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Abstract

In this work we apply tools developed for the study of fractal properties of time series to the problem of classifying
defects in welding joints probed by ultrasonic techniques. We employ the fractal tools in a preprocessing step, produc-
ing curves with a considerably smaller number of points than in the original signals. These curves are then used in the
classification step, which is realized by applying an extension of the Karhunen–Loève linear transformation. We show
that our approach leads to small error rates, comparable with those obtained by using more time-consuming methods
based on non-linear classifiers.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Ultrasonic tests can serve as an useful tool for evaluating the integrity of metallic structures, and specially of weld
joints. By inspecting the scattering pattern of ultrasonic waves propagating in the material, it is possible to identify the
presence of defects, and to estimate their dimensions. However, it is often desirable to have precise information about
the nature of the defects, and a number of studies have tried to propose useful approaches to perform such classification
[1–4], mostly based on direct analysis of the patterns with neural networks.

In the present paper, we describe a distinct approach, based on tools developed for analyzing fractal properties of
time series [5–8]. Such kind of approach has been successfully applied to ultrasonic signals (interpreted as a particular
kind of time series) by a number of authors [9–11], both in defect and in microstructure classification, by calculating the
exponents of the power laws characterizing various fractal features of the series, and hoping to associate different sets of
exponents with different classes. However, this can only be expected to work when the typical series corresponding to
different classes are highly dissimilar, due to the fact that the size of each series is usually small, and estimates of the
various exponents are subject to significant fluctuations. Thus, in general, an expanded set of features must be used
to obtain an efficient classification algorithm. Here we employ tools from the statistical pattern-classification literature
to extract relevant features from the set of fractal analyses applied to ultrasonic signals obtained from weld joints
having three different kinds of defects.
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We used 240 ultrasonic signals obtained by the TOFD technique [12], with 60 signals corresponding to each kind of
defect (lack of fusion, lack of penetration, and porosity) and other 60 signals from regions with no defects. (For a
description of the materials used, as well as techniques for producing and capturing the signals, see Ref. [3].) All signals
had a length of 512 points, with 8-bit resolution. Typical signals are shown in Fig. 1. After normalizing all signals so
that the maximum and minimum values correspond to 1 and �1, we calculated the corresponding curves from four
different techniques of fractal analysis, which we describe in Section 2. Then, as described in Section 3, we employed
a variation of the Karhunen–Loéve (KT) linear transformation [13,14] to extract relevant features from the curves.
As we discuss in the final section, the combined approach of fractal analysis and KT transformation yields a quite good
classification tool for the defects studied.
2. Fractal analysis

All techniques of fractal analysis employed here start by dividing the signal into intervals containing s points. Each
technique then involves the calculation of the average of some quantity Q(s) over all intervals, for different values of s.
In a signal with genuine fractal features, Q(s) should scale as a power of s,
Fig. 1.
and (d
QðsÞ � sg; ð1Þ
at least in an intermediate interval of values of s, corresponding to 1� s� L, L being the signal length.
Fractals of different nature should give rise to different exponents g, providing a signature of the fractal. In our case,

due to the finite amount of points, and to the very nature of the signals, a pure power-law behavior is hard to observe.
Instead, as shown in Fig. 2, the curves usually exhibit features such as a crossover between different power-law behav-
iors, or saturation points, which can also serve as signatures of the different kinds of defects. However, identifying the
relevant features in advance is a complex task. Fortunately, the pattern-classification literature offers useful tools for
feature extraction from data, and we describe one of those in Section 3 and Appendix A.
0 100 200 300 400 500
0

50

100

150

200

250

300

0 100 200 300 400 500
0

50

100

150

200

250

300

0 100 200 300 400 500
0

50

100

150

200

250

300

0 100 200 300 400 500
0

50

100

150

200

250

300

a b

c d

Typical examples of signals obtained from samples with (a) lack-of-fusion defects, (b) lack-of-penetration defects, (c) porosities,
) no defects. The horizontal axes correspond to the time direction, in units of the inverse sample rate of the equipment.
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Fig. 2. Curves for a lack-of-fusion signal, obtained from (a) Hurst analysis, (b) detrended-fluctuation analysis, (c) minimal-cover
analysis, and (d) box-counting analysis.
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2.1. Hurst (R/S) analysis

The rescaled-range (R/S) analysis was introduced by Hurst [5] as a tool for evaluating the persistency or antipersis-
tency of a time series. The method works by dividing the series into intervals of a given size, and calculating the average
ratio of the range (the difference between the maximum and minimum values of the series) to the standard deviation
inside each interval. The size of each interval is then varied.

