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Abstract
Nondestructive testing is widely used to detect and to size up discontinuities embedded in a material. Among the several
ultrasonic techniques, time of flight diffraction (TOFD) combines high speed inspection, high sizing reliability and low rate of
incorrect results. However, the classification of defects through ultrasound signals acquired by the TOFD technique depends
heavily on the knowledge and experience of the operator and thus, this classification is still frequently questioned. Besides,
this task requires long processing time due to the large amount of data to be analyzed. Nevertheless, computational tools for
pattern recognition can be employed to analyze a high amount of data with large efficiency. In the present work, simulation
of ultrasound propagation in two-dimensional media containing, each one, different kinds of modeled discontinuities which
mimic defects in welded joints were performed. Clustering (k-means) and classification (principal component analysis and
k-nearest neighbors) algorithms were employed to associate each simulated ultrasound signal with its corresponding modeled
defects. The results for each method were analyzed, discussed and compared. The results are very promising.
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1 Introduction

Nondestructive tests are used to detect discontinuities inside
an object without affecting its future usefulness. Some of
them, like ultrasound testing, are even able to determine the
dimension of the discontinuity. Ultrasound evaluation uses
high frequency mechanical waves to detect imperfections
inside the material.

Usually, echo amplitudes are related to discontinuity
dimensions. The TOFD technique is not based on echoes
amplitude, but uses the travel time of a diffracted wave at the
upper and lower tips of a discontinuity to determine its size
and depth.

Although this technique presents high detection rate and
a wide application field, the large amount of data generated
during an inspection requires a long time to be properly ana-
lyzed and depends heavily on the knowledge and experience
of the operator. Nevertheless, a large number of signals can
be quickly processed by classification and clustering algo-
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rithms in order to distinguish the main defects in welded
joints detected by the TOFD technique.

Supervised and unsupervised learning algorithms can be
used with this purpose [1–3]. Cluster analysis or clustering
is an unsupervised algorithm that aims to determine the best
way of grouping a given unknown dataset. It is expected that
elements of a same group are similar and different elements
of different groups are as different as possible. In supervised
learning, the classifier is informed about the class to which
each training signal belongs. After have been taught, these
algorithms can be used to recognize patterns of unknown
data.

In this study, the non-destructive test by ultrasound was
modeled in a two-dimensional medium containing one of
three common types of welding defects (lack of penetra-
tion, pore and crack). For each type, ultrasound signals were
obtained by simulating 36 different configurations of defect
size and position. A total of 108 simulated signals were gen-
erated.

A cluster analysis technique was employed with the pur-
pose of verifying the optimum number of groups to divide
simulated ultrasonic signals.Also, classifierswith supervised
learning algorithm (k-Nearest Neighbors) were employed to
classify these signals.
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This work aims at evaluating the performance of clas-
sification and clustering algorithms in the identification of
modeled welding defects, through the analysis of ultrasonic
signals obtained by TOFD simulation, independently of its
dimension and position.

2 Modeling and Simulation

A finite element software package was used to simulate the
propagation of ultrasonicwaves inmodeled two-dimensional
media, each one containing one discontinuity which mimics
a welding defect.

2.1 Ultrasonic Transducers

The TOFD technique uses normal transducers for longitu-
dinal waves mounted on acrylic wedges in order to obtain
an oblique ultrasonic beam [4]. However, modeling these
wedges requires increase in system size and computation
cost. The working principle of ultrasonic phased array tech-
nique can be considered as alternative solution for this
problem. Phased array transducers are based on constructive
and destructive interference of waves generated by a number
of elements excited at slightly different times.

Wooh and Shi [5] carried out a simulation study on the
application of linear phased array transducer to produce a
steered beam. They analyzed the influence of various trans-
ducer parameters and determined the most important vari-
ables to be adjusted in order to obtain a good beam steering.
Their work emphasizes that good quality is achieved when
the beam is sharply-defined and well-directed towards the
desired steering direction, while suppressing or squelching
the deleterious grating waves travelling in other directions.

