptive thresholding. Consequently, there
is the construction of a histogram and the description of the
texture. At first, the 3 × 3 kernel was used to perform the
thresholding. However, as it became necessary to describe
textures of several scales the LBP operator had to work with
different kernels.

2.2.2.  Pattern  recognition
Pattern recognition makes use of classifiers to recognize
structures or related characteristics. Applications that use
pattern recognition are quite numerous, and can be used
for facial recognition [41], in the field of medicine [42–44]
and in materials science [45,46]. The main classifiers present
in the literature are the Bayesian, Support Vector Machines,
Optimum Path Forest, Multilayer Perceptron and k-Nearest
Neighbors.

The Bayesian classifier uses a statistical approach to learn-
ing, and in this case, it assumes that the samples follow a
probability distribution. In this classifier, a sample is deter-
mined to belong to a class if this class is predicted to be the
most likely, that is, the class that received most of the prob-
abilities. The concepts of a priori and a posteriori probability
are used, to define, respectively, initial and posterior estimates
for these calculations [47,48].

Support Vector Machines (SVM) is a supervised learn-

ing algorithm used for classification, and regression analysis
[49,50]. The basis of the SVM is the theory of Statistical Learn-
ing Theory, which was developed by Vapnik from studies
started in [51]. The classifier presents a series of elements used
2 0 1 9;8(1):1070–1083

to obtain a suitable classifier. SVM is useful both for classifying
linearly separable and non-linear datasets [52]. In the second
case, it is common to use other kernels, for example, linear,
polynomial, radial basis function (RBF) and sigmoid.

The Optimum Path Forest (OPF) was developed by Papa et al.
[53], and has already been used in various applications [54–56].
The theory of graphs is the foundation for supervised learning
of the classifier. The OPF establishes a process of competition
between some reference samples, determined during train-
ing in search of partitioning the graph in a forest of optimal
paths.

The Multilayer Perceptron (MLP) is an artificial multilayer
neural network aimed at solving problems whose patterns
are non-linearly separable. Its structure is composed of an
input layer, one or more  hidden layers and an output layer
[57]. The formation of the hidden layers is by neurons that
influence the high order statistical acquisition. The net-
work connection weights measure the degree of correlation
between the activity levels of the neurons they connect. The
synaptic weights are adjusted through a network training
algorithm.

k-Nearest Neighbors (kNN) is a supervised learning algo-
rithm, introduced by [58–60]. The principle of this classifier
is to find the � samples closest to the unknown samples and
use them to classify an unknown example. kNN requires little
effort in the training stage. In contrast, the computing cost for
labeling an unknown sample is relatively high. The number of
neighbors is the parameter in kNN [61].

2.2.3.  Confusion  matrix  and  evaluation  metrics
The confusion matrix contains information about actual and
predicted classifications made by a classification system.
Thus, it is a valid tool to evaluate the efficiency of a compu-
tational classifier. This matrix validates supervised learning.
The main diagonal of the confusion matrix indicates the cor-
rect answers, and the other components correspond to the
classification errors.

The main diagonal extracts vital information from the con-
fusion matrix to calculate the evaluative metrics. The main
parameters used in the literature are accuracy (Acc), sensi-
tivity (Sen), specificity (Spe) and positive predictive values
(PPV).

The accuracy is the ratio of true items (positives and
negatives) for the entire population and represents the per-
centage of positive and negative samples correctly classified.
The specificity is the ratio between negative samples correctly
identified over all negative samples. The positive predictive
value is the proportion between the items correctly classified
and all items belonging to a class. Sensitivity measures the
proportion of items correctly classified among all true classi-
fications.

3.  Materials  and  methods

In this section, the chemical composition of the materials, the

manufacturing processes of the samples, the metallographic
preparation of the samples and the computational methodol-
ogy used are presented. Fig. 6 shows the process adopted from
the acquisition of the material to the classification.
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Fig. 6 – The procedures adopted in this study.

Table 1 – The chemical composition of the
semi-processed NGO electrical steel.