Mathematically, the R/S analysis is defined in the following way. Given an interval of size s, whose left end is located
at point i0, we calculate hzis, the average of the series zi inside the interval,
hzis ¼
1

s

Xi0þs�1

i¼i0

zi: ð2Þ
We then define an accumulated deviation from the mean as
Zi ¼
Xi

k¼i0

ðzk � hzisÞ; ð3Þ
from which we extract a range,
RðsÞ ¼ max
i06i6i0þs�1

Zi � min
i06i6i0þs�1

Zi; ð4Þ
and the corresponding standard deviation,
SðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s

Xi0þs�1

i¼i0

Z2
i

vuut : ð5Þ
Finally, we obtain the rescaled range R(s)/S(s), and take its average over all intervals.
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For a curve with true fractal features, the rescaled range should satisfy the scaling form
RðsÞ
SðsÞ � sH ; ð6Þ
where H is the Hurst exponent.
A typical curve obtained from the R/S analysis of the signals is shown in Fig. 2a.

2.2. Detrended-fluctuation analysis

The detrended-fluctuation analysis (DFA) [6] aims to improve the evaluation of correlations in a time series by elim-
inating trends in the data.

The method consists initially in obtaining a new integrated series ~zi,
~zi ¼
Xi

k¼1

ðzk � hziÞ; ð7Þ
the average hzi being taken over all points,
hzi ¼ 1

L

XL

i¼1

zi: ð8Þ
After dividing the series into intervals, the points inside a given interval are fitted by a polynomial curve of degree n. In
our case, we have considered n ¼ 1 or n ¼ 2, corresponding to first- and second-order fits. Then, a detrended variation
function Di,n is obtained by subtracting from the integrated data the local trend as given by the fit. Explicitly, we define
Di;n ¼ ~zi � hi;n; ð9Þ
where hi,n is the value associated with point i according to the fit of degree n. Finally, we calculate the root-mean-square
fluctuation Fn(s) inside an interval as
F nðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s

X
i

D2
i;n

s
; ð10Þ
and average over all intervals. For a true fractal curve, F(s) should behave as
F ðsÞ � sa; ð11Þ
where a is the scaling exponent.
A typical curve obtained from the detrented-fluctuation analysis of the signals is shown in Fig. 2b.

2.3. Minimal-cover analysis

This recently introduced method [7] relies on the calculation of the minimal area necessary to cover a given plane
curve at a specified scale.

After dividing the series, we can associate with each interval, labeled by a variable k, a rectangle of height Hk, defined
as the difference between the maximum and minimum values of the series zi inside the kth interval,
H k ¼ max
i06i6i0þs�1

zi � min
i06i6i0þs�1

zi; ð12Þ
in which i0 ¼ 1þ ðk � 1Þs labels the left end of the interval. The minimal area is then given by
AðsÞ ¼
X

k

H ks; ð13Þ
the summation running over all cells.
Ideally, in the scaling region, A(s) should behave as
AðsÞ � s2�Dl ; ð14Þ
where Dl is the minimal cover dimension, which is equal to 1 when the signal presents no fractality.
A typical curve obtained from the minimal-cover analysis of a signal is shown in Fig. 2c.
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2.4. Box-counting analysis

This is a well-know method of estimating the fractal dimension of a point set [8], and it works by counting the min-
imum number N(s) of boxes of side s needed to cover all points in the set. For a real fractal, N(s) should follow a power
law whose exponent is the box-counting dimension DB,
Fig. 3.
data s
NðsÞ � s�DB : ð15Þ
A typical box-counting curve for a signal is shown in Fig. 2d.
3. Results of the classification approach

In order to classify the signals, we used a supervised variation of the Karhunen–Loève (KL) transformation [13,14],
briefly described in Appendix A. For each signal, we collected the corresponding curves from various fractal analyses,
forming a single vector with M components. The most successful combination involves curves from Hurst, linear detr-
ended-fluctuation, minimal-cover, and box-counting analyses, corresponding to M ¼ 108 (with 27 components of the
vector taken from each curve). A plot obtained by projecting the first two components of the KL-transformed vectors
is shown in Fig. 3, for the full set of vectors. (Note that, with four different classes for the vectors, the transformed space
is three-dimensional.) It is evident from the figure that the transformation yields a good clustering of the vectors around
the different class means. This clustering is a general feature of the KL transformation. However, to assess the utility of
the classification approach, it is essential to evaluate the generalization error.

We proceeded by first randomly dividing the vectors into a training set (with 80% of the signals) and a test set (with
the remaining signals). The KL transformation was first applied to the training vectors, and the class means were deter-
mined. Transformed vectors in both sets were then classified by applying the nearest-class-mean rule, i.e., a vector x was
assigned to the class whose average vector, as determined by the training set, lies closer to x. (It is also possible to
explore other approaches for discrimination, such as Bayesian rules, but that would require an estimation of the
class-conditional probabilities, which we do not have at hand.) Finally, we took averages over 500 different choices
of training and test sets.

