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A Comparative Study of Implicit and 
Explicit Methods Using Unstructured 
Voronoi Meshes in Petroleum 
Reservoir Simulation 
This work presents a comparative study among three linearization schemes widely used in 
petroleum reservoir simulation, namely the Implicit Pressure Explicit Saturation (IMPES), 
Fully Implicit (FI) and Adaptive Implicit Method (AIM). Attention is given to the criterion 
used for switching from IMPES to FI and vice-versa. The black-oil model considering the 
oil-water flow is employed. The equations are discretized using an unstructured Voronoi 
mesh in a finite-volume framework. The numerical results are analyzed based on the 
number of iterations in the Newton and solver procedures, number of implicit volumes, 
and mass balance error of components. The effect of the stopping criterion on Newton's 
iterations is also investigated. The outcome of the study reveals that adaptive implicit 
methodologies can be a good choice when unstructured grids are present, allowing the use 
of time  steps with the same order of magnitude as the ones used in FI procedures, but with 
reduction in the computational effort. 
Keywords: adaptive implicit method, voronoi grids, finite-volume method, petroleum 
reservoir simulation 
 
 
 

Introduction 
1IMPES is one of the most widely used procedures in petroleum 

reservoir simulation. In this scheme the mobilities are evaluated 
with saturation and pressure from the previous time level. This fact 
decouples the pressure equation from the saturation equations, 
allowing the saturation to be calculated explicitly, while pressure is 
kept implicit. Such a scheme requires a small computational effort 
per timestep, because the pressure is the only unknown to be 
calculated through a linear system of equations. Another advantage 
is that the procedure for advancing the saturation is easily 
vectorized. The main disadvantage of IMPES is that the Courant-
Friedrichs-Lewy (CFL) number must be smaller than unity, to avoid 
spurious oscillations in the solution. On the other hand, a 
methodology which works well with CFL larger than unity is the 
Fully Implicit (FI) one, which solves pressure and saturation 
simultaneously. However, the computational effort per timestep 
increases considerably when compared with IMPES. According to 
Thomas and Thurnau (1983), except in some critical regions of the 
reservoir, such as in the vicinity of the wells or near saturation 
fronts, the IMPES method can work with reasonable large time 
steps. From this observation, Thomas and Thurnau (1983) proposed 
the use of the Adaptive Implicit Method (AIM), whose concept was 
later improved by Forsyth Jr. and Sammon (1986). The goal of the 
Adaptive Implicit Method is to advance saturation and pressure 
implicitly in the regions where the CFL is larger than unity or where 
large variations in the saturations occur. In other regions of the 
reservoir only the pressure is considered implicitly. One of the 
difficulties of the AIM implementation is the switching criterion to 
change the procedure to FI and vice-versa. 

Thomas and Thurnau (1983) used as switching criterion a 
specified saturation threshold from the previous iteration level. If an 
IMPES volume experiences a variation in saturation larger than the 
specified threshold, this volume is calculated as being FI in the next 
Newton's iteration. Forsyth Jr. and Sammon (1986) found that this 
criterion does not allow a new cell to become IMPES again once it 
was switched to FI, because a FI cell can have large throughput and 
the variation in saturation can be small. In this case, if this volume is 
switched to IMPES large instabilities may result. Russel (1989) 
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proposed a criterion based on the CFL number to determine which 
volume may switch from FI to IMPES and vice-versa. He provides 
several reasons for working with the criterion based on the CFL and 
several ways to approximately calculate it. Nevertheless, it does not 
present any result for two and three phase flows. Young and Russel 
(1993) proposed a new relation for calculating the CFL number and 
suggest applying it in conjunction with the calculation of the 
maximum variation in the saturation. In this case, solutions using 
the IMPES method with the CFL larger than unity were obtained 
without oscillations. Fung et al. (1989) proposed a criterion based 
on the local analysis of the approximate equations. In each volume 
the eigenvalues are calculated and recommended that the spectral 
radius be smaller than unity for treating the cell with the IMPES 
method. Otherwise, the volume must be considered by the FI 
procedure. This scheme was applied to three-phase flow in 
Cartesian grids only. 

The objective of this work is to present a comparison among the 
above discussed methodologies employing unstructured Voronoi 
meshes, broading the range of application of adaptive implicit 
methods. The results are presented in terms of CPU time, number of 
Newton’s iterations, number of time iterations, and the degree of 
implicitness. The stability criterion proposed by Fung et al. (1989) 
added to a specified variation in the saturation field was adapted to 
deal with arbitrary number of connections between control volumes. 
The black-oil model is employed and two-phase (oil-water) in two-
dimensional case studies are investigated. 