Element % (mass)

Carbon (C) 0.050
Manganese (Mn) 0.029
Silicon (Si) 1.280
Phosphorus (P) 0.025
Sulfur (S) 0.014
Aluminum (Al) 0.036
Niobium (Nb) –
Titanium (Ti) –
Boron (B) –
Vanadium (V) –

3

T
e
s

t
t
s
7
p

h
s
e
s

C
w

Table 2 – The manufacturing procedures of the samples
for each class.

Class Reductions Temperature Time

Class 0 50% 620 ◦C 1, 10, 100 and 1000 min
730 ◦C 1, 10, 100 and 1000 min

70% 620 ◦C 1, 10, 100 and 1000 min
730 ◦C 1, 10, 100 and 1000 min

Class 1 50% 840 ◦C 1, 10 and 100 min
900 ◦C 1 and 10 min

70% 840 ◦C 1 and 10 min

Class 2 50% 840 ◦C 1000 min
900 ◦C 100 and 1000 min

Class 0 exhibited no changes in its microstructure when the
microstructural state was compared with the annealed sam-
.1.  Materials

he materials correspond to portions of semi-processed NGO
lectrical steel sheets that measure 60 mm × 40 mm.  Table 1
hows the chemical composition.

Samples were annealed at 730 ◦C for 12 h and cold-rolled to
hickness reductions of 50% (1.2 mm thick) and 70% (0.6 mm
hick). For secondary recrystallization, these samples were
ubjected to post-heat treatments at temperatures of 620 ◦C,
30 ◦C, 840 ◦C and 900 ◦C, and were maintained at each tem-
erature for 1, 10, 100 and 1000 min.

The samples were then immersed in a solution of 5%
ydrofluoric acid and 95% hydrogen peroxide for about five
econds and then placed under running water to remove any
xcess solution. This acid treatment aims at alleviating the
urface tensions of the region to be analyzed.

X-ray diffraction was used to acquire images of the CODF.

obalt (� 1.7890 Å) and Molybdenum (� 0.7093 Å) radiations
ere used, respectively, on the laminated samples, reduced
70% 840 ◦C 100 and 1000 min
900 ◦C 1, 10, 100 and 1000 min

by 50% and 70%, submitted to the heat treatment for grain
growth.

DATA COLLECTOR software was used for the acquisition of
the data to obtain the pole figures. The software POPLA pro-
cessed these images and produced the CODF. The CODF plot
was via the SURFER software.

The 32 images of the database were divided into three dis-
tinct classes. The criterion for this division was the evolution
of the microstructural state of the material, in which the CODF
image  corresponds. Table 2 shows the manufacturing proce-
dures of the samples for each class.

The metallographic images were collected using an optical
microscope (Zeiss) with digital image  acquisition, and original
magnification ×100. All images had a resolution of 2436 × 2042
pixels.
ples at 730 ◦C for 12 h. Class 1 showed a considerable grain
growth compared to Class 0. These are grains with normal
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Class 0 Class 1 Class 2

rographs of samples.

Table 3 – Number of attributes generated by each
extractor.

Feature extraction Number of
attributes

Statistical Moments 10
Central Moments 7
Hu’s Moments 7
Gray Level Co-occurrence Matrix (GLCM) 14
Fig. 7 – Photomic

growth generated by primary recrystallization. The samples
from Class 2, showed an abnormal grain growth, character-
istic of the secondary recrystallization phenomenon. Class 2
represents the state of highest electromagnetic efficiency of
the material. Fig. 7 shows examples for each class.

3.2.  Computational  methodology

The CODF images were then submitted to feature extractors.
Table 3 shows all the methods used in this step, as well as their
respective number of attributes.
The original training and test samples were shuffled and
randomly divided into two sets, where 50% of the data of each
class was selected for training data and 50% for testing. Five
iterations were used to obtain the computational results.

