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Hydrogen embrittlement causes engineering components to fail unexpectedly. Maraging
300 steel was hydrogen charged and subjected to slow strain rate tensile test until fracture.
Electron backscatter diffraction analysis of fractured specimen revealed that cracks
initially propagated intergranulary along prior-austenite grain boundaries. When cracks
faced martensitic {111}« planes parallel to normal direction (ND) they were deflected and
continued to propagate transgranulary through {001}«//ND planes. Finally, cracks were
arrested by {111}«a//ND planes. Crystallographic planes on which cracks propagate/are
arrested, correlate well with planes that exhibit highest/lowest magnitude of lattice strain
determined during tensile loading using in situ synchrotron X-ray diffraction.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

High-strength maraging steels are extensively used in the
nuclear power, chemical processing and aerospace industries,
in applications where they are susceptible to hydrogen
embrittlement (HE) [1-11]. The HE is typically characterised by
a significant loss of tensile ductility and causes engineering
components to fracture unexpectedly. It can be affected by
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microstructure, hydrogen content, strain rate, temperature,
level of applied stress in addition to magnitude of residual
stress [8,12—15]. The most common hypotheses that are used
to explain the HE mechanism include (i) hydrogen-enhanced
vacancy clusters formation [16], (ii) hydrogen-induced deco-
hesion [17] and (iii) hydrogen-enhanced localised plasticity
(HELP) [18]. In case of martensitic maraging steels, the later
mechanism is the predominant failure mode [19]. This
mechanism is based on the accumulation of hydrogen at
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dislocations, precipitates and grain boundaries [20]. Dissolved
hydrogen enhances dislocation mobility and reduces number
of available slip systems because the cross slip is hindered
[12,21]. Since the deformation becomes more localised, in that
region the propensity for cracking is enhanced [21]. When
exposed to hydrogen, high-strength steels may fail either by
intergranular separation along the prior-austenite grain
boundaries [22] or by transgranular fracture along planes
which traverse the prior-austenite grains [23]. Intergranular,
quasi-cleavage, or microvoid coalescence fracture modes can
operate depending upon the microstructure, the crack-tip
stress intensity, the concentration of hydrogen and disloca-
tion interactions with grain boundaries [8,12]. Intergranular
decohesion can be caused by the grain boundary segregation
of impurity elements and hydrogen [24]. The transgranular
fracture in body-centred cubic (BCC) crystals involves the
separation of atomic bonds along low-index {001} crystallo-
graphic planes which are considered energetically favourable
due to their low surface energy [25]. According Qiao and Argon
[26], as cleavage crack propagation occurs in two adjoining
grains a crack propagates in the first grain and is arrested by
the grain boundary. With the increased applied stress cleav-
age microcracks are induced in the second grain along the
{001} facets. Then, microcracks propagate along the cleavage
facets of the second grain until bridging the cleavage crack in
the first grain and break the grain boundary. Finally, the crack
continues to propagate in the second grain with its perturbed
crack front.

Although crystallographic texture is likely to reduce
hydrogen-induced cracking because it can determine avail-
ability of low resistance paths for crack propagation [27—-31] a
limited work has been conducted to date. An understanding of
crystallographic texture and load interaction effects at a
crack-tip can play a key role in improvement of HE resistance
of critical engineering components.

Recently, Venegas et al. [28,29,32] demonstrated that high
resistance to HE can be achieved through tailoring of texture.
In these studies, a low carbon steels with crystallographic
texture dominated by {001}«//ND fibre was prone to HE due to
the availability of low resistance cleavage paths. In contrast,
texture composed of {112}a//ND, {111}a//ND and
{011}«//ND fibres was less susceptible to HE.

When a polycrystalline material is subjected to deforma-
tion, slip occurs initially in grains orientated favourably with
the load axis. The neighbour grains, aligned in unfavourable
orientation for slip, will experience local load increase
generating intergranular microstrain [33]. Neutron or syn-
chrotron X-ray diffraction can be used to study lattice strains
in a polycrystalline material from the shift of the diffraction
peaks [34,35].