Nomenclature 

A  = reservoir area, m2 
AIM  = Adaptive Implicit Method 
bij = width of the face located between the gridpoints i and  j, m 
c  = compressibity of the fluid, Pa-1 
B  = volumetric formation factor 
dij  = distance between the grid points i and j, m 
MBE  = mass balance error 
FI  = Fully Implicit method  
h  = height of the reservoir, m 

 IMPES = Implicit Pressure Explicit Saturation method 
J  = Jacobian matrix 
K = absolute permeability, m2 

kr  = relative permeability 
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M  = viscosity ratio 
Nν  = number of neighbors of control volume i 
NIN  = total Newtonian iterations 
NIT  = number of time steps 
P  = pressure, Pa 
Pc  = capillarity pressure, Pa 
PI  = percentage of implicit control volumes  
Pi  = initial pressure, Pa 
PVI  = porous volume injected 
q  = volumetric flow rate at storage conditions per unit of  
  reservoir volume, (m3/s)/m3 
qpi  = injected volumetric flow rate, m3/s 
qpp  = produced volumetric flow rate, m3/s 
r  =  vector of residues 
rrw  = well radius, m 
R  = residue of Newton's equation 
R*  = R multiplied by the inverse of the diagonal matrix block 
Sor  = residual oil saturation 
S  = saturation 
t  = time, s 
T  = transformation matrix 

 TCPU = total CPU time 
Tij  =  transmissibility factor 
Vi  = Volume of the control volume, m3 

Vf,p  = final volume of phase p, m3 

Vi,p  = initial volume of phase p, m3 
x',y'  = local coordinate system  
X  = represent P or Sw 
Greek Symbols 

 *
maxP∆ = maximum pressure variation, Pa 

 *
maxS∆ = maximum saturation variation 

wS∆  = threshold change in the water saturation 
X∆  = increment or decrement in X 
t∆   = timestep, s 

α = eigenvalues 
φ  = porosity 
λ  = mobility 
λ1  = bound for forward switching 
λ2  = bound for backward switching 
µ  = viscosity, Pa.s 
ε  = user tolerance 
εn  = error in the time level n 
εn+1  = error in the time level n+1 
ρ  = spectral radius 
Subscripts 
w  denotes water phase or well 
o  denotes oil phase 
p  denotes phase p 

Mathematical Model 

Assuming there are only two immiscible phases in the reservoir, 
oil (o) and water (w), and neglecting the gravitational and the 
capillarity pressure effects, the volumetric conservation equation for 
the phase p can be written as 

 

. .p
p p

p

S
P q

t B
φ λ

⎛ ⎞∂ ⎡ ⎤= ∇ ∇ +⎜ ⎟ ⎣ ⎦⎜ ⎟∂ ⎝ ⎠
 (1) 

 

where φ is the porosity and Bp is the volumetric formation factor, P 
is the pressure in the reservoir, pq is the volumetric flow rate at 
stock tank conditions per unit volume of the reservoir. The mobility, 
λp, is defined as 

 

rp
p

p p

k
K

B
λ

µ
=  (2) 

 
where K is  the absolute permeability, krp is the relative permeability 
and µp is the viscosity of phase p. 

In Equation (2), the volumetric formation factor is included in 
the mobility phase because the volumetric balance is evaluated at 
stock tank conditions. Writing Eq. (1) for the oil and water phases 
there are three unknowns (So, Sw and P) and only two equations. The 
closure equation comes from the global mass conservation, given by 

 
1w oS S+ =  (3) 

 
The velocity field can be found from the Darcy's equation. 

Details can be found in Aziz and Setari (1979). 

Integration of the Governing Equations 

Figure 1 shows a control volume of Voronoi type, where i 
indicates the gridpoint and the j's are its neighbors. For each 
gridpoint j, it is possible to align a local Cartesian system x'-y' in so 
that the x' axis (the line that joins gridpoints i and j) be 
perpendicular to the face of the control volume, allowing the 
evaluation of the fluxes using only two gridpoints, a property of 
local orthogonal grid systems (Palagi and Aziz, 1994). 

 
 

 
Figure 1. Control volume of Voronoi type. 

