
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ESTRUTURAL E CONSTRUÇÃO CIVIL

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

MESTRADO ACADÊMICO EM ENGENHARIA CIVIL

LEONARDO GONÇALVES RIBEIRO

EFFICIENT OPTIMIZATION OF COMPOSITE STRUCTURES USING

MULTI-FIDELITY MODELS

FORTALEZA

2022



LEONARDO GONÇALVES RIBEIRO

EFFICIENT OPTIMIZATION OF COMPOSITE STRUCTURES USING MULTI-FIDELITY

MODELS

Dissertation submitted to the Programa de
Pós-Graduação em Engenharia Civil of the
Centro de Tecnologia of the Universidade
Federal do Ceará, as a partial requirement for
obtaining the title of Master in Civil Engineering.
Concentration Area: Structural Engineering

Advisor: Prof. D. Sc. Evandro Parente
Junior

Co-advisor: Antônio Macário Cartaxo de
Melo

FORTALEZA

2022



Dados Internacionais de Catalogação na Publicação 
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

R369e Ribeiro, Leonardo Gonçalves.
    Efficient Optimization of Composite Structures using Multi-Fidelity Models / Leonardo Gonçalves
Ribeiro. – 2022.
    219 f. : il. color.

     Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-
Graduação em Engenharia Civil: Estruturas e Construção Civil, Fortaleza, 2022.
     Orientação: Prof. Dr. Evandro Parente Junior.
     Coorientação: Prof. Dr. Antônio Macário Cartaxo de Melo.

    1. Composite Materials. 2. Structural Optimization. 3. Surrogate Models. 4. Sequential Approximate
Optimization. 5. Multi-Fidelity Models. I. Título.
                                                                                                                                                  CDD 624.1



LEONARDO GONÇALVES RIBEIRO

EFFICIENT OPTIMIZATION OF COMPOSITE STRUCTURES USING MULTI-FIDELITY

MODELS

Dissertation submitted to the Programa de
Pós-Graduação em Engenharia Civil of the
Centro de Tecnologia of the Universidade
Federal do Ceará, as a partial requirement for
obtaining the title of Master in Civil Engineering.
Concentration Area: Structural Engineering

Approved on: 31 de Março de 2022

EXAMINATION BOARD

Prof. D. Sc. Evandro Parente Junior (Advisor)
Universidade Federal do Ceará (UFC)

Antônio Macário Cartaxo de Melo (Co-advisor)
Universidade Federal do Ceará (UFC)

Prof. Dr. Marcelo Silva Medeiros Júnior
Universidade Federal do Ceará (UFC)

Prof. Dr. Marco Antônio Luersen
Universidade Tecnológica Federal do Paraná (UTFPR)



ACKNOWLEDGEMENTS

A meus pais, Ricardo e Solange Ribeiro, e minha irmã, Ana Beatriz, pela confiança,

dedicação e compreensão mesmo nos momentos em que eu estou tão absorto no meu mundo que

esqueço de falar o quanto eu gosto deles.

À Carolina Trompieri, por me acompanhar nesse caminho que traçamos juntos. Que

eu possa continuar aprendendo contigo por muito tempo ainda. Obrigado por tudo.

Aos colegas do Laboratório de Mecânica Computacional e Visualização da UFC,

aos mestrandos da minha turma e ao doutorando Elias Barroso, pela amizade e pelos contínuos

ensinamentos ofertados. Um agradecimento especial também à Marina Maia que, mesmo estando

em outros caminhos, sempre se manteve disposta a ajudar.

Ao professor Evandro Parente Junior, pela orientação impecável e a constante

disponibilidade para retirar minha dúvidas sobre o tema.

Aos outros professores do Departamento de Engenharia Estrutural e Construção

Civil, em especial ao professor Antônio Macário Cartaxo de Melo, meu co-orientador, pelos

ensinamentos prestados nesses mais de dois anos de mestrado.

Aos professores Marcelo Silva Medeiros Junior e Marco Antônio Luersen, por

aceitarem participar da banca.

À CNPQ, UFC, DEECC e FUNCAP pelo aporte financeiro ofertado durante o

mestrado e ao apoio à pesquisa acadêmica brasileira.



ABSTRACT

Composite structures are receiving increasing interest in the last few decades. These often

require the use of numerical analysis methods, such as the Finite Element Method (FEM) or the

Isogeometric Analysis (IGA). Due to their high design flexibility, the optimization of composites

is very promising, as it may provide more efficient structures. This work uses Surrogate Based

Optimization (SBO) to make the process more efficient. Examples of robust surrogate modeling

techniques are Radial Basis Functions (RBF) and Kriging. For an efficient optimization process,

one may use the model to locate promising regions in the design space and add new data points.

This way, the approximation quality in the regions of interest is improved. Another way of

improving the model quality is to consider information from low-fidelity sampling points, which

are often cheaper and easier to assess. Here, a low-fidelity point refers to data evaluated using

lower fidelity sources, such as using a coarser mesh or a simplified theory. If low-fidelity

and high-fidelity sources are well-correlated, the low-fidelity sample may capture the general

behavior of the function in the design space, thus greatly improving the model prediction while

also allowing for a lower computational cost. These are denominated Multi-Fidelity Models

(MFMs). This work aims at employing these techniques in the optimization of laminated

composites and functionally graded structures, mainly plates and shells. The use of adaptive

sampling is integrated into MFMs, where error-based exploration is employed to further improve

the model. Different surrogate modeling approaches and adaptive sampling criteria are tested.

Different aspects of multi-fidelity modeling are discussed, such as importance of correlation

between sources, analyses cost, and ratio between low and high-fidelity samples. Our proposed

methodology is able to solve both functionally graded and laminate problems, and very good

results are also obtained when expensive constraints are considered. Results show that MFMs

are able to significantly reduce the number of expensive analyses required to find the optimum

in most optimization problems. Accuracy is also improved, especially in complex multi-modal

optimization problems. At the same time, as MFMs present higher model complexity, model

building and evaluation costs are more restrictive than those found for usual single-fidelity

models.

Keywords: Composite materials. Structural optimization. Surrogate models. Sequential

Approximate Optimization. Multi-Fidelity Models.



RESUMO

Estruturas de material compósito vêm recebendo cada vez mais interesse nas últimas décadas. A

análise destas requer o uso de métodos numéricos, como o Método dos Elementos Finitos (MEF)

ou a Análise Isogeométrica (AIG). Devido à grande flexibilidade destes materiais, a otimização

dessas estruturas é desejável. Neste trabalho, a Otimização baseada em Modelos Substitutos

(Surrogate-Based Optimization, SBO) será utilizada. Exemplos de abordagens robustas de

modelagem são as Funções de Base Radial (Radial Basis Functions, RBF) e o Kriging. Para

um processo de otimização mais eficiente, o projetista pode utilizar o modelo para auxiliar

na seleção de novos pontos amostrais em regiões de interesse. Estes pontos amostrais podem

ser inseridos, melhorando a aproximação do modelo na região. Outra forma de melhorar a

qualidade do modelo é considerar informação de pontos amostrais de baixa fidelidade, que

são normalmente mais baratos de avaliar. Esses pontos correspondem, por exemplo, a análises

feitas utilizando malhas mais grosseiras ou teorias simplificadas. Se as fontes de baixa e alta

fidelidade apresentarem uma boa correlação, a amostra de menor fidelidade pode ser capaz

de capturar o comportamento geral da função e, desse modo, melhorar a precisão do modelo.

Esses modelos são denominados Modelos Multi-Fidelidade (Multi-Fidelity Models, MFMs).

Este trabalho visa empregar tais técnicas na otimização de estruturas laminadas e estruturas

com gradação funcional, em especial placas e cascas. A amostragem adaptativa será integrada

aos MFMs, e a exploração baseada em medidas de erro será utilizada para melhorar o modelo

pela adição de novos pontos. Diferentes abordagens de modelagem e critérios de inserção de

pontos serão testados. Diferentes aspectos da modelagem multi-fidelidade serão discutidos,

como a importância da correlação entre as fontes, o custo da análise, e a razão entre o número

de amostras de baixa e alta fidelidade. A metodologia proposta é capaz de resolver problemas

de otimização de compósitos laminados e graduados funcionalmente, e resultados promissores

também são encontrados ao considerar restrições caras. Os resultados mostram que os MFMs

são capazes de reduzir significativamente o número de análises de alta fidelidade necessárias

para achar o ótimo na maioria dos problemas de otimização. A precisão do processo também

é melhorada, em especial em problemas multi-modais mais complexos. Ao mesmo tempo, os

MFMs apresentam uma maior complexidade, e o custo de treiná-los e avaliá-los é mais restritivo.

Palavras-chave: Materiais compósitos. Otimização estrutural. Modelos substitutos. Otimização

Sequencial Aproximada. Modelos Multi-Fidelidade.
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1 INTRODUCTION

Composite materials have brought a significant improvement in a variety of fields,

such as naval, aeronautical, and civil engineering[4]. These materials are formed by the combina-

tion of two or more constituents, providing enhanced properties compared to each component

individually[5, 6]. In this work, the focus will be given to two types of composite materials:

fiber-reinforced and functionally graded materials.

For structural applications, Fiber-Reinforced Composites (FRCs) are usually man-

ufactured as thin layers, also denominated as laminas or plies. These materials often present

high stiffness-to-weight and strength-to-weight ratios, and the orientation of each ply and the

stacking sequence can be chosen to provide the required strength for a specific application[7].

However, the sudden change in material properties in laminate structures may lead to various

damage modes, such as delamination and debonding[5].

On the other hand, Functionally Graded Materials (FGMs) are known for their

smooth and continuous variation of material properties in the structure, which eliminates interface

problems and stress concentrations, especially for problems with high temperatures and thermal

gradients[8, 9]. This way, FGMs provide a higher fracture toughness and a better distribution of

residual stresses[8, 10]. These materials were initially developed in Japan in the 1980s to serve as

a thermal barrier for the aerospace industry[11], but now are used in several applications[12, 13].

These two materials introduce different parameters which can act as design variables

for optimization problems, such as the orientation and stacking sequence for laminates or the

material gradation for FGMs[5, 14]. Due to manufacturing constraints, design variables are

often discrete for laminate structures[7, 15, 16]. On the other hand, on FG structures, material

gradation can usually be defined by continuous variables[17, 1, 18]. Most researchers deal with the

optimization of beams, plates, and shells while trying to optimize aspects such as the critical

buckling load, fundamental frequency, weight, and cost of the structure[5, 14].

For composite structures, analytical solutions for displacements, strains, stresses,

buckling load and frequencies are available only for very simple problems in terms of geometry,

loading, and boundary conditions[19, 20, 21, 22]. In most cases, responses should be obtained

by an approximated computational method, such as the Finite Element Method (FEM) or

the Isogeometric Analysis (IGA)[23]. However, these methods often demand a significant

computational time to perform a structural analysis[24], especially for complex models.

The most popular algorithms for structural optimization are nature-inspired methods[25].
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These are accurate population-based zero-order optimization algorithms and, thus, do not require

the computation of gradients, which is especially important for discrete problems. Due to their

global search capabilities, these algorithms are much more capable of finding the global optimum

in multimodal problems, even for continuous optimization[26, 27].

In that matter, a variety of nature-inspired optimization algorithms are employed in

the optimization of composite structures, such as the GA[28, 15, 29], the PSO[26, 30, 16, 17], and the

Differential Evolution (DE)[31, 32, 33, 34]. A major problem with these is that they often require

hundreds or even thousands of function evaluations to find the optimum design[35, 36, 37]. At the

same time, structural analyses from simulation-based methods such as FEM and IGA can become

very expensive. Thus, the high computational cost is a significant hindrance for optimization of

real-life structures[38].

When numerical analyses are too expensive, a common approach to deal with the

high computational cost of heuristic optimization algorithms is parallelization, taking advantage

of a powerful machine with multiple cores[27, 15, 16]. However, such machines are not always

available to the user. Furthermore, while computing power significantly increased in the last few

decades, so did the required fidelity and model complexity for engineering problems. Thus, time

constraints are still a major barrier for structural optimization[39].

Alternatively, for a cheaper optimization process, one may approximate the structural

response using an appropriate response surface method. In this approach, a surrogate model is

built from the structural responses at a set of sampling points, providing an easier and faster, but

approximated, assessment for the true, expensive function[40, 41]. For engineering applications,

commonly employed models are Artifical Neural Networks (ANNs)[1, 18, 42], Support Vector

Regression (SVR)[43, 44, 45], Radial Basis Functions (RBFs)[46, 47, 48], and Kriging[49, 50, 51].

For optimization problems, the model should aim at being more accurate in regions

closer to the global optimum. This way, the model itself may be used to guide the further addition

of new sampling points, thus improving its accuracy in regions of interest. This technique is

known as the adaptive sampling[52], or Sequential Approximate Optimization (SAO). This

approach was popularized after Jones, Schonlau and Welch[53] presented the Efficient Global

Optimization (EGO) algorithm, which can solve optimization problems by iteratively improving a

Kriging model using the Expected Improvement (EI) criterion. Soon, other researchers proposed

different models and infill criteria that are competitive with EGO in terms of the computational

cost and accuracy[54, 55, 56, 37, 57].
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It is important to note that, to this day, there are still some open issues in SAO,

mainly regarding discrete optimization, constraint-handling, and the choice of the model to be

employed[58]. Even though a variety of techniques have been proposed to deal with these aspects,

there are no general guidelines for when each should be employed[37]. This work aims at tackling

these issues for the optimization of composite structures.

In the last few years, the use of modeling techniques for discrete optimization is

gaining interest. Bartz-Beielstein and Zaefferer[59] present a review of the main approaches to

tackle these problems. A common method is to simply ignore the discrete structure, as long

as data can be represented as a vector. However, other approaches may perform better in most

problems, e.g. the use of inherently discrete models, mapping approaches, or similarity-based

modeling[59, 37, 58]. The selection of infill points should also be performed using an appropriate

algorithm that allows for the optimization in a discrete space, such as bio-inspired optimization

algorithms.

Regarding constraint-handling methods, most approaches often work by employing

a surrogate model to approximate an expensive constraint function and, then, the user may

consider a given feasibility function, based on the model prediction, to penalize infeasible

designs. Researchers proposed a variety of feasibility functions[60, 61, 55, 62, 63], but it is still

unclear which one performs better in most problems.

Concerning the choice of the model to be employed, Radial Basis Function (RBF)

and Kriging models are often among the best-performing methods for mathematical and engi-

neering problems[64, 65, 66]. However, some improvements have been proposed to these methods

in the last few years[52], which have yet to be addressed for most engineering optimization

problems. In particular, Multi-Fidelity Models (MFMs) seem to provide a very accurate and

robust approximation, as they may consider sampling points derived from both a High-Fidelity

(HF) and a Low-Fidelity (LF) source[67, 68, 52, 69, 70, 45] (e.g. using finer and coarser meshes).

This allows for a better exploration of the design space, as it is cheaper to evaluate multiple

Low-Fidelity (LF) sampling points. If sources are well-correlated, the surrogate model may

better guide the further addition of new sampling points.

In that matter, this work compares two different Multi-Fidelity Models (MFMs): The

Cooperative Kriging (Co-Kriging), proposed by Kennedy and O’Hagan[71], and the Hierarchical

Kriging (HK), proposed by Han and Görtz[72]. These will be employed considering different

adaptive sampling criteria. It is important to note that few papers employed MFMs with adaptive
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sampling techniques[73, 74, 75, 76, 77], which is very interesting from an optimization standpoint,

and even fewer employed this approach to the optimization of composite structures[78, 79].

1.1 Aims and scope

This work aims at proposing and implementing a methodology for the Sequential

Approximate Optimization (SAO) of laminate and functionally graded composite structures.

Single and multi-fidelity models will be employed, and a comparison will be performed between

different techniques to assess which approach is better suited to the optimization of composite

structures, focusing on plates and shallow shells. For this purpose, this work aims:

a) to develop a methodology for surrogate-based optimization of laminate and FG structures;

b) to implement existing and develop new SAO methods based on the use of multi-fidelity

models;

c) to apply the proposed methodology to the optimization of composite structures;

d) to compare the performance of single-fidelity and multi-fidelity models in terms of accu-

racy, efficiency, and robustness;

e) to compare the performance of SAO with conventional optimization approaches.

1.2 Organization of the text

The remainder of this work is organized as follows. Chapter 2 describes the main

concepts of laminated and functionally graded structures, including aspects important to the

optimization of these structures. Chapter 3 presents details about the structural analysis of

composite plates and shallow shells, such as the kinematic assumptions and internal forces

evaluation.

Chapter 4 further discusses the optimization of composite structures, and a quick

review over state-of-the-art algorithms for structural optimization is presented. Three robust

algorithms are described, GA, PSO, and DE, as well as appropriate methods to handle constraints

and discrete variables.

Chapter 5 presents the Sequential Approximate Optimization (SAO) and its main

aspects, such as model building, infill criteria, and constraint-handling techniques, focusing on

single-fidelity models. Chapter 6 then addresses multi-fidelity techniques and their use in SAO.

Chapter 7 presents the numerical examples, and the efficiency and accuracy of
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the proposed algorithms are demonstrated by a set of problems regarding the optimization of

laminate and FG plates and shallow shells. Finally, Chapter 8 presents conclusions of the work

and suggestions for future research.



25

2 COMPOSITE MATERIALS

On a macroscopic scale, composite materials are formed by the combination of

two or more materials in a way to create a new material that presents desirable properties that

could not be achieved from any of the constituents alone[7, 6]. This is often accomplished by

the addition of reinforcement to a matrix material. The reinforcement will act as the principal

load-carrying member, while the matrix serves as a load-transfer medium.

Composites may be divided into three types, depending on how the combination of

materials is performed: particulate, fibrous, or laminated composites. Particulate composites are

formed by the addition of particles of reinforcement in a matrix of another. Fibrous composites

consist of the addition of fiber reinforcement. Laminated composites are made of layers of one

or more materials stacked, embedded in a matrix material.

Composite material can also be built by a specific combination of these three

materials[20, 7]. For instance, Fiber-Reinforced Composites (FRCs) are often employed in the

form of laminated components. These are usually built as thin layers known as plies. Due to

fiber orientation, these plies present orthotropic behavior[16], showing a much higher strength

and stiffness in the fiber direction. However, these plies can be stacked in different orientations

to provide resistance in different directions. Thus, the designer may pick fiber orientations,

thickness of each lamina, constituent materials, and stacking sequence (also known as layup) to

provide the required strength for a particular application[7].

Even though these materials provide high strength-to-weight and stiffness-to-weight

ratios, the stacking of plies incurs a sudden change in material properties, which may lead to

various damage modes such as delamination and debonding[5]. For example, these materials can

become severely compromised in high-temperature environments due to high residual inter-layer

stresses caused by thermal expansion.

In the 1980s, a group of Japanese researchers developed a novel material, denomi-

nated as Functionally Graded Material (FGM), to serve as a thermal barrier for the aerospace

industry[11, 8]. The use of a smooth and continuous gradation between ceramic and metal-

lic materials provided both a great thermal and mechanical resistance, while not presenting

specific failure modes from laminate composites. Nowadays, FGMs are used in a variety of

applications[12], where continuous changes in their composition, microstructurem and porosity

are employed to improve the structural performance in different environments.

The following sections present a brief discussion about these materials, especially
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regarding important aspects for the analysis and optimization of composite structures.

2.1 Fiber-Reinforced Composites

In laminated Fiber-Reinforced Composites (FRCs), plies are stacked using different

materials and orientations to provide the required stiffness and strength to the structure. There

is a very close relationship between how the laminate is manufactured and its end use[20].