The average confusion matrices of the training and test sets are shown in Tables 1 and 2. Notice that the mean error
rate is negligible for the training vectors, and corresponds to around 15% for the test vectors. These error rates are com-
parable to those obtained by analyzing the same signals directly using non-linear classifiers based on neural networks
[4]; the use of linear classifiers, on the other hand, leads to considerably higher error rates [3]. Notice that in our study
the number of variables (108) employed in the classification step represents only around 1/5 of the number used in the
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Table 1
Average confusion matrix for the training vectors, derived from the fractal analyses

LF LP PO ND

LF 100 0 0 0
LP 0 99.87 (0.50) 0.13 (0.50) 0
PO 0 0.01 (0.10) 99.99 (0.10) 0
ND 0 0 0.01 (0.08) 99.99 (0.08)

The possible classes are lack of fusion (LF), lack of penetration (LP), porosity (PO) and no defects (ND). The figures in parenthesis
indicate the standard deviations, calculated over 500 sets. The value in row i, column j indicates the percentage of vectors belonging to
class i which were associated with class j.

Table 2
The same as in Table 1, for the testing vectors

LF LP PO ND

LF 91.07 (8.20) 1.69 (3.64) 6.88 (7.37) 0.35 (1.69)
LP 2.61 (8.20) 83.96 (10.04) 12.14 (9.27) 1.28 (3.21)
PO 6.43 (7.27) 13.99 (10.5) 72.66 (12.87) 6.92 (7.55)
ND 1.01 (3.25) 2.55 (4.43) 6.92 (7.16) 89.51 (8.93)

Table 3
Average percentage rates of correct classification of the test vectors, derived from applying the KL transformation to the correlograms
or the Fourier spectra associated with the signals

LF LP PO ND

Correlograms 60.19 (17.75) 64.18 (14.96) 51.60 (16.87) 57.43 (16.16)
Fourier spectra 51.42 (17.49) 47.35 (17.03) 46.76 (16.64) 48.08 (15.76)

The figures in parenthesis indicate standard deviations calculated over 100 sets.
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neural-network studies (which made use of all 512 points of each signal). Besides rendering the calculations faster, for
an equivalent error rate, the smaller number of variables also leads to smaller fluctuations in the curves.

For completeness, we also applied the KT transformation to both the correlograms and the Fourier spectra of each
signal, obtaining average error rates no smaller than 36% and 48%, respectively (see Table 3).
4. Conclusions

In this paper we applied techniques developed for the study of fractal properties of time series as a preprocessing tool
for the classification of defects probed by ultrasonic signals. The signals were obtained in welding joints containing three
different classes of defects, and we also considered signals with no defects. For the classification step, we employed an
extension of the Karhunen–Loéve transformation, which, supplemented by the nearest-class-mean rule, yielded low
error rates (between 0% and 15%) both in the training and the test stages. These error rates are comparable with those
obtained from more time-consuming approaches based on direct analysis of the signals. In our view, this is evidence
that fractal techniques are a promising tool for the classification of defects probed by ultrasonic inspection.

We believe that the performance of the classification approach based on fractal techniques can be further improved
by resorting to non-linear classifiers, especially in combination with reclassification and hierarchical procedures. These
extensions we leave for future investigations.
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Appendix A. Karhunen–Loéve transformation

The Karhunen–Loéve (KL) transformation, as the principal component analysis, is a tool for feature selection and
extraction. It produces a set of mutually uncorrelated components, and dimensionality reduction can be achieved by
selecting those components with the largest variances. The version of the transformation employed here [13] relies
on compression of the discriminatory information contained in the class means.

Let xi be the (column) vector corresponding to the ith signal. The KL transformation consists of first projecting the
training vectors along the eigenvectors of the within-class covariance matrix SW, defined by
SW ¼
1

N

XNC

k¼1

XNk

i¼1

yikðxi �mkÞðxi �mkÞT; ðA:1Þ
where NC is the number of different classes, Nk is the number of vectors in class k, mk is the average vector of class k,
and T denotes the transpose of a matrix (in this case, yielding a row vector). The element yik is equal to one if xi belongs
to class k, and zero otherwise. We also rescale the resulting vectors by a diagonal matrix built from the eigenvalues kj of
SW. In matrix notation, this operation can be written as
X0 ¼ K�
1
2UTX; ðA:2Þ
in which X is the matrix whose columns are the training vectors xi, K ¼ diagðk1; k2; . . .Þ, and U is the matrix whose col-
umns are the eigenvectors of SW. This choice of coordinates makes sure that the transformed within-class covariance
matrix corresponds to the unit matrix. Finally, in order to compress the class information, we project the resulting vec-
tors onto the eigenvectors of the between-class covariance matrix SB,
SB ¼
XNC

k¼1

N k

N
ðmk �mÞðmk �mÞT; ðA:3Þ
where m is the overall average vector. The full transformation can be written as
X00 ¼ VTK�
1
2UTX: ðA:4Þ
V being the matrix whose columns are the eigenvectors of SB (calculated from X 0).
With NC possible classes, the fully-transformed vectors have at most N C � 1 relevant components. We then associate

a vector xi with the class whose average vector lies closer to xi within the transformed ðN C � 1Þ-dimensional space. This
association rule would be optimal if the vectors in different classes followed normal distributions.
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