 
 
Integrating Eq. (1) in space and in time, one obtains: 
 

1

1 1

1
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 (4) 

 
The superscript θ in Eq. (4) identifies the type of the procedure: 

θ = 1, FI; θ = 0, IMPES; and if θ assumes zero or one in different 
regions of the domain, the procedure is AIM. Nν is the number of 
neighbors of control volume i, and Tij is the transmissibility, given by 

 

ij
ij

b h KT
d

⎛ ⎞= ⎜ ⎟
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 (5) 
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where b and d are shown in Fig. 1 and h is the thickness of the 
control volume. 

FI, IMPES and AIM Formulations 

FI Formulation 

In this formulation, the unknowns pressure P and the water 
saturation Sw are obtained simultaneously. For the mobilities, 

rp

p p ij

k
Bµ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

, krp,ij is computed using UDS (upstream differencing 

scheme) and (µpBp)ij using an arithmetic averaging of the 
corresponding values at the gridpoints ij. The system of equations is 
solved iteratively using Newton's method. Making θ = 1 in Eq. (4), 
for all control volumes, the residual form of the equation reads  
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The Taylor series expansion of the residue gives 
 

1
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where ν is the iteration level and X represents the unknowns (P and 
Sw). When convergence is achieved the residue in the iteration ν+1 
should be zero. Therefore, 
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The unknowns (P and Sw) are calculated after each Newtonian 

iteration, as 
 

1X X Xν ν ν+ = + ∆  (9) 
 

and the procedure is stopped when the following tolerances are 
satisfied: 

 
1 * 1 *

max max ,max ,max; w wP P S Sν ν+ +∆ ≤ ∆ ∆ ≤ ∆  (10) 
 

where *
maxP∆  and *

,maxwS∆  are input parameters.  

IMPES Formulation 

In this procedure, the terms which contain the fluid, mobility 
and the production or injection flow rates are based on the saturation 
and pressure from the previous time level. Making θ = 0 in Eq. (4), 
a similar equation to Eq. (6) is obtained. All terms depending on the 
saturation are explicitly calculated, except the term which involves 
the saturation at the level (n+1)-th, which is, in fact, the required 
transient term. Therefore, when Newton's linearization is applied in 
each Jacobian block line, the only full block is the diagonal one, as 

shown in Fig. 2a. To obtain the pressure equation, each Jacobian 
block line is multiplied by its inverse diagonal block resulting in the 
block line of Fig. 2b. Also, the inverse of each diagonal block is 
multiplied by the original vector iRν , resulting in the *

iR ν  vector. 
As shown in Fig. 2c, the pressure equation is decoupled from the 
saturation equation. When this procedure is applied to each control 
volume, the pressure equation is obtained using the first line of each 
block of Fig. 2c, yielding the system 

 

[ ] 1 *J X Rν ν ν+∆ = −  (11) 
 
After solving Eq. (11) for 1X ν +∆ , P is obtained by 
 

1 1P P Xν ν ν+ += + ∆  (12) 
 

and Sw by 
 

,

1 1 *
, ,

1,w i

N
n

i j w i
j j i

S X J R
ν ν ν+ +

= ≠
= ∆ +∑  (13) 

 
where Jij are the coefficients of the second line of control volume i, 
according to Fig. 2c. 
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Figure 2. Steps for obtaining the pressure equation for the IMPES method. 

 

AIM Formulation 

The IMPES scheme requires considerably less computational 
effort per timestep than the FI. However, it is often limited to small 
timesteps due to instabilities inherent to explicit schemes. This 
occurs in regions where the velocities or gradients of saturation are 
high. On the other hand, in the FI scheme the size of the timestep is 
bounded only by the accuracy of the solution. The goal of the AIM 
method is to put together the advantages of each methodology, using 
the FI method in the regions where the IMPES method shows 
instabilities and IMPES in the rest of the reservoir. Recall that 
pressure is evaluated implicitly all over the reservoir. 