Fibra γ (<111>//DN) Fibra

a b

50%-620 °C-1 min

50%-620 °C-1 min 50%-730  °C

50%-730 °C

d e

Fig. 8 – CODF of Class 0 and the respectiv
Local Binary Patterns (LBP) 48

The computational performance and efficacy of the
proposed method were evaluated with computational sim-

ulations using the following classifiers and their variations:
the MLP settings were 10/10/11 and 10/14/11 representing
the number of neurons in the input, hidden, and output

 γ (<111>//DN) 
Fibra γ (<111>//DN) 

 c

-1000 min 50%-730  °C-100 min

-1000 min 50%-730  °C-100 min

 f

e photomicrographs of the samples.
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Fibra γ (<111>//DN) Fibra γ (<111>//DN) 
Fibra γ (<111>//DN) 

a b c

50%-840 °C-100 min

50%-840 °C-100 min 50%-900 °C-10 min 70%-840 °C-10 min

50%-900 °C-10 min 70%-840  °C-10 min

d e f

Fig. 9 – CODF of Class 1 and the respective photomicrographs of the samples.
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(110)[001]

a b c

d e f

70%-840 ºC-100 min 70%-840 ºC-1000 min 50%-840 ºC-1000 min

70%-840 ºC-100 min 70%-840 ºC-1000 50%-840 ºC-1000 min

ectiv

l
S
t
a

Fig. 10 – CODF of Class 2 and the resp

ayers, respectively; kNN with 1, 3 and 5 neighbors; Bayesian;

VM with kernels linear, polynomial, RBF and sigmoid; and
he OPF with the distances Braycurtis, Canberra, Euclidean,
nd Squared-Chi-Squared. The SVM used here automatically
e photomicrographs of the samples.

performs the search for optimal parameters during train-

ing.

The validation of the applied models was performed using
the evaluation metrics for the classifiers, such as accuracy,
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Table 4 – Metrics obtained by feature extraction and classifiers in a virtual environment.

Extractors Classifiers Setup Specificity (%) Sensitivity (%) PPV (%) Accuracy (%)