Laminate structures can be applied to civil and military aircraft, automotive structures, and

marine risers[20, 4].

Since the 1940s, composite materials have been employed in many engineering

applications due to their high specific stiffness and strength along with their low weight[9]. In

some applications, such as in aircraft structures, the weight savings also help to reduce fuel costs,

which justified further research in the area[4]. To compete with homogeneous metallic materials,

composites must be affordable and allow for some manufacturing flexibility.

Usually, due to manufacturing constraints, fiber orientation is given by discrete

values. In many applications, to provide strength in two main directions, cross-ply laminates are

employed, where the structure has only 0◦ and 90◦ plies alternately (e.g. [90◦,0◦,90◦,0◦]). One

may also employ angle-ply laminates, where any fiber orientation angle can be employed (e.g.

[0◦,90◦,45◦])[80].

FRCs can also be classified regarding their mid-plane symmetry. In symmetric lami-

nates, the upper half of the laminate is a mirror of the lower half in terms of fiber orientation, ma-

terials, and thickness. These are identified by the subscript s, as in [45◦,90◦,30◦]s, which refers to

the layup [45◦,90◦,30◦,30◦,90◦,45◦]. Anti-symmetric laminates are similar, but the fiber orienta-

tions in the lower half are the negative of the upper half, as in [45◦,90◦,30◦,−30◦,−90◦,−45◦].

Asymmetric laminates, on the other hand, present no mid-plane symmetry. Fur-

thermore, balanced laminates present a negative fiber orientation for each positive one, as in

[90◦,−45◦,0◦,90◦,−45◦,0◦].

2.1.1 Constitutive equations

On a microscopic scale, the interactions between constituents are very important

to determine the failure modes in FRCs. However, on a macroscopic scale, the composite

constituents can be considered as a homogeneous orthotropic material[81]. Here, the mechanical
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formulation of laminate composites will be derived, while kinematics and analysis methods will

be presented in the next chapter.

In this work, two-dimensional formulations will be adopted for the analysis of lami-

nated composites. This way, their mechanical behavior can be studied by two basic approaches:

Equivalent Single Layer Theories, e.g. Classical Lamination Theory (CLT) and First-order Shear

Deformation Theory (FSDT), or 3D elasticity theory.

Here, the FSDT will be adopted, which is an extension of the Reissner-Mindlin

plate theory to laminate composite plates[7, 82]. The FSDT requires that normal lines to the

mid-surface remain straight but, different from the CLT, these are not necessarily perpendicular

to the mid-surface. Thus, shear deformations are considered in a simplified way.

For laminates with unidirectional fibers, the material can be considered, in a macro-

scopic scale, as a homogeneous orthotropic material in the local axis of the ply[20], denoted as x1,

x2 and x3 in Figure 1, where θ is the fiber orientation. These do not necessarily coincide with the

global axis, which is usually related to the geometry of the structure.

Figure 1 – Local axis of a single ply.

Source: Barroso, Parente and Melo[16]

It is fair to assume that FRCs present a linear elastic behavior until very close

to failure[20]. Thus, considering the FSDT, the plane-stress state and the symmetry of the

constitutive matrix, the generalized Hooke’s law can be written as:

σσσ = Cεεε ⇒



σ1

σ2

τ13

τ23

τ12


=



Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66





ε1

ε2

γ13

γ23

γ12


(2.1)
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Usually, this equation is written as:

σσσ1 = Qεεε1 ⇒


σ1

σ2

τ12

=


Q11 Q12 0

Q21 Q22 0

0 0 Q66




ε1

ε2

γ12


τττ1 = Qs γγγ1 ⇒

τ13

τ23

=

Q44 0

0 Q55

γ13

γ23


(2.2)

where τττ1 and γγγ1 refers to the out-of-plane stresses and strains and the subscript 1 to the local

system of the ply. In terms of the orthotropic mechanical properties, the coefficients Qi j are

given by:

Q11 =
E1

1−ν12 ν21
, Q12 =

ν21 E1

1−ν12 ν21
, Q22 =

E2

1−ν12 ν21

Q66 = G12, Q44 = G13, Q55 = Q44

(2.3)

When considering thermal effects, the evaluation of the normal stresses should consider the

thermal strain vector, as in:

σσσ1 = Qεεε1 ⇒


σ1

σ2

τ12

=


Q11 Q12 0

Q21 Q22 0

0 0 Q66




ε1

ε2

γ12

 (2.4)

To derive strains in the global axis, one should employ a transformation matrix,

which depends only on the fiber orientation:

εεε1 = Tεεε ⇒


ε1

ε2

γ12

=


cos2 θ sin2

θ sinθ cosθ

sin2
θ cos2 θ −sinθ cosθ

−2 sinθ cosθ 2 sinθ cosθ cos2 θ − sin2
θ




εx

εy

γxy


γγγ1 = Ts γγγ ⇒

ε13

ε23

=

cosθ −sinθ

sinθ cosθ

γxz

γyz


(2.5)

Finally, replacing Eq. (2.5) in Eq. (2.2), we may obtain the global stresses by:

σσσ = TT QTεεε ⇒ σσσ = Qεεε

τττ = TT
s Qs Ts γγγ ⇒ τττ = Qs γγγ

(2.6)

where Q and Qs are the constitutive matrices in the global system.

According to the FSDT, there is a linear strain variation along with the thickness

of the structure. Since material properties change for each ply, the change in the characteristic
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moduli is often discontinuous, and the stress distribution is not necessarily linear[20]. This

discontinuity is also responsible for additional failure modes in laminate structures, such as

delamination and debonding[5].

The macroscopic representation of failure for laminate composites demands an ad-

equate failure criterion to ensure structural safety. Most failure criteria are derived from their

homogeneous isotropic counterparts[83, 84]. For laminate composites, there are three different

types of failure criteria[84]: non-interactive criteria, such as Maximum Strain Criterion or Maxi-

mum Stress Criterion; interactive criteria, such as the Tsai-Hill or Tsai-Wu; and failure mode

based theories, such as the Puck failure criterion.

The simplest approach is the use of non-interactive criteria. For instance, in the

Maximum Stress Criterion, the layer fails when one of its stresses exceeds their corresponding

ultimate stress. For each ply k, this criterion can be written as:

SFk = min
(

σu
1

σ k
1
,
σu

2

σ k
2
,
τu

12

τk
12

)
(2.7)

where σ k
1 , σ k

2 and τk
12 are the maximum stresses in the k-th ply (which will be located either on

the top or the bottom of the ply), σu
1 , σu

2 and τu
12 are the ultimate strains in each direction, and

SFk is the Safety Factor (SF) for the k-th ply.

This approach is often regarded as too simplistic, even for isotropic materials. Alter-

natively, an interactive criterion may be employed, such as the Tsai-Hill criterion[84]:

SFk =

(
σ k

1
σu

1

)2

+

(
σ k

2
σu

2

)2

+

(
τk

12
τu

12

)2

−
(

σ k
1

σu
1

) (
σ k

2
σu

1

)
(2.8)

where σu
1 , σu

2 and τu
12 are the ultimate stresses in each direction. Different ultimate stresses

can be considered if the material is under tension or compression. Alternatively, the Tsai-Wu

criterion is also widely used in practice[84].

The actual failure of the laminate can be defined by the First Ply Failure (FPF)

criterion, where the structure SF is given by:

SF =
Np

min
k=1

(SFk) (2.9)

where Np is the total number of plies. It is worth noting that this criterion is conservative since

it neglects the stress redistribution to the remaining plies once failure occurs on a single ply.

Techniques that aim at considering the progressive failure of the laminate are more complex and

are out of the scope of this work.



30

2.2 Functionally Graded Materials

Functionally Graded Materials (FGMs) are composites where the proportion of the

constituents present a smooth gradation. This feature allows Functionally Graded (FG) structures

to present a better performance when subjected to thermal effects since stress concentrations are

mostly eliminated[85, 86]. As shown in Figure 2, material gradation can take place in a step-wise

manner, which gives rise to a multilayered structure with an interface between layers, or in a

continuous variation. In this work, the latter will be considered.

Figure 2 – Functionally Graded (FG) Plate.

x
y

z

Source: the author

FGMs are relatively novel materials, first employed by Japanese researchers in 1984

to serve as a thermal barrier in aerospace structures[11, 8]. Nowadays, applications can be found

in the fields of defense, energy, aerospace, biomedical, electronics, and optoelectronics[12, 13, 87].

Due to their excellent performance when subjected to thermal loadings, FGMs have also been

employed in combustion chambers in a variety of industries[12]. Usually, such materials are made

by the combination of metal (which presents better ductility and toughness) and ceramic (which

presents high stiffness and low thermal conductivity). Examples of metals include aluminum

(Al), stainless steel (SUS304), and titanium (Ti), while ceramic materials include silicon carbide

(SiC), aluminum oxide (Al2O3), and silicon nitride (Si3N4).

Udupa, Rao and Gangadharan[12] presented a review over the different uses, engi-

neering applications, and methods for fabricating FG structures. The authors state that the main

drawback for these structures is that the total preparation cost is still high since more advanced

manufacturing processes are required[12]. The most common methods for fabricating a continu-

ous FGM are liquid phase processes, such as the centrifugal casting[88], even though gas-based

methods and solid phase processes can also be employed. Naebe and Shirvanimoghaddam[13]

also presented a vast review over fabrication methods for these materials.

The volume fraction distribution of each constituent is often defined by a closed-

form equation, and the derivation of the constitutive relations requires the use of an appropriate
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homogenization technique. Those aspects will be further discussed in the following sections.

2.2.1 Volume fraction distribution

In Functionally Graded Materials (FGMs), material composition, defined by the

volume fraction of each component, vary smoothly in the structure domain. The choice for a

proper distribution is very important, since it should allow for a certain degree of flexibility. The

most popular equation is the power-law rule (P-FGM)[8, 85]:

Vc =Vc,b +(Vc,t−Vc,b)

(
1
2
+

z
h

)p

Vm = 1−Vc

(2.10)

where the subscripts c and m refer to the ceramic and the metal, respectively, and Vc,t and Vc,b

are the ceramic volume fractions on the top and on the bottom of the structure, respectively. The

gradation is controlled by the exponent p, and Figure 3 depicts how the ceramic volume fraction

changes through the thickness for different values of p considering Vc,b = 0.0 and Vc,t = 1.0.

Figure 3 – Ceramic volume fraction gradation for different p using the power-law rule.

Source: the author

The main advantage of this gradation lies in its simplicity since there are very few

effective parameters. On the other hand, this also means that there is less flexibility for defining

the FG structure. For instance, there is no way for the user to design a symmetrical gradation

using the power-law rule from Eq. (2.10). Some researchers proposed similar methods, which

aim at introducing more parameters to the power-law to increase its flexibility[30, 89, 90]. Also,

researchers often make use of other simple rules, such as sigmoid (S-FGM) and exponential

(E-FGM) functions[14].
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Alternatively, one may employ an approach based on a set of control points to achieve

the desired gradation, such as cubic Hermite polynomials[91, 14] and B-Spline functions[1, 17, 2, 42].

These are particularly interesting for optimization problems, as the increased flexibility allows

for more optimal designs.

In this work, B-Spline functions will be employed. These are non-interpolating

functions with a high degree of continuity[92] which allow for a continuous and smooth variation

of material properties. For instance, using univariate B-Spline functions, the volume fraction is

given by:

Vc(ξ ) =
ncp

∑
i=1

Bi,p(ξ )Vc,i, ξ ∈ [0,1]

Vm(ξ ) = 1−Vc(ξ )

(2.11)

where ncp is the number of control points, Vc,i is the ceramic volume fraction for the i-th control

point, Bi,p is the corresponding B-Spline basis, p is the basis degree, and ξ is the parametric

coordinate.

Figure 4 presents an example of a gradation represented by a B-Spline curve. In cases

where a symmetrical gradation is desired, one may impose that the control points are symmetric

with respect to the mid-plane. Also, a designer can use bivariate or trivariate B-Splines so that

the gradation can be defined in two or three directions. This method will be further discussed in

Section 3.1.1.

Figure 4 – Ceramic volume fraction gradation using B-Spline functions.

(a) Asymmetric (b) Symmetric
Source: the author
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2.2.2 Effective material properties

After defining the material gradation, one should use appropriate techniques to eval-

uate the effective material properties, which are often denominated homogenization techniques.

Since FGMs are usually employed in high-temperature environments, it might be important

to consider the change in material properties due to the temperature. This variation can be

represented by the Touloukian’s equation[93]:

P = P0 (P−1 T−1 +1+P1 T +P2 T 2 +P3 T 3) (2.12)

where Pi are unique coefficients for the properties of each constituent and P is the estimated

property for a temperature T (in Kelvin) [93, 8].

The homogenization may be performed by the rule of mixtures, also known as the

Voigt model[8, 94]:

Pf =
nm

∑
j=1

Pj Vj (2.13)

which is a weighted average between the properties of each material. This method is very simple

and efficient, but numerical and experimental studies show that this approach may lead to very

poor results. Akbarzadeh, Abedini and Chen[94] presented numerical comparisons between

different micromechanical models on the structural response of Functionally Graded Plates

(FGPs), showing that the rule of mixtures may present a very large discrepancy in results: the

maximum deflection was up to 23% lower using the Voigt model, and the buckling load up

to 30% higher. Medeiros, Parente and Melo[95] compared results obtained in the analysis of

pressurized hollow cylinders with experimental data, also arguing that the Voigt model should be

avoided due to its large discrepancies with experimental results.

Alternatively, many other homogenization methods can be found in the literature

such as Reuss, Hashin-Shtrikman bounds, Tamura, and Self-Consistent Method[94, 95, 14]. In this

work, the Hashin-Shtrikman lower bound will be employed, also known as the Mori-Tanaka

scheme. The method assumes that a matrix phase is reinforced by spherical particles, taking into

account the elastic fields among neighboring inclusions[8]. This is a simple approach that can

achieve very good results for the estimation of mechanical properties by[95, 8]:

K−Km

Kc−Km
=

Vc

1+
3Vm (Kc−Km)

3Km +4Gm

and
G−Gm

Gc−Gm
=

Vc

1+
Vm (Gc−Gm)

Gm + fm

(2.14)
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where the subscripts m and c refer to the metallic and ceramic materials, K is the homogenized

bulk modulus, G is the homogenized shear modulus, and the parameter fm is given by:

fm =
Gm (9Km +8Gm)

6(Km +2Gm)
(2.15)

Then, the homogenized Young’s modulus and Poisson’s coefficient can be computed from:

E =
9K G

3K +G
and ν =

3K−2G
2(3K +G)

(2.16)

Thermal properties, on the other hand, may be evaluated by[8]:

α−αm

αc−αm
=

(1/K)− (1/Km)

(1/Kc)− (1/Km)
and

κ−κm

κc−κm
=

Vc

1+(1−Vc) [(κc−κm)/3κc]
(2.17)

where α is the homogenized thermal expansion coefficient, and κ is the homogenized thermal

conductivity. Other properties, such as the material density, are often estimated by the Voigt

model.

2.2.3 Constitutive equations

Since FG composites are formed by the inclusion of small particulate reinforcement,

they often present isotropic non-homogeneous behavior. Thus, constitutive equations are very

similar to that of isotropic materials, but with material properties changing along the structure.

For 3D models, the constitutive matrix is given by:

σσσ = Cεεε ⇒



σ1

σ2

σ3

τ12

τ13

τ23


=



2 µ +λ λ λ 0 0 0

λ 2 µ +λ λ 0 0 0

λ λ 2 µ +λ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





εx

εy

εz

γxy

γxz

γyz


(2.18)

where λ and µ are the Lamé constants, given by:

λ =
E ν

(1+ν)(1−2ν)
and µ =

E
2(1+ν)

(2.19)

where E and ν are the homogenized Young’s modulus and Poisson’s ratio, which can be evaluated

by Eq. (2.16). Note that, for FGMs, material properties vary in the structure’s domain. For 2D

models, considering the FSDT, constitutive equations may be defined as shown in Eq. (2.2), but

assessing the coefficients Qi j by:

Q11 = Q22 =
E

1−ν2 , Q12 =
ν E

1−ν2 , Q44 = Q55 = Q66 = G =
E

2 [1+ν ]
(2.20)
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Similar to laminated composites, the failure of a FGM may be defined by the

Tsai-Hill criterion[85, 96]. However, the method is more appropriate for anisotropic materials.

Alternatively, one may use the Tamura-Tomota-Ozawa (TTO) model to define the yield stress, as

proposed by Tamura[97]. The model assumes that the overall failure of the material is governed

by the ductile phase, which is a reasonable consideration in the case of FGMs made of ceramic

and metal[9, 98]. The method defines the yield stress by:

σy = σy,m

[
Vm +

(
q+Em

q+Ec

)
Ec

Em
(1−Vm)

]
(2.21)

where σy,m is the ductile material equivalent stress, and q is a stress transfer parameter which

depends on the constituent materials. For example, for Ni-Al2O3
[99] and TiB-Ti[100], q = 4.5

GPa, while, for Al-SiC[101], q = 91.6 GPa. The Safety Factor (SF) can be computed by:

SF =
σy

σvm
, σvm =

√
σ2

1 +σ2
2 −σ1σ2 +3τ2

12 +3τ2
13 +3τ2

23 (2.22)

where σvm is the equivalent von Mises stress. The TTO model also allows for the consideration

of material non-linearity on FGMs by evaluating the plastic tangent modulus H by:

H =

VmHm
q+Ec

q+Hm
+(1−Vm)Ec

Vm
q+Ec

q+Hm
+(1−Vm)

(2.23)

where Hm is the ductile material tangent modulus. It should be noted that studies focused on the

material nonlinearity on FGMs are still very scarce in the literature[98].
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3 STRUCTURAL ANALYSIS

In this work, the analysis of functionally graded and laminate structures will be

performed via the Isogeometric Analysis (IGA). This is an approximated method employed to

solve solid mechanics problems described by differential equations, such as static, dynamic,

buckling, and modal analysis[102]. For that end, geometrically nonlinear analysis of plates and

shallow-shells will be conducted considering both 3D and 2D theories, where the latter provides

an approximate response that is accurate when the thickness-to-length ratio is sufficiently small.

Isogeometric Analysis (IGA) and the structural theories employed will be briefly discussed in

the following.

3.1 Isogeometric Analysis

Isogeometric Analysis (IGA) was first proposed by Hughes, Cottrell and Bazilevs[102]

as a way to model an exact geometry described by Non-Uniform Rational B-Splines (NURBS).

These functions were already vastly employed in Computer Aided Design (CAD), and IGA

extends them to Computer Aided Engineering (CAE), where NURBS are also employed to

approximate the displacement field. The method can represent exact geometries even using

coarse meshes and mesh refinement is straightforward.

The method has been employed to structural analysis using 3D theories [103, 104],

as well as various plate theories, such as the Classical Plate Theory (CPT)[104], the First-order

Shear Deformation Theory (FSDT)[82, 105, 17, 2], and Higher-order Shear Deformation Theories

(HSDT)[106, 1].

3.1.1 B-Splines

A B-Spline curve is defined by the linear combination of basis functions Bi,p and

control points pi:

C(ξ ) =
nb

∑
i=1

Bi,p(ξ )pi (3.1)

where nb is the number of basis functions, p is the basis degree, and ξ is the parametric coordinate.

The B-Spline curve depends on the location of the control points and the spatial distribution of

the parametric coordinates.

