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Abstract
This study reports on the deepest records (~ 24 m depth) of coral bleaching in a naturally temperature-stable environment (>
26 °C with an intra-annual variability of ~ 2 °C), which was recorded during a mass bleaching event in the locally dominant,
massive scleractinian coral Siderastrea stellata in equatorial waters of Brazil (SW Atlantic). An inter-annual analysis (2002–
2017) indicated that this bleaching event was related to anomalies in sea surface temperature (SST) that led to the warmest year
(2010) in this century (1 to 1.7 °C above average). Such anomalies caused heat stress (28.5–29.5 °C) in this equatorial environ-
ment that resulted in a bleaching event. Our results suggest that the increase in SST, low turbidity, and weak winds may have
acted together to affect these stress-tolerant corals in marginal reefs. The equatorial coastline of Brazil is characterized by low
intra-annual and inter-annual variations in SST, which suggests that the S. stellata corals here may be acclimatized to these stable
conditions and, consequently, have a lower bleaching threshold because of lower historical heat stress.
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Introduction

The El Niño climate phenomenon is linked to abnormally
warm sea surface temperatures (SSTs) in the Indo-Pacific re-
gion. Furthermore, El Niño is connected to major changes in
the atmosphere through another process, known as the south-
ern oscillation (SO). Together these two processes are com-
monly known as the El Niño Southern Oscillation (ENSO)

(Enfield and Mayer 1997; Rossi and Soares 2017), which
has many ecological impacts on reefs worldwide, depending
on their geographic location, including mass coral bleaching
events (Hughes et al. 2017).

High SST anomalies were observed during the thermal
stress events of 1997–1998, 2009–2010, and 2015–2016,
which had visible impacts on tropical reefs in various regions
of the world (Guest et al. 2012; Hughes et al. 2017). Evidence
connecting the health of reefs to thermal stress is commonly
reported from the Indo-Pacific and the Caribbean Sea and
represents a direct ecosystem response to El Niño events
(i.e., coral bleaching due to warmer waters) (Hughes et al.
2017; Nohaïc et al. 2017). Bleaching events have increased
in frequency and intensity and can lead to reductions in coral
cover and diversity, mainly in stress-sensitive species (Hughes
et al. 2018). In the tropical southwestern Atlantic, changes in
SSTand lower wind speeds during El Niño warm events have
been linked indirectly to coral bleaching (Ferreira et al. 2013;
Dias and Gondim 2016).

Reefs in the southwest Atlantic are predominantly restrict-
ed to the Brazilian coastline (Leão et al. 2016). These reefs are
considered a marginal ecosystem, with scleractinian corals
living at the limit of their turbidity and sedimentation
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tolerance (Suggett et al. 2012). Tropical reefs in Brazil stretch
from the Amazon River to the Cape of São Roque (0° 30′ S to
5° 29′ S) in the equatorial margin of the southwest Atlantic,
representing a transition between Caribbean and Brazilian
reefs (Leão et al. 2016). Coral bleaching is well documented
in shallow-water Brazilian reefs; however, there are few pub-
lished records of bleaching at low latitudes in the Atlantic
(Ferreira et al. 2013). Despite the socioeconomic and ecolog-
ical importance of reefs, there is a knowledge gap in terms of
their response to environmental stress and bleaching in the
equatorial Atlantic (Leão et al. 2016). Naturally temperature-
stable environments (e.g., near-equatorial reefs) can provide
insights into the underlying thermal tolerance responses of
corals (Schoepf et al. 2015).

The aim of the present study was to provide a record of
mass coral bleaching on a reef located in a naturally
temperature-stable environment (> 26 °C with intra-annual
variability of ~ 2 °C) in equatorial waters of Brazil (SW
Atlantic). Considering the scarce evidence for ENSO effects
on equatorial Atlantic reefs, the ENSO 3.4 SST index was
used to analyze the correlation between SST anomalies and
ENSO.

Material and methods

Study area

This equatorial continental shelf margin (northern region of
Brazilian reefs sensu Leão et al. 2016) is the least studied region
of the Brazilian coast (Soares et al. 2019). These equatorial
waters hold poorly studied turbid-water reefs of great scientific
interest, including shallow-water coral assemblages on sand-
stone (Soares et al. 2017) and the mesophotic ecosystem un-
derneath the Amazon River plume (Francini-Filho et al. 2018).

The research was conducted in the Parque Estadual
Marinho da Pedra da Risca do Meio, a marine protected area
(MPA) located 23 km off Fortaleza city (Fig. 1). It covers an
area of 33.20 km2 and shelters submerged tropical reefs be-
tween 18 and 25 m depth. The study site is located in a low-
enforcement MPA (Andrade and Soares 2017).