Bayes Normal 69.14 ± 0.00 57.06 ± 0.00 79.57 ± 0.00 73.32 ± 0.00
SVM Linear

RBF
Polynomial
Sigmoid

79.15  ± 0.00
69.78 ± 0.00
86.93 ± 0.00
62.94 ± 0.00

62.94 ± 0.00
57.06 ± 0.00
80.69 ± 0.00
57.06 ± 0.00

84.00 ± 0.00
67.14 ± 0.00
80.34 ± 0.00
74.00 ± 4.89

79.13 ± 8.814
71.59 ± 0.00
89.00 ± 0.00
70.90 ± 0.00

GLCM OPF Braycurtis
Canberra Euclidean
Squared-Chi-Squared

88.69 ± 0.00
80.47 ± 0.00
78.64 ± 0.00
82.79 ± 0.00

62.94 ± 0.00
67.65 ± 0.98
62.94 ± 0.00
60.59 ± 0.00

61.19 ± 0.00
66.08 ± 0.00
69.93 ± 0.00
61.33 ± 9.54

76.09 ± 0.00
79.76 ± 0.00
76.64 ± 0.00
75.81 ± 0.00

MLP 10/10/11
10/14/11

78.94  ± 0.00
76.25 ± 0.00

58.24 ± 0.00
55.88 ± 0.00

68.13 ± 0.00
80.00 ± 0.00

74.64 ± 0.00
74.93 ± 0.00

KNN N = 1
N = 3
N = 5

80.89  ± 0.00
69.78 ± 0.00
60.93 ± 0.00

57.06 ± 0.00
57.06 ± 0.00
39.41 ± 0.00

54.99 ± 0.00
53.42 ± 0.00
50.00 ± 0.00

72.28 ± 0.00
71.25 ± 0.00
58.44 ± 0.00

Bayes Normal 76.62 ± 0.00 57.06 ± 0.00 71.52 ± 0.00 76.78 ± 0.00
SVM Linear

RBF
Polynomial Sigmoid

85.47  ± 0.00
62.94 ± 0.00
85.47 ± 0.00
62.94 ± 0.00

74.71 ± 0.00
57.06 ± 0.00
74.71 ± 0.00
57.06 ± 0.00

73.46 ± 0.00
74.00 ± 0.00
73.46 ± 0.00
74.00 ± 0.00

8578 ± 0.00
70.90 ± 0.00
76.21 ± 0.34
70.90 ± 0.00

LPB OPF Braycurtis
Canberra Euclidean
Squared-Chi-Squared

90.38 ± 0.00
89.38 ± 0.00
83.86 ± 0.00
89.69 ± 0.00

74.71 ± 0.00
71.18 ± 0.00
80.59 ± 0.00
79.41 ± 0.00

82.35 ± 0.00
69.42 ± 0.00
77.32 ± 0.00
79.10 ± 0.00

87.85 ± 0.00
83.29 ± 0.00
88.55 ± 0.00
87.72 ± 0.00

MLP 10/10/11
10/14/11

89.80  ± 1.33
91.36 ± 1.96

75.88 ± 0.00
77.06 ± 0.00

76.29 ± 0.00
79.41 ± 0.00

86.61 ± 1.61
88.55 ± 3.12

KNN N = 1
N = 3
N = 5

78.43  ± 0.00
68.17 ± 0.00
75.09 ± 0.00

62.94 ± 0.00
62.94 ± 0.00
67.65 ± 0.00

59.98 ± 0.00
67.67 ± 0.00
71.52 ± 0.00

76.78 ± 0.00
75.40 ± 0.00
80.10 ± 1.23

Bayes Normal 52.94 ± 0.00 57.06 ± 0.00 64.00 ± 0.00 60.90 ± 0.00
SVM Linear

RBF
Polynomial Sigmoid

60.95  ± 0.00
58.94 ± 0.00
72.52 ± 8.30
52.94 ± 0.00

52.94 ± 0.00
52.94 ± 0.00
57.65 ± 0.00
47.65 ± 0.00

69.57 ± 0.00
57.67 ± 0.00
53.39 ± 0.00
64.00 ± 0.00

66.44 ± 0.00
75.05 ± 0.00
70.89 ± 0.00
60.90 ± 0.00

Central Moments OPF Braycurtis
Canberra Euclidean
Squared-Chi-Squared

61.71 ± 0.00
76.43 ± 0.00
70.27 ± 0.00
67.02 ± 0.00

45.29 ± 0.00
68.82 ± 0.00
58.24 ± 0.00
48.24 ± 0.00

45.42 ± 0.00
68.82 ± 0.00
59.70 ± 0.00
76.67 ± 0.00

63.94 ± 0.00
71.63 ± 0.00
73.69 ± 0.00
73.81 ± 0.00

MLP 10/10/11
10/14/11

79.50  ± 0.00
79.42 ± 0.00

70.59 ± 0.00
68.82 ± 0.00

77.89 ± 0.00
68.01 ± 0.00

79.93 ± 0.00
72.80 ± 0.00

KNN N = 1
N = 3
N = 5

79.21  ± 0.00
67.97 ± 0.00
62.94 ± 0.00

68.82 ± 0.00
51.18 ± 0.00
57.06 ± 0.00

68.74 ± 0.34
49.22 ± 0.00
74.00 ± 0.00

71.28 ± 0.00
67.09 ± 0.00
70.90 ± 0.00

Bayes Normal 71.20 ± 0.00 61.96 ± 0.00 51.45 ± 0.09 79.90 ± 0.00
SVM Linear

RBF
Polynomial Sigmoid

68.17  ± 0.00
68.17 ± 0.00
70.95 ± 0.00
62.94 ± 0.00

62.94 ± 0.00
62.94 ± 0.00
62.94 ± 0.00
57.06 ± 0.00

77.67 ± 0.00
76.67 ± 0.00
79.57 ± 0.00
74.00 ± 0.00

75.40 ± 0.00
75.40 ± 0.00
76.44 ± 0.00
70.90 ± 0.00

Hu’s Moments OPF  Braycurtis
Canberra Euclidean
Squared-Chi-Squared

68.17 ± 0.00
77.14 ± 0.00