Firstly, a better beam direction and a higher pressure in the
steering direction can be achieved by increasing the number
of elements, where which element is formed by a set of point
sources. Secondly, the beam direction can be improved by
increasing the inter-element spacing, dcr . An optimal value
for the inter-element spacing, dcr , is given by Eq. 1 [5], and
can be used to provide the best beamdirectivitywithout intro-
ducing deleterious grating lobes. Finally, the pressure in the
steering direction increases with the element width, a, result-
ing in high signal-to-noise ratios.

dcr = λ

1 + sin (θs)max
(1)

Moreover, previous works states that better spatial resolu-
tions are achieved for minor angle of incidence [6]. However,
experimental measurements indicate that 60◦ transducers
produce the best results [7].

Fig. 1 Schematics representation of the simulated transducer

Fig. 2 Ultrasonic pulse with 5 [MHz]

With all this in mind, the desired ultrasonic angle beam
inside the material wasn’t obtained by using wedge mod-
eling, but by exciting different points on the surface in an
appropriate linear time delay.

Thus, an array of eight elements placed on the surface
of the model was employed to produce ultrasonic excita-
tion. The element width, a, and the inter-element spacing,
dcr , were defined as 0.2λ and 0.5λ, respectively. Each ele-
ment is composed by eight single points sources of radiation,
resulting in 64 point sources. The Fig. 1 shows a schematics
representation of the simulated transducer.

The ultrasonic pulse given by Eq. 2 was applied at each
element in both x and y directions with an appropriate time
delay to produce an angle of incidence defined as being 60◦.
This pulse has been used in previous works [8] and its wave-
form is shown in Fig. 2. A frequency, f , of 5 MHz was used.

F(t) =
{[

1 − cos
(
2π f t
3

)]
cos(2π f t), 0 ≤ t ≤ 3

f

0, otherwise
(2)

2.2 TOFDTechnique

The conventional configuration for the TOFD technique con-
sists of emitter and receiver transducers aligned on either side
of the weld bead, so that the region of interest is entirely
within the area covered by the sonic emitter.

In a two-dimensional simulation, length and height (thick-
ness) of the solidmediumneed to be defined. The relationship
between the height, the incidence angle of ultrasonic beam,
θs , and the distance between emitter and receiver transducers,
dtr , is given by equation:

dtr = 2L tan θs (3)
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Table 1 Material properties

Properties Value

Density 7800 kg/m3

Longitudinal wave velocity 5900m/s

Transverse wave velocity 3200m/s

Fig. 3 Map of pores position

A height L of 19 mm and a beam incidence angle θs of
60◦ were used in Eq. 3 to yield dtr = 80 mm.

The receiver has the same number of elements and point
sources defined to emitter. Likewise, the same time delay
is used to read the sound pressure in different nodes in the
receiver, but in the opposite sense, that is, opposite time dif-
ference. For each simulation, the time variation of sound
pressure read in these sixty-four points of the receiver are
time adjusted and combined to generate one single A-scan.

2.3 Model andMaterial Properties

The properties of the simulatedmaterial are those of the AISI
1020 steel and shown in Table 1. In the numerical simulation
the material is considered to be isotropic, so the welded-joint
properties are not considered different to the base metal.

2.4 Characteristics of Discontinuities

Three kinds of discontinuities found in welded joints were
modeled: pore, crack and lack of penetration. For each one
of them, 36 simulations of wave propagation were performed
by changing the position or dimensions of the discontinuity.
Thus, a total of 108 A-scan signals were produced. Particular
rules were used to define the position and size for each kind
of discontinuity.

Pore-type discontinuities with 1 and 2 mm of diameter
positioned as shown in Fig. 3 were used in wave propagation
simulations. The number positions in the Fig. 3 indicate the
exact location of the pore and its corresponding diameter.

A unique pore, as the present in the cross-section depicted
by Fig. 4, is embedded in the medium at a time and before
each simulation. The combination of two pore sizes and eigh-
teen positions yielded thirty-six simulations,with oneA-scan
for each simulation.

Crack-type discontinuities were modeled with 6 different
sizes. Crack heights from 4 to 9 mm, in 1 mm steps, were

Fig. 4 Pore-type discontinuity model

Fig. 5 Map of cracks positions

Fig. 6 Crack-type discontinuity model

Fig. 7 Lack of penetration model

used. The width dimension was defined as being equal to
one tenth of the height. As in Fig. 3, Fig 5 shows the map
of cracks positions, where the numbers indicate the position
and the height of each crack-type discontinuity.