Evaluating the production/injection terms implicitly and 
considering that the mobilities of the phases can be considered 
implicit (FI) or explicit (IMPES), a similar equation to Eq. (6) is 
obtained. Using the same procedure used for the pressure equation 
in the IMPES method, a similar equation to Eq. (11) is obtained, 
where the only difference is that the entries of the Jacobian matrix 
can be blocks (1x2), (2x1), (2x2) or (1x1). 
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Switching from an IMPES to a FI Volume and Vice-versa 

The success of an AIM scheme depends strongly on the 
efficiency of the switching criterion. A sensitive and practical 
criterion is not easily found. Here a local stability criterion of the 
Jacobian matrix akin to the one proposed by Fung et al. (1989) is 
employed. Denoting the residue of the conservation equations by R 
and the variables (P and Sw) by X, Newton's iteration can be written, 
in the index notation, as 

 
1

1,
1, 1 1, 1,

1, ; , 1,...,
n

n n ni
i i in

j

R
X X R i j N

X

ν
ν ν ν

ν

−
+

+ + + +
+

⎛ ⎞∂
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 (14) 

 
where N is the total number of equations. In Eq. (14), 1, 1n

iX ν+ +  is 

the solution in the (ν+1)-th iteration, and 1,n
jR ν+  is the residual at 

the ν-th iteration of the i-th equation. 1n
iX +  converges when 

1, 1 1,n n
i iX Xν ν ε+ + +

∞
− ≤ . The term 1, 1n

idR ν+ +  is written as 
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where m refers to the last iteration at the time level n. If the error at 
the time levels n and n+1 are denoted by nε  and 1nε + , 
respectively, Eq. (15) can be written as 
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where the signal of ε is neglected, since only its norm is of interest. 
Considering 
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Eq. (16) can be written as 

 
1n n

j jTε ε+ =  (18) 
 

where T is the transformation matrix. The condition of stability is  
 

1n n
i iε ε+ ≤  (19) 

 
which guarantees that the error introduced in a specified time level 
is not amplified in the next one. This condition is satisfied if T is 
normal and 

( ) max ( ) 1ji j N
T Tρ α

≤ ≤
= ≤ ≤  (20) 

 
where αj’s are the eigenvalues of T, and ρ(T) is the spectral radius 
of T. 

These are the stability conditions of the whole system. 
Computing the spectral radius is obviously impracticable. One can 
however identify the control volumes that yield instability by 
computing easily the spectral radius of its respective small 
submatrix. Eq. (18) can be written for each control volume and the 
maximum eigenvalue of T calculated. If the Eq. (20) holds, the cell 
can be IMPES, otherwise it is FI (see Fung et al. 1989). Two 

important simplifications are convenient and produce good results. 
The accumulation term at time level n can be excluded from Ri. For 
the evaluation of the derivatives, the flow is considered 
incompressible, which simplifies the calculation of the eigenvalues. 
Tests without this assumption produced similar results. 

In the original proposal of Fung et al. (1989), three eigenvalues 
are required for all control volumes. To avoid that, they suggested 
that only the eigenvalues at the boundary between implicit and 
explicit regions be calculated. This implies that when there is a 
switching in the tested control volume, all the explicit neighbors 
must be checked, if the switching is from explicit to implicit 
(forward switching). Otherwise, if the switching is from implicit to 
explicit (backward switching), all the implicit neighbors must be 
checked. This procedure should be repeated until no volumes should 
be switched. Recalling that the compressibility effects are small in 
oil-water flows, the incompressibility condition was considered for 
calculating the eigenvalues. This implies that only one eigenvalue 
need to be calculated for each control volume, allowing, due to the 
minor computational effort required, the calculation of the 
eigenvalues for all control volumes. It was not possible to reproduce 
the implicit front reported by Fung et al. (1989) using these stability 
criteria. However, considering the compressibility effects and 
calculating the two eigenvalues for all control volumes, the results 
were identical. A possible reason for that is because one is solving 
two-phase flows, while in the work of Fung et al. (1989) three-phase 
flows were treated. 

Searching for a more robust switching criterion, the following 
results where obtained with the method just described in conjunction 
with a switching criterion based on the variation of the saturation. 
The errors in the mass balance of oil and water are also reported on 
the tables of results. The mass balance error of each component, 
MBEp, is calculated by 

 

( ), , /p i p wi l f p wiMBE V q t q t V q t= + ∆ − ∆ − ∆∑ ∑ ∑  (21) 
 

where Vi,p and Vf,p are the initial and final volumes of phase p in a 
specified time level, qwi is the volumetric flow rate of injected water 
and ql is the volumetric flow rate of the producing liquid 
(oil+water). The numerator of Eq. (21) represents the error in the 
volume of the phase p, in each time level, and the denominator the 
volume of injected water, both integrated from the starting. 

Results 

All cases analyzed in this section were obtained with 
*

max 68,95P∆ = kPa and * 3
,max 5 10wS x −∆ = . Similar CPU time were 

observed between the AIM and FI methodology for tests with 
* 3

,max 10wS −∆ =  and *
max 68,95P∆ =  kPa. 