73.96 ± 0.00
69.78 ± 0.00

62.94 ± 0.00
62.94 ± 0.00
39.41 ± 0.00
57.06 ± 0.00

76.67 ± 0.00
73.16 ± 0.00
40.77 ± 0.00
73.64 ± 0.00

75.40 ± 0.00
76.78 ± 0.00
60.52 ± 0.00
72.63 ± 0.00

MLP 10/10/11
10/14/11

73.40  ± 0.00
75.49 ± 0.00

68.82 ± 0.00
71.18 ± 0.00

79.57 ± 0.00
70.83 ± 1.34

79.90 ± 0.00
71.56 ± 0.00

KNN N = 1
N = 3
N = 5

71.67  ± 0.00
58.48 ± 0.00
76.86 ± 0.00

62.94 ± 0.00
33.53 ± 0.00
71.18 ± 0.00

63.78 ± 0.00
50.00 ± 0.00
72.09 ± 0.00

79.90 ± 0.00
55.33 ± 0.01
72.25 ± 4.29

Bayes Normal 78.63 ± 0.00 33.53 ± 0.00 75.00 ± 0.00 74.39 ± 0.00
SVM Linear

RBF
Polynomial Sigmoid

63.40  ± 0.00
75.15 ± 0.00
70.49 ± 0.00
62.94 ± 0.00

68.82 ± 0.34
68.82 ± 0.00
73.53 ± 0.00
57.06 ± 0.00

79.57 ± 0.00
67.10 ± 0.00
75.50 ± 0.00
74.00 ± 0.00

79.90 ± 0.01
71.97 ± 0.00
74.60 ± 1.64
70.90 ± 0.00
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– Table 4 (Continued)

Extractors Classifiers Setup Specificity (%) Sensitivity (%) PPV (%) Accuracy (%)

Statistical Moments OPF Braycurtis
Canberra Euclidean
Squared-Chi-Squared

62.94 ± 0.00
1759.13 ± 0.00
72.05 ± 0.00
79.74 ± 0.00

57.06 ± 0.00
45.29 ± 0.00
74.71 ± 0.00
74.71 ± 0.00

74.00 ± 0.00
70.00 ± 0.00
72.84 ± 0.00
75.00 ± 0.00

70.90 ± 0.00
65.71 ± 0.00
74.39 ± 0.00
76.47 ± 0.00

MLP 10/10/11
10/14/11

77.18  ± 0.00
70.75 ± 0.00

68.82 ± 0.00
71.18 ± 0.00

72.73 ± 0.00
74.45 ± 0.00

70.93 ± 0.00
73.29 ± 2.89

KNN N = 1 60.62  ± 0.00
71.
68.

33.53 ± 0.00 43.33 ± 0.00 54.98 ± 0.00
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N = 5

ensitivity, specificity and PPV. The work developed here does
ot state if an extractor-classifier combination is better or
orse than another, it only answers which are the most suit-

ble for this application.
The results generated by the computational classification

ystem were also compared to the results produced by the tra-
itional methods of analysis performed by a specialist. This
pecialist used photomicrographs to determine the electro-
agnetic performance of the electric steel under study.

.  Results

he results of this study are divided into two subsections:
rst, the results related to the study and analysis of the
aterials through their respective CODF images and the pho-

omicrographs, and second, the computational results for the
lassification of electrical steel from the CODF images.

.1.  Results  of  materials  science

he Class 0 samples did not present any significant changes in
heir microstructure when compared to the material without
reatment. The size of the grains after treatment was much
ower than the ideal defined by [13]. The crystallographic tex-
ure of these samples can be observed in Fig. 8a–c. The figures
xhibit the sections of �2 = 45◦ only for the formation of fiber

 (〈111〉//DN). There is no Goss Component in Class 0.
The photomicrographs of Fig. 9d–f correspond to Class 1

nd reveal considerable grain growth compared to the Class
 samples in Fig. 8d–f. In Class 1 the grains are uniform and
quiaxial. Thus, the increase in temperature and annealing
ime is directly related to increasing the grain size of the sam-
les of this class.