Each simulation has one crack-type discontinuity as
shown in Fig. 6. Combining the dimensions and positions,
a total of 36 simulated A-scan of crack-type discontinuities
are generated.

Lack of penetration is a weld defect found at the back-
wall of a weld bead. This kind of discontinuity was added
always in the mid point between emitter and receiver trans-
ducers, as shown in Fig. 7. Height and width were changed
simultaneously with height changed from 3 mm to 8 mm, in
1 mm steps, and width changed from 1 mm to 6 mm, with
an increment of 1 mm, yielding 36 different combinations.

2.5 Simulation Data

Each wave propagation simulation yielded an A-scan sig-
nal corresponding to the sound pressure amplitude measured
by the receptor. This way, 108 ultrasonic trials were simu-
lated and each simulation produced an A-scan signal with
512 points. The simulated ultrasonic signals were analyzed
by classification and clustering algorithms to evaluate their
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ability to correctly assign a particular signal to one of the 3
weld defects.

A triangular element free meshing was used for the simu-
lation of ultrasonic wave propagation. Parameters associated
with the convergence of the numerical solution were tested.
Values of λL/Δxmax = 8 or more and time steps around
1/(100 f ) were suggested in reference [9]. After the mesh
refinement study, the maximum size of triangular element
was defined as λL/Δxmax = 12 and the time step used equal
to 1/(100 f ).

3 Preprocessing

Besides the simulated dataset of 108 A-scans, two other sets
of signals were produced through preprocessing techniques.
Oneof these sets consisted in calculating an envelope for each
of the 108 signals through the application of the Savitzky-
Golay digital filter [10]. It has been shown that this procedure
improves the average success rate of the classifier [11]. The
second preprocessed set consists of the normalization of the
simulated signals in order to obtain signals with an average
of zero and a standard deviation of one. The bare, enveloped
and normalized sets of signals were analyzed using principal
component, K-means and K-nearest neighbors techniques.

4 Pattern Recognition

The classification of the three datasets was carried out by
two different algorithms. The first classifier was imple-
mented by using principal component analysis combined
with the nearest-class-mean rule. The second classifier was
performed by k-nearest neighbors algorithm. For the cluster-
ing approach, the k-means method was applied.

The goal is to evaluate the performance of such algorithms
in the identification of the weld defects based on the analy-
sis of the ultrasound signal obtained by simulation of wave
propagation in a medium with the discontinuity embedded.

The following subsections present a review of principal
component analysis, K-Nearest Neighbours and K-means.

4.1 Principal Component Analysis

Consider a set of p possibly correlated observations, each
represented by an m-dimensional vector. Principal compo-
nent analysis (PCA) is a mathematical tool that converts the
set of observations into linearly uncorrelated data by a rota-
tion of the original data onto a new set of orthogonal axes,
diagonalizing the covariance matrix of the data.

Assume that the input data is arranged in a m × p matrix
X , where p is the number of signals produced and m is
the number of dimensions (independent measurements) of

each signal. Each column of X represents an observation.
With respect to an arbitrary coordinate system, the covari-
ance matrix is explicitly given by

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

V̂ ar(x1) Ĉov(x1x2) · · · Ĉov(x1xm)

Ĉov(x2x1) V̂ ar(x2) · · · Ĉov(x2xm)

Ĉov(x3x1) Ĉov(x3x2) · · · Ĉov(x3xm)
...

...
. . .

...

Ĉov(xmx1) Ĉov(xmx2) · · · V̂ ar(xm)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(4)

where

Ĉov(xi x j ) =
p∑

k=1

(xi,k − x̄i )(x j,k − x̄ j )

p
(5)

and

V̂ ar(xi ) =
p∑

k=1

(xi,k − x̄i )2

p
, (6)

x̄i being the average of the elements in the i th row of X , i.e.
the average value of the i th measurement over all observa-
tions.

The covariance matrix calculated as in Eq. 4 is then diag-
onalized to extract its eigenvalues and eigenvectors. The
eigenvalues λ of the covariance matrix Σ are the roots of
[12]

‖Σ − λI‖ = 0, (7)

while the corresponding eigenvectors v are obtained from the
solutions of

(Σ − λI )v = 0. (8)

The eigenvalues of Σ are arranged in decreasing order,
such that λ1 > λ2 > . . . > λm . The first eigenvector,
v1, which is associated with the largest eigenvalue of Σ ,
accounts for the largest variation in the original data. The
projections of the original observations onto the direction of
the nth eigenvector of Σ define the nth principal component
of the data.

