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gears, and gearboxes containing toothless gears, both unloaded and under load, with
several rotation frequencies. By applying detrended-fluctuation analysis (DFA), a
mathematical tool introduced to study fractal properties of time series, we are able to
distinguish the signals with respect to their working conditions. For each signal, DFA
PACS: involves performing a linear fit to the data inside intervals of a certain size, and

43.40.+s evaluating the corresponding fluctuations detrended by the local fit. Repeating this
:g‘gg'é’; procedure for many interval sizes yields a curve of the average fluctuation as a function

e of size. From the curves, we define vectors whose components correspond to the average
Keywords: fluctuation associated with suitably chosen interval sizes. We finally apply principal
Gearbox fault diagnosis component analysis to the set of all vectors, obtaining very good clustering of the
Vibration analysis transformed vectors according to the different working conditions, with a performance
Detrended-fluctuation analysis comparable to that obtained from Fourier analysis, especially for gears working under

load.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Gearboxes are widely employed in industrial applications, lending great importance to studies aiming at gear-fault
identification and characterization. The usual approach employed by those studies is to analyze vibration signals captured
by an accelerometer mounted on the surface of the gear case. However, these are influenced by vibrations from many
sources, such as the meshing gears, shafts, and bearings. Thus, the resulting signals are usually quite complex, hindering
their analysis.

Many fault-detection techniques developed so far focus on the evolution of statistical parameters (such as standard
deviation, skew, kurtosis, etc.) as a function of time [1], or on frequency analysis [2]. More recently, a series of hybrid
time-frequency techniques have been developed, such as wavelet, Wigner-Ville or correlated transforms [3-9]. Both
frequency and hybrid techniques rely on the identification of the frequencies present, which are then compared to models
predicting which frequencies should be important in the presence of various faults.

Here we employ another approach, based on detrended-fluctuation analysis (DFA), a tool originally developed to
differentiate between local patchiness and long-range correlations in DNA sequences [10]. The presence of long-range
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correlations (which reflects the presence of correlated noise in the sequence) is identified by studying the detrended
fluctuations in the sequence, as functions of the size of the windows through which the sequence is examined. In an
analogous way, one may hope that DFA can be useful in investigations of vibration signals, by filtering out noise
contributions from unimportant sources, and focusing on the correlated noise which presumably comes from the gear
faults. As our results show, the variation of the detrended fluctuations with the size of the time window is a signature of the
type of fault present in the gear, and this signature can be captured by pattern-classification tools.

This paper is organized as follows. In Section 2 we describe the techniques employed for producing and capturing
the vibration signals. Section 3 details the motivation and mathematics behind DFA. Results obtained from applying
a combination of DFA and principal component analysis (PCA) to the vibration signals are presented and discussed in
Section 4, and compared to results from a similar combination involving the Fourier spectra of the signals. Finally,
Section 5 contains our conclusions.

2. Signal capture

All trials were performed on a especially designed bench, composed of a three-phase motor, with nominal power of
0.37 kW and nominal rotation frequency of 1555 rpm. The motor was connected to a gearbox containing four gears, but
defects were only introduced to the pinion gear 1 (see Fig. 1 for the gearbox scheme). The number of teeth and the primitive
diameter were 31 and 33.435 mm for gear 1, 55 and 59.319 mm for gear 2, 15 and 20.753 mm for gear 3, 57 and 73.753 mm
for gear 4. The reduction factors were 1.774 between gears 2 and 1, and 3.553 between gears 4 and 3. An accelerometer was
placed on the upper side of the gearbox, for signal capture, and a brake was connected to gear 4 in order to simulate a load
condition. The different types of pinion gear studied were:

1. gears with no faults (normal);
2. gears with a local fault, represented by one missing tooth (toothless);
3. gears with an extensive fault, represented by a severe scratch over 10 consecutive teeth (scratched).