A knot span is defined by the knot vector, which contains non-negative and non-
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decreasing parametric values bounded by the interval in which the B-Spline is defined. Given a

knot vector Ξ = [ξ1,ξ2, ...,ξn+p+1] and considering a parametric interval in the range [0,1], the

B-Spline basis functions can be evaluated by the recursive Cox-de Boor formula[92]:

Bi,p(ξ ) =
ξ −ξi

ξi+p−ξi
Bi,p−1(ξ )+

ξi+p+1−ξ

ξi+p+1−ξi+1
Bi+1,p−1(ξ )

Bi,0(ξ ) =

1, ξi ≤ ξ < ξi+1

0, otherwise

(3.2)

where p ≥ 1. The number of times a value is repeated in the knot vector defines the knot

multiplicity m. In that parametric coordinate, the curve is Cp−m continuous. Usually, the knots

are equally spaced in the parametric space, except for the first and last parametric values, which

are often repeated p+1 times (m = p+1), which means that these points are interpolated. The

size of the knot vector nk also defines the number of basis nb (which is the same as the number

of control points):

nb = nk− p−1 (3.3)

Piegl and Tiller[92] point out some important characteristics of B-Spline functions,

such as:

(a) Non-negative: Bi,p(ξ )≥ 0.

(b) Partition of unity: ∑
nb
i=1 Bi,p(ξ ) = 1.0.

(c) Compact suport: Each basis Bi,p(ξ ) only contributes in the interval [ξi,ξi+p+1]. Otherwise,

Bi,p(ξ ) = 0.

(d) In each knot span, only p+1 basis are non-zero.

(e) All derivatives of Bi,p exist inside the knot spans, but, at the knots, bases are only m− p

differentiable.

Figure 5 depicts the B-Spline basis functions and their derivatives for a knot vector

Ξ = [0,0,0,0,0.5,1,1,1,1] and p = 3. Since nk = 9, there are nb = 5 basis. Note how the basis

functions have only C2 continuity, as the second derivative is non-differentiable at ξ = 0.5.

Similar to the conventional Finite Element Method (FEM), B-Splines allow for

the p-refinement, related to the degree elevation, and for the h-refinement, related to the knot

insertion. However, B-Splines also allow for a third refinement, known as the k-refinement,

which has no analog in FEM and is related to the increase in the multiplicity of unique knots.

The k-refinement is given by a subsequent combination of the h and p refinements, in that order,
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Figure 5 – B-Spline basis functions and their derivatives.

(a) Basis functions Bi,p (b) First derivatives (c) Second derivatives
Source: the author

and takes advantage of the fact that these processes do not commute[102]. Figure 6 depicts the h

and k-refinements for an initial set of basis functions defined by Ξ = [0,0,0,1,1,1] and p = 2.

Figure 6 – B-Spline refinements.

(a) Initial basis functions (b) h-refinement (c) k-refinement
Source: the author

B-Spline functions can also be employed to define the volume fraction gradation on

FGMs, as described in Section 2.2.1. In that context, to ensure a smooth gradation, this work

will employ cubic B-Splines and open knot vectors with equally spaced interior knots[2]. It is

important to note that, for a gradation in multiple directions, one may use bivariate or trivariate

B-Splines, which are given by the tensor product between two or three univariate basis[18].

3.1.2 NURBS

Since B-Spline basis functions are polynomials, they are not able to exactly represent

conical geometries (e.g. circles and ellipses). This issue can be solved by employing Non-

Uniform Rational B-Splines (NURBS), which are defined by the linear combination of rational

basis Ri,p and control points pi:

C(ξ ) =
nb

∑
i=1

Ri,p(ξ )pi (3.4)
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The rational basis are given in terms of the basis function Bi,p by:

Ri,p(ξ ) =
wi Bi,p(ξ )

∑
nb
i=1 wi Bi,p(ξ )

(3.5)

where wi is the basis weight, which weight function W (ξ ). Note that, if weights wi = 1.0,

NURBS become the same as usual B-Spline basis functions.

3.2 3D analysis

In general, every structure can be analyzed using a 3D model based on the continuum

mechanics equations, although these might not be the most efficient way of performing its

analysis. A NURBS solid can be defined as a tensor product between three univariate bases:

V (ξ ,η ,ζ ) =
nb1

∑
i=1

nb2

∑
j=1

nb3

∑
k=1

Ri jk,p(ξ ,η ,ζ )pi jk (3.6)

where Ri j,p(ξ ,η ,ζ ) is the trivariate rational basis, given by:

Ri jk,p =
wi jk Ni,p(ξ )N j,q(η)Nk,l(ζ )

∑
nb1
i=1 ∑

nb2
j=1 ∑

nb3
k=1 wi jk Ni,p(ξ )N j,q(η)Nk,l(ζ )

(3.7)

Thus, the geometry of a solid model can be given by:

x =
ncp

∑
i=1

Ri xi, y =
ncp

∑
i=1

Ri yi, z =
ncp

∑
i=1

Ri zi (3.8)

where ncp is the number of control points. For instance, Figure 7 shows how a 3D isogeometric

model may be used to represent a shallow shell.

Figure 7 – Example of a 3D model for a shallow shell.

Source: the author
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In this model, the displacement field is described considering three components[107]:

u =


u(x,y,z)

v(x,y,z)

w(x,y,z)

 (3.9)

and the Green-Lagrange strains are given by[104]:

εεε =



εx

εy

εz

γxy

γxz

γyz


=



u,x

v,y

w,z

u,y + v,x

u,z +w,x

v,z +w,y

︸ ︷︷ ︸
εεε0

+
1
2



u2
,x + v2

,x +w2
,x

u2
,y + v2

,y +w2
,y

u2
,z + v2

,z +w2
,z

2(u,x u,y + v,x v,y +w,x w,y)

2(u,x u,z + v,x v,z +w,x w,z)

2(u,y u,z + v,y v,z +w,y w,z)

︸ ︷︷ ︸
εεεL

(3.10)

where εεε0 and εεεL are the linear and nonlinear terms, respectively.

In this work, we deal with composite materials, where mechanical properties change

in the structure. This variation should be considered when evaluating the constitutive matrix C

via Eq. (2.1) or Eq. (2.18). For FG structures, this is performed by evaluating effective material

properties as discussed in Section 2.2.2, and then evaluating the C matrix as show in Section

2.2.3. For laminate structures, due to their orthotropic behavior, the evaluation of the C matrix is

different, as shown in Section 2.1.1.

Using IGA, similar to the coordinates, displacements are given by:

u =
ncp

∑
i=1

Ri ui, v =
ncp

∑
i=1

Ri vi, w =
ncp

∑
i=1

Ri wi (3.11)

or, in matrix form:

u =


u

v

w

=
ncp

∑
i=1


Ri 0 0

0 Ri 0

0 0 Ri

= Nu (3.12)

Then, strains can be evaluated by:

εεε = εεε0 + εεεL = Hβββ +
1
2

Aβββ (3.13)
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where:

βββ =



u,x

u,y

u,z

v,x

v,y

v,z

w,x

w,y

w,z



=
np

∑
i=1



Ri,x 0 0

Ri,y 0 0

Ri,z 0 0

0 Ri,x 0

0 Ri,y 0

0 Ri,z 0

0 0 Ri,x

0 0 Ri,y

0 0 Ri,z





u1

v1

w1
...

unp

vnp

wnp


= Gu (3.14)

and:

H =



1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0

0 0 1 0 0 1 1 0 0

0 0 0 0 0 0 0 1 0


A =



u,x 0 0 vx 0 0 wx 0 0

0 u,y 0 0 v,y 0 0 w,y 0

0 0 u,z 0 0 v,z 0 0 w,z

u,y u,x 0 v,y v,x 0 w,y w,x 0

u,z 0 u,x v,z 0 v,x w,z 0 w,x

0 u,z u,y 0 v,z v,y 0 w,z w,y


(3.15)

Substituting Eq. (3.14) in Eq. (3.13):

εεε = HGu+
1
2

AGu =

(
B0 +

1
2

BL

)
u = Bu (3.16)

where:

B0 = HG, and BL = AG (3.17)

Thus, strains can be found based on matrix B, which has a linear and a non-linear term (B0 and

BL, respectively). For the incremental formulation, the strain increment is given by:

δ ε̂εε = (B0 +BL) δue = Bδue (3.18)

3.2.1 Equilibrium equations

The dynamic equilibrium equations of the model can be obtained using the D’Alembert

and virtual work principles:∫
V

δuT MüdV +
∫

V
δεεε

T
σσσ dV =

∫
V

δuT bdV +
∫

S
δuT qdS (3.19)
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where δεεε is the virtual displacement vector, σσσ is the stress vector, and q and b are the surface

and body loads, respectively. For solid elements, M is given by:

M =


ρ 0 0

0 ρ 0

0 0 ρ

 (3.20)

Displacements can be given in terms of the displacements in the control points, as

described in Eq. (3.36). Thus, considering arbitrary displacements, Eq. (3.19) can be written as:

Müe +g(ue) = f(t) (3.21)

where M is the mass matrix, g(ue) is the internal forces vector, which depends on ue due to the

nonlinear term, and f(t) is the external load vector. These terms are given by:

M =
∫

V
RT MRdV

g =
∫

V
BT

σ̂σσ dV

f =
∫

V
RT bdV +

∫
S

RT qdS

(3.22)

The nonlinear problem can be solved by an incremental and iterative approach, such

as the Newton-Raphson method. In each step, for a given displacement ue, the stiffness matrix is

given by the differentiation of the internal forces vector:

KT =
∂g
∂u

= KL +Kσ (3.23)

where the material stiffness matrix KL and the geometric stiffness matrix Kσ are given by:

KL =
∫

A
BT ∂ σ̂σσ

∂ue
dA =

∫
A

BT CBdA

Kσ =
∫

A

∂BT

∂ue
σσσ dA =

∫
A

GT SGdA

(3.24)

where C is the constitutive matrix, presented in Sections 2.1.1 and 2.2.3 for laminate and FG

composites respectively. For a more efficient implementation, instead of computing the integral

in the entire volume, one may perform integration in the isogeometric element, defined by the

knot span. This is similar to what is performed in FEM for the assembly of the global stiffness

matrix. More details can be found in Barroso[104].

For displacement-independent loads, the nonlinear equilibrium can be written as:

r(u,λ ) = g(u)− f = g(u)−λ q (3.25)
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where q is a reference load vector and λ is the load factor. The equation is solved in each step

for r = 0 using an appropriate path-following method, such as the Load Control, Displacements

Control, or the Arc-Length Method, which are based on Newton-Raphson method iterations.

The detailed methodology can be found in Praciano[108].

3.2.2 Eigenvalue problems

For some structures, we may solve buckling and vibration problems based on the

initial geometry by the linearization of the problem. These are performed by the solution of a

generalized eigenvalue problem.

For structures with negligible pre-buckling displacements, the stability analysis can

be solved by the generalized eigenproblem[107]:(
KL +λ Kσ

)
φφφ = 0 (3.26)

where φφφ are the buckling modes, represented by the eigenvectors, and the buckling loads are

given by the eigenvalues λ . The geometric stiffness matrix should be defined according to a

reference load vector, where:

Kσ = λ Kσ (3.27)

It should be noted that, when composites are not symmetric, the membrane-bending coupling

should be considered. Thus, the application of an axial load may incur relevant transverse

displacements, and the linearized theory should not be considered.

In the same way, the free vibration eigenproblem can be solved by:(
KL +ω

2 M
)

φφφ = 0 (3.28)

where φφφ are the vibration modes and ω are the natural frequencies.

3.3 First-order Shear Deformation Theory

The First-order Shear Deformation Theory (FSDT) is a simplified theory for the

analysis of 2D structures, such as plates and shallow shells. For the representation of those, one

must use a NURBS surface, which can be obtained by the tensor product between two univariate

bases:

S(ξ ,η) =
nb1

∑
i=1

nb2

∑
j=1

Ri j,p(ξ ,η)pi j (3.29)
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where Ri j,p(ξ ,η) is the bivariate rational basis, given by:

Ri j,p =
wi j Ni,p(ξ )N j,q(η)

∑
nb1
i=1 ∑

nb2
j=1 wi j Ni,p(ξ )N j,q(η)

(3.30)

For the representation of plates and shallow-shells, coordinates are given by:

x =
ncp

∑
i=1

Ri xi, y =
ncp

∑
i=1

Ri yi, z0 =
ncp

∑
i=1

Ri z0i (3.31)

where ncp is the number of control points. For plates with no imperfections, z0 = 0. For instance,

Figure 8 shows how a 2D isogeometric model can represent a shallow shell. Here, since there

are no elements in the thickness of the structure, variation of displacements and stresses in the

thickness direction may not be captured correctly, especially for high thickness-to-length ratios.

Figure 8 – Example of a 2D model for a shallow shell.

Source: the author

In this work, the First-order Shear Deformation Theory (FSDT) will be considered,

where shear strains are considered to vary linearly in the thickness direction[108, 3]. According to

the First-order Shear Deformation Theory (FSDT), also known as the Reissner-Mindlin plate

theory, normal lines to the mid-surface remain straight, but not necessarily perpendicular to the

mid-surface. Considering small strains and rotations, displacements in any point of the plate can

be written as:


u

v

w

=


1 0 0 0 z

0 1 0 −z 0

0 0 1 0 0





u

v

w

θx

θy


⇒ u = Zu (3.32)

where u, v, and w are the mid-surface displacements, and θx and θy are the rotations about x and

y axes. The coordinate z is the distance from a given point to the mid-surface.
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Based on the displacement field and on the Marguerre theory, in-plane strains are

given by:

εεε =


εx

εy

γxy

= εεε
m + zκκκ (3.33)

where the superscript m refers to the membrane strains and κ to the curvature. In matricial form,

the membrane strains are given by[82]:

εεε
m =


εm

x

εm
y

γm
xy

=


u,x

v,y

u,y + v,x

+


w,x z0,x

w,y z0,y

w,x z0,y +w,y z0,x

︸ ︷︷ ︸
εεεm

0

+
1
2


w2
,x

w2
,y

2w,x w,y

︸ ︷︷ ︸
εεεm

L

(3.34)

Bending and transverse shear strains are given by:

κκκ =


κx

κy

κxy

=


θy,x

−θx,y

θy,y−θx,x


γγγ =

γxz

γyz

=

w,x +θy

w,y−θx


(3.35)

Thus, both the curvatures and the transverse shear strains are constant through the shell thickness.

However, by the Elasticity Theory, this is not true. Thus, the Reissner-Mindlin theory considers

these in a simplified way, which is still better than the Classical Plate Theory (CPT), where

γγγ = 0.

Using IGA, displacements are represented by:

u =
ncp

∑
i=1

Ri ui, v =
ncp

∑
i=1

Ri vi, w =
ncp

∑
i=1

Ri wi, θx =
ncp

∑
i=1

Ri θx,i, θy =
ncp

∑
i=1

Ri θy,i (3.36)

or, in matrix notation, by:

u = Rue (3.37)

where ue is the vector of degrees of freedom, which are the displacements at control points, and

R is the matrix of shape functions:

R =
[
R1 R2 . . . Rnc

]
(3.38)
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where

Rk = Rk I5×5 (3.39)

where I is the identity matrix.

For the analysis of 2D structures using the FSDT, generalized strains can be obtained

similar to those from 3D models, as a function of the degrees of freedom. Thus, rewriting Eq.

(3.33) in matricial form:

ε̂εε =


εm

0

κ

γ

+


εm
L

0

0

=


Bm

0

Bb
0

Bs
0

 ue +
1
2


Bm

L

0

0

 ue =

(
B0 +

1
2

BL

)
ue = Bue (3.40)

By the Marguerre theory, these matrices are given by[82]:

Bm
0 =


Rk,x 0 Zx Rk,x 0 0

0 Rk,y Zy Rk,y 0 0

Rk,y Rk,x Zx Rk,y +Zy Rk,x 0 0



Bb
0 =


0 0 0 0 Rk,x

0 0 0 −Rk,y 0

0 0 0 −Rk,x Rk,y


Bs

0 =

0 0 Rk,x 0 Rk

0 0 Rk,y −Rk 0



Bm
L =


0 0 WxRk,x 0 0

0 0 WyRk,y 0 0

0 0 WxRk,y +WyRk,x 0 0



(3.41)

where:

Zx =
ncp

∑
k=1

Rk,x z0,k, Zy =
ncp

∑
k=1

Rk,y z0k Wx =
ncp

∑
k=1

Rk,x wk, Wy =
ncp

∑
k=1

Rk,y wk (3.42)

It is important to note that BL depends on the displacements w, thus denoting a nonlinear behavior.

This is similar to the solid elements. This feature allows for the nonlinear analysis and the study

of the stability of such structures. For the incremental formulation, the strain increment is given

by:

δ ε̂εε = (B0 +BL) δue = Bδue (3.43)
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3.3.1 Internal forces

For plates and shallow shells, internal forces can be written in terms of membrane,

shear, and bending strains, resulting in the matrices A, B, D, and G. The evaluation of internal

forces requires a stress-strain relation, which was presented in Sections 2.1.1 and 2.2.3 for

laminated and FG composites, respectively. Since these present important differences, they will

be described in different sections.

3.3.1.1 Laminated composites

Forces and moments can be evaluated by integrating stresses over the structure

thickness h. In laminated composites, each ply is considered as a homogeneous and orthotropic

material. Due to the discontinuous change in material properties, this may be performed by a

summation:

N =


Nx

Ny

Nxy

=

∫
h/2

−h/2


σx

σy

τxy

 dz =
Np

∑
k=1

∫ zk+1

zk

Q(k)
εεε
(k) dz

M =


Mx

My

Mxy

=

∫
h/2

−h/2


σx

σy

τxy

 zdz =
Np

∑
k=1

∫ zk+1

zk

Q(k)
εεε
(k) zdz

V =

Vxz

Vyz

=

∫
h/2

−h/2

τxz

τyz

 dz = ks

Np

∑
k=1

∫ zk+1

zk

Q(k)
s γγγ

(k) dz

(3.44)

where k refers to the k-th ply, and ks is a shear correction factor, employed to adjust the shear

factor to a value closer to the parabolic shear-stress distribution from the Elasticity Theory.

Usually, ks is considered as 5/6, as derived by Reissner[109] for isotropic rectangular plates.

By considering membrane, bending and shear strains separately, we may define the
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constitutive relation by:

Nx

Ny

Nxy

Mx

My

Mxy

Vxz

Vyz



=



A11 A12 A16 B11 B12 B16 0 0

A21 A22 A26 B21 B22 B26 0 0

A61 A62 A66 B61 B62 B66 0 0

B11 B12 B16 D11 D12 D16 0 0

B21 B22 B26 D21 D22 D26 0 0

B61 B62 B66 D61 D62 D66 0 0

0 0 0 0 0 0 G44 G45

0 0 0 0 0 0 G54 G55





εm
x

εm
y

γm
xy

κx

κy

κxy

γxz

γyz



(3.45)

which can be summarized by the ABDG matrix:
N

M

V

=


A B 0

B D 0

0 0 G




εεεm

κκκ

γγγ

⇒ σ̂σσ = C ε̂εε (3.46)

where A is the membrane stiffness matrix, D is the bending stiffness matrix, B is the membrane-

bending coupling matrix, and G is the shear stiffness matrix. These terms may be evaluated by

numerical or analytical integration:

A =
Np

∑
k=1

∫ zk+1

zk

Q(k) dz⇒ Ai j =
Np

∑
k=1

Q(k)
i j (zk+1− zk)

B =
Np

∑
k=1

∫ zk+1

zk

Q(k)
zdz⇒ Bi j =

Np

∑
k=1

1
2

Q(k)
i j
(
z2

k+1− z2
k
)

D =
Np

∑
k=1

∫ zk+1

zk

Q(k)
z2 dz⇒ Di j =

Np

∑
k=1

1
3

Q(k)
i j
(
z3

k+1− z3
k
)

G =
Np

∑
k=1

∫ zk+1

zk

ks Q(k)
s dz⇒ Gi j =

Np

∑
k=1

ks Q(k)
s,i j (zk+1− zk)

(3.47)

where i, j = 4,5 for the G matrix and i, j = 1,2,6 for all other matrices. For symmetric laminates,

there is no membrane-bending coupling, and B = 0.