Principal component analysis naturally provides a scheme
for truncating the m-dimensional space of the original data,
keeping a number n of principal components such that the
sum of the corresponding eigenvalues reaches a desired pre-
cision r defined by [13]

r =
∑n

i=1 λi∑m
i=1 λi

≤ 1. (9)
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The classifier based on PCA was implemented follow-
ing the same procedure adopted in Ref. [14]. The signals
(their principal components, determined previously by PCA)
were divided into a training set and a testing set. The train-
ing set is used to determine the average of the class for each
class of discontinuity. The classification was performed by
the nearest-class-mean rule, according towhich each test sig-
nal (its first few principal components) is assigned to the class
whose average signal lies closer to the test signal.

4.2 K-Means

The k-means clustering separates the data in different num-
bers of clusters and, using some criteria, as Silhouette [15]
and Davies–Bouldin [16] indexes, it decides the optimum
number of sets to group. The number of clusters tested varies
from two (it doesn’t make sense to create a single group with
the whole dataset) to the square root of the number of input
data.

The procedure is started by randomly choosing k of the
input data as the initial centroids and associating each data
point to the nearest centroid. After that, the positions of the
k cluster’s centroids are recalculated as the mean of its data
resulting from the previous step. This procedure is repeated
until the change in the centroids position is below a threshold,
or until the predefined iteration number is reached [17]. The
k-means method groups the data according to the Euclidean
distance.

In this work, the number of clusters k was varied from
1 to 11 (approximately the square root of 108). For each
value of k, a cost function was evaluated. The cost function
was calculated based on the distance of each element to the
centroid of the group towhich it is associated and is given by:

J =
k∑
j=1

108∑
i=1

∥∥∥x ( j)
i − c j

∥∥∥2 (10)

where x ( j)
i data i belongs to the group j and c j is the centroid

j . The goal of this method is to minimize the value of this
function.

For the k-means approach, we used both Silhouette and
Davies–Bouldin indexes to suggest the optimum number of
cluster as being the minimum number of grouping proposed
by them. The classification’s quality is better when the Sil-
houette index is closer to one and the Davies–Bouldin index
is closer to zero [18].

The Silhouette criterion verifies how near the elements of
the same group are to the same set and how far the elements
are from the nearest different group. To obtain this index,
it is necessary to calculate the distance of one element i to
all the elements of the same group (ai ) and the distance of
one element i to all the elements of the nearest group (bi ).
Equation 11 gives the index [15].

s =
108∑
i=1

bi − ai
max(ai , bi )

(11)

To obtain the Davies–Bouldin index, it is necessary to
calculate all the k distances between the centroids of the
cluster i to all the elements of the group i (represented by di )
and the distance to each pair of centroids i and j (represented
by d(ci , c j )). The index is given by:

DB = 1

k

108∑
i=k,i �= j

max

(
di − d j

d(ci , c j )

)
(12)

Through the relative comparison between different divi-
sions of the set, it is possible to define the best way to group
the data [19].

4.3 K-Nearest Neighbours

The k-nearest neighbours is a simple and easy-to-apply
supervised algorithm. This algorithm is divided into two
phases: training phase and testing phase. In the training
phase, the data and its correct classification are provided to
the algorithm.Then, in the testing phase, data are presented to
the algorithm that returns the corresponding suggested class.

The first step to classify the test data is to calculate all
the distances between the training data to a particular datum.
Likewise the k-means method, the Euclidean distance was
used. After that, the class to which the k nearest neighbours
belongs is verified. So, the data is classified as the most fre-
quent class among the k nearest neighbours.

To choose the optimal k, it is advised to test different
values and then choose the minimum training error, given
by:

Error = Ninc

Ntes
(13)

Where Ninc corresponds to the number of data incorrectly
classified and Ntes to the number of tested data set.