For each gear condition, signals were captured using six different rotation frequencies (400, 600, 800, 1000, 1200, and
1400 rpm). The motor rotation was controlled by a frequency inverter. Trials were performed both in the absence of
external load or under a load of 8.4 Nm, corresponding to 60% of the nominal maximum load.

For each combination of gear, frequency, and load, 18 signals were captured, resulting in a data set composed of 648
samples of vibration signals. The capture made use of a B&K4393 accelerometer coupled to a B&K2535 load amplifier. Each
signal is composed of 2048 data points, with a sampling rate of 5.12 kHz, and subject to a low-pass filter with a 2 kHz cutoff.

3. Detrended-fluctuation analysis

Most techniques of time-series analysis, such as power spectra and autocorrelations, focus on identifying properties of
stationary signals [11] and assume any noise present in the signals to be non-correlated. By making use of concepts
introduced in the study of fractional Brownian motion (fBm) [12], one can also study memory effects in the fluctuations of a
time series, in order to identify the presence of correlated noise. In a genuine fBm these memory effects are embodied by a
single number, the Hurst exponent H, which governs the time evolution of the standard deviation o associated with the
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Fig. 1. Gearbox scheme, showing the four gears. Defects were introduced to gear 1.
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motion. Explicitly, one has
0= (ZKft)H, (1)

where t is the time elapsed since the motion started, and Ky is a fractal diffusion coefficient. A Hurst coefficient equal to 1
corresponds to a regular Brownian motion (i.e. Fickian diffusion), and to the absence of memory effects. Values of H
different from } indicate the presence of long-range memory mechanisms affecting the motion; H> 1 (H < 1) corresponds to
persistent (antipersistent) behavior of the time series.

The DFA [10] can be used as a means of estimating the Hurst exponent of a time series by eliminating trends which
could be superposed to an underlying fBm. The method consists initially in obtaining from the original series z; (containing
L points) a new integrated series Zz;,

zi=Y (z— () (2)
k=1

the average (z) being taken over all points,

(@) =%sz. (3)

After dividing the series into intervals containing t points, the points inside a given interval are fitted by a straight line.
Then, a detrended variation function 4; is obtained by subtracting from the integrated data the local trend as given by the
fit. Explicitly, one defines

4i =2z —h, (4)

where h; is the value associated with point i according to the linear fit. Finally, one calculates the root-mean-square
fluctuation Fj(7) inside interval I, as

1
R = |2 4% (5)
iely

and average over all intervals. Usually, the average F(t) behaves as
F(t)~1* (6)

at least inside some range of values of 7, and the scaling exponent o provides an estimate of the Hurst exponent of the
underlying fBm.

On the other hand, from a signal-processing point of view, DFA can be seen as a transformation yielding the function
F(t), which compresses the information content of the time series into a much smaller number of variables. (In the case of
the vibration signals considered here, each original series contains 2048 points, whereas the corresponding F(t) curves
were calculated for a maximum of 37 values of t7.) The curves F(t) representing the various working conditions can then be
used in conjunction with statistical tools aiming at pattern classification.

4. Results and discussion

Fig. 2 shows representative signals obtained from the three types of gear, working under load at a rotation frequency of
1400 rpm. Also shown are the corresponding DFA curves. The DFA was performed by selecting a fixed set {t;} of d values of
the window size 7 and calculating for each signal i the values F(t;). These values can be interpreted as the components of a
vector X;,

F(tq)
F(t3)
X; = .

: (7)
Fza) ),

The window sizes we used for the vectors correspond to {4,5,6,7,8,10,11,13,16,19,23,27,32}, so that each vector has
d =13 components (other choices of the window sizes lead to similar results). We then grouped the resulting vectors
according to the rotation frequency and to the presence or absence of load, and applied (PCA) [13] to each group.