3.3.1.2 Functionally graded composites

FG composites are considered as non-homogeneous, isotropic materials, where

properties vary through the thickness due to the change in volume fractions. Thus, internal forces
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may be computed by through-thickness integration:

N =


Nx

Ny

Nxy

=

∫
h/2

−h/2


σx

σy

τxy

 dz =
∫ h/2

−h/2
Q(z)εεε(z)dz

M =


Mx

My

Mxy

=

∫
h/2

−h/2


σx

σy

τxy

 zdz =
∫ h/2

−h/2
Q(z)εεε(z)zdz

V =

Vxz

Vyz

=

∫
h/2

−h/2

τxz

τyz

 dz = ks

∫ h/2

−h/2
Qs(z)γγγ(z)dz

(3.48)

Similar to laminate composites, we may consider membrane, bending and shear

terms separately by defining a ABDG matrix, as in Eq. (3.46). For FG structures, its components

may be evaluated by:

A =
∫ h/2

−h/2
Q(z)dz

B =
∫ h/2

−h/2
Q(z)zdz

D =
∫ h/2

−h/2
Q(z)z2 dz

G =
∫ h/2

−h/2
ks Qs(z)dz

(3.49)

These integrals are usually evaluated numerically, using an appropriate quadrature rule. For a

symmetrical material distribution, there is no membrane-bending coupling, and B = 0.

3.3.2 Equilibrium equations

For the FSDT, dynamic equilibrium equations are given by:∫
A

δuT MüdA+
∫

A
δ ε̂εε

T
σ̂σσ dA =

∫
A

δuT qdA+
∫

S
δuT fs dS (3.50)

where q is the body load, fs is the boundary load, A is the mid-surface area and S, the mid-surface

boundary of the plate. Here, M is given by:

M =
∫ h/2

−h/2
ρ(z)ZT Zdz =



I0 0 0 0 I1

0 I0 0 −I1 0

0 0 I0 0 0

0 −I1 0 I2 0

I1 0 0 0 I2


(3.51)
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where:

[I0, I1, I2] =
∫ h/2

−h/2
ρ(z)[1, z, z2]dz (3.52)

This integration can be performed numerically, using the Gaussian quadrature. To avoid shear

locking and slightly improve the computational efficiency, computation of the stiffness matrices

should also be evaluated using an appropriate reduced integration scheme[82].

Finally, definition of material and geometric stiffness matrix can be performed in the

same way as for 3D elements. Solution of eigenvalue problems also follow the same procedure.

3.4 Analysis validation

In this section, we present some numerical examples for functionally graded and

laminate composites, comparing structural responses obtained to those from other researchers.

Structural analyses will be performed using the in-house software Finite element AnalysiS Tool

(FAST). Formulation for unidirectional FGMs and laminates using the FSDT was implemented

in FAST on recent works[108, 3]. In this work, we implemented the analysis of tridirectional FG

structures considering the FSDT, as well as the analysis of unidirectional and tridirectional FG

structures using solid elements.

3.4.1 Functionally graded materials

In this section, analysis of different FGMs will be performed. Table 1 presents the

material properties considered here. Thermal properties were evaluated using the Touloukian’s

equation for T = 300 K[85].

Table 1 – Isotropic material properties.

Material E (GPa) ν ρ (kg/m3) α (10−6/◦C) κ (W/mK)

Al 70.000 0.3 2707 23.00 229.0
SUS304 201.04 0.3 8166 15.32 12.14
Al2O3 380.00 0.3 3800 7.400 64.99
Si3N4 348.43 0.3 2370 5.872 83.87

First, the evaluation of the critical buckling load factor of a clamped FG square

plate will be performed. The plate has a/h = 100, where a is the plate length and h is the plate

thickness. A 8×8 cubic NURBS mesh is employed for structural analysis. Material properties

are Em = 207.79 GPa, νm = 0.28, Ec = 322.27 GPa, and νc = 0.28. Effective properties are
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estimated via the rule of mixtures, while the volume fraction is described by the power-law

function shown in Eq. (2.10), with Vc,b = 0.0 and Vc,t = 1.0. The non-dimensional buckling

load:

λnorm =
Ncr a2

π2 Dc
where Dc =

Ec h3

12(1−ν2
c )

(3.53)

is compared with the results found by Bateni, Kiani and Eslami[110] and Ribeiro et al.[2] in Table

2. The obtained results are in excellent agreement with the ones from the reference.

Table 2 – Non-dimensional buckling load of a clamped FG square plate.

p Bateni, Kiani and Eslami[110] Ribeiro et al.[2] This work

0.0 10.057 10.069 10.075
0.5 8.6538 8.6817 8.6876
1.0 8.1424 8.1798 8.1854
2.0 7.7745 7.8136 7.8188
3.0 7.6173 7.6514 7.6564
5.0 7.4275 7.4527 7.4573

The second example deals with a simply supported FG square plate. This time, the

plate has a/h = 10, where a = 10 m, and the non-dimensional buckling load is evaluated as:

λnorm =
Ncr a
Dm

(3.54)

Now, the gradation is given by a unidirectional B-Spline with 9 control points, symmetric to the

mid-plane. The material properties are Em = 70 GPa, Ec = 380 GPa, and νm = νc = 0.30. Table

3 shows the results found for different control points sequences. This plate was analyzed by Do,

Lee and Lee[1], which used a Higher-order Shear Deformation Theory (HSDT), and by Ribeiro

et al.[2], which used the First-order Shear Deformation Theory (FSDT). In this work, the latter

was also employed. Moreover, the results for the 3D model are also shown. For the 2D model, a

8×8 cubic NURBS mesh is employed, while the 3D model uses a 10×10×2 cubic NURBS

mesh.

The results from the 3D model differ from those from the 2D models. While this is

expected, this difference might be too large. The reason for this lies in the boundary conditions

used. Figure 9 shows how the boundary conditions are applied in the 3D model to represent

a simply supported plate. Out-of-plane displacements are constrained in the mid-plane, and

in-plane displacements are constrained in two corners of the plate.

Now, Figure 10 shows how the boundary conditions can be applied for the 2D model.

While most researchers adopt the Simply Supported 1 condition, which is here denominated as
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Table 3 – Non-dimensional buckling load of a simply supported FG square plate.

Control point sequence HSDT[1] FSDT[2] This work
FSDT 3D

[0 0 0 0 0 0 0 0 0] - - 3.7371 3.4042
[1 1 0.4 0 0 0 0.4 1 1] 11.185 11.634 11.633 9.8927
[1 1 1 0 0 0 1 1 1] 14.603 15.357 15.357 12.577
[1 1 1 0.45 0 0.45 1 1 1] 16.193 16.705 16.704 14.091
[1 1 1 1 1 1 1 1 1] - - 20.287 18.480

Figure 9 – Boundary conditions for the 3D model.

w = 0

w =
 0

Source: the author

SS1, there are some constraints that can not be easily represented in a 3D model, namely those

related to a constraint in the node rotation. Thus, the Simply Supported 2 condition, denominated

as SS2, is better fit to represent the same conditions as the 3D model.

Figure 10 – Boundary conditions for the 2D model

w = 0 �y = 0

w
 =

 0
� x

 =
 0

w
 =

 0
� x

 =
 0

w = 0 �y = 0

(a) Simply Supported 1 (SS1)

w = 0

w
 =

 0

w
 =

 0

w = 0

(b) Simply Supported 2 (SS2)
Source: the author

Table 4 shows a comparison between the results from the 2D model (now using

the SS2 boundary condition) and the 3D model. This time, the results are closer, as expected.

However, due to the different theories employed, there is still an average 8.0% relative difference

between these approaches.
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Table 4 – Non-dimensional buckling load of a simply supported FG square plate using different
boundary conditions.

Control point sequence
This work

FSDT (SS2) 3D Diff. (%)

[0 0 0 0 0 0 0 0 0] 3.4526 3.4042 1.42
[1 1 0.4 0 0 0 0.4 1 1] 10.567 9.8927 6.82
[1 1 1 0 0 0 1 1 1] 13.964 12.577 11.03
[1 1 1 0.45 0 0.45 1 1 1] 15.235 14.091 8.12
[1 1 1 1 1 1 1 1 1] 18.743 18.480 1.42

Now, results for the validation of thermal buckling analyses will be shown. This

example deals with a clamped Al/Al2O3 FG square plate with varying a/h. Effective properties

are estimated using the rule of mixtures, and the volume fraction is described by a power-law

function with Vc,b = 0.0 and Vc,t = 1.0. This problem is solved by different researchers. Zhao,

Lee and Liew[111] use a mesh-free method based on the FSDT, where a different approach is

used to evaluate the shear correction factor. Kiani, Bagherizadeh and Eslami[112] use closed-form

approximate solutions based on the CPT. Nguyen-Thanh et al.[113] use an IGA formulation based

on the Higher-order Shear Deformation Theory (HSDT). Bateni, Kiani and Eslami[110] use a

multi-term Galerkin solution which considers a parabolic distribution of shear strains over the

structure thickness. Then, Silva[114] uses an IGA formulation based on the FSDT, very similar to

the one used in this work.

Table 5 compares the results for this problem. In this work, a 8×8 cubic NURBS

mesh was employed. Our results are very close to those presented by Silva[114]. However, as p

increases, our responses become more different from those found in other sources. This is likely

due to the plate theory considered, the FSDT, where variation of shear strains are considered in a

simplified manner.

Finally, a validation for the natural frequency analysis is presented. To this end, a

simply-supported SUS304/Si3N4 FG plate with a/h = 10 is studied. Effective material properties

are evaluated using the Mori-Tanaka scheme, and volume fraction distribution is defined using

the power-law rule. Here, the non-dimensional natural frequency is evaluated as:

ωnorm = ω h
√

ρc

Gc
(3.55)

Structural analysis is performed using a 8×8 NURBS cubic mesh. Table 6 shows the results

found for this example. Here, results are compared to those shown in Nguyen et al.[115], using a

generalized HSDT, and to those shown in Ribeiro et al.[2], found using the FSDT. The results
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Table 5 – Buckling temperature (°C) of a clamped FG square plate using different a/h.

a/h Source
p

0.0 0.5 1.0 2.0 5.0

100

Zhao, Lee and Liew[111] 44.17 24.90 20.77 18.48 19.15
Kiani, Bagherizadeh and Eslami[112] 45.51 25.79 21.15 18.75 19.34
Nguyen-Thanh et al.[113] 47.50 26.54 21.70 19.18 19.80
Bateni, Kiani and Eslami[110] 45.28 25.65 21.04 18.65 19.23
Silva[114] 45.28 26.51 22.76 21.18 21.48
Present work 45.30 26.64 23.02 21.56 21.81

50

Zhao, Lee and Liew[111] 175.8 99.16 82.35 71.01 74.59
Kiani, Bagherizadeh and Eslami[112] 182.1 103.2 84.58 74.99 77.36
Nguyen-Thanh et al.[113] 188.3 105.3 86.07 76.07 78.06
Bateni, Kiani and Eslami[110] 180.3 102.2 83.84 74.30 76.50
Silva[114] 180.1 105.5 90.56 84.23 85.34
Present work 180.2 106.0 91.57 85.73 86.67

are in very good agreement with those found from the literature.

Table 6 – Normalized natural frequency of a FG square plate using different p-exponents.

p
Source

Nguyen et al.[115] Ribeiro et al.[2] Present work

1 0.0542 0.0545 0.0545
2 0.0485 0.0487 0.0487
5 0.0438 0.0439 0.0439

10 0.0416 0.0416 0.0416

3.4.2 Laminate composite materials

In this section, analysis of laminate composites through FAST will be validated

by comparisons with results found from other researchers. First, the assessment of the critical

buckling load factor of a 2-ply simply supported laminate square plate will be performed. Here,

the SS1 condition is employed, as shown in Figure 10. In this case, the plate has a/h = 50, where

a is the plate length and h is the plate thickness. Orthotropic materials are considered for the

analysis of laminates, and their properties are taken from Nguyen et al.[116], as shown in Table 7.

For validation purposes, a 8× 8 cubic NURBS mesh is employed for structural

analysis. The non-dimensional buckling load:

λnorm =
Ncr a2

E2 h3 (3.56)
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Table 7 – Material properties for the validation of laminate analysis.

Material E1 (GPa) E2 (GPa) G12 (GPa) G13 (GPa) G13 (GPa) ν12

I 120 3.00 1.80 1.80 1.50 0.25
II 120 4.80 2.40 2.40 0.96 0.25

is compared with the results found by Nguyen et al.[116] and Maia[3] in Table 8. In both references,

analysis was also performed using the FSDT. Once again, the results are in excellent agreement

with the ones from the reference.

Table 8 – Normalized buckling load of a simply-supported laminate square plate.

Layup Material Nguyen et al.[116] Maia[3] Present work

[0°/90°] I 12.906 12.896 12.895
[±45°] II 15.374 15.373 15.372

Now, the buckling load of a 10-ply clamped squared will be assessed. Here, results

will be compared to those found by Maia[3]. The author also compares with results found by the

commercial software ABAQUS[117]. These are shown in Table 9. Again, results found are in

excellent agreement with those from the reference.

Table 9 – Normalized buckling load of a clamped laminate square plate.

Layup Material ABAQUS[117] Maia[3] Present work

[(0°/90°)2/0°]s I 125.49 125.58 125.56
[±45°2/45°]s I 109.88 110.19 110.12
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4 OPTIMIZATION OF COMPOSITE STRUCTURES

For a long time, engineers were only concerned with conceiving safe and functional

designs. However, with advances in computational processing and analysis, the optimization

of those structures became a requirement for efficient designs. The optimization process aims

at finding the best outcome for a given operation while satisfying certain constraints[25]. In

structural optimization, these constraints are usually very straightforward, since they are often

defined by limit state conditions taken from design codes[118]. For instance, a structural element

should not exceed its critical load or a given maximum displacement.

In general, a continuous nonlinear optimization problem can be defined as[25, 119]:

find x = {x1,x2, . . . ,xm}

that minimizes f (x)

subject to gi(x)≤ 0, i = 1, . . . ,nc

with xL ≤ x≤ xU

(4.1)

where f (x) is the objective function, gi(x) is the i-th constraint function, nc is the number of

constraints, and x is the vector of design variables, where xL and xU define a lower and an upper

bound to each variable, respectively. On a maximization problem, one may simply perform the

minimization of − f (x). For a discrete problem, xi ∈ [xi,1,xi,2, . . . ,xi,s], where s is the number of

possible values for the i-th design variable.

One should not think that optimization is a simple task. For example, on a problem

with 5 design variables where each may assume 20 different values, an exhaustive search would

require over three million evaluations to cover the entire design space. If the time required

for the objective and constraint functions evaluation is only 1 ms, the algorithm would take an

hour to test all possible designs. However, if the analysis time is 10 s, it would take a whole

year. This combinatorial problem is considered to be NP-hard[120], and different algorithms have

been proposed to deal with these problems more efficiently. An optimization algorithm should

be reliable, efficient, and easy to use[121]. In that sense, Arora[119] describes different types of

algorithms, which are discussed in the following.

In gradient-based methods, the objective and constraint functions are assumed to be

continuous in the design space and at least twice continuously differentiable. The evaluation of

these derivatives should be available to the algorithm, as the optimization step is defined almost

entirely by the gradient information. The process continues until a well-established stopping
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criterion is met[119]. In some cases, the derivative can be approximated by a numerical method,

e.g. using a finite-difference approach[122]. It is important to note that, in these methods, the

most time-consuming part of the process is precisely the derivative evaluation (or estimation)[27].

Also, such methods are usually dependant on the initial solution and, even though they guarantee

convergence, they may find a local optimum instead of the global one[123, 119].

Nature-inspired search methods are zero-order optimization algorithms, which re-

quire only that the objective and constraint functions can be evaluated in the entire design

space[119]. This also means that, with minor adaptations, they can handle discrete or even mixed

problems[119]. Since no gradient information is used, there is no guarantee of convergence[124].

However, as their name suggests, they try to imitate nature aspects and, in many cases, mimic the

gradient information with operators such as the particle’s velocity. Furthermore, these algorithms

work with a set (or population) of designs and, thus, there is a better exploration of the design

space. This way, it is very easy to employ parallel computing in the optimization process[27].

Most of these methods are stochastic, as they employ randomized operators in their search for

the optimum[27, 119], further improving their exploration capabilities. These aspects are very

important for the optimization of nonlinear multi-modal complex functions. When compared to

gradient-based algorithms, nature inspired search methods are much less prone to be trapped in a

local optima.

Due to these very own reasons, bio-inspired algorithms are the most popular algo-

rithms for the optimization of composite structures[25, 5, 14]. Lagaros, Papadrakakis and Kokos-

salakis[27] presented a comparison between variations of Genetic Algorithms (GAs), Evolution

Strategies (ES), and the mathematical programming technique known as Sequential Quadratic

Programming (SQP). The authors state that meta-heuristics are often more efficient, but that the

combination between algorithms seems promising. Kou, Parks and Tan[26] also showed that the

PSO outperforms classical mathematical programming optimizers in FG problems due to their

global search capabilities.

Genetic Algorithms (GAs)[125, 126], Particle Swarm Optimization (PSO)[127], and

Differential Evolution (DE)[128] are examples of meta-heuristics commonly employed in the opti-

mization of composite structures[26, 15, 30, 16, 31]. Multi-objective optimization is often performed

using variations of these algorithms[129, 130, 17, 131, 132]. The choice for a given approach often de-

pends on aspects such as variable type, modality, and dimensionality[119, 127, 121, 133]. Kitayama,

Arakawa and Yamazaki[134] presented a comparison between a variety of meta-heuristics for
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continuous structural optimization, showing that the best approaches were the PSO and the DE,

where the latter is sometimes able to find the optimum with a lower number of function calls,

therefore being more efficient. Similar results can be found in Ribeiro et al.[34].

In the optimization of composite structures, the most common objective functions

are related to the structure critical buckling load, fundamental frequency, deflection, stresses,

weight, and cost[5, 14]. One should note that the evaluation of most of these responses requires

a computational simulation. On laminate problems, variables are usually discrete, such as

the number of plies and their orientation, thickness, or even material. On the other hand, on

FG problems, variables are often continuous, mostly being related to the material gradation

through the structure. Besides, multiobjective optimization of composite structures is receiving

increasing interest in the last few years, and new methods are being constantly developed and

employed[135, 136, 85, 17, 96, 137]. A review of the optimization of laminate and FG structures will

be presented in the following.

Regarding laminated composites, Genetic Algorithms (GAs) are often preferred due

to their discrete behavior. Karakaya and Soykasap[138] employed GA for buckling optimization

of a balanced-symmetric composite panel. The authors performed the analysis considering

an analytical approach, based on the Navier solution. A GA was also employed by Irisarri et

al.[139] to find the Pareto front for the optimal stacking sequence of a laminated plate considering

two objectives: mass minimization and buckling load factor maximization. Here, the authors

performed the analysis considering the CLT. Le-Manh and Lee[140] used a GA to maximize the

strength of laminated plates. The authors derive an IGA formulation for the nonlinear analysis of

plates considering the FSDT.