This work examines the role of lattice strain accumula-
tion in individual crystallographic planes on hydrogen-
induced crack propagation in maraging steel. We
measured the lattice strain in maraging steel using syn-
chrotron X-ray diffraction during in situ tensile loading and
found correlation between lattice strain and crack propa-
gation. The results obtained can be used to better under-
stand the damage mechanism caused by hydrogen and for
improvement of the material's resistance to hydrogen-
induced crack propagation.

Experimental

The studied material was commercial maraging steel grade
300 containing 18.7% Ni, 9.6% Co, 4.8% Mo, 0.9% Ti, balance Fe
(wt.-%). Cylindrical tensile test samples with a gauge length of
28 mm and diameter of 4.1 mm were machined from a forged
bar 300 mm in diameter. The specimens were subjected to
solution annealing at 820 °C for 1 h followed by air cooling to
ambient temperature and then ageing treatment at 480 °C for
3 h and air cooling. The heat treated samples were then
grounded using SiC paper with mesh size up to 1200, followed
by polishing with 6, 3 and 1 um diamond paste. Finally, they
were etched with Marble's reagent consisting of 10 g
CuSO4 + 50 ml HC1 + 50 ml distillated water [36] and examined
using Olympus® BX-51M optical microscope. X-ray diffraction
measurements were carried out on the heat treated samples
using a Philips® X'Pert Pro diffractometer. Step scan mode
with step size 0.013°, time per step 100 s and angular interval
10—120° was applied. Cu K, radiation (wavelength of 0.154 nm)
was used in addition to operating voltage and current of 40 kV
and 45 mA, respectively. In order to minimize the texture ef-
fect a spinner holder was used.

The heat treated samples were cathodically charged for
24 h prior to loading and during the on-going slow strain rate
test in aqueous 0.6 M NaCl electrolyte. For the hydrogen
charging, a potential of —1.2 Vgcg according the ASTM G129-00
and ASTM F1624-09 standards [37,38] was applied. The slow
strain rate tests were conducted using a strain rate of
1.0 x 10°° s in a Cortest” tensile test machine. Further
experimental details of this test can be found in work carried
out by Santos et al. [39]. Relative strength and ductility losses
were chosen to identify HE susceptibility.

Synchrotron X-ray diffraction was used to measure the
lattice strain accumulated in different crystallographic planes
during tensile loading. This test was performed on specimens
without hydrogen charging, which were subjected to identical
heat treatment as shown in the previous section. For in situ
determination of the lattice strain, samples with cross-section
of 4 x 4 mm? were deformed to failure at room temperature in
tension in the Gleeble Thermomechanical Simulator inte-
grated within the XTMS beamline at the Brazilian Synchrotron
Light Laboratory, in Campinas. The Gleeble system operated
in stroke control mode, with macroscopic force applied to the
sample recorded using a 44 kN load cell. The tensile speci-
mens were positioned perpendicular to the diffraction beam,
continuously loaded to a selected stroke using a strain rate of
1 x 1073 s ' and held for ~300 s. A monochromatic X-ray beam
with dimensions at the slit system of 2.0 x 0.5 mm? and
wavelength of 1.0332 A (12 keV) was used to illuminate the
sample duringloading. Then a scan in angular range of 21—-83°
(covering an interplanar d-spacing range of 0.78—2.83 A) was
acquired before a subsequent stroke step was applied. The
diffraction patterns were acquired using two silicon micro-
strips MYTHEN one-dimensional detectors. The instrument
parameters were obtained using Al,O; powder standard. A
laser dilatometer was used to record changes in sample cross
section at gauge centre during straining.

The measured data consisted of a series of diffraction
patterns as function of applied load and strain. The positions
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of diffraction peaks were found by performing a Gaussian
peak fit using the Matlab program with a peak-fitting script
written by beamline staff. Lattice d-spacings for each peak
were obtained from the diffraction spectra during tensile
loading. For each analysed peak, the lattice strain "™ can be
determined from the measured lattice spacing d"™! (strained
lattice) and a reference lattice spacing di¥ which is the
measured lattice spacing at zero load (unstrained lattice). The
lattice strain was then calculated according ref. [35]:

. it i "
e

Microstructural examinations were performed by sec-
ondary electron imaging (SEI) and electron backscattering
diffraction (EBSD). Samples for EBSD analysis were prepared
on the fractured surface perpendicular to the load axis.
Standard metallographic preparation method consisting of
mechanical polishing and final polishing with colloidal silica
suspension was used. Crystal orientation maps were ob-
tained using EBSD system mounted on a FEI® Quanta FEG 450
scanning electron microscope (SEM) equipped with HKL
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Fig. 1 — (a) Optical micrograph of maraging steel solution

annealed at 820 °C for 1 h and aged at 480 °C for 3 h. (b) X-
ray diffraction patterns of the same sample showing BCC
phase only.