5 Results

5.1 Simulation Analysis

Figures 8 and 9 are two different instants regarding the wave
propagation for one of the cases of lack-of-penetration. The
blue and red colors represent the amplitude of the ultrasonic
wave. The arrowacross in Fig. 8 aims at the longitudinalwave
and the arrow down aims at the transversal wave. As shown,
the longitudinal wave is correctly propagating towards the
discontinuity.
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Fig. 8 Wave propagation a short time after the source emission

Fig. 9 Longitudinal wave impinging on the discontinuity

Fig. 10 Lack of penetration discontinuity A-scan example

In Fig. 9, the longitudinal wave front is near the discon-
tinuity. Clearly, a part of the longitudinal wave has already
reflected due the zero displacement boundary at the bottom
of the material, the same will occur with the transverse wave.

As the longitudinal wave passes the points that correspond
to the receiver, the pressure wave is recorded and, from that,
the A-scan is generated. The Fig. 10 shows the A-scan from
one of the 36 lack-of-penetration simulations. It is clear that
three pulses are present. From left to right, they represent the
lateral wave, the discontinuity and the backwall echo.

Figure 11 is the result from a pore-type simulation. Here,
the three pulses are not clear as in Fig. 10. The backwall
echo is the most evident pulse with, approximately, the same
amplitude and the same time-of-flight as in the lack-of-
penetration case. The lateral and discontinuity waves are not
clear probably due an interference between them.

For the crack-type case, the Fig. 12 shows a similar case to
Fig. 11. The backwall echo is well-defined and as well there
is a small interference between the lateral and discontinuity
waves.

5.2 Principal Component Analysis

The PCA of the three data sets discussed above were
performed. A classifier was implemented by applying the
nearest-class-mean rule to the first few principal components
of the data. The average percentage of discontinuities which
were correctly classified and the kept information rate for

Fig. 11 Pore-type discontinuity A-scan example

Fig. 12 Crack-type discontinuity A-scan example

Fig. 13 Success rate and kept information rate for the PCA of bare
ultrasonic signals

the bare, normalized and enveloped ultrasonic signals are
shown, respectively, in Figs. 13, 14, and 15, as function of
the number of principal components used in the analysis. A
maximum of 20 principal components was used.

In this context, kept information rate is defined as the ratio
of the sum over the PCA eigenvalues used to the sum over
all PCA eigenvalues. The minimum amount of information
kept in order to properly classify data is not a settled matter
[3].

While 70–90% of information kept could be enough, it
can be argued that it should vary according to the problem
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Fig. 14 Success rate and kept information rate for the PCA of normal-
ized ultrasonic signals

Fig. 15 Success rate and kept information rate for the PCA of the
enveloped ultrasonic signals

under study. A suggestion is to take the point in the eigen-
values spectrum where there is a significant drop before the
spectrum stabilizes at small values [3].

From the data shown in Figs. 13, 14, and 15, it can be
seen that the minimum number of principal components
required to reach hit ratio convergence, for bare, normal-
ized and enveloped data sets, is 12 (with hit ratio peak of
about 71% at 14 principal components), 11 (with three peaks
of about 65% at 17, 18 and 20), and 5 (with three peaks of
about 77% at 12, 13 and 14), respectively. Also, the infor-
mation kept rate at the onset of convergence is about 81, 85,
and 74%, respectively.

Table 2 shows confusion matrices obtained from the prin-
cipal component analysis of the three data sets. In a confusion
matrix, the cells in the main diagonal show the percentage
of correct classification while the off-diagonal cells show
the percentage of misclassifications. The data shows that the
PCA classification of the bare ultrasonic signals mistakes
lack of penetration with cracks, but not with pores. Correct

Table 2 Confusion matrices obtained by applying the nearest-class-
mean rule to the results of PCA

LP (%) PO (%) CR (%)

Bare ultrasonics signals

LP 86.11 16.67 19.44

PO 0.00 61.11 13.89

CR 13.89 22.22 66.67

Normalized ultrasonic signals

LP 80.56 22.22 13.89

PO 5.55 47.22 19.44

CR 13.89 30.56 66.67

Enveloped ultrasonic signals

LP 100.00 8.33 2.78

PO 0.00 66.67 33.33

CR 0.00 25.00 63.89

LP lack of penetration, PO pore, CR crack

classification of pores and cracks (61.11 and 66.67%) is less
effective than that of lack of penetration (86.11%). Pores and
cracks also misclassified as both other deffects.