A high coverage of macroalgae (including filamentous al-
gae) and sponges has previously been reported from these
coral assemblages on sandstone rock (Soares et al. 2017).
The coral community is dominated by the scleractinian coral
Siderastrea stellata, with low abundances of Montastraea
cavernosa and Mussismilia hispida (Online resource 1).
These corals do not form biogenic reef structures, in the face
of turbidity and sediment resuspension, but can occur as coral
assemblages visible as isolated colonies on sandstone sub-
strate (Soares et al. 2017). These marginal coral assemblages
offer a “natural laboratory,” in which the impact of environ-
mental conditions (i.e., high and stable SST) on coral

bleaching of stress-tolerant taxa (i.e., S. stellata) can be stud-
ied. The SST in the study area is considered to be high
(> 26 °C) with low inter- and intra-annual variability (< 2 °C).
The intra-annual variability is associated with the seasonal
heating/cooling of the seawater surface in the region and
explains approximately 60% of the total SST variability
(Teixeira and Machado 2013).

Data sampling

The occurrence of bleaching in the scleractinian corals
S. stellata and M. cavernosa was recorded in March and
July 2010 by digital videos and photographic images taken
and a 50 × 50-cm2 quadrat along five 60-m2 belt transects
(BT) was randomly distributed across the reef site at depths
between 22 and 24 m. Photoquadrats were also used on the
same study area during an oceanographic survey conducted in
the summer (May) of 2013 using similar methods (i.e., BT).

Bleaching of S. stellata was assessed from videos and im-
ages in March 2010, July 2010, and May 2013 along belt
transects (30 × 2 m). The variation in bleaching intensity
(healthy bleaching, weak bleaching, or strong bleaching) per
transect was determined by the combined fractions (%) of
colony colors (normal brown, yellowish brown, pale yellow
to white, respectively) as applied earlier in the Java Sea
(Hoeksema 1991) and in Brazil (Miranda et al. 2013;
Leão et al. 2016).

Remote sensing data analysis

Sea surface temperature (SST), SST anomaly (SSTA), and
diffuse light attenuation coefficient at 490 nm (K490) values
were obtained from the Giovanni NASA platform (https://
giovanni.gsfc.nasa.gov/giovanni/). We used monthly values
of SST and K490 from the MODIS Aqua sensor with a 4-km
spatial resolution covering the period from 2002 to 2017. The
K490 provides a measure of water transparency. The SSTA
values of a given month were estimated by subtracting the
monthly average SST value for 2010 from the long-term av-
erage for that month from 2002 to 2017 climatology data. The
SSTA values were correlated with the ENSO 3.4 SST index
(https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/) for
lead-lag times ranging from minus 12 months to plus
12 months. This methodology was used to reveal correlation
coefficients between the anomalies in SST and the occurrence
of ENSO in 2010.

Coral Bleaching Alert Area and Degree Heating Weeks
(DHWs) were obtained from the NOAA Coral Reef Watch
website (https://coralreefwatch.noaa.gov/satellite/index.php).
Coral Bleaching Alert Area has two levels: Alert Level 1
(heat stress indicates significant coral bleaching) and Alert
Level 2 (heat stress indicates widespread coral bleaching and
significant mortality). We also used monthly wind speed data
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from the BDMET (Brazilian Meteorological Database) using
the nearest meteorological station from Fortaleza (Ceará,
Brazil). Analyses and visualizations concerning maximum
satellite sea surface temperature, wind speed, and K490 used
in this paper were produced with the Giovanni online data
system, developed and maintained by the NASA GES DISC.

Results and discussion

SST results, thermal stress, and coral bleaching

We observed strong bleaching in most of the S. stellata colo-
nies (90.9%) in July 2010. Weak bleaching was detected in
7.9% of the colonies, while the fraction of colonies character-
ized as normal was low (1.1%). This extensive bleaching was
not detected during the earlier dives in March 2010 (< 10%
colonies bleached).We also detected strong bleaching in a few
colonies (10.9%) of the same species in May 2013. This low
bleaching rate in 2013 was explained by sedimentation and
other factors, and not the temperature, which was close to the
average value (Fig. 2c).

Throughout 2010, variation in SST in Brazil ranged from
26.7 to 29.6 °C, with the maximum values occurring between
March and June 2010 (Fig. 2a). A comparison of the SST
annual mean values from 2003 to 2017 indicated that the mass
bleaching observed in 2010 was correlated with the warmest
year during this period for the quartersMarch toMay (Fig. 2b)
and for June to August (Fig. 2c).