Oxford NordlysNano® camera utilising the Aztec acquisition
software. The acquired EBSD data were analysed using Ox-
ford Instruments HKL Channel 5 software. The ARPGE
(Automatic Reconstruction of Parent Grains from EBSD data)
software package [40] was used to reconstruct prior-
austenite grains from the martensite orientations
measured by EBSD. The reconstructed prior-austenite grains
and pole figures were then plotted in the HKL Channel 5
software. Orientation distribution functions (ODFs) were
calculated from EBSD maps in regions ahead and around
crack tip using the MTEX software package [41]. Fracture
surfaces of samples were examined using a FEI® Quanta FEG
450 SEM operated at 20 kV.

Results and discussion

The microstructure of the maraging steel grade 300 which was
subjected to solution annealing at 820 °C for 1 h followed by
ageing treatment at 480 °C for 3 h is presented in Fig. 1a. The
massive martensite blocks are visible and consist of parallel
laths. Fig. 1b shows X-ray diffraction results of the same
sample. Diffraction patterns match well with body-centred
cubic structure, ICSD file card 632934, space group Im3m
(#229). It is to be noted that no presence of austenite was
identified from the diffraction peaks.

The slow strain rate tensile tests under hydrogen charging
induced HE in maraging steel successfully. Fig. 2 shows engi-
neering stress—strain curves for both hydrogen charged
samples and specimens tested in air. An ~8% strain was
measured in the sample tested in air (after onset of necking),
whereas the charged specimen failed at ~0.3% strain only,
without occurrence of necking. Mechanical properties ob-
tained from the slow strain rate tensile test are presented in
Table 1. The measured low level of deformation in hydrogen
charged specimen can be attributed to hydrogen accumulated
at grain boundaries which will decrease their cohesive
strength due to the dislocation-grain boundary interactions
that can lead to enhanced slip transfer at lower stresses [12].
In Fig. 3 a low magnification SEM fractograph of hydrogen
charged specimen with primary hydrogen-induced crack is
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Fig. 2 — Engineering stress—strain curves for samples
hydrogen charged (red curve) and tested in air (black curve)
obtained from slow strain rate tensile test. (For
interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this
article.)
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Table 1 — Mechanical properties of maraging steel aged at 480 °C for 3 h obtained from slow strain rate tensile test.
Specimens were tested in air and hydrogen charged in 3.5% NaCl aqueous solution under —1.2 Vggc at room temperature.

In this Table the symbols mean; 3: elongation; ¢: reduction in area of cross section; HE = [(Xai; — X3 5nac1) /Xy x 100, where

X is property under investigation.

Medium UTS (MPa) d (%) ¢ (%) HE — UTS (%) HE — 5 (%) HE — ¢ (%) Time to fracture (h)
Air 2180 8.0 41.8 = = = 22.2
3.5% NaCl 840 0.3 2.1 61.5 96.2 95.0 0.83

shown. Fig. 4a shows a higher magnification SEM fractograph
of the specimen aged at 480 °C for 3 h and tested in air where a
ductile transgranular fracture mode with non-uniform dim-
ples containing inclusions is present. The non-uniform dim-
ples distribution is typical for a microvoid coalescence
fracture mechanism where voids nucleate at inclusions or
second-phase precipitates. Viswanathan et al. [42] identified
manganese, titanium and sulphur rich particles on the frac-
ture surface of 18% Ni maraging steel. A dispersoid free sur-
face was observed in the smaller dimples. SEM fractograph of
the hydrogen charged specimen revealed intergranular frac-
ture in addition to transgranular ductile fracture mode, as
shown in Fig. 4b. Also quasi-cleavage regions were observed
and these are displayed in the inset micrograph of Fig. 4b. The
change in fracture mode may be related with the direction of
crack propagation and slip transmission across a grain
boundary [12].