PCA classification of the normalized ultrasonic signals
is worse for all defects. Pore was the most mistaken dis-
continuity for this data set. PCA analysis of the enveloped
signals, on the other hand, provided the best overall classi-
fication rates. Lack of penetration was classified with 100%
of success while the success rate of pore classification was
the highest among the three data sets. The classification rate
of cracks was just a little lower than the ones obtained from
the other two data sets.

The overall percentage found was 71.30, 64.82 and
76.85% for the bare, normalized and enveloped ultrasonic
signals, respectively. The data and analysis presented leaves
no doubt that the best approach for classification of discon-
tinuities is by using PCA with enveloped ultrasonic signal.
It showed faster convergence and better hit ratios with only
five principal components.

5.3 K-Means

To determine the optimal number k of groups, the algorithm
tested all values from 2 to 11. For each value, the algorithm
was repeated 100 times to avoid any local minimum given
by the random choice of k centroids. For each of the three
sets of signals the number of groups suggested by Silhouette
and Davies–Bouldin indexes was tested to find the optimum
index.

For the grouping of bare ultrasonic signals, the optimum
index shows that two groups is the best way to separate the
data, as shown in Fig. 16. Although we simulated three dif-
ferent groups of discontinuity, the algorithm discriminated
the data in just 2 groups with no distinguished pattern. The
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Fig. 16 Frequencies of values suggested as the optimal amount of clus-
ters to group the bare ultrasonic signals

Table 3 Grouping of ultrasonic
signals suggested by k-means
algorithm

LP PO CR

Group 1 25 6 12

Group 2 11 30 24

Fig. 17 Frequencies of values suggested by our test as the optimal
amount of clusters to group the normalized ultrasonic signals

algorithm classified 70% of lack of penetration signals in
group 1 and 75% of pore and crack signals in group 2. Table
3 shows the grouping suggested by k-means.

The optimum index obtained for the grouping of normal-
ized ultrasonic signals was the same as the one obtained for
the bare signals, with two groups being the recommended
way to separate the data, as shown in Fig. 17.

The k-means algorithm grouped the normalized signals
in a similar way as the bare signals. Only one lack of pene-
tration signal had its classification changed from group 1 to

Table 4 Grouping of
normalised ultrasonic signals
suggested by k-means algorithm

LP PO CR

Group 1 24 6 12

Group 2 12 30 24

Fig. 18 Frequencies of values suggested by our test as the optimal
amount of clusters to group the enveloped ultrasonic signals

group 2 when using the normalized signals. Table 4 shows
the grouping suggested by k-means.

For the grouping of enveloped ultrasonic signals the opti-
mum index suggests 9 groups as the best way to separate the
data, as shown in Fig. 18.

The k-means analysis reveals the existence of a pat-
tern corresponding to {1;1;2;2;3;3;1;1;2;2;3;3;1;1;2;2;3;3;
1;1;2;2;3;3;1;1;2;2;3;3;1;1;2;2;3;3} in the enveloped ultra-
sonic signals corresponding to lack of penetration. Therefore,
the signals were subdivided in three subsets according to the
depth of the discontinuity (shallow, medium and deep) and
independently of its width. Table 5 shows the suggested clas-
sification for the enveloped ultrasonic signals using k-means.

Group 1 is comprised of all the enveloped signals of lack
of penetration with 2 mm and 3 mm of depth, while those
with 4 mm and 5 mm of depth were joined in group 2. All
the enveloped signals of lack of penetration with 6 and 7 mm
were associated with group 3. Groups 4, 5, 6, 7 and 8 joined
the enveloped signals of pore and crack. Only 5 enveloped
signals of cracks belong to the group 9.

5.4 K-Nearest Neighbor

To apply the k-nearest neighbor (k-NN) classifier, a study
about the influence of the number of neighbors k in the suc-
cess rate was carried out for each dataset.

Each dataset was randomly divided into a training set and
a testing set. The training set contained 80% of the signals of
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Table 5 Grouping of envelopes
ultrasonic signals suggested by
k-means algorithm

LP PO CR

Group 1 12 0 0

Group 2 12 0 0

Group 3 12 0 0

Group 4 0 3 5

Group 5 0 11 12

Group 6 0 11 4

Group 7 0 5 6

Group 8 0 6 4

Group 9 0 0 5

Table 6 Confusionmatrix obtained by k-NN for bare ultrasonic signals

LP (%) PO (%) CR (%)

LP 98.00 8.00 5.14

PO 1.29 57.86 48.57

CR 0.71 34.14 46.29

each class, while the testing set contains the remaining 20%.
Confusion matrices, described in Sect. 5.2, were calculated
for an average taken over 100 randomly chosen sets of events.
This allows to compare the k-NN results with those obtained
by principal component analysis.