Thermal stress in the equatorial SWAtlantic reached Alert
Level 1 in May 2010 between latitudes 0° and 8° S, where the

MPA is located (Online resource 1). This alert was non-
existent until May but persisted through July and disappeared
by October. Overall, in July 2010, the equatorial margin re-
gion of the SWAtlantic was subjected to 8–16 DHWs (Online
resource 1) and the study site between 8 and 9 DHWs in
July 2010.

This mass coral bleaching event was related to higher SST,
mainly between May and July of 2010, which led to SST
anomalies that ranged from 1 to 1.7 °C (SI 1 and Fig. 3a).
The SST anomaly in the study site in 2010 was not correlated
with the ENSO 3.4 SST index (Table 1). During the episode,
lower wind speeds (2 to 3 m s−1) (Fig. 3b) and lower turbidity
values, which could be inferred from the low K490 values
(Fig. 3c), were detected up to the end of the first se-
mester of 2010.

We hypothesized that ENSO is not the main driver of SST
anomalies in the equatorial Atlantic. Other anomalies such as
the Atlantic Meridional Mode (AMM) (tropical Atlantic SST
dipole) could be a major driver of these temperature anoma-
lies, but this hypothesis needs to be tested in further studies
using long-term data. The study area off the Brazilian equato-
rial margin is one of the major regions affected by the AMM
(Bourles et al. 1999). An anomalous displacement of the
intertropical convergence zone (ITCZ) toward the north
leads to significant drying across the region (low pre-
cipitation), and this phenomenon is also associated with
a pattern of anomalous warm SST in the northern tropical
Atlantic (Marengo et al. 2017).

In the study area, the temperature is relatively homoge-
neous in the top 70 m of the water column due to strong wind
and tidal mixing (Bourles et al. 1999; Dias et al. 2013;

Fig. 1 Location of offshore MPA
“Parque Estadual Marinho da
Pedra da Risca do Meio”
(equatorial southwestern Atlantic,
Brazil). Source: Andrade and
Soares (2017)
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Teixeira and Machado 2013), likely accounting for the unusu-
ally deep bleaching recorded. These oceanographic conditions
allow sea surface temperature anomalies to reach ~ 24m depth
and enabled us to use satellite-based SST measurements to
study the impacts of anomalously high temperatures on these
marginal reefs. This mixing (Online resource 1) also precludes

the possibility for deep thermal refugia (Muir et al. 2017;
Frade et al. 2018) in the equatorial Atlantic. We hypothesized
that these corals are acclimatized to stable environmental con-
ditions and have lower bleaching thresholds than corals from
more variable thermal conditions (Magris et al. 2015) because
of lower historical heat stress. The 2010 event presented SST

Fig. 2 Sea surface temperature
(SST) within the mass coral
bleaching region. a Monthly
mean SST throughout 2010; b
yearly mean SST (2003–2017)
for the quarter March–May; and c
yearly mean SST (2003–2017)
for the quarter June–August
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anomalies above these values and consequently led to the
mass bleaching event.

In such high temperature, but stable environments, coral
species in the equatorial SW Atlantic may be very resistant
to high temperatures but have little tolerance for anomalies.
However, in another study conducted in a near-equatorial reef
in the Pacific Ocean, Carili et al. (2012) suggested that warm

events affect corals even in areas with lower historical heat
stress (1–2 °C). In the Pacific, the equatorial waveguide
causes strong inter-annual variability of temperature associat-
ed with El Niño. The 2015–2016 El Niño caused 95% coral
mortality at Jarvis Island located only ~ 15 km from the equa-
tor (Barkley et al. 2018). This difference could occur given the
significant latitudinal differences in thermal variability across

Fig. 3 Environmental conditions
during 2010. a Sea surface
temperature anomaly (SSTA)
showing the highest positive
anomalies during the period May
to July; b wind speed showing
low wind speed in the first se-
mester; c diffuse attenuation co-
efficient for downwelling irradi-
ance at 490 nm (K490) showing
lower turbidity during the first 6-
month period of the year
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each of the ocean basins and in the composition of stress-
tolerant corals between the SW Atlantic and the Central
Pacific.