For the AIM and FI methodologies, Newton's iteration is 
performed until the variation in saturation and pressure satisfies the 
tolerance for every control volume, regardless whether the 
saturation was treated explicitly or implicitly. As expected, the 
number of Newton's iterations increased considerably per timestep 
in the IMPES method. For the sake of comparison among the 
methodologies, all of them used the Jacobian matrix structure. 
Therefore, no criterion based on pre-fixed values was used for the 
IMPES method. For all cases the GMRES solver (Saad and Schultz, 
1986) with ILU(1) preconditioning was employed. 

In all tables of results, the eigenvalues λ1 is the bound for the 
forward switching, λ2 is the bound for the backward switching, and 
 ∆Sw is the threshold change in the water saturation used for the 
implicit switching. They are listed as (λ1, λ2, ∆Sw), and the missing 
value, denoted by (*) means that the respective criterion was not used. 
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Using the threshold change in the saturation, whenever a cell is 
switched, all its neighbors are checked out. For the backward 
switching, some tests were done to find out how frequent it must be 
checked. The switching after 20 iterations in time provides good 
results. Switching after 10, 20, 30 and 50 iterations is also 
considered. For all cases the results are reported for a dimensionless 
time level (PVI) equal to 1.82, that is, the volume of liquid injected 
is 1.82 times the porous volume of the reservoir. Also NIN is the 
total Newtonian iterations, NIT and PI are, respectively, the number 
of timesteps and the percentage of implicit control volumes required 
to reach 1.82 PVI. The CPU time were normalized by the minimum 
CPU time among the methods. For evaluating the pressure and 
saturation, an integration process with a variable timestep is used as 
in Aziz and Settari (1979). Except for the IMPES method, the 
timestep used was up to 50 days. The first test case, CASE 1, 
considers a flow whose relative permeability curves are quadratic 
functions of the saturation. The hybrid grid is shown in Fig. 3, the 
physical and geometric data are listed in Tab. 1, and the relative 
permeability and viscosity ratio curves are given by 

 
2

2 2 ; 1 ;
(1 )

w o
rw ro w

ww w

S
k k k M

M S S
µ
µ

= = − =
− +

 (22) 

 
 

 
Figure 3. Five-spot problem. Hybrid-hexagonal grid with 445 volumes. 

 
 
Table 1. Physical and geometrical data of the reservoir – case 1.  

 Reservoir data Initial conditions Physical properties 
K = 12.5 x 10-15 m2 
h = 6.09 m 
A = 1.6 x 105 m2 
φ = 0.08 
rw = 0.122 m 

Swi = 0.20 
Pi = 6.893 x 105 Pa 

Sor = 0 

Bo = Bw = 1 a 0 Pa 
Pc = 0 Pa 
µo = 10-3 Pa.s 
µw = 1/M Pa.s 
co = cw = 1.45 x 10-9 Pa-1 

    l wq q=  = 1.10 x 10-4 m3/s 

 
 
The results are presented in Tabs. 2 and 3 for M = 10 and 50, 

respectively. From Tab. 2, it can be seen that the criterion based on 
the stability analysis requires only a small part of the volumes to be 
implicit. There is no effect on the tested eigenvalue bounds for the 
backward and forward switching. A value of ∆Sw = 0.01 in 
conjunction with the stability criterion provide the best results. 
Using only the switching criterion based on the variation of the 
saturation, a large part of the volumes turn to FI at the end of the 
simulation, especially for small ∆Sw values. There is a situation 
where the AIM method required more CPU time than the FI 

approach. In this case, there is a large difference in the number of 
Newtonian iterations, meaning that the criterion used by the AIM 
method does not detect the regions of appearance of instabilities. 
Also, the errors of the IMPES mass balance are larger than the AIM 
and FI. This fact can be explained considering that only one 
Newtonian iteration is performed, and the same convergence 
criterion in the solver for the three schemes was employed. 

For M = 10, Figure 4 presents the implicit fronts for four PVI 
values. In this case λ1 = 1.0, λ2 = 0.8, and ∆Sw = 0.01. It is verified 
that for higher PVI values only a small number of volumes were 
kept implicit. There is a considerable reduction in the number of 
implicit cells from 0.2 to 0.6 PVI. This occurred because the water 
front at 0.6 PVI had already reached the producing wells. After the 
water breakthrough, the number of implicit cells decreases 
proportionally to the increasing of the saturation in the wells. The 
water breakthrough occurs at 0.3 PVI approximately, according to 
Fig. 6. 