The number k was varied from 1 to 4 and the study showed
that the better classifications were obtained with k = 1, for
all datasets, showing that that a datum normally belong to
the same class of the nearest datum.

Table 6 shows the confusion matrix obtained for the bare
ultrasonic signal. From the results portrayed in Table 1, it is
possible to observe that the lack of penetration defect (LP)
had the best success rate (98%), indicating that this is themost
easily separable class. The approach used can satisfactorily
separate lack of penetration discontinuities from pores and
cracks.

However, the same doesn’t happen for pores and cracks.
Only 57.86% of the pores were correctly classified as pores,
whereas 34.14% were classified as cracks and 8% were as
lack of penetration. Finally, 46.29% of the cracks were cor-
rectly classified as cracks, whereas 48.57%were classified as
pores and 5.14% classified as lack of penetration. The over-
all percentage of bare signals which were correctly classified
(calculated over the principal diagonal) achieved 67.38%.

Table 7 shows the results using the normalized ultra-
sonic signals. Here, the lack of penetration discontinuity is
not as well classified as in Table 6. On the other hand, the
classification success rate was slightly better for pores and
cracks, achieving 61.57 and 56.29% of success, respectively.
However, the overall performance was 70.71%. Therefore,
normalizing the ultrasonic signal has not shown significant
impact in the classification.

Table 7 Confusion matrix obtained by k-NN for normalised ultrasonic
signals

LP (%) PO (%) CR (%)

LP 94.29 8.86 3.86

PO 0.86 61.57 39.86

CR 4.86 29.57 56.29

Table 8 Confusion matrix obtained by k-NN for enveloped ultrasonic
signals

LP (%) PO (%) CR (%)

LP 100.00 3.00 1.29

PO 0.00 57.43 36.71

CR 0.00 39.57 62.00

Results of the k-NN classification for enveloped ultra-
sonic signals are shown in Table 8. All lack of penetration
were correctly classified, but some pores and cracks were
misclassified as lack of penetration. The classification suc-
cess rate achieved was 57.43 and 62% to pores and cracks,
respectively. Most classification errors correspond to pores
classified as cracks (39.57%), and vice-versa (36.71%). A
good average success rate classification (73.14%) has been
achieved by k-NN classifier for the enveloped ultrasonic sig-
nals.

6 Conclusion

The numerical simulation of two-dimensional medium was
successfully realized, considering the characteristics inher-
ent the ultrasound test like density and the wave propagation
velocity inside the material. Three types of well-defined
welding defects (lack of penetration, pore and crack) were
modeled and 36 wave propagation simulations were per-
formed to produce a set of typical A-scan signals for each
kind of discontinuity studied.

These simulated ultrasonic signals were analyzed by pat-
tern recognition techniques and clustering algorithms.

The classifier based on principal component analysis pre-
sented performance similar to the one implemented using
the k-nearest neighbors algorithm. The PCA with enveloped
signals resulted in an overall success rate of 76.85%. For
k-nearest neighbors, the success rate obtained was 73.14%.

In the unsupervised case, although the optimum number
of groups suggested by k-means to divide the datasets differs
from the number of classes regarded in modeling, the clus-
tering obtained reveals some pattern. Enveloped ultrasonic
signals were grouped in 9 groups and the lack of penetra-
tion discontinuity was equally divided in 3 of these groups in
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accordance to depth. The division was not so good for pores
and cracks.

Moreover, the best average success rate classification was
achieved for the enveloped ultrasonic signals in all classifi-
cation schemes.

The lack of penetration discontinuity was the most eas-
ily separable class for all classification schemes used, most
likely due the following reasons: (1) the backwall echo
position is slightly altered by this type of defect and; (2)
dimensions, shape and position are markedly different for
lack of penetration defects than for pores and cracks. Cracks
and pores are similar and thus harder to be distinguished.
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