Coral resilience and contributing factors

This study also identified that the mass bleaching occurrence
at the end of the first half of 2010 was concurrent with low
wind speeds and low turbidity waters. Together, SST and low

turbidity may have acted synergistically to affect corals in
these marginal reefs, which also occurred in other tropical
reefs in clear shallow waters (Hughes et al. 2017, 2018). The
winds, which were stronger at the beginning of the second half
of 2010, increase turbidity due to vertical mixing. Winds in-
crease surface gravity waves and the waves cause internal
mixing and potential particle suspension (Knoppers et al.
1999). Turbidity is favorable for stress-tolerant corals (i.e.,
S. stellata) because it acts as a physical barrier preventing
the penetration of UV radiation (Baker et al. 2008).
However, during the detected critical event, the water mass
was more stable due to the lower wind speeds. In this scenario,
the turbidity and cloudiness (beginning of dry season in the
studied tropical semi-arid coast) were low, which allowed so-
lar radiation to penetrate. We hypothesize that increases in the
wind speed and turbidity (e.g., shading) protect the corals
from insolation effects. Low turbidity could indeed cause
deeper penetration of UV light. In this case, turbidity probably
reduces the impact of bleaching by light-heat stress because
S. stellata corals are resilient to turbidity and sedimentation
(Leão et al. 2016).

This is one of the deepest records of coral bleaching in SW
Atlantic reefs related to the 2010 bleaching event (Table 2).
These results are dissimilar to depth patterns of bleaching in
other Brazilian reefs and elsewhere (Monroe et al. 2018) in
that shallow-water corals and inshore reefs are generally the
most susceptible to bleaching. Previously, extensive bleaching
was reported mainly for depths at 0–15 m in oceanic (Ferreira
et al. 2013) and coastal (Miranda et al. 2013; Soares and
Rabelo 2014; Dias and Gondim 2016) Brazilian reefs. The
event reported here occurred before the mass bleaching de-
tected in Caribbean coral reefs (October–December 2010)
(Alemu and Clement 2014) (Online Resource 1). Our results
indicate that after the bleaching event on SW Atlantic reefs,
there was a northward migration of the heat stress toward the
Caribbean Sea when the North Atlantic warmings were re-
ported (Enfield and Mayer 1997).

In this region, the temperature anomaly in 2009–2010 was
similar to that in 1997–1998 (Ferreira et al. 2013; Teixeira and

Table 1 Non-significant
correlations (p > 0.05)
between SSTA (sea
surface temperature
anomaly) and ENSO 3.4
SST index in 2010,
including the lags of the
months

Lags Correlation

− 12 0.04

− 11 0.04

− 10 0.03

− 9 0.01

− 8 0.04

− 7 0.06

− 6 0.06

− 5 0.07

− 4 0.07

− 3 0.03

− 2 0.02

− 1 0.00

0 − 0.02

1 − 0.06

2 − 0.08

3 − 0.10

4 − 0.12

5 − 0.12

6 − 0.08

7 − 0.03

8 0.01

9 0.02

10 − 0.03

11 − 0.06

12 − 0.08

Table 2 Mass coral bleaching and ENSO 2010 in Southwestern Atlantic reefs

Reef/region (region in Brazilian coral reefs
sensu Leão et al. 2016)

Depth Scleractinian species affected Reference

Pedra da Risca do Meio reef/northern region 24 m Siderastrea stellata This study

Pecém and Paracuru reefs/northern region 0–2 m Siderastrea stellata, Favia gravida Soares and Rabelo (2014)

Rocas Atoll/northeastern region 2–9.5 m Siderastrea spp. Ferreira et al. (2013)
Fernando de Noronha/northeastern region 8.5–22 m Siderastrea spp., Montastraea cavernosa

Ponta dos Seixas reef/northeastern region 1–6.5 m Siderastrea stellata, Porites astreoides,
Agaricia agaricites, Mussismilia hartii

Dias and Gondim (2016)

Caramuanas reef/eastern region 1–6 m Siderastrea spp., Montastraea cavernosa,
Mussismilia spp.

Miranda et al. (2013)
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Machado 2013). Both events were related to positive SST
anomalies, including several weeks of above-average temper-
atures and positive hot spot values (Ferreira et al. 2013;
Pereira et al. 2015). Considering our results and previous re-
ports (Miranda et al. 2013; Ferreira et al. 2013; Soares and
Rabelo 2014; Dias and Gondim 2016), we hypothesize that
the 2010 event had a regional-scale (> 1000 km) (Hughes
et al. 2018) impact at latitudes of 2–13° S on the SW
Atlantic reefs.