Fig. 5a shows an inverse pole figure EBSD map from a
metallographic section, perpendicular to the tensile direction,
through a fracture surface of hydrogen charged specimen and
HE-induced crack. Experimentally determined crystallo-
graphic orientations were used to reconstruct prior-austenite
grains employing the ARPGE software [40] considering the
Nishiyama—Wassermann (NW) orientation relationship.
Fig. 5b shows results of this reconstruction. One can see that
in this region only two prior-austenite grains 1 (green) and 2
(red) were found and the crack propagated along them. The
obtained Euler angles for prior-austenite grains 1 and 2 were
198.6°, 38.8°, 78.2° and 339.4°, 10.5°, 54.2°, respectively. It is
known that martensitic laths accumulate hydrogen and act as
fracture nucleation sites where they intersect with prior-

Fig. 3 — A low magnification SEM fractograph of a hydrogen
charged specimen showing hydrogen-induced primary
crack.

austenite grain boundaries [43]. Ohtani and McMahon [44]
describe that the austenitic grain boundaries that were
formed at high temperature form a coarse polygonal network
in which the dihedral angles are approximately 120°. If a crack
propagates along this network, it will be deflected through an
average angle of 60° on a triple junction. The energy required
to induce an intergranular fracture increases with frequency
and severity of such deflections. If the austenite transforms
into martensite, the dihedral angles of the martensitic packet
and block boundaries are much larger than 60°. In addition,
the martensitic packet and block units are smaller in size in
comparison to the prior-austenite grains. Therefore, higher
energy is required for crack propagation along martensite.

Fig. 4 — (a) SEM fractograph of specimen tested in air shows
a transgranular fracture mode with non-uniform dimples.
(b) SEM fractograph of hydrogen charged specimen shows
mixture of intergranular and ductile transgranular fracture
mode. A quasi-cleavage fracture was also observed. Higher
magnification of the fracture surface is shown in the inset
micrographs.
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Fig. 5 — (a) EBSD inverse pole figure map showing martensite with hydrogen-induced crack. (b) EBSD inverse pole figure map
showing reconstructed prior-austenite grains 1 and 2 obtained from experimental orientation in (a) considering NW
orientation relationship. (c) {111}y pole figures of grains shown in (b) depicted with green and red circle for prior-austenite
grains 1 and 2, respectively. Also superimposed are {110}« pole figures from experimentally determined orientations in
corresponding areas in (a). Please note that the colours correspond to the orientation shown in (a). (d) Calculated orientation
distribution function from regions depicted with white boxes in (a). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

An additional reason to favour intergranular fracture is
segregation of alloying elements on grain boundaries. Frac-
ture surfaces of prior-austenite grain boundaries in 300 grade
maraging steel tested under hydrogen were examined by
Auger electron microscopy [45]. This study revealed that the
alloying elements including nickel, molybdenum and tita-
nium segregate to prior-austenite grain boundaries, which
were defined as primary fracture path. Austenite grain size
can influence the extent of intergranular embrittlement
because smaller grains lead to a greater grain boundary area.
As a consequence, the grain boundaries are less enriched with

impurities and the material is then less susceptible to HE.
Thermomechanical treatment can be used to tailor prior-
austenite grain size. Fuchigami et al. [46] demonstrated that
the refinement of the prior-austenite grain size increased the
hydrogen absorption capacity as a consequence of the
increased boundary area which led to reduction of suscepti-
bility to HE.

Figueroa and Robinson [47] examined hydrogen charged
300M martensitic steel and attributed the HE to retained
austenite at prior-austenite grains. However, X-ray diffraction
patterns did not revealed presence of austenite, Fig. 2.
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Fig. 5¢c presents {111}y pole figures of grains shown in (b)
depicted with green and red circles for prior-austenite grains 1
and 2, respectively. Also superimposed are {110}« pole figures
from experimentally determined orientations in correspond-
ing areas in (a). Please note that the colours correspond to the
orientation shown in (a) and (b). One may also notice that the
green and red circles, corresponding to the calculated
austenite orientations, coincide with some experimental ori-
entations of the martensitic phase and obey the NW orienta-
tion relationship {111}y//{100}«. From the experimental pole
figure, one can also observe that variant selection is present as
fewer poles are present in the measured pole figure in com-
parison to theoretical ones.