Different researchers also successfully applied other algorithms for optimization

of laminated composites. A comparison between GA and Simulated Annealing (SA) was

presented by Sciuva, Gherlone and Lomario[141] for optimization of laminated and sandwich

plates, considering higher-order plate theories. The authors show that both algorithms perform

very similarly, but the SA is less time-consuming. Chang et al.[142] argue that a variant of the

PSO algorithm was the most efficient method for the maximization of the buckling load factor of

laminated plates, which was evaluated via analytical solutions.

Roque and Martins[143] employed DE for maximization of the natural frequency

of laminated plates using a finite element formulation based on the FSDT. Vo-Duy et al.[144]

used a similar procedure for frequency maximization of carbon nanotube reinforced laminates



59

using DE. Bargh and Sadr[145] also tried to maximize the natural frequency of laminated plates,

this time by the use of a PSO algorithm. Numerical analyses were performed using a Finite

Strip Method (FSM) formulation based on the CLT. Jing et al.[146] employed a mechanics-based

optimization algorithm for the maximization of the fundamental frequency of doubly curved

laminated composites. Analyses were performed using the Rayleigh-Ritz method, and the

authors found the optimal stacking sequence for such structures.

A methodology for weight minimization considering ply drops can be found in Fan,

Wang and Chen[147] by the use of a modified GA. The authors present modifications to existing

operators to facilitate the optimization process and show that optimal designs found outperform

those from conventional laminates. Deka et al.[148] considered the weighted average between two

objectives, weight and cost, to perform the multi-objective optimization of laminated composites

using a GA. The authors made use of the Tsai-Hill failure criterion, and the design variables

were the fiber orientations.

Regarding failure criteria, some authors tested different approaches to understand

how these may affect the optimization process. Lopez, Luersen and Cursi[149] performed the

weight and cost minimization considering different failure criteria: maximum stress, Tsai-Wu,

and Puck failure criterion. The authors show that optimal designs depend on the failure criteria,

but no criterion was always the most or least conservative. In a similar fashion, Satheesh, Naik

and Ganguli[150] used GA for weight minimization considering three different failure criteria,

this time the maximum stress, the Tsai-Wu, and the mechanism-based. The authors propose the

consideration of a failure envelope in such a way that the most conservative criterion is always

considered.

Rocha, Parente and Melo[15] presented a modified GA where a special encoding for

laminates allowed for the incorporation of three specific operators. The authors then perform the

optimization of laminated plates and panels, finding the optimal stacking sequence, material, and

thickness of each ply. Barroso, Parente and Melo[16] used a similar encoding, but optimization

was performed using a hybrid PSO-GA, where a mutation operator is incorporated to the PSO to

improve exploration.

Even with the shortcomings that laminated structures present when subject to thermal

stresses, Kamarian, Shakeri and Yas[151] used the Firefly Algorithm (FA) to find the optimum

stacking sequence for maximization of the thermal buckling load factor considering the FSDT.

Using the same theory, Singha, Ramachandra and Bandyopadhyay[152] performed the maximiza-
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tion of the buckling temperature of laminated plates using GA considering various aspect ratios

and boundary conditions. The authors found the optimal stacking sequence, also considering

each ply thickness as a design variable. The total plate thickness was considered as a design con-

straint. Spallino and Thierauf[153] performed a similar optimization using GA and a CLT-based

finite element formulation. The authors study different constraint-handling methods, showing

that all of them performed similarly. In the same vein, Vijayachandran et al.[154] showed that GA

is able to find optimal fiber curve paths for the maximization of the thermal buckling load of a

laminated plate with a cutout.

Finally, Kalita, Haldar and Chakraborty[155] provided an extensive and comprehen-

sive review on the optimization of composite laminates using conventional and Surrogate-Based

Optimization (SBO) approaches. In short, the authors state that FEM is the most popular method

for analysis of composite plates, where the FSDT is the most popular theory due to its simplicity

and accuracy. Also, the authors comment that, since the last decade, metamodeling is becoming

extremely popular, and most works focus on uncertainty quantification or optimization.

Now, a short review over the optimization of FG structures will be presented. These

materials are often preferred when thermal effects are considered. Regarding unidirectional

Functionally Graded Plates (FGPs), where the gradation is usually given in the thickness direction,

Ding and Wu[156] performed the minimization of peak thermal stresses to find the optimal material

distribution using a GA, considering a coupled thermo-mechanical analysis. A similar procedure

can also be found in Chiba and Sugano[157]. Na and Kim[158] performed a multi-objective

optimization considering a weighted average between the peak stress and the critical buckling

temperature, finding the optimal volume fraction gradation defined by the power-law equation.

Effective material properties were evaluated using the Voigt model.

A comparison between PSO and GA was performed by Ashjari and Khoshravan[91]

for the mass minimization of FG beams, considering deflection and stress constraints. Analyses

were performed considering the HSDT. The authors used a Hermite polynomial to represent the

volume fraction distribution and the effective properties are evaluated by the rule of mixtures.

PSO is shown to be superior both in terms of convergence speed and accuracy.

For FGPs where gradation changes in two directions, Hussein and Mulani[159]

performed the minimization of cost while respecting buckling constraints, considering uniaxial

and shear loadings. Here, the finite element formulation considered the CPT and, again, effective

properties are evaluated by the rule of mixtures. Later, the same authors[160] performed a similar
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study, now considering constraints on maximum deflection and stresses.

Trying to mimic the bone structure, Huang and Rapoff[161] presented the optimization

of FGPs with circular cutouts. The authors minimized the failure index, and the FG structure

is shown to outperform homogeneous plates in terms of strength to weight ratios. Silva and

Loja[162] used DE to perform the optimization of sandwich FG panels. Design variables were

related to the material gradation and the thickness of the plate.

Also regarding sandwich structures, Lieu et al.[106] performed shape and size opti-

mization of FGPs using a Firefly Algorithm. The authors derived an IGA formulation based on

the HSDT, and effective mechanical properties were assessed by the Mori-Tanaka model. The

authors show that the use of B-Spline functions to control the material gradation may lead to

designs that are easier to be applied to practical manufacturing. In many cases, one-parameter

rules seem to be fairly restrictive. In the design of wings and tail fins of aircrafts, Torabi and Af-

shari[163] used a PSO to maximize critical aerodynamic pressure. Design variables are related to

the plate geometry, power-law index, and angle of attack. Analyses were performed considering

the FSDT.

Material distribution and size optimization of FG plates and shallow-shells are

performed by Moita et al.[164]. Material gradation is given by the power-law function, and

equivalent properties are assessed using the Voigt model. Regarding multi-objective optimization,

Correia et al.[130] maximized the buckling load and the natural frequency while also minimizing

the cost and weight of FGPs described by the power-law function. Effective properties are

evaluated via the Mori-Tanaka scheme. The authors apply the Tsai-Hill failure criteria to ceramic,

metal, and graded phases, considering the strengths of each material separately. Later, the same

authors[85] used a similar procedure but considered thermo-mechanical loading. Correia et al.[96]

employed a SA algorithm in the optimization of FGPs under thermo-mechanical loadings. In

these papers, all numerical analyses are performed considering high-order theories.

Minimization of stresses, displacements, and mass was also performed by Moleiro

et al.[137] in the optimization of FGPs under thermo-mechanical loading. In the optimization

problem, material failure is assessed considering the Tsai-Hill failure criteria. The authors show

that the methodology is able to achieve optimal designs considering different homogenization

methods. The same authors[165] later performed the multi-objective optimization of symmetric

and non-symmetric sandwich FGPs and studied the optimal material distribution for different

loading cases. Wang et al.[17] used a modified PSO algorithm for the multi-objective size
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optimization of FGPs. The authors employ an IGA formulation based on a recently developed

so-called "simple FSDT". Material gradation is described by different functions, and effective

properties are evaluated via the Voigt model.

Regarding shell designs, Vel and Pelletier[166] employed a GA-based method for the

multi-objective optimization of thick shells under thermal loadings. The authors were concerned

with minimizing stresses and weight. Material gradation is defined by Hermite polynomials, and

effective properties are evaluated by the Self-Consistent model. A similar approach was adopted

for multi-objective optimization of hollow cylinders by Nabian and Ahmadian[28], where authors

performed the minimization of mass and maximization of the fundamental frequency.

PSO is employed by Shabana et al.[167] to minimize stresses in multi-layered FG

cylinders subject to pressure. The authors evaluate the structural response by an analytical

approach and show that peak stresses can be reduced by nearly 18%. Comparing different algo-

rithms, Tornabene and Ceruti[168] found the optimal material gradation in FG panels and shells.

The authors claim that PSO and GA were the best-performing methods for the minimization of

deflection and maximization of the fundamental frequency.

Recently, due to its major gain in efficiency, the Surrogate-Based Optimization

(SBO) of composite structures has been gaining interest. Ootao et al.[169] used an Artifical Neural

Network (ANN) in the minimization of thermal stress to find the optimal material gradation for

FGPs. The authors show that, after the evaluation of the sampling points and model building,

the ANN is able to provide a very fast estimate for the true function. To determine the optimal

reinforcing pattern of aluminum composite plates, Akbari et al.[170] used experimental results to

train an ANN and then performed a GA-based multi-objective optimization over the approximate

response surface. Using this methodology, the authors were able to maximize the hardness and

ultimate tensile strength of composite plates.

Similarly, Garmsiri and Jalal[171] employed an ANN to assist in the multi-objective

optimization of cylindrical shells, maximizing strength and natural frequency. In the optimization

of composite cylinders, Blom, Stickler and Gürdal[172] approximated the buckling load factor

by a surrogate model to reduce the number of high-fidelity function evaluations. The authors

show that the model is able to facilitate convergence, while also increasing the efficiency of

the process. Also employing a surrogate model, Njim, Bakhy and Al-Waily[173] performed the

optimization of porous FGPs. Numerical analyses are performed considering the CPT.

Pitton, Ricci and Bisagni[174] perform the buckling optimization of Variable Stiffness
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Composites (VSCs) using a PSO. These composites use multiple layers, similar to laminates,

but, due to its variable fiber paths, the optimization problem presents continuous design variables.

The optimization process is assisted by an Artifical Neural Network (ANN) built with 135

input-output pairs. While the ANN is able to provide an approximate solution at a very minor

cost, the authors state that, considering the dataset creation and training costs, the time required

to compute the optimal configuration is about 14 days.

Do, Lee and Lee[1] performed the maximization of the buckling load factor and

fundamental frequency of unidirectional FGPs considering a HSDT. After evaluating 10,000

sampling points, a Deep Neural Network (DNN) was trained for each approximated objective

function. The authors show that the optimization of the approximate response surface by a

symbiotic organisms search algorithm leads to minor errors when compared to the true global

optima. The same authors[18] later employed a similar approach considering multi-directional

FGPs. Here, the authors show that the time required to create the dataset is the main bottleneck,

as it corresponds to almost 98% of the total optimization cost. A DNN was also employed

by Truong, Lee and Nguyen-Thoi[42], this time in the multi-objective optimization of multi-

directional FG beams. The authors show that the DNN presents an Mean Squared Error (MSE)

lower than 0.002% in both training and test sets.

Yin et al.[175] used an ensemble of different meta-models (polynomial regression,

RBF, Kriging, SVR, and MARS) to assist in the optimization of FG foam-filled tubes. The

authors optimize the response surface using a modified PSO and show that the ensemble is

able to perform better than each of the models separately. Another approach to improve upon

Surrogate-Based Optimization (SBO) is the use of an adaptive sampling scheme, where the

sample is updated in each iteration. This is an important idea for this work and will be discussed

in future sections, along with a proper review.

A more extensive review of the optimization of laminated and FG composites can be

found on Nikbakt, Kamarian and Shakeri[5] and Nikbakht, Kamarian and Shakeri[14], respectively.

This work will also employ three different bio-inspired optimization algorithms: the GA, the

PSO, and the DE. These meta-heuristics will be further described in the following sections.

4.1 Optimization model

A review over recent papers on the optimization of laminated and functionally graded

composites shows that many different optimization problems can be formulated. In this work, a
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major focus will be given to the optimization of plates and shallow shells considering the 3D

solid continuum theory and a First-order Shear Deformation Theory (FSDT), both described in

Chapter 3.

Objective functions considered will be related to eigenvalue analyses, such as maxi-

mization of the mechanical or thermal buckling load, or optimization of natural frequencies.

For FGMs, to allow for complex and efficient structures, gradation will be defined

by unidirectional or tridirectional B-Spline functions. Thus, design variables will be related

to the control points of these B-Spline functions. Constraints will be related to a maximum

ceramic percentage V c, structure cost Ctot , or, in some cases, structural responses such as natural

frequencies. The ceramic percentage may be evaluated by:

V c =
1
V

∫
V

Vc dv (4.2)

where Vc is the ceramic percentage in a given point of the structure. The structure cost, on the

other hand, may be evaluated via:

Ctot =Cc

∫
V

Vcdv+Cm

∫
V

Vmdv (4.3)

where Cc and Cm are the costs by unit volume of the ceramic and metal, respectively.

For laminates, design variables will be related to the orientation and, in some cases,

the thickness of each ply. Constraints, on the other hand, will be related to a maximum number

of contiguous plies or the thickness for the structure. For the latter, a repair algorithm can be

employed, to guarantee that all designs present the same total thickness. Before evaluating an

individual, the thickness of the innermost layer can be set in order to guarantee that ∑hi = hmax.

Then, if this value is outside the design space, the thickness of the other plies are adjusted,

prioritizing the outermost layers.

Figure 11 presents a general flowchart for optimization via conventional nature-

inspired algorithms. In the following sections, three different algorithms will be describe:

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Differential Evolution (DE).

4.2 Genetic Algorithms

Genetic Algorithms (GAs) were among the first bio-inspired algorithms employed.

The initial version was first proposed in 1975 by Holland[176], being inspired by Darwin’s theory

of natural selection[119]. Its implementations try to mimic genetic operators.
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Figure 11 – General procedure for nature-based optimization algorithms.

Define and evaluate
the initial population
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Source: the author

The first GA was based on a binary coding, further simulating the genetic encoding[177].

The individual was defined by its genotypical representation, while fitness assessment was per-

formed based on their phenotypical behavior. The binary coding also further emphasized the

focus on discrete optimization. Indeed, GAs are still very strong optimizers for discrete optimiza-

tion. Nowadays, however, integer coding is often employed due to the easier implementation, or

even real-number coding, which allows for continuous optimization. In this work, the version

described in Rocha, Parente and Melo[15] is employed, which is presented in the following.

A GA is initialized by generating an initial population of Np random individuals,

each represented by a vector of design variables x j. Each individual is then evaluated, assessing

its objective function f j. In each generation, this population will be continuously improved. To

guide the optimization process, a fitness function is often considered in order to select the best
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designs. For minimization problems, the fitness can be evaluated by[15]:

Fit j = max(| fmin|, | fmax|)− f j (4.4)

where fmin and fmax are the minimum and maximum objective function values in the population.

Then, the mating pool should be selected from the old population. The number of

selected designs depends on the crossover rate Cr, and the selection should be biased towards

designs with a high fitness value. The probability of selection can be evaluated by[80, 119]:

p =
Fit j

∑
Np
j Fit j

(4.5)

The classic roulette method can be employed to define which designs will be drawn to the mating

pool[15, 119].

Once the mating pool has been defined, the crossover starts, and, at each iteration,

two parents, x(p)
1 and x(p)

2 , are selected from the mating pool. Then, the new trial designs can be

defined using linear combination:

xi = r x(p)
1 +(1− r)x(p)

2

xi+1 = (1− r)x(p)
1 + r x(p)

2

(4.6)

where r is a random number between 0 and 1.

Finally, to prevent the algorithm from getting trapped in a local minimum, the

mutation operator is employed. Each variable has a small probability pmut of mutating to a

random value in the design space.

These operators define a base GA, which is able to deal with binary, discrete, and

continuous optimization. The algorithm will be carried out until a stopping criterion is met. In

this work, two criteria will be considered: one related to the maximum number of generations

(Ngen), and the other related to the maximum number of stall generations (Genstall), that is, the

number of generations with no relevant improvement over the objective function.

The version proposed by Rocha, Parente and Melo[15] focused on the optimization

of laminate structures, presenting a special encoding and specific operators for these problems.

These will be explained in the following.

4.2.1 Laminate problems

Laminate problems are usually considered using discrete variables, such as the num-

ber of plies and each ply thickness, orientation, and material. Here, each individual is represented
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by an integer matrix, where each row represents a variable and each column represents a ply.

The decoding process is performed as depicted in Figure 12.

Figure 12 – Laminate decoding process.

(a) General laminates (b) Symmetric laminates

Source: Barroso, Parente and Melo[16]

This special encoding allows for easier implementation of three specific operators:

the layer swap, the layer addition, and the layer deletion. In the layer-swap, there is a small

chance pswap that the position of two layers (columns in the matrix) are swapped, as shown

in Figure 13. This operator is especially interesting for problems with deflection, buckling, or

natural frequency constraints[16].

Figure 13 – Layer-swap operator.

Source: Rocha, Parente and Melo[15]

The layer deletion can be employed when the number of plies is a design variable,

where there is a probability pdel to set the thickness of a layer to zero. Likewise, the layer

addition operator has a probability padd that a given layer will be reactivated, by setting its

thickness to a value other than zero[15, 16].

4.3 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) is a very popular meta-heuristic, which

aims at optimizing nonlinear continuous functions[127, 91]. Kennedy and Eberhart[127] proposed
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the technique based on the behavior of a swarm of particles in its search for food. The method

is computationally inexpensive (in terms of speed and memory requirements), as only primi-

tive mathematical operators are employed[127]. Since the proposition of the method, different

researchers have expanded upon the initial PSO concept[178]. This work will employ the version

described in Barroso, Parente and Melo[16].

The PSO algorithm starts by generating an initial population of Np random particles.

Each particle j is assigned a position x0
j and a velocity v0

j . At each iteration (i), the particles

move in the design space according to their velocity:

xi+1
j = xi

j +vi+1
j (4.7)

where:

vi+1
j = wvi

j + c1 r1 (xi
p, j−xi

j)+ c2 r2 (xi
g, j−xi

j) (4.8)

Here, w is the inertia, c1 is the cognitive factor, c2 is the social factor, xi
p, j is the best position

the particle j obtained during the optimization, and xi
g, j is the best position the particles on

the neighborhood of particle j obtained during the optimization. The parameters r1 and r2 are

uniformly distributed random numbers between 0 and 1. Thus, both the cognitive and social

experiences affect the particle velocity[91], as depicted in Figure 14. This iterative process goes

on until a stopping criterion is met.

Figure 14 – Particle movement at each iteration.
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Source: Maia[3]

The definition of xi
g, j depends on the neighborhood of particle j, which is defined

by the swarm topology. In early versions, Kennedy and Eberhart[127] would consider that all
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particles are connected and, thus, xi
g, j would be the best position found among all particles. Even

though this formulation leads to a very fast convergence, the algorithm may get stuck in a local

optimum[179].

Later, the Square and the Ring topologies were also developed. In the former,

the swarm is arranged as a matrix and the particle has a neighbor in each direction (above,

below, right, and left). In the Ring topology, each particle may only be influenced by the two

closest ones. The use of these alternatives delay the sharing of social experience between the

particles, thus improving the exploration of the design space but slowing down the algorithm

convergence[178, 16]. Figure 15 depicts each of these alternatives. In the so-called standard PSO,

Bratton and Kennedy[178] employ the Ring topology.