 
 

FI

IMPES

 
Figure 4. Implicit map for several PVI values for the five-spot problem: λ1= 
1.0, λ2 = 0.8, ∆Sw = 0.01. 

 
 
Figures 5 and 6 show the oil recovery and the water-cut curves 

for the AIM, FI, and IMPES methodologies for the parallel wells. 
The water cut is defined as the ratio of produced water volume and 
the total volume of produced liquid (oil+water). A good agreement 
among the methods is observed. Figure 7 presents the water cut for 
the IMPES using a timestep of 50 days. Although the oscillations 
were not observed in the oil recovery curves with the IMPES 
method, the oscillations on the water cut were detected with 
timesteps ranged from 2 to 50 days. This fact suggests that the oil 
recovery cannot be the only parameter for comparison, because it 
represents an integral value. In this case, the oscillations are 
smoothed out by the integration procedure and cannot be detected. 
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Table 2. Five-spot problem – M = 10. Hybrid-hexagonal grid with 445 volumes. Smallest CPU time 236.06 s – PVI = 1.82. 

Method Criteria (λ1, λ2, ∆Sw) TCPU NIT NIN PI 
(%) 

MBEo 
(%) 

MBEo 
(%) 

AIM 
AIM 
AIM 
AIM 
AIM 
AIM 
AIM 
AIM 
AIM 
FI 
IMPES 

(1.0;0.8;*) 
(1.0;0.9;*) 
(0.8;0.6;*) 
(0.8;0.6;0.01) 
(1.0;0.8;0.02) 
(1.0;0.8;0.05) 
(*;*;0.01) 
(*;*;0.02) 
(*;*;0.05) 

- 
∆tmax = 2 days 

1.04 
1.04 
1.04 
1.00 
1.01 
1.06 
1.20 
1.18 
1.35 
1.26 
11.0 

381 
381 
380 
359 
360 
372 
359 
359 
374 
358 
7654 

541 
541 
529 
509 
515 
550 
514 
517 
630 
504 
7654 

4.93 
4.60 
6.79 
12.96 
10.22 
6.35 
64.45 
56.59 
31.08 
100 
0 

3.81 x 10-4 

3.86 x 10-4 

3.46 x 10-4 

3.12 x 10-4 

4.10 x 10-4 

3.76 x 10-4 

3.11 x 10-4 

4.21 x 10-4 

4.17 x 10-3 

2.62 x 10-6 

1.22 x 10-2 

1.91 x 10-4 

2.10 x 10-4 

1.39 x 10-4 

1.37 x 10-4 

2.30 x 10-4 

2.34 x 10-4 

1.18 x 10-4 

1.98 x 10-4 

1.78 x 10-3 

1.76 x 10-5 

1.23 x 10-2 

 

 

FI

 
Figure 5. Oil recovery. Five-spot problem – M = 10. 

 
 
In Table 3, for M = 50, the stability criterion did not capture the 

appearance of instability, making the AIM performance inferior 
compared to FI. Also, this flow is more prone to instabilities than 
the one in Tab. 2, because of the larger viscosity ratio. 

F

 
Figure 6. Water-cut. Five-spot problem – M = 10. 

 
 
The percentages of implicit volumes were larger than those in 

Tab. 2. It is verified that the criterion was not able to detect the 
appearance of stability to keep robustness in Newton's method 
and, therefore, an excessive number of Newton iterations are 
required. Even dealing with the instability criteria in conjunction 
with the variation in the saturation, it is not detected instabilities 
for ∆Sw = 0.02 during some period of the simulation, resulting an 
excessive number of Newtonian iterations when compared to the 
same case with ∆Sw = 0.01. 

 
 

Table 3. Five-spot problem – M = 50. Hybrid-hexagonal grid with 445 volumes. Smallest CPU time 234.05 s – PVI = 1.82. 