Fig. 9a–c present the CODF in the sections of �2 = 45◦. An
nalysis of its crystallographic texture reveals only the forma-
ion of the fiber � (〈111〉//DN). Still without the formation of the
oss component which characterizes secondary recrystalliza-

ion.
Fig. 10d–f belongs to Class 2. Samples of this class show an

bnormal growth of some grains. This phenomenon is called
econdary recrystallization and it is the result of a deviation
rom the conventional grain growth pattern that occurs when
he microstructure becomes unstable, and growth occurs only

n a small number of grains. The remaining grains of the
ample remain unchanged until grains with abnormal growth
onsume them. The secondary recrystallization is the result
f the increase in temperature and annealing time.
59 ± 0.00
41 ± 0.00

62.94 ± 0.00
47.06 ± 0.00

57.59 ± 0.00
78.41 ± 1.42

75.40 ± 0.00
73.11 ± 0.68

The analysis of the crystallographic texture of Class 2 is
through Fig. 10a–c. Their CODF show the appearance of com-
ponent (110) [001] on the right and bottom side of each CODF.
The formation of this component coincides with the onset of
secondary recrystallization.

The thermal treatment at 840 ◦C for 1000 min  shows the
formation of component (110) [001] (Fig. 10c), with intensity
3 and the structure of this component coincides precisely in
the heat treatment in which the phenomenon of abnormal
grain growth was observed through the photomicrography in
Fig. 10f.

4.2.  Computational  results

All methodologies were implemented in C/C++ using Visual
Studio 2012. In addition, this study used the OpenCV 3.0 and
the computational process was performed on a computer with
a Mac X El Capitan 10.11.2 operational system, Intel Core i5
processor with 2.4 GHz and 8 GB RAM.

Table 4 shows the average and standard deviation values for
accuracy, sensitivity, positive predictive value (PPV) and speci-
ficity from the classifiers based on Bayes, MLP,  kNN, OPF, and
SVM, using the five extractors.

The results in Table 4 show that the most accurate is
the GLCM extractor combined with the SVM classifier using
the polynomial kernel (89.00%). The LBP also presented good
accuracy results with the OPF classifier using the Euclidean
distance (88.55%) and with the MLP-10/14/11 (88.55%), OPF
with the distance Braycurtis (87.85%), followed by OPF with
Squared-Chi-Squared distance (87.72%), MLP with 10 input
neurons, 10 hidden neurons and 11 neurons in the output
(86.61%), SVM with Linear kernel (85.78%), OPF with Canberra
(83.29%), and KNN with � equal to 5 (80.10%). The percentage
values of the sensitivity, specificity, and PPV metrics presented
in Table 4 reaffirm the reliability of the values shown in the
accuracy of the extractor-classifier combinations. The confi-
dence interval used was 95%.

The accuracy results in Table 4 for Hu’s Moments, Central
Moments and Statistical Moments were lower compared to
the GLCM and LBP extractors. These results are justified as
these extractors acquire information about the shapes of the
objects, which is a complication due to the similarity in the
formats between the CODF of the classes.
The best results achieved by each classifier are shown in
Table 5, detailing the training, testing and total times. Also, the
GLCM and LBP extraction time is displayed. By making a direct
comparison between the two extractors that obtained the best
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Table 5 – The extraction time, training time (TrT), testing time (Tst) and total time (TT) for all feature extractions obtained
by the best classifiers.

Extractor Classifier TrT(s) TsT(s) TtT(s) Extraction
time (s)

GLCM SVM
(Polynomial)

0.000600 ± 0.000490 0.00 ± 0.00 0.000600 0.230

OPF (Euclidean) 0.000200 ± 0.000400 0.00 ± 0.00 0.000200
MLP (10/14/11) 0.049000 ± 0.032094 0.00 ± 0.00 0.049000
OPF (Braycurtis) 0.000300 ± 0.000400 0.00 ± 0.00 0.000300
OPF (Squared-
Chi-Squared)

0.000800 ± 0.000400 0.001600 ± 0.001506 0.002400

LBP MLP (10/10/11) 0.035000 ± 0.007014 0.00 ± 0.00 0.035000 0.120

SVM (Linear) 0.005000 ± 0.000001 0.00 ± 0.00 0.005000
0 

1

OPF (Canberra) 0.000450 ± 0.00000
KNN (� = 5) 0.010000 ± 0.00000

results in the classification metrics, the LBP extractor, even
with a much more  significant number of attributes extracted,
was two times faster than the GLCM extractor.
Another analysis is based on the confusion matrix pre-
sented in Table 6, which depicts the classes under study and
the classification results obtained according to the classifier
and the feature extraction methods used.