Given a set of (column) vectors {x;}, containing N vectors, PCA works by projecting the vectors onto the directions
defined by the eigenvectors of the group-covariance matrix S, defined as

N
S= %;(Xl‘ —m)(x; —m)" (8)
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Fig. 2. Representative signals and DFA curves obtained from the three types of gear, working under load at a rotation frequency of 1400 rpm. In the signal
plots, time is measured in units of the inverse sampling rate: (a) signal from normal gear, (b) DFA from normal gear, (c) signal from toothless gear, (d) DFA
from toothless gear, (e) signal from scratched gear, and (f) DFA from scratched gear.

in which m is the average vector,
1N
m=g > oxi (9)
i=1

and T denotes the vector transpose. The projection along the direction of the eigenvector corresponding to the largest
eigenvalue of S is the first principal component, and accounts for the largest amount of variation in the original vectors. The
remaining principal components are arranged in decreasing order of the corresponding eigenvalues. Since it looks for the
combination of window sizes yielding the largest variations among all DFA vectors, PCA is in principle able to identify
the distinctive features introduced by each type of fault. For instance, our results indicate that the first principal component
has comparable projections along most of the window sizes, suggesting that the average slope of a DFA curve is an
important classification feature.

Figs. 3 and 4 show plots of the second versus the first principal components calculated from the DFA results obtained for
all studied rotation frequencies, both in the absence and in the presence of external load. For the unloaded signals (Fig. 3),
all frequencies allow for a clear discrimination of the signals obtained from scratched gears, while the points corresponding
to normal and toothless gears are hardly distinguishable from just the first two components. On the other hand, under load
(Fig. 4) a much clearer distinction is established between the three classes of gear, especially for higher frequencies.
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Fig. 3. Projection of the vectors corresponding to the DFA curves of signals from unloaded gears along the plane defined by the first two principal
components: (a) 400 rpm, (b) 600 rpm, (c) 800 rpm, (d) 1000 rpm, (e) 1200 rpm, and (f) 1400 rpm.

In order to make a quantitative assessment of the quality of the discrimination obtained from the DFA approach, we
divided the transformed vectors into a training set and a testing set, for a given group of frequency and load conditions. The
training set was used to determine the average transformed vector of each class, as well as the covariance matrix, from
which we built transformed vectors y; containing the projections of the corresponding DFA vector X; along the first three
principal components, for both training and test vectors. The classification was performed by the nearest-class-mean rule,
according to which each vector y; is assigned to the class whose average vector lies closer to y;. By comparing the
classification assigned by the nearest-class-mean rule with the known classification, we can evaluate the quality of
the classification scheme by calculating the average percentages of gears of a given type which are correctly classified.

In the classification scheme, 36 vectors were used for training and the remaining 18 vectors for testing, and averages
were taken over 100 random choices of training and testing sets. As already expected from the PCA plots (Figs. 3 and 4) all
scratched gears are correctly classified, and no normal or toothless gears are misclassified as scratched. Classification errors
then correspond to toothless gears classified as normal, and vice versa. Tables 1 and 2 show, for various frequencies and
load conditions, the average percentage of toothless and normal gears which are correctly classified during the testing
phase. These two classes are hard to distinguish, especially in the absence of load. In this case, classification errors for those
two classes are around 30% or less, except at 1000 and 1400 rpm, when approximately one half of normal and toothless
signals are misclassified. On the other hand, for gears working under load (Table 2), both scratched and toothless gears are
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Fig. 4. Projection of the vectors corresponding to the DFA curves of signals from loaded gears along the plane defined by the first two principal
components: (a) 400 rpm, (b) 600 rpm, (c) 800 rpm, (d) 1000 rpm, (e) 1200 rpm, and (f) 1400 rpm.