Method Criteria (λ1, λ2, ∆Sw) TCPU NIT NIN PI 
(%) 

MBEo 
(%) 

MBEo 
(%) 

AIM 
AIM 
AIM 
AIM 
AIM 
AIM 
AIM 
FI 
IMPES 

(1.0;0.8;*) 
(0.8;0.6;*) (1.0;0.8;0.01) 
(1.0;0.8;0.02) (0.8;0.6;0.01) 
(*;*;0.01) 
(*;*;0.02) 

- 
∆tmax = 1 day 

1.30 
1.40 
1.00 
1.24 
1.00 
1.18 
1.64 
1.28 
26.50 

362 
361 
346 
348 
346 
344 
347 
343 
15,088 

592 
617 
442 
563 
441 
445 
639 
436 
15,088 

7.74 
11.21 
13.64 
13.40 
15.58 
67.06 
59.92 
100 
0 

6.75 x 10-4 

6.96 x 10-4 

7.21 x 10-4 

7.65 x 10-4 

6.96 x 10-4 

7.64 x 10-4 

7.51 x 10-4 

5.25 x 10-4 

6.19 x 10-3 

2.09 x 10-3 

1.85 x 10-3 

1.81 x 10-3 

1.74 x 10-3 

1.81 x 10-3 

1.93 x 10-3 

1.98 x 10-3 

2.21 x 10-4 

6.22 x 10-3 
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Figure 7. Water-cut. Five-spot problem – M = 10. Maximum timestep = 50 days. 

 
 
A second test problem, again using the five-spot configuration, 

with the mesh presented in Fig. 8 is solved. In spite of being a 
hexagonal mesh, it resembles the Cartesian mesh used by Fung et al. 
(1989) in developing the stability criterion. The reservoir data are 
listed in Tab. 4, the relative permeabilities in Tab. 5 and viscosity 
curves given by 

 
3 12 710 (1 1.45 10 ( 1.37 10 )); 11.63 [ . ]w o wx P x Pa sµ µ µ− −= + − =  (23) 

 
 

 
Figure 8. Hexagonal mesh with 410 volumes. 

 
 
Table 4. Physical and geometrical data of the reservoir – case 2. 

Reservoir data Initial conditions Physical properties 
K = 3.0 x 10-13 m2 
h = 15 m 
A = 2.141 x 106 m2 
φ = 0.30 
rw = 0.122 m 

Swi = 0.22 
Pi = 2.0685 x 107 Pa 
Sor = 0.22 

Bo = Bw = 1 a 2.0685 x 107 Pa 
Pc = 0 Pa 
co = cw = 7.25 x 10-9 Pa-1 

l wq q= =2.760 x 10-3 m3/s 

 
 
 
 
 

Table 5. Relative permeabilities – case 2. 

Sw 0.22 0.30 0.400 0.5000 0.6000 0.80 0.90 1.0 
kro 1.00 0.40 0.125 0.0649 0.0048 0.00 0.00 0.0 
Krw 0.00 0.07 0.150 0.240 0.3300 0.65 0.83 1.0 

 
 
Table 6 shows that a small amount of implicit control volumes 

are required, even when only the threshold switching is used. Except 
for the IMPES method, the number of timesteps for all the 
simulations is coincident. The AIM scheme with the switching 
criterion based on the threshold change for ∆Sw = 0.02 provide the 
best results. 

 
The last test problem, Case 3, involves a reservoir with eight 

wells using again a hybrid mesh as shown in Fig. 9.  
 
 

 
Figure 9. Reservoir with eight wells. Hybrid-hexagonal grid with 672 
volumes. 

 
 
The physical and geometrical data are listed in Tab. 7, the 

viscosity curves are given by Eq. (23), and the relative 
permeabilities by 

 
2( 0.2)( 250 325 55) / 27 ; 1rw w w w rw rwk S S S k k= − − + − = −  (24) 

 
The results are presented in Tab. 8. By decreasing λ1 and λ2, the 

local switching criterion capture the region where the implicit 
treatment is needed. Again, the local switching linked to the 
threshold criterion ∆Sw provides good results. 
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Table 6. Hexagonal grid with 410 volumes. Smallest CPU time 171.29 s – PVI = 1.82. 

Method Criteria (λ1,λ2, ∆Sw) TCPU NIT NIN PI 
(%) 

MBEo 
(%) 

MBEo 
(%) 

AIM 
AIM 
AIM 
AIM 
AIM 
AIM 
AIM 
FI 
IMPES 

(1.0;0.8;*) 
(0.8;0.6;*) (1.0;0.8;0.01) 
(1.0;0.8;0.02) (0.8;0.6;0.01) 
(*;*;0.01) 
(*;*;0.02) 