Figure 15 – Swarm topologies.
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Source: Ribeiro et al.[2]

During the optimization process, a particle may violate an upper or lower variable

bound. To prevent particles from leaving the design space, a simple procedure is performed as

depicted in Figure 16, where the particle is set to the violated bound and the violated velocity

component is modified to the opposite direction[16, 2].

Figure 16 – Boundary violation handling.

(a) Define the velocity (b) Handle the violations (c) New positions and velocities

Source: Ribeiro et al.[2]
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Even with the appropriate topology, the PSO may still suffer from premature conver-

gence. Also, depending on the size of the population, it may be very hard for the algorithm to

explore the entire design space. In this work, a mutation operator will be employed to improve

this aspect[16]. The operator is applied to the particle position, where each variable has a small

probability pmut of mutating to a random value, between the lower and upper variable bounds.

Barroso, Parente and Melo[16] also extended the PSO formulation to laminate designs,

based on the special encoding proposed by Rocha, Parente and Melo[15], described in Section

4.2.1.

4.4 Differential Evolution

The Differential Evolution (DE) was initially developed by Storn and Price[128] as

a robust and simple method with good convergence properties. The algorithm was inspired

by the well-known GA, but the use of floating-point instead of bit-string encoding along with

arithmetic operators turned it into a strong numerical optimizer[180, 128], more appropriate to deal

with continuous optimization problems[31, 32]. Besides, the existence of only a few user-defined

parameters makes it a simple and easy-to-use method[121].

Similar to other population-based algorithms, the DE starts by randomly generating

a population of Np individuals in the design domain. These individuals, represented by vectors

of design variables x, will continuously evolve, simulating a developing population[121, 34]. Once

each individual is evaluated, the process of conceiving a new child population starts. To each

individual, taken as the base vector, three operators are applied. First, the differential mutation

works by adding a scaled difference vector to the base vector as:

vi
j = xi

r0 +F (xi
r1−xi

r2) (4.9)

where F is the user-defined scale factor. In the initial DE formulation, the indexes r0, r1 and

r2 are chosen at random, and they represent arbitrary individuals of the population, while xi
r0

is a base vector in the i-th iteration. A binomial crossover is then carried out by combining the

mutated vector and the base vector:

ui
j,k =

 vi
j,k if ri

c,k ≤Cr

xi
j,k otherwise

(4.10)

Here, the subscript k refers to the k-th variable in the design vector, Cr is the crossover probability,

and ri
c,k is a random value taken from an uniform distribution. This value is compared to Cr to
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decide whether the child vector inherits from the base vector or the mutated vector. Figure 17

illustrates how these two operators work.

Figure 17 – Differential Evolution operators.
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The final operator, the selection, compares the child vector u j,i with the base vector

x j,r0. Thus, the best design between those two is carried over to the next population. The base

vector gets replaced if the child vector presents an improvement upon it[121]:

xi+1
j =

 ui
j if f (xi

j)≤ f (ui
j)

xi
j otherwise.

(4.11)

This initial version of the DE is known as DE/Rand/1/Bin[121], where Rand refers to

the base vector employed in the differential mutation operator, 1 to the number of differentiation

vectors, and Bin to the type of crossover used, the binomial crossover. In the following years, a

multitude of versions was proposed[181]. In particular, many researchers show that carrying over

information regarding the best individual in the population can be beneficial to the convergence

speed[182, 183]. Two of the most promising approaches are the Best/1/Bin:

vi
j = xi

best +F (xi
r1−xi

r2) (4.12)

and the Current-to-best/1/Bin:

vi
j = xi

j +F (xi
best−xi

j)+F (xi
r1−xi

r2) (4.13)

where xi
best is the best design found during the optimization process until the i-th iteration[121, 182, 184].

4.5 Constraint-handling

In nature-inspired search methods, explicit constraints (e.g. design variable bounds)

are dealt with directly by preventing these from occurring (e.g. not allowing a bound constraint
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to be violated). However, implicit constraint functions require special procedures to prevent an

infeasible design from being chosen.

In these cases, constrained optimization is often solved by employing a penalty

function that undermines infeasible designs, turning the problem into an unconstrained one. For

instance, a simple static penalty can be employed[185, 186, 27]:

fp(x) = f (x)+K
nc

∑
i=0

ci(x) (4.14)

where K is the static penalty parameter and ci(x) = gi(x) if the i-th constraint is violated, and 0

otherwise.

In this work, however, the adaptive penalty proposed by Lemonge and Barbosa[186]

will be employed, where penalization is performed as:

fp(x) =

 f (x) , if maxg(x)≤ 0

f (x)+∑
nc
i=0 Ki gi(x) , otherwise

(4.15)

where:

f (x) =

 f (x) , if f (x)> fm

fm , otherwise
(4.16)

where fm is the average objective function value in the current population. The penalty factor Ki

is then evaluated by:

Ki = | fm|
vi,m

∑
nc
j=1(v j,m)2 (4.17)

where vl,m is the violation of the l-th constraint averaged over the current population.
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5 SEQUENTIAL APPROXIMATE OPTIMIZATION

Simulation-based structural analysis, e.g. by the use of the Finite Element Method

(FEM) or the Isogeometric Analysis (IGA), may incur high computational costs. For instance,

Gu[24] reported that Ford takes about 36 to 160 hours to run one crash simulation. In such

cases, bio-inspired search methods are not adequate since they usually require hundreds or

even thousands of structural analyses to find the global optimum[35, 36, 37]. Therefore, it is not

feasible to perform a conventional optimization with such a high analysis time[38]. Meanwhile,

even though the last few decades presented major advances in computing processing power,

the required fidelity and model complexity on engineering analyses also increased. Thus, the

computational cost and time constraints have not been eliminated[39]. While parallel computing

is one very effective alternative for this issue, this procedure requires powerful machines which

are not always available to the user.

The Sequential Approximate Optimization (SAO) was first proposed by Schmit and

Farshi[187] as a method to deal with computationally expensive optimization problems. In this

approach, a costly function is approximated by a response surface, which is then used to guide

the optimization process. The approximation is iteratively improved by focusing on promising

regions in the design space. In its initial formulation, SAO was performed using the trust region

approach, where a move limit strategy was employed to define regions in which sub-problems

should be solved[187, 188]. The design space would be sequentially funneled down until a stopping

criterion is met. Different frameworks which aim at performing this procedure can be found

in the literature[189, 188]. Venkataraman and Haftka[190] state that, here, optimization-related

computational costs depend on three indices of complexity: modeling, analysis, and optimization

complexity.

The approximate response surface employed is often denominated as a metamodel

or a surrogate model. Using the true function values evaluated at a set of sampling points, it is

possible to fit a given surrogate model to serve as a cheaper, but approximated, way of evaluating

the true function. The accuracy of this approximation is dependent on the choice of sampling

points, the model used, and the true function complexity.

Wang and Shan[191] comment that there are many advantages of applying metamod-

eling in optimization. First, efficiency is greatly improved, when compared to conventional

optimization approaches. Second, parallel computation is supported for evaluation of the sam-

pling points, when these may be obtained independently. Third, modeling can usually help
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to understand the importance of each design variable. Finally, with proper adaptations, both

continuous and discrete optimization can be handled.

According to Forrester, Sobester and Keane[40], surrogate models are "educated

guesses as to what an engineering function might look like, based on a few points in space where

we can afford to measure the function values". The authors state that there are three main stages

in the construction of an approximation by a surrogate model[40]. First, the sampling points are

selected and evaluated.

In this work, these points are evaluated via computational methods for structural

analysis (e.g. IGA or FEM), with a sufficiently refined mesh. For single-fidelity models, these

methods are assumed to provide the exact response for the true function. The user should seek

an appropriate method to define these points so that fewer costly evaluations are required[192].

In the second stage, the user should set the model hyper-parameters and fit the

surrogate model. The use of reliable methods, capable of fitting linear and nonlinear spaces, is

very important to guarantee a robust prediction[192]. Finally, in the third stage, the model should

be tested to ensure that it provides sufficient accuracy. This can be done by the use of a validation

sample[40].

These steps define the conventional surrogate modeling approach, denominated here

as static single-fidelity surrogate models[52]. Even though this approach has been widely used in

engineering problems[46, 50, 1, 18, 48, 193, 33, 194], the optimization of a constant surrogate model

heavily relies on the global approximation accuracy of this model[195], thus requiring a large

number of sampling points to guarantee an accurate solution.

Along with single-fidelity models, Song et al.[52] points out three other modeling

approaches. First, in hybrid surrogate models[196, 197, 66, 198], an ensemble of models is employed

in a way to offer a more robust approximation, while also removing the need for selecting the

model type a priori.

On the other hand, multi-fidelity surrogates[70, 52, 45] may consider data from both

a High-Fidelity (HF) and a Low-Fidelity (LF) source, allowing for the use of a much larger

sampling space. These sources may be, for instance, related more refined and a coarser analysis

meshes, which may provide responses with different levels of accuracy and computational

efficiency. If sources are well-correlated, multi-fidelity surrogates are able to provide very

accurate approximations of the true function at a lower cost than single-fidelity models.

Finally, the third approach is the adaptive sampling-based, where the model is
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iteratively used to locate promising regions in the design space. Then, new data can be selected

from these regions, improving model accuracy in its surroundings. This is the most interesting

approach for optimization since the user is only concerned with accuracy in the neighborhood

of the optimum which, ideally, should be identified as a promising region. Forrester, Sobester

and Keane[40] even state that, in this case, the user is not required to test the model, since global

accuracy is not as important.

The adaptive sampling effectively minimizes the number of sampling points required

for the model to provide accurate predictions in promising regions[199, 200, 201, 202]. It is worth

noting that different approaches can be employed together, e.g. using adaptive sampling on

multi-fidelity[78, 79, 77, 73] or hybrid surrogates[203, 75, 204, 205]. In this work, we will try out the

former, by the use of multi-fidelity surrogates to improve model accuracy and, thus, better

assist in the selection of new sampling points, also known as infill points. These will be further

described in Chapter 6, while, here, we focus on single-fidelity models.

The use of adaptive sampling can be seen as a type of Sequential Approximate Opti-

mization (SAO), as the model is sequentially improved throughout the optimization process[53, 55, 40].

However, unlike the trust region approach, adaptive sampling-based SAO takes advantage of the

global response surface in the whole process. This way, no sampling points are ever lost during

the optimization. Furthermore, the method is able to better explore the entire design space, if

necessary[35].

Figure 18 presents the general flowchart for SAO based on adaptive sampling. The

set of methods employed in each stage defines a SAO approach. For instance, the Efficient

Global Optimization (EGO) algorithm proposed by Jones, Schonlau and Welch[53] uses a Latin

Hypercube Sampling (LHS) to select the initial sampling points, then fit a Kriging model to

the data, and select a new point by maximizing the Expected Improvement (EI). The stopping

criterion is the value for the EI itself, and the process is terminated if it is lower than 1% of the

best current value. Riche and Picheny[206] state that EGO and its variants behave similarly (or

even better) to state-of-the-art algorithms for low-dimensionality multi-modal functions.

It is worth pointing out that the EI is an error-based infill criterion[40], as it considers

the uncertainty of the process in the selection of a new candidate point. Such techniques are very

promising and can be employed because the Kriging model is a Gaussian Process (GP), allowing

for an analytical estimation of the error (or uncertainty).

In the last decade, SAO has become very popular for expensive engineering optimiza-
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Figure 18 – General SAO flowchart.
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tion. A variety of researchers have employed the method in structural optimization, achieving

good results in many areas[56, 2, 207, 51, 208, 209, 78]. However, SAO still has to overcome certain

issues so that it can be reliably employed in most optimization problems[210, 58, 206, 211]. For

instance, the handling of expensive constraints or discrete design spaces is still an open issue.

In this work, different SAO approaches will be tried out. The following sections will

further discuss each of its main stages, describing techniques to perform the definition of the

initial sampling, the surrogate model building, and the further selection of infill points. A review

of important papers on the matter is also presented.

5.1 Initial sampling

The first stage of building a surrogate model is data preparation. Here, a small

number of observations is gathered, which will be later employed to fit a given model. These

observations should assist in identifying important patterns in the data, so that promising regions

may be located. Care must be taken in this phase since, if important information is discarded, the
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model overall accuracy can be compromised[41]. In that matter, Design of Experiments (DoE)

techniques are usually employed to pick an appropriate set of sampling points.

In real-world experiments, data tends to be noisy due to the inherent randomness

of the process[192, 212]. Thus, it is often a good choice to sample multiple data points on small

sub-regions of the design space so that the user may identify noisy patterns[192]. However,

computer experiments tend to be deterministic and are not affected by some common constraints

in real-world experiments[213, 214]. Thus, sample sets that ensure the coverage of the design space

are often the most appropriate choice if the user has no prior information about the behavior of a

given function[212, 40].

That being said, there are two important requirements for a good experimental

design[215, 214]. First, the sampling space should be space-filling, with design points uniformly

spread over the design space. Second, if the user knows which dimensions are important,

two design points should not share any coordinate value. This requirement leads to a better

understanding of each variable alone and is often denominated as projective property[215].

The accuracy of the metamodel improves as the sample size increases, which is

consistent with intuition[192, 216]: the more information is given to the model, the better it

may represent the true function. However, there is a clear trade-off here between accuracy

and efficiency, as the use of a larger data set leads to a higher number of costly high-fidelity

evaluations.

The number of sampling points required to provide sufficient accuracy to the model

increases exponentially with the problem dimensionality[217]. This is a major concern in surrogate

modeling and is usually referred to as the Curse of Dimensionality[40, 41]. For instance, take the

full-factorial example, where each dimension may have five equally spaced points. Figure 19

depicts the sampling space for one, two, and three dimensions. The number of sampling points

grows from 5 to 25, and then to 125. This aspect makes dimensionality reduction methods very

important, especially in black-box functions with many design variables[218, 219, 220]. Examples

of such methods are the screening, where the most important variables are identified, and

the decomposition, where a high dimensionality problem is decomposed into multiple low

dimensionality ones.

Full-factorial designs are not flexible in the number of sampling points employed.

Also, even though these designs are space-filling, they have a very poor projective property[214].

This way, these experimental designs are not very efficient. A variety of Design of Experiments
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Figure 19 – Full-factorial designs.

(a) One dimension (b) Two dimensions (c) Three dimensions
Source: the author

(DoE) techniques have been proposed in the literature to better tackle these issues.

In most of these techniques, the user is actually able to choose how many data points

will be considered. Many researchers have proposed different methods to suggest an adequate

number of points required to fit a sufficiently accurate model, which is often a function of the

number of design variables m. For reference, one may consider the number of points required to

fit an interpolating second-order polynomial[221, 198]:

n =
(m+1)(m+2)

2
(5.1)

However, the number of sampling points might be too large in high-dimensional problems. Other

authors suggest that a lower number of sampling points is enough to provide sufficient accuracy,

such as n = 10m, n = 5m, or even n = 2m[222, 223, 215, 224, 206, 225]. For constrained optimization,

it might be wise to increase the initial number of sampling points to make sure that the feasible

region will be found. Also, it is important to remember that the evaluation of the initial data can

be easily run in parallel[212]. Thus, if parallelism is available, it is interesting to set the number

of initial sampling points as a multiple of the number of cores on the machine to maximize

efficiency.

It is very important to use a robust sampling technique[221] since it is unreasonable

to re-evaluate an entirely new initial sample if a model has a poor performance. Examples of

commonly employed techniques are the Hammersley Sequence Sampling (HSS), the Sobol

Sequence Sampling (SSS), the Latin Hypercube Sampling (LHS), or even the Random Sampling

(RS). Some researchers have compared multiple sampling criteria in the context of surrogate

modeling[192, 36, 215]. For the deterministic sampling, Hammersley Sequence Sampling (HSS)

tends to be better for a small number of variables, but it is surpassed by the Sobol Sequence Sam-
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pling (SSS) for high dimensionalities. However, most researchers employ stochastic sampling,

where the LHS is the preferred choice.

This work will employ either the HSS or the LHS in the initial designs. These

techniques will be further described in the following.

5.1.1 Hammersley Sequence Sampling

The Hammersley Sequence Sampling (HSS) is a low-discrepancy sampling based on

the Hammersley points[226], a quasi-random sequence that uses successive primes as bases[221].

With the same input parameters, the technique is deterministic, always generating the same

design.

Even though the approach is based solely on the projective property[215], these

designs are very uniform and space-filling for a low-dimensional space[192, 221], even though

it is surpassed by the Sobol Sequence Sampling (SSS) for m > 6[215, 36]. Figure 20 shows an

example of a 10-point HSS design on a two-dimensional space. The design is very uniform, as

the sampling points are scattered in almost the entire design space.

Figure 20 – Example of the Hammersley Sequence Sampling (HSS).

Source: the author

5.1.2 Latin Hypercube Sampling

The Latin Hypercube Sampling (LHS) is a stratified stochastic sampling method[36].

To generate n data points, each dimension is divided into n equally spaced intervals (or bins).

Then, one point is selected at random in each interval, and the following data points can not be

selected in the same interval. The procedure is repeated until the entire sample is generated.
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Once again, this design is based on the projective property alone, while the random-

ness often takes care of the space-filling property. However, that is no guarantee that the LHS

will cover the entire design space[215]. Figure 21 depicts a very poor design, which may indeed

be generated by the LHS technique.

Figure 21 – Example of a poor LHS.

Source: the author

Even so, the fact is that the LHS is the most popular sampling technique for modeling

purposes[53, 56, 47, 70]. To lower the chance of using poor designs, the user may employ an

Optimized Latin Hypercube Sampling (OLHS), where the maximization of the minimum distance

between two points is performed[40]:

dp(x(i),x( j)) =

(
m

∑
k=1
|x(i)k − x( j)

k |
p

) 1
p

(5.2)

where, for p = 2, dp is the Euclidean distance. However, this procedure can be very computation-

ally intensive[40, 212], especially for larger m. Alternatively, one may simply test N different data

sets, and choose the one with the highest dp
[221, 2]. In this work, this strategy will be denominated

as LHSN . Figure 22 depicts a usual LHS and a LHS20. While the former has dp = 0.114, the

latter has dp = 0.224. For reference, the HSS depicted in Figure 20 has dp = 0.236. Thus, this

particular LHS20 was almost capable to surpass the HSS by this performance criterion.

5.1.3 Handling of discrete variables

In problems with discrete variables, the sampling points should also be located in

places where a design can be drawn. The easiest way to perform this is to use a mapping

approach by setting each point to the closest discrete design[214, 58]. Figure 23 shows an example
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Figure 22 – Example of Latin Hypercube Sampling (LHS).

(a) Usual LHS (b) LHS20

Source: the author

of an LHS20 re-mapped to a discrete space, where each variable can be set to 11 different equally

spaced values.

Figure 23 – Mapping of sampling points to the discrete space.

(a) Continuous design (b) Discrete design
Source: the author

When performing this approach, two data points may be mapped to the same discrete

position. When this occurs, the sample can be redrawn until a valid sample is built. It should be

noted that this can be checked before the evaluation of the data points. However, some properties

of the DoE techniques may be lost with mapping[227]. For instance, a mapped LHS may have

two different data points with the same coordinate values.
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5.2 Surrogate modeling

After data is prepared, the user may fit an adequate response surface to make future

predictions. Given a training set of input-output pairs D= {(xi,yi)}n
i=1, the model may provide

an approximate surface that can replace the true function for a cheaper alternative. One should

note that the input space should be normalized so that the size of the design space does not affect

the model hyper-parameters. This can be performed by a transformation of the design space to

bring all designs to the domain [0,1]m.