Table 1

Average percentage of testing signals coming from toothless and normal gears, working in the absence of load, which are correctly classified by applying
the nearest-class-mean rule to the corresponding PCA-projected DFA vectors

400 rpm 600 rpm 800 rpm 1000 rpm 1200 rpm 1400 rpm
Toothless 69.38 86.33 96.16 49.24 68.83 48.20
Normal 69.34 100 100 64.08 91.53 4514
Table 2
The same as in Table 1, but now for gears working under load

400 rpm 600 rpm 800 rpm 1000 rpm 1200 rpm 1400 rpm
Toothless 100 100 100 100 100 100
Normal 94.80 97.54 98.51 95.58 81.32 100
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Table 3
Average percentage of testing signals coming from toothless and normal gears, working in the absence of load, which are correctly classified by applying
the nearest-class-mean rule to the corresponding PCA-projected Fourier spectra

400 rpm 600 rpm 800 rpm 1000 rpm 1200 rpm 1400 rpm
Toothless 74.20 100 100 100 99.80 95.54
Normal 66.39 87.65 100 100 97.32 83.04

Table 4
The same as in Table 3, but now for gears working under load

400 rpm 600 rpm 800 rpm 1000 rpm 1200 rpm 1400 rpm
Toothless 89.39 100 100 100 100 100
Normal 99.16 100 100 100 100 100

always correctly classified; normal gears are mostly correctly classified, but are sometimes misclassified as toothless, with
an error rate of less than 7%, except for 1200 rpm, when the error rate approaches 20%. For 1400 rpm all signals are correctly
classified.

The performance of the DFA approach is comparable, although somewhat inferior, to that obtained by combining
calculations of the power spectrum of the signals with PCA. Analogously to the DFA approach, we fixed the fast-Fourier
transform (FFT) frequencies {w;}, and defined for each signal a vector whose components are P(wj), the corresponding
power spectral density associated with frequency w;. Since each time signal has 2048 points, each FFT vector has 1024
components. PCA plots for this combination (not shown) are qualitatively similar to those of the DFA-based approach.
Again, in the absence of load, points corresponding to scratched gears are clearly distinct from those of the other two
classes of gear, which can be rather indistinct. Under load, however, the three classes are more easily distinguishable, and
for lower frequencies than in the DFA case. Tables 3 and 4 show the average percentage classification errors obtained by
applying the nearest-class-mean rule with the first three principal components of the FFT. For signals from unloaded gears
(Table 3), the performance is clearly superior to that of the DFA approach, except for 400 rpm. For signals obtained under
load, and frequencies higher than 400 rpm, no misclassifications occur, while in the DFA approach the error rate was very
low, although not zero. Notice, however, that in the DFA approach the information from all 2048 points in each signal was
compressed in only 13 vector components, but still the discriminating power was almost fully preserved for the loaded
signals. Also, the DFA approach is able to correctly classify all signals coming from toothless gears working under load,
while the FFT approach gives only a 90% success rate for such signals at 400 rpm (compare Tables 2 and 4).

5. Conclusions

We applied a combination of detrended-fluctuation analysis (DFA) and principal component analysis (PCA) to
discriminate between vibrational signals obtained from three classes of gears (normal, toothless, and scratched), under
various conditions of frequency and load. For gears working under load, the performance of the method was only slightly
inferior to that provided by a similar approach based on power-spectrum analysis, but with the advantage of employing a
significantly smaller set of variables. Since DFA can be equally applied to both stationary and nonstationary signals, we
believe that the DFA plus PCA approach could be quite useful to monitor the evolution of working conditions in gears,
during which the nature of the signals would be clearly nonstationary. Presumably, one could then follow the time
evolution of the PCA projections, from which gear condition could be inferred. Plans for such an experiment are being
followed, and results will be reported in a future publication.

An evaluation of the efficiency of the present approach to incipient rather than severe faults will also be the subject of
future studies. However, one can also apply the method to the classification of the “microstructure” of inhomogeneous
media, through which the propagation of ultrasonic waves is simulated. By analyzing the time variation of the wave
amplitude at a given point, representing the signal captured by a fixed transducer, the method can successfully differentiate
between “microstructures” ranging from weakly to strongly disordered [14]. This represents evidence that a similar success
rate might be expected when analyzing vibration signals from incipient faults.
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