- 
∆tmax = 4 days 

1.05 
1.06 
1.03 
1.05 
1.04 
1.14 
1.00 
1.38 
7.25 

882 
882 
882 
882 
882 
882 
882 
882 
10,676 

953 
957 
936 
953 
940 
941 
949 
934 
10,676 

1.26 
1.87 
1.46 
1.26 
2.06 
13.23 
3.26 
100 
0 

3.45 x 10-4 

3.22 x 10-4 

3.24 x 10-4 

3.45 x 10-4 

3.01 x 10-4 

4.02 x 10-4 

3.67 x 10-4 

3.60 x 10-4 

8.63 x 10-3 

6.81 x 10-4 

6.48 x 10-4 

6.50 x 10-4 

6.81 x 10-4 

6.18 x 10-4 

5.27 x 10-4 

5.41 x 10-4 

2.55 x 10-4 

8.61 x 10-3 

 
 

Table 7. Physical and geometrical data of the reservoir – case 3. 

Reservoir data Initial conditions Physical properties 
K = 3.0 x 10-13 m2 
h = 15 m 
A = 1.28 x 106 m2 
φ = 0.30 
rw = 0.122 m 

Swi = 0.2 
Pi = 2.0685 x 107 Pa 
Sor = 0.2 

Bo = Bw = 1 a 2.0685 x 107 Pa 
Pc = 0 Pa 
co = cw = 7.25 x 10-9 Pa-1 

1 3l lq q= = -9.20 x 10-4 m3/s 

2lq = -1.10 x 10-3 m3/s 

4lq = -5.52 x 10-4 m3/s 

5 6l lq q= = -7.36 x 10-4 m3/s 

1wq = 2.94 x 10-3 m3/s 

2wq = 2.04 x 10-3 m3/s 

 
 

Table 8. Hybrid-hexagonal grid with 672 volumes. Smallest CPU time 253.03 s – PVI = 1.82. 

Method Criteria (λ1, λ2, ∆Sw) TCPU NIT NIN PI 
(%) 

MBEo 
(%) 

MBEo 
(%) 

AIM 
AIM 
AIM 
AIM 
AIM 
AIM 
AIM 
FI 
IMPES 

(1.0;0.8;*) 
(0.8;0.6;*) (1.0;0.8;0.01) 
(1.0;0.8;0.02) (0.8;0.6;0.01) 
(*;*;0.01) 
(*;*;0.02) 

- 
∆tmax = 4 days 

1.09 
1.01 
1.01 
1.03 
1.00 
1.13 
1.16 
1.33 
5.85 

456 
454 
454 
454 
454 
454 
454 
454 
5,232 

556 
536 
521 
537 
521 
533 
571 
523 
5,232 

3.75 
5.22 
6.40 
5.99 
7.49 
35.05 
26.00 
100 
0 

4.57 x 10-4 

2.13 x 10-4 

3.75 x 10-4 

2.61 x 10-4 

2.45 x 10-4 

2.56 x 10-4 

2.61 x 10-4 

2.90 x 10-4 

1.75 x 10-2 

3.78 x 10-4 

1.34 x 10-4 

2.76 x 10-4 

1.81 x 10-4 

1.40 x 10-4 

1.66 x 10-4 

2.29 x 10-4 

2.29 x 10-4 

1.75 x 10-2 

 

Conclusions 

This work presented a comparison among three widely used 
methodologies employed in petroleum reservoir simulation. The 
tests were realized for two phase flows (oil+water) for areal 
reservoirs. The equations were discretized in a control volume 
framework in conjunction with unstructured Voronoi meshes. For 
switching a control volume from IMPES to FI and vice-versa, a 
stability criterion based on the eigenvalues, added to a threshold 
variation in water saturation was used. From the analysis, it was 
concluded that the AIM method can considerably save CPU time 
and memory if an efficient switching criterion is used. It was also 
observed that the stability criterion based on the eigenvalues alone 
was not able to detect regions where the saturation should be treated 
implicitly. A possible reason for this is the application of the 
criterion, in this work, to two-phase flow (oil+water) problems, in 
which the physical instabilities are much smaller than those of three  
phase flows (oil, gas, and water). It became clear, for most of the 
cases, that a stability criterion added to a water saturation threshold 

gives the best results in terms of CPU time, percentage of implicit 
volumes, and Newtonian iterations. Due to time step limitations, the 
IMPES method shows the worst performance when compared to FI 
and AIM methods. In spite of the better performance of AIM when 
compared to IMPES and FI, one believes that more effort need to be 
devoted in finding an efficient criterion for switching a control 
volume from IMPES to FI. 
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