Crack resistance of a specific crystallographic orientation
may be evaluated by examining crack arrest points along the
crack path. Therefore, orientation distribution function (ODF)
analysis was conducted in two selected regions ahead of the
crack tip and compared to one region where the crack prop-
agated. Fig. 5d shows calculated ODFs from three regions
depicted with white boxes in Fig. 5a. Texture, grain bound-
aries, intersection of martensite laths, segregation in addition
to hydrogen-enhanced dislocation processes can affect the
fracture path. As shown in the previous section, the crack
initially propagated intergranulary along prior-austenite grain
boundaries. The crack was arrested in region (i) when facing a
(111)[011] texture component and was then deflected and
continued to propagate transgranulary through {001} crys-
tallographic planes which are known as cleavage planes in
BCC metals [48]. The calculated ODF from region (ii) revealed
thata (001)[010] texture component developed here. The crack
finally ceased in region (iii), where a (111)[011] component was
found. Our results indicate that the crystallographic planes
{111}e. have higher probability to arrest the crack, whereas
crack can easily propagate through {001}« planes, which is in
good agreement with results of Venegas et al. [28,29].

Refs. [28,29] also suggested that an increased proportion of
coincidence site lattice related boundaries should improve the
material's resistance to hydrogen-induced cracking. There-
fore, coincidence site lattice boundaries distributions were
analysed on EBSD maps along hydrogen-induced cracks and
at crack arrest points. However, the present study found no
evidence of correlation between these types of boundaries and
crack propagation.

Fig. 6, upper part, shows engineering stress—strain curve
for the material aged at 480 °C for 3 h obtained during loading
with a strain rate of 107 s using a Gleeble Thermo-
mechanical Simulator integrated within the XTMS beamline
at the LNLS synchrotron source. Previous works [49,50]
showed that lower displacement rates during hydrogen
charging tests are not necessary to induce intergranular
embrittlement. X-ray synchrotron analysis of lattice strain in
loaded tensile samples (specimen tested in air) revealed that
the {200}« crystallographic planes accumulate approximately
four times larger strain than the {222}« planes (Fig. 6, bottom
part). One can also observe that with increasing of engineering
strain, the lattice strain increases. The crystallographic planes
that were less prone to lattice strain accumulation correlate
well with crack arrest planes identified by the EBSD technique.
Experimental data obtained in this study can be used to
improve precision of numerical models [51,52].
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Fig. 6 — Engineering stress—strain curve of maraging steel
aged at 480 °C for 3 h obtained during loading with strain
rate 103 s~* on Gleeble Thermomechanical Simulator
integrated within XTMS synchrotron beamline, upper part
of the figure. Lattice strain of individual crystallographic
planes as function of engineering strain shown in the
bottom part of the figure. The markers represent
measurement points during synchrotron experiments. For
a better clarity, colours used here correspond to the IPF
colour scheme shown in Fig. 5a. (For interpretation of the
references to colour in this figure legend, the reader is
referred to the web version of this article.)

Conclusion

We studied HE in maraging steel that occurred during slow
strain rate tensile test under hydrogen charging. HE led to
significant loss in tensile ductility, producing both intergran-
ular and transgranular cracks. Initially, cleavage was the
dominant crystallographic mode of brittle fracture. The
intergranular cracks were observed to propagate initially
along prior-austenite grain boundaries and the fracture mode
was then altered to transgranular cleavage along the
{001}/ /ND texture component. Cracks were finally arrested
in the {111}«//ND grains.

X-ray synchrotron analysis of the lattice strain in loaded
tensile samples revealed that the {200}a crystallographic
planes accumulate approximately four times larger strains
than the {222}« planes. The planes that were less prone to
lattice strain accumulation correlate well with the crack arrest
crystallographic planes identified by EBSD technique. Our
findings suggest that a texture with an increased proportion of
{111}« planes and a low fraction of {001}« planes could reduce
crack propagation in such conditions.
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