Table 6 – Average confusion matrices for 5 runs using the best 

extracted using the GLCM and LBP methods.

True class Classified as SVM – Polynomial (GLCM

Class 1 3.4 

Class 1 Class 2 0.0 

Class 3 0.0 

Class 1 1.2 

Class 2 Class 2 3.2
Class 3 0.0 

Class 1 0.0 

Class 3 Class 2 0.1 

Class 3 2.9 

True class Classified as OPF – Braycurtis (LBP) 

Class 1 6.0 

Class 1 Class 2 3.0 

Class 3 2.0 

Class 1 0.0 

Class 2 Class 2 1.0 

Class 3 0.0 

Class 1 2.0 

Class 3 Class 2 0.0 

Class 3 3.0 

True class Classified as SVM – Linear (LBP) 

Class 1 3.0 

Class 1 Class 2 1.2 

Class 3 1.4 

Class 1 3.0 

Class 2 Class 2 1.0 

Class 3 0.4 

Class 1 0.0 

Class 3 Class 2 0.9 

Class 3 1.6 
0.00 ± 0.00 0.0004500
0.00 ± 0.00 0.010000

As presented in this article, the best extractor in [18] was
GLCM. However, in [18] the best extractor had the highest val-
ues of accuracy with the classifier kNN with � equal to 1,

while in this article the highest values were achieved with
the SVM classifier and the Polynomial kernel. Although the
values of the evaluative metrics in [18] are slightly higher
than those presented in this article, where the classification

classifiers under comparison applied to the features

) OPF – Euclidean (LBP) MLP – 10/14/11 (LBP)

2.0 6.8
1.0 3.2
1.5 2.6

3.0 0.0
5.0  4.5
1.0 0.0

1.0 1.2
0.0 0.8
2.0 2.4

OPF – Squared-Chi-Squared (LBP) MLP – 10/10/11 (LBP)

7.0 6.8
3.0 3.0
5.0 2.4

1.0 1.0
0.2 0.6
0.0 0.6

0.0 0.2
0.0 0.4
1.0 1.0

OPF – Canberra (LBP) KNN – � = 5 (LBP)

4.0 8.0
2.4 4.0
2.6 5.0

2.8 0.3
1.6 0.7
0.0 0.4

0.0 0.0
1.2 0.6
2.4 1.2
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ethodology of the electric steel was based on the crystallo-
raphic texture.

The computational results were coherent with the special-
st’s results, confirming again that the study conducted here
s suitable to evaluate the performance of the electromagnetic
ffects of a material through the CODF.

.  Conclusion

he present work presents an innovative methodology for the
lassification of non-grain oriented electrical steel in terms
f its electromagnetic efficiency. Traditionally this classifica-
ion is performed by a thorough analysis of the CODF images
nd the hysteresis curves. This study successfully developed,
mplemented, and tested a computational solution with a high
ercentage of accuracy and reliability in the classification of
hese electrical steels. Only the analysis of the CODF images
ere used, and the results superseded the limitations related

o the general study carried out by specialists. This work also
resented, as a significant contribution, a rapid and precise
utomation of this classification process.

The best result for classification accuracy was the GLCM
xtractor combined with the SVM classifier and the polyno-
ial kernel. The evaluation metrics for this model were 89.00%

ccuracy, 86.93% specificity, the sensitivity of 80.69% and PPV
f 80.34%.

The authors concluded that the model is useful, within the
ccepted tolerance range, for use at an academic level by stu-
ents, engineers, researchers and specialists in the areas of
enewable energy with a focus on energy efficiency, engineer-
ng and materials science. Consequently, it may be considered

 viable, reliable and fast option for obtaining accurate classi-
cation results.
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