Traditional response surface methodology is often related to low-order polynomial

regression[35]. For a smooth introduction on the matter, a quick explanation of those basic models

will be made. Besides, most of the issues that affect those also remain, on some sort, in more

robust techniques The generalized form of a univariate polynomial regression is given by[41]:

ŷ(x) =
n

∑
i=1

wi ψi(x), where ψi(x) = xi−1 (5.3)

where wi are the coefficients of the polynomial and ŷ(x) is the model prediction for a given x. The

function ψi(x) is known as the basis function, and, here, it is represented by a monomial of order

i−1. The summation of these monomials produces a polynomial regression. The basis functions

can be understood as the building blocks that will assist in creating robust approximations, and

more complex models often employ different types of basis functions. In matrix form, Eq. (5.3)

can be written as:

ŷ = wT
ψψψ (5.4)

It is important to note that, while ŷ can be a nonlinear function of x, it is a linear function of w.

This aspect makes the fitting and analysis of such models much easier[41]. The prediction in the

sampling points can be given by:

w1 ψ1(x1)+w2 ψ2(x1)+ . . .+wm ψm(x1) = ŷ(x1)

w1 ψ1(x2)+w2 ψ2(x2)+ . . .+wm ψm(x2) = ŷ(x2)

...

w1 ψ1(xn)+w2 ψ2(xn)+ . . .+wm ψm(xn) = ŷ(xn)

(5.5)

where xi is the i-th sampling points. In matrix form:

ΨΨΨw = ŷ (5.6)
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The building of the model is related to the fitting of the model parameters. In this

case, this is the vector of coefficients w, also known as the weight vector. The optimal w can be

found by minimizing an error function:

E(w) =
n

∑
i=1

[yi− ŷ(xi,w)]2 = (y−ΨΨΨw)T (y−ΨΨΨw) (5.7)

which accounts for the squared error between the model predictions at the sampling points x and

their respective true responses y, for a given w. This approach is very straightforward, and it

also maximizes the likelihood that the model represents the data well[41]. Since ŷ is linear with

respect to the weight vector, E(w) is quadratic. Thus, it is easy to determine the extreme of the

function by:

∂E(w)

∂w
= 0 (5.8)

which means that the error is minimized for:

w =
(
ΨΨΨ

T
ΨΨΨ
)−1

ΨΨΨ
T y (5.9)

Figure 24 depicts examples of different order polynomial regressions in the fitting of

nine data points afflicted by very small noise. It can be seen that, as the order of the approximation

grows from one to four, the model fits the true function much better. However, the eighth-order

model is not suitable to approximate the true function since it overfits the data.

In the eighth-order model, the set of parameters w that minimizes the error is the one

that interpolates the data, where E(w) = 0. Thus, by realizing that ŷ(xi) = y(xi) at all sampling

points xi, one may solve the minimization problem simply by solving the linear system:

ΨΨΨw = y ⇒ w = ΨΨΨ
−1 y (5.10)

In this case, since ΨΨΨ is a square matrix, the system is determined and has a single unique

solution. It will be shown that, for the models employed in this work, this system can always

be determined, since the effective number of parameters adapts automatically to the size of the

sample[41].

However, for the eighth-order model, this solution is not adequate since it is prone to

over-fitting, as seen in Figure 24. There are regularization approaches that could attempt to fix

this approximation. Also, over-fitting becomes less of a problem as the size of data increases[41].

However, it is important to realize that a more complex model does not always present a better

approximation of a given function.
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Figure 24 – Different order polynomial regressions.

(a) Linear regression (b) Cubic regression

(c) Quartic regression (d) Eighth-order regression
Source: the author

Another important aspect can be seen by analyzing how different models behave

when the data is changed. Figure 25 shows 10 different linear regression models, with 10

different data sets D from the same output function. A similar plot is shown for the eighth-order

approximation.

In the linear regression case, the 10 models created are similar to each other and,

even though they fit the true function very poorly, most of them seem to at least capture its

global trend. It is said that linear regression has a very high bias. Models with more bias make

very strong assumptions about the nature of the data[228]. For instance, the linear regression

implicitly assumes that the data is given by a linear function, which is definitely not the case for

most engineering functions. Usually, models with a lower bias are preferred, since the estimated

surface should have some freedom to better fit any unknown black-box function.

In the eighth-order regression, however, the predictions are all over the place. This

means that model prediction is greatly influenced by which data is used for model building, and
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Figure 25 – Models created using different data sets.

(a) Linear regression (b) Eighth-order regression
Source: the author

it is said that these models have a very high variance. The variance is related to the number of

model parameters and to the basis function ψ . Models with high variance are often discarded

since they are more prone to over-fitting the data, thus being less robust.

The ideal algorithm should present low bias and low variance. However, in many

cases, balancing both aspects is not trivial. Besides, a set of assumptions that works well in a

domain may do very poorly in another[228]. This saying can be summarized by the very well-

known "no free-lunch" theorem[229]. Ultimately, this means that it is not easy to select the best

model for a given task a priori, without any knowledge about the true function. This example

demonstrates that the choice of sampling points may greatly influence the model prediction, as

already pointed out in the last section.

For engineering applications, polynomial regression models are very weak for a

robust approximation since they are unable to provide a smooth global fit for most nonlinear

functions[230, 231]. Also, it is not as simple to derive a formulation for multivariate spaces. Thus,

commonly employed models for these cases are Artifical Neural Networks (ANNs), Support

Vector Regression (SVR), Radial Basis Functions (RBFs), and Kriging[191, 40].

Jin, Chen and Simpson[222] presented a comparison study over four modeling tech-

niques: polynomial regression, Kriging, RBF, and Multivariate Adaptive Regression Splines

(MARS). The authors consider 13 mathematical benchmark problems and one engineering design

problem in an attempt to represent different features found in engineering design problems. The

RBF presented the best overall results. The Kriging model outperformed the RBF for low-order

problems, but it was also the most time-consuming method. On a study focused on the same

modeling techniques, Simpson, Lin and Chen[192] also advocate for the use of Kriging and RBF,
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which presented good approximations for a wide range of DoE techniques and sample sizes.

On the other hand, Kim, Lee and Choi[216] performed a comparison between Moving Least

Squares (MLS), Kriging, RBF, and SVR, claiming that Kriging and Moving Least Squares

(MLS) showed the most accurate approximations.

Williams and Cremaschi[225] performed a comparison between ANNs, RBF, MARS,

random forests, and SVR in 127 different analytical test functions. The results show that, for

all models, there is a clear relation between dimensionality and model accuracy. Even though

the best modeling approach seems to depend on the data characteristics, the authors found that,

in general, MARS and RBF were able to find the most accurate results. For Surrogate-Based

Optimization (SBO), SVR, random forests, and RBF were able to find designs closer to the

global optimum.

Díaz-Manríquez, Toscano-Pulido and Gómez-Flores[64] compared the polynomial

approximation, RBF, Kriging, and SVR for the Surrogate-Based Optimization (SBO) using

evolutionary algorithms. Six well-known mathematical benchmark functions were tested, with

varying modality and dimensionality. The authors showed that the Kriging model presented

the best results for low-dimensionality problems (m < 15), while the RBF outperforms Kriging

in problems with high-dimensionality. Modality seems to have less effect on the definition of

the best technique. With the same focus on evolutionary algorithms, Valadão and Batista[38]

compared the RBF with different Kriging models, namely Ordinary Kriging (OK), Universal

Kriging (UK), and Blind Kriging (BK). The authors show that the most accurate approach is the

Ordinary Kriging (OK) and, even though the RBF does present the lowest computational cost, it

also presents the worst performance, by a small margin.

Nik et al.[65] performed a comparison between different modeling techniques for the

optimization of Variable Stiffness Composites (VSCs). Kriging and RBF presented the highest

accuracy, where Kriging was slightly better in terms of robustness. However, the authors, once

again, show that the RBF outperforms Kriging for high-dimensionality problems.

In short, most of these works show that the RBF and the Kriging are the most accurate

models for a variety of applications. Usually, the RBF presents the lowest computational cost

and seems to behave better for high-dimensional problems, while the Kriging presents a better

approximation for low-dimensional functions. However, one should note that there are exceptions

to this trend, as the development of general guidelines for model selection might not be practical.

Model performance depends on many characteristics of the problem, such as dimensionality and
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degree of nonlinearity[198, 232, 233, 225].

In this work, a major focus will be given to Gaussian Process (GP) models, since they

have very nice mechanisms to assist in the selection of infill points. This aspect will be better

discussed later, but, for now, it is worth noting that both the Kriging and, to some extent, the

RBF can be viewed as forms of Gaussian Process (GP) models[41]. Also, since their prediction is

based on the distance between x and the data points, there is a natural approach for modeling

discrete spaces[234, 235, 58]. The following sections further describe each of these models.

5.2.1 Radial Basis Functions

The Radial Basis Function (RBF) model was first proposed by Hardy[236] as a way

to interpolate topography and other irregular surfaces. Recently, it was shown to present a great

predictive capability for structural problems related to composite structures[237]. In this model,

the basis ψi is a function of the radial distance between x and the i-th basis center[41] so that:

ŷ(x) =
n

∑
i=1

wi ψi(r), where r = ||x− ci|| (5.11)

In this work, the basis centers ci are considered to be the data points xi. This equation can be

written in matrix form as:

ŷ = wT
ψψψ (5.12)

which is the same as Eq. (5.4). In fact, the major difference between these models is the basis

functions employed. For the RBF, common basis functions include linear and cubic polynomials,

multiquadric and Gaussian basis functions[40, 238]. These are shown on Table 10.

Table 10 – Common basis functions for Radial Basis Functions (RBFs).

Name ψ(r)

Linear r
Cubic r3

Multiquadric (r2 +σ2)1/2

Inverse multiquadric (r2 +σ2)−1/2

Gaussian exp(−r2/σ2)

In some of these functions, in addition to the distance r, ψ also depends on a

parameter σ known as the width, spread, or shape parameter[40, 221]. On parametric basis
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functions, σ should be set before fitting the model. Figure 26 shows a comparison between basis

functions with different σ for the Gaussian and inverse multiquadric basis functions.

Figure 26 – Influence of the width parameter on different basis functions.
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For these basis functions, the width parameter is related to the amplitude of the

basis function and, for higher widths, the influence exerted by a given basis’ center covers a

larger region of the design space[2]. However, a higher width may cause instabilities, since the

interpolation matrix may numerically cease to be positive definite[46, 239]. In any model, hyper-

parameters are very important for correct model prediction. Figure 27 presents the prediction

of the RBF model using different σ . For small values, the prediction resembles a "needles in a

haystack" function, where only regions near sampling points present accurate predictions. On

the other hand, greater values make the predicted surface smoother than it should be[2].

There are many different ways to define σ . While some researchers attempt to opti-

mize the parameter[240, 46, 241, 242, 232], this procedure can be non-trivial and too costly, depending

on the size of the data set. On the opposite spectrum, Haykin[243] presents a simple technique to

define the width for Gaussian RBFs by:

σ =
dmax

2n
(5.13)

where dmax is the maximum distance between two points in the data set. Later, other researchers

proposed similar analytical formulations, considering that the width should also be dependant on

the problem dimensionaty m[244, 47]. However, the disadvantage of these techniques is that they

are ad-hoc in nature, as they make no consideration over the true function response.
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Figure 27 – Influence of the width parameter on the prediction using different basis functions.

(a) Gaussian (b) Inverse multiquadric
Source: the author

Alternatively, one may employ a cross-validation technique, such as the k-Fold Cross

Validation (k-FCV)[203]. Here, the data set is divided into k groups, and, at each iteration, one

of the groups is used as a validation set. Some different values of σ are tested, and the error is

computed from each validation group. The width value with the lower mean squared error is

then selected.

The number of groups k is usually set to 5 or 10, or as a function of the number

of sampling points n. In the particular case where k = n, the approach becomes the so-called

Leave-One-Out Cross Validation (LOOCV). Usually, cross-validation approaches have a very

low bias. Since the training is performed with a considerable part of the whole data set, the

difference between the calculated error and the real error is very small[245]. That being said, the

lowest bias is seen on the Leave-One-Out Cross Validation (LOOCV). However, the variance

is also much higher in this approach[246]. In fact, instability may cause the results to be worse

than approaches with a lower k[247, 2]. Besides, the LOOCV may be very time-consuming for

a large number of sampling points[203, 2]. Regarding the trial widths, for the Gaussian basis

function, Sobester, Leary and Keane[55] tested 20 values of σ at each iteration, all in the domain

[10−2,10]1. The same approach will be adopted in this work.

Finally, after defining the σ parameter, the user may fit the model. Similar to the

polynomial regression case, the weight vector can be evaluated by realizing that, on the sampling

1 Sobester, Leary and Keane[55] consider a slightly different Gaussian function in their work. To maintain the
same effective width values, all values will be multiplied by

√
2.
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points, ŷ(xi) = yi. By interpolation:
ψ11 ψ12 · · · ψ1n

ψ21 ψ22 · · · ψ2n
...

... . . . ...

ψn1 ψn2 · · · ψnn




w1

w2
...

wn

=


y(x1)

y(x2)
...

y(xn)

 (5.14)

Thus, the weight vector is given by:

w = ΨΨΨ
−1 y (5.15)

Since this work deals with deterministic functions, interpolation should do fine[248]. However,

alternative approaches can be employed if the user is concerned with noise in the data[41, 47]. In

the RBF model, the interpolation matrix ΨΨΨ is known as the Gram matrix. To prevent instabilities,

the Gram matrix should not be singular, which is true for a variety of basis functions (including

the Gaussian and the inverse multiquadric) if all data points are distinct[249, 250, 40].

5.2.2 Kriging

The Kriging model was first proposed by Krige[251], but it was only brought to

engineering design by Sacks et al.[252]. The model is known by its almost optimal prediction if

sampling points are taken at nearby locations[253]. In its general form, Kriging can be seen as the

sum between a global trend g(x) and its autocorrelated localized deviations Z(x):

ŷ(x) = g(x)+Z(x) (5.16)

where ŷ(x) is the Kriging prediction. In the Universal Kriging (UK), the global trend is given

by polynomial functions, usually linear or quadratic[49, 198, 38]. However, the most common

approach is the Ordinary Kriging (OK), which considers that the global trend is given by a

constant term. Figure 28 depicts this case. This is the most popular Kriging algorithm by far,

and is the version that is going to be used in this work.

In a Kriging model, the observed responses yi are assumed to come from a stochastic

process with mean µ (even if they come from a deterministic computer code)[40]. These

responses are related to each respective m-dimensional input design vector xi. For a given data

set D= {(xi,yi)}n
i=1, we may assume that the correlation between the responses comes from a

measure of similarity between their input data. For example, if we have D= {(x1,y1),(x2,y2)}

and want to predict the response ŷp for the input xp, it is fair to assume that, if xp is closer to x1,
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Figure 28 – Ordinary Kriging (OK) global trend.

Source: the author

ŷp should also be closer to y1 than to y2. This assumption also means that the response function

should be smooth and continuous.

The measure of similarity can be evaluated by a wide range of arbitrarily picked

functions[198]. However, the most popular correlation function is, by far, the Gaussian kernel,

where the correlation between the two responses yi and y j is given by:

cor
[
yi,y j

]
= exp

(
−

m

∑
k=1

θk |xi,k− x j,k|pk

)
(5.17)

Here, the parameters θk and pk should always be positive. Using this kernel function, if two

points are very close to each other, the correlation between them is closer to 1. However, if these

points are infinitely far away from each other, their correlation is zero.

This way, the correlation matrix can be built by computing the correlation between

each sampled response:

ΨΨΨ =


cor [y1,y1] cor [y1,y2] . . . cor [y1,yn]

cor [y2,y1] cor [y2,y2] . . . cor [y2,yn]
...

... . . . ...

cor [yn,y1] cor [yn,y2] . . . cor [yn,yn]

 (5.18)

From Eq. (5.16), Z(x) can be assumed to be a realization of a stochastic process

with mean zero and covariance given by:

cov(y,y) = σ
2

ΨΨΨ (5.19)

where σ2 is the process variance. The computation of ΨΨΨ involves the determination of the

hyper-parameters p and θθθ . Just like the RBF model, these parameters are very important for the
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model prediction. Figure 29 presents how the correlation function behaves for different values

of θk and pk. The θk parameter is similar to the width parameter σ from the Gaussian RBF

model, as it regulates the influence exerted by a sampling point in the design space[40]. It is

worth noting that, on the Kriging model, the parameter is related to each design variable k. Thus,

the optimal value of θk can be a good estimator for how important the k-th variable is to the

problem[40, 254]. The parameter p, however, controls how smooth the function is: for a lower p,

the correlation between two data points drops very quickly. A very low value for p means that

there is no immediate correlation between two points[40].

Figure 29 – Behavior of the Gaussian kernel with different hyper-parameters.
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Different methods have been proposed for defining the model hyper-parameters, such

as the Maximum Likelihood Estimator (MLE) and Cross Validation (CV) techniques. Usually,

the former is more reliable in defining the optimal value of these parameters[248, 255]. In terms of

the sample data, the likelihood function is given by[40]:

L(y|µ,σ) =
1

(2π σ2)n/2 |ΨΨΨ|1/2 exp

[
−(y−1 µ)T ΨΨΨ

−1 (y−1 µ)

2σ2

]
(5.20)

which expresses how well the model represents its sampling points. This can be seen as the

likelihood of y for a process with mean µ and variance σ2. The maximization of the likelihood

estimator achieves a bias-variance trade-off by penalizing both low-data likelihood and model

complexity[256]. It is very common to consider the natural logarithm of this function before

performing the maximization[40]:

lnL =−n
2

ln(2π)− n
2

ln(σ2)− 1
2

ln |ΨΨΨ|− (y−1 µ)T ΨΨΨ
−1 (y−1 µ)

2σ2 (5.21)
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This procedure does not change the maximum likelihood estimators, since the natural logarithm

is a monotonic function. Finally, by differentiating in terms of µ and σ2 and equating to zero,

we find the Maximum Likelihood Estimators (MLEs) for the mean and the variance[40]:

µ̂ =
1T ΨΨΨ

−1y
1T ΨΨΨ

−11

σ̂
2 =

(y−1µ̂)T ΨΨΨ
−1(y−1µ̂)

n

(5.22)

Now, we still need to assign values to the hyper-parameters θθθ and p. Substituting

the estimators for the mean and variance in Eq. (5.21) and removing the constant terms we end

up with the so-called concentrated ln-likelihood function[40]:

lnL≈−n
2

ln(σ̂2)− 1
2

ln |ΨΨΨ| (5.23)

A straightforward approach for finding θθθ and p would be to simply differentiate this function,

similar to the estimators for the mean and the variance. However, this function is nonlinear and

multi-modal, which means that there is no unique solution. Thus, we should use an optimization

technique to define the optimal value for the hyper-parameters. Since Eq. (5.23) is multi-modal

in nature and the assessment of its gradient is time-demanding[217], these optimal values will be

found, in this work, using bio-inspired search methods. Furthermore, to reduce complexity, a

usual approach is to consider that pk = 2.0[248, 231, 257], which guarantees that the basis functions

are smooth, as shown in Figure 29, and makes the correlation function very similar to the

Gaussian kernel of the RBF.

This way, the assessment of the MLE for θθθ is an unconstrained optimization problem

which can be defined as:
find θθθ = {θ1,θ2, . . . ,θm}

that minimizes − lnL(θθθ)

with θθθ L ≤ θθθ ≤ θθθU

(5.24)

Since the design variables are always continuous, PSO or DE algorithms can find appropriate

values for the parameter [217, 2]. Besides, due to how the parameter θk is considered in Eq. (5.17),

the variable bounds θθθ L and θθθU are usually given in logarithmic scale. After the optimal θθθ is

found, ΨΨΨ, µ̂ , and σ̂ should be computed one last time to finish model building.

Similar to the RBF, the correlation matrix ΨΨΨ should be non-singular to prevent

instabilities from arising. However, as the sample size increases, the condition number may

increase very rapidly, thus resulting in ill-conditioned matrices. To prevent such instabilities, the
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user may add a very small value τ to the diagonal of ΨΨΨ, which should not affect the model itself

or its interpolation properties. This value depends on the scale of the problem, but a value of

τ = 10−8 is usually sufficient if the input design vectors are normalized[258, 255].

It should be noted that the biggest practical limitation of the Kriging model (and

also the RBF, to a lesser extent) is precisely the need of repeatedly inverting large, dense, and

frequently ill-conditioned matrices[259]. Emmerich, Giannakoglou and Naujoks[260] states that

the time complexity for the entire process of training the Kriging model is O(N n3 m+n2 m), or

O(N n3 m) for higher n. Here, N is the number of times Eq. (5.23) is evaluated. It is important to

note that the time spent to determine the Kriging hyper-parameters can be significant, especially

when dealing with high-dimensional problems with many sampling points[261, 40].

Finally, the definition of a new predicted ŷ(xp) should be consistent with the data

and with the correlation function. The new prediction located at xp can be found by augmenting

the correlation matrix:

Ψ̃ΨΨ =

 ΨΨΨ ψψψ

ψψψT cor [ŷ(xp), ŷ(xp)]

 (5.25)

where ψψψ is a column vector with ψi = cor [yi, ŷ(xp)], for i = 1,2, . . . ,n. Once again, ŷ(xp) can be

found by differentiating the concentrated ln-likelihood function in terms of the new prediction

and equating to zero, which results in the estimator[40]:

ŷ(x) = µ̂ +ψψψ
T

ΨΨΨ
−1 (y−1 µ̂) (5.26)

It is important to note that, after the model is built, ΨΨΨ
−1 (y−1 µ̂) does not change. This way, if

multiple model predictions must be performed, one could store the solution of this linear system

beforehand, making it so that the cost of future predictions is much lower.

Returning to Eq. (5.16), µ̂ can be understood as the global trend of the model, while

the term ψψψT ΨΨΨ
−1 (y− 1 µ̂) represents the localized deviations. Finally, Figure 30 depicts the

Kriging prediction for a simple one-dimensional function.

Before jumping to the next topic, it is interesting to discuss a parallel between RBF

and Kriging models. First, in both models, we may use similarity-based basis functions with very

similar hyper-parameters. Second, the term ΨΨΨ
−1 (y−1 µ̂) is closely related to the evaluation of

the weight vector w for the RBF model, and we can write Eq. (5.26) as:

ŷ(x) = µ̂ +ψψψ
T w (5.27)
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Figure 30 – Kriging prediction.

Source: the author

where w = ΨΨΨ
−1 (y−1 µ̂). The final term here closely resembles the RBF prediction but, this

time, it is getting added to a constant term µ̂ . In practice, this means that, as points get far away

from the sampled data, the second term goes to zero, and the prediction ŷ(x) gets closer to the

global trend µ̂ . However, on the RBF, the prediction goes to zero. This behavior is presented in

Figure 31, and the implications of these aspects are very important for the selection of new data

points.

Figure 31 – Behavior of the global trend far away from the sampled data.

(a) Kriging estimator (b) RBF estimator
Source: the author

5.3 Infill criteria

After the model is built from the sampling data, it is possible to take advantage of

its prediction to select new points in promising regions of the design space by the so-called

adaptive sampling technique[223, 262]. This step is the core of the SAO approach, and an efficient
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technique should be used to select new infill points.

Infill criteria are divided into two types[263, 264, 52]. In one-stage approaches, the

definition of the new data is performed along with model building, e.g. in the Goal Seeking (GS)

method, where new points are defined based on the MLE[263]. Two-stage approaches, however,

are much more popular, where the model is built and, then, a given criterion is used to select new

sampling points according to the model response. These techniques assume that the model is a

good representation of the true function and, if that is the case, they may perform much better

than the one-stage approaches. In this work, different two-stage approaches will be employed.

Thus, the user should be able to use the model to select new sampling data to be

added to the data set D. The most straightforward approach is to simply add the point that

minimizes the model prediction to the sample, assuming that it is also close to the true global

optimum. In fact, many researchers adopt this simple procedure, which returns very good results

when the model prediction is sufficiently accurate[207, 265, 51]. However, this is a pure exploitation

method, which tends to be greedy, as it can easily get stuck on local optima[53, 266, 267, 268].

When there is insufficient information near the optimum point, exploration methods

are also very important[244]. These methods favor the addition of new points in less sampled

regions. Kitayama et al.[269] uses a density function that, when minimized, selects a new point in

a region far from all other sampling points. It is also very common to employ techniques that

start by exploring the design space and then, in later iterations, perform the exploitation[123, 270].

Chung, Park and Choi[270] considered a switching infill sampling criterion where, depending on

how the SAO process is going, the algorithm decides if the following data point will exploit or

explore the design space.

Another approach is to add multiple points in each iteration, each selected by a

different criterion so that the model is able to both exploit and explore at the same time[56, 244, 271].

For example, in each iteration, Kitayama, Arakawa and Yamazaki[56] add new points related to

both the minimization of the surrogate model (exploitation) and the minimization of the density

function (exploration). A similar approach is explored in Balreira[272] for the minimization of

laminate composites. These points can even be selected in parallel to take advantage of powerful

machines with multiple cores[195, 273, 274, 275, 276]. However, it is worth noting that the parallel

selection of infill points may lower the accuracy of the infill criteria since the definition of new

sampling points should ideally consider all prior information available[277].

Finally, the most efficient approach is to employ a method that, itself, balances
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exploitation and exploration, such as the bumpiness function proposed by Gutmann[54]. However,

the balancing of these factors is not trivial[278], and the user may get stuck in a method that

neither exploits nor explores very well. The major problem in these cases is that it is hard to

quantify and compare the uncertainty of the model (related to the exploration) with its prediction

(related to the exploitation) at a given point x, thus making the balance between these two aspects

very difficult.

The theory behind Gaussian Process (GP) models, however, provides a very good

way of quantifying the uncertainty of a model[49]. GP models make the primary assumption that

their responses are a realization of a stochastic process. Take, for example, the GP shown in

Figure 32. Given a set of data D, if we want to predict the response for x = 0.5, the GP allows

us to draw a Normal distribution for this point. The mean of this Normal distribution is the most

likely response, given our already sampled data. It is very important to differ the GP global

trend µ̂ from this mean value. The former is the mean of the process itself, thus being the best

prediction if we do not know x yet, while the latter is the mean for an already given x. Thus, this

value can be denominated as the posterior mean, and is, basically, the prediction of our model

ŷ(x).

Figure 32 – Example of a Gaussian Process (GP).

Source: the author

However, there is also some uncertainty in the process, represented by the variance

of the Normal distribution. If we are more confident with our prediction, the variance is lower.

However, if not, the variance is larger, and the Normal distribution becomes flatter. By the theory

of GPs, the posterior variance can be estimated by[228]:

ŝ2(x) = σ
2

[
1−ψψψ

T
ΨΨΨ
−1

ψψψ +
(1−1T ΨΨΨ

−1
ψψψ)2

1T ΨΨΨ
−1 1

]
(5.28)
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where σ2 is the variance of the process. The third term is often omitted from computations since

it is often negligible[40]. This way, by having a GP model, the user has a very nice mechanism

for trading off exploitation, represented by the posterior mean ŷ(x), and exploration, represented

by the posterior variance s2(x)[223, 224].

Gaussian Process models are ideal when modeling smooth functions, where similar

inputs should have similar outputs. This is the case for most engineering functions. Furthermore,

both Kriging and RBF models can be seen as forms of GP[41]. For the Kriging model, this

consideration is more clear, since most of their basic assumptions are the same. Thus, the Kriging

model represents a GP with mean µ̂ and variance σ̂ . The assessment of the MLE for these

parameters was discussed in Section 5.2.2. On the other hand, the RBF can be seen as a Gaussian

Process (GP) with µ̂ = 0.0 and σ̂ = 1.0[55, 44, 279]. This consideration can be done because the

Gram matrix closely resembles the correlation matrix used in Kriging and usual GPs, also being

able to represent the similarity between two data points2.

Figure 33 shows the predictor of a Kriging model and its confidence interval, given

by ŷ(x)± s(x). Note how the uncertainty increases as x gets far from the sampling points,

and goes to 0 in the existing data. This occurs due to the consideration that the model should

interpolate the data. Thus, there is no uncertainty in the already observed data. This can also be

seen by analyzing Eq. (5.28). In the sampling points, ψψψ is a column of ΨΨΨ, which means that

ψψψT ΨΨΨ
−1

ψψψ = 1 and, thus, ŝ2(x) = 0.

Figure 33 – Confidence interval of a Gaussian Process (GP).

Source: the author

2 For the Gram matrix to act as a correlation matrix, its basis functions should have the same properties of a
correlation function, i.e. they should result in higher values for points closer to basis’ centers. Good examples are
the Gaussian and the inverse multiquadric basis functions. Other researchers tried to propose more generalized
methods to assess the uncertainty[280, 279], but these do not retain the same mathematical and statistical
justification[37].
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Usually, the selection of new data points is based on the optimization of a given

function related to the model. Such a function is usually denominated an acquisition function[199].

Since the approximation often induces highly multi-modal landscapes, bio-inspired optimizers

perform well in locating these promising regions in the design space[55, 64, 281, 34].

When employing a surrogate model to fit a set of data points, one often desires to

learn about the function in the whole domain. However, in an optimization context, the user is

interested solely in the point that minimizes a given objective function. Thus, the acquisition

function should be biased to locate points that have a higher probability to minimize the objective

function, while attempting to balance both the exploitation and the exploration aspects[267].

In unconstrained minimization problems, the user should try to select new points with a low

ŷ(x), where the model expects a lower value for the objective function, while also making

some considerations over points with a high ŝ(x). In theory, new points should be located

where the model is more likely to improve upon the actual optimum. Such procedures are also

known, in engineering design, as error-based exploration[53, 40] or, in statistics, as Bayesian

optimization[199, 266, 224].

De Ath et al.[224] comment that this problem can be seen as a multi-objective opti-

mization, where one tries to minimize ŷ(x) while also maximizing ŝ(x). The authors state that,

ideally, a point from the Pareto optimal set of this multi-objective problem should be added to

the sample. While the solution of this problem may over-complicate the procedure, alternative

single-objective methods will be discussed which always select points from the Pareto set[224].

Thus, in this work, a focus will be given to the error-based methods. After Jones,

Schonlau and Welch[53] popularized these techniques by the use of the Expected Improvement

(EI) criterion, different papers have employed error-based exploration with different acquisition

functions in structural optimization. Liu et al.[195] performed the shape optimization of transonic

wings using three different error-based approaches: the minimization of the Lower Confidence

Bound (LCB), the maximization of the Probability of Improvement (PI), and the maximization of

the Expected Improvement (EI). The error found on the surrogate model is very minor compared

to the expensive CFD analysis.

Regarding the optimization of composite structures, Ribeiro et al.[2] performed the

maximization of the buckling load and the maximization of the fundamental frequency of FG

plates using a SAO method based on the RBF. The authors perform the selection of new data

points by two different methods, the Expected Improvement (EI) and the Weighted Expected



100

Improvement (WEI)[55], and show that the SAO approach can be up to 50 times faster than

the conventional bio-inspired algorithms for the optimization. Maia, Parente and Melo[282]

use a Kriging-based SAO in the optimization of FG plates and shallow shells. Here, the WEI

performed slightly better than the EI, and the authors find a similar gain in efficiency. The authors

state that, for more expensive high-fidelity functions, SAO can be even more advantageous.

The present work will employ four different infill criteria: the Lower Confidence

Bound (LCB), the Probability of Improvement (PI), the Expected Improvement (EI), and the

Weighted Expected Improvement (WEI)[55, 44, 2, 283]. All of these approaches will be further

discussed in the following. Finally, methods to handle constrained and discrete problems will

also be discussed.

5.3.1 Lower Confidence Bound

The most intuitive acquisition function for Bayesian optimization is the Lower Con-

fidence Bound (LCB) criterion[228, 199, 266, 198]. The method was first derived for maximization

problems, where it aimed to maximize the Upper Confidence Bound (UCB). For minimization

problems, however, the method should instead minimize the Lower Confidence Bound (LCB)

given by[195]:

LCB(x) = ŷ(x)−β ŝ(x) (5.29)

where β ≥ 0 is a parameter which regulates the balance between exploitation and exploration.

This criterion, although simple and straightforward, always selects solutions in the

Pareto front of the multi-objective optimization of ŷ(x) and ŝ(x)[224]. However, it is not easy

to select an appropriate value for β a priori[228, 284], as the relationship between ŷ(x) and ŝ(x)

might depend on the number of sampling points, the true function response, and even the model

hyper-parameters. For a given arbitrary function, Figure 34 shows the LCB for different β , and

which point would be picked in each one. As β increases, so does the importance of exploration,

and the new sampling point is farther from the already sampled data.

Figure 35 shows how the criterion performs throughout multiple iterations for β =

2.0, and the change in the model prediction with the addition of new data. Due to how the initial

data is arranged, the criterion wastes a few initial iterations exploiting the model. However, once

more data is gathered in this region, the criterion starts exploring the design space, finding points

very close to the optimum.
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Figure 34 – Lower Confidence Bound (LCB) criterion for different β .

Source: the author

Figure 35 – Lower Confidence Bound (LCB) criterion for multiple iterations with β = 2.0.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6
Source: the author

5.3.2 Probability of Improvement

For those with a background in statistics, another seemingly intuitive approach is

to select the point where the Probability of Improvement (PI) presents the highest value[40, 199].



102

This method was first proposed by Kushner[285] and is given by the probability that the addition

of an arbitrary point improves the current best point in the sample. Figure 36 illustrates the

Probability of Improvement (PI) for two different points, represented by the gray area below

the green dashed line, which represents the current best objective function. For x = 0.4, the

prediction is closer to a data point, and the variance is lower. Since the model itself is predicting

that this point has a low ŷ(x), it still has a high PI. On the other hand, for x = 0.6, the model

prediction is not very promising. However, since uncertainty is high in this region, there is still

some Probability of Improvement (PI) due to the high variance.

Figure 36 – Illustration of the Probability of Improvement (PI) criterion.

Source: the author

The area behind the curve is given by the Cumulative Distribution Function (CDF)

Φ(Z). For the Normal distribution, this is given by[40]:

P[I(x)] = Φ

(
ymin− ŷ(x)

ŝ(x)

)
=

1
2

[
1+ erf

(
ymin− ŷ(x)

ŝ(x)
√

2

)]
(5.30)

Figure 37 shows how the PI criterion selects additional points for subsequent it-

erations. Note that the initial data set D was deliberately chosen due to its very poor initial

prediction, and it is the same as the one employed for the demonstration of the LCB criterion.

However, the PI behaves much worse.

This occurs because the PI greatly favors exploitation over exploration[199]. Also,

unlike other more promising methods, it does not select solutions in the Pareto front of the

multi-objective optimization of ŷ(x) and ŝ(x)[224]. Due to these limitations, the PI is not a

method employed very often in this context[263]. However, if the user has the prior knowledge of

an important threshold for the function y, or if the optimum yopt is known beforehand, the user

could replace ymin with those values in Eq. (5.30). In these situations, the PI could behave much

better.



103

Figure 37 – Probability of Improvement (PI) criterion for multiple iterations.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6
Source: the author

By analyzing Figure 37, one may notice that the maximum PI is constant for many x,

where the Probability of Improvement is close to 100%. An alternative approach would be to

not only consider the probability that the response is improved, but also the magnitude of this

improvement so that the single best design is picked. This is a core idea for the next criterion.

5.3.3 Expected Improvement

Based on the theory of expected utility[286], Močkus[287] proposed the Expected

Improvement (EI) criterion for the selection of new data points, where the point which maximizes

the EI is added to the sample. The method was then popularized by Jones, Schonlau and Welch[53]

after the EI was employed on their widely known EGO algorithm, and, nowadays, it is perhaps

the most popular infill criteria for Bayesian optimization[224, 283, 37].
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The Expected Improvement (EI) of a given point x is given by[40]:

E[I(x)] =

 (ymin− ŷ(x))Φ

(
ymin− ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
ymin− ŷ(x)

ŝ(x)

)
, if ŝ(x)> 0

0 , if ŝ(x) = 0
(5.31)

where φ(Z) and Φ(Z) are respectively the Probability Density Function (PDF) and the Cumula-

tive Distribution Function (CDF) for the Normal distribution. The second condition for ŝ(x) = 0

is considered just to prevent instabilities from arising when trying to evaluate Φ(Z) or φ(Z) on

the already sampled data, which would result in a zero variance distribution. It is worth noting

that, on usual computers, due to numerical problems, ŝ(x) will never be 0, but rather a value very

close to it. Thus, it is a good common practice to consider a small tolerance in this computation.

For ŝ(x)> 0, the EI can also be written as:

E[I(x)] = (ymin− ŷ(x))
1
2

[
1+ erf

(
ymin− ŷ(x)

ŝ
√

2

)]
+ ŝ

1√
2π

exp

[
−1

2

(
ymin− ŷ(x)

ŝ

)2
]

(5.32)

Figure 38 presents how the criterion behaves for subsequent iterations, using the

same initial data set as before. Once again, similar to the LCB criterion, the first couple of

iterations are spent by exploiting the region close to the model minimum prediction. However,

as the uncertainty on this region lowers, the algorithm starts to add new points on regions with a

higher ŝ(x). By the end of six cycles, the algorithm has already found the optima region, and

will likely find the actual optima in the next few iterations.

In fact, the EI seems to be a criterion much better the PI. De Ath et al.[224] comment

that, just like the LCB, the EI always selects solutions from the multi-objective optimization of

ŷ(x) and ŝ(x). It is worth pointing out that this function can be highly multi-modal and, similar

to the PI, it may exhibit vast regions where the objective function is constant (E[I(x)] = 0) thus

making gradient-based methods ineffective.

5.3.4 Weighted Expected Improvement

The final criterion to be discussed in this work is the Weighted Expected Improvement

(WEI), proposed by Sobester, Leary and Keane[55] as an alternative to the EI. In Eq. (5.32), the

first term is related to exploitation and the second is related to exploration. Thus, the authors

introduced a parameter w which allows the user to control the importance given to either aspect.

For ŝ(x)> 0, the Weighted Expected Improvement (WEI) is given by:

WE[I(x)] = w(ymin− ŷ(x))
1
2

[
1+ erf

(
ymin− ŷ(x)

ŝ
√

2

)]
+(1−w)

ŝ√
2π

exp
[
−(ymin− ŷ(x))2

2ŝ2

]
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Figure 38 – Expected Improvement (EI) criterion for multiple iterations.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6
Source: the author

(5.33)

For lower w the algorithm favors exploration, while for higher values the algorithm favors

exploitation. De Ath et al.[224] states that, while that is a valid procedure, the WEI only selects

solutions from the Pareto optimal front for w ∈ [0.185,0.50]. Figure 39 shows which points are

selected for different w. In this example, while these points are close to each other, the new data

gets farther from the sampling points as w lowers. It is worth noting that, for w = 0.50, this

criterion is equivalent