An important factor in understanding the bleaching thresh-
olds in scleractinian corals in this region is adaptation to sub-
optimal conditions (Woesik et al. 2011; Guest et al. 2016).
Soares et al. (2017) suggested that the study area sustains
turbid-water reef assemblages, characterizing it as a tropical
marginal area, which may explain the low coral diversity and
dominance of a single stress-tolerant coral species (S. stellata).
Despite the low river runoff in this semi-arid coast (dominated
by short, shallow, and low-inflow estuaries), the scleractinian
corals here are subjected to fast-flowing currents and large–
swell wave events (Knoppers et al. 1999). Soares et al. (2017)
found a high percentage of sand (19.6% of total coverage)
under the sandstone coral assemblage in 2013 at 22 m depth
and suggested that this was due to the large amount of carbonate
sands and constant resuspension of bottom sediments. Indeed,
sedimentation and turbidity affect reefs considerably
(Erftemeijer et al. 2012) and present a selective pressure for
species more adapted to stressful conditions (Guest et al. 2016).

Siderastrea stellata is the major reef-building coral in
Brazilian reefs (Leão et al. 2016) with an extensive depth
range (intertidal to mesophotic zone) (Soares et al. 2019).
Siderastrea spp. are also very resistant to chronic factors
(e.g., thermal stress) and are considered to be indicators of
environmental stress in coral communities (Oigman-Pszczol
and Creed 2011; Monteiro et al. 2013). Highlighting this
viewpoint on the flattened reef tops in Brazilian coastline,
which are subaerially exposed during low tides, living corals
of S. stellata occur within tidal pools (Portugal et al. 2016). In
these environments, variations in water temperature, salinity,
and solar radiation are stress environmental factors. Colonies
of the endemic S. stellata and the amphi-Atlantic Favia
gravida are the only corals that can inhabit this kind of mar-
ginal reef environment, where they may occur in large densi-
ties (Correia 2011; Hoeksema and Wirtz 2013; Leão et al.
2016). Moreover, Costa et al. (2008) demonstrated that the
stress-tolerant S. stellata is associated with zooxanthellae
clade C (genus Symbiodinium), which is considered to be
one of the most bleaching-resistant microalgal groups. In ad-
dition, Monteiro et al. (2013) found a high specificity between
Siderastrea and Symbiodinium type C in Cape Verde (Africa).
They suggested that these symbioses in the Caribbean, Brazil,
and Africa exhibit some flexibility under different oceano-
graphic conditions, as these corals occupy a wide range of
ecological niches (Monteiro et al. 2013).

In addition to host-symbiont adaptations in marginal reefs,
the mixotrophic (autotrophic and heterotrophic balance) strate-
gies of this major reef-building coral may help to explain its
resilience. Rosa et al. (2018) detected a higher percentage of
zooplankton-associated fatty acids in colonies of S. stellata from
a subtidal environment. This potential for heterotrophy and the
host-symbiont association drive the capacity of S. stellata to
recover from bleaching after severe SST anomalies and also
promote recovery from environmental and human disturbances.

We assessed the bleaching rate and not the mortality rate,
which depends on the recovery of species in a certain area
(Sutthacheep et al. 2012). On the other hand, Soares et al.
(2017) observed that most of the colonies of S. stellata in the
same study site (in 2013, after a mass bleaching event)
belonged to small-diameter classes, with 83.7% exhibiting a
diameter < 20 cm. They have also found that this species
remained the dominant coral in these marginal reefs, which
clearly indicates a recovery after the mass bleaching. Other
factors that explain this recovery of S. stellata are its population
structure and reproductive strategies. Oigman-Pszczol and
Creed (2011) suggested that the large number of small-
diameter colonies is an adaptive reproductive strategy devel-
oped in reefs subject to environmental stress. Another important
factor is that this species tends to reproduce early and incubate
larva (Barros and Pires 2006). This phenomenon may be the
consequence of a survival strategy under turbid conditions,
temperature anomalies, and resuspension of sediments, all of
which were present in our study site, which was characterized
by high mortality rates and short life spans (Soares et al. 2017).

Marginal coral reefs in turbid waters have been considered
potential thermal refugia (Woesik et al. 2011; Cacciapaglia
and Woesik 2015). However, the waters in this equatorial
region were unusually clear during the mass bleaching event.
These results indicate that the thermal refugia in marginal
turbid reefs are not universal and depend on local seasonal
conditions (temperature, solar radiation, wind speed, waves,
and currents) during thermal stress. All these environmental
variables (SSTA, SST, turbidity, and wind speed) were select-
ed and calculated to cover selected major environmental
drivers that have been reported to be relevant for coral
bleaching, in an attempt to understand the oceanographic
and atmospheric conditions in this equatorial coast. The re-
sults are also important to provide limited evidence of mass
coral bleaching in equatorial SWAtlantic reefs with low intra-
and inter-annual temperature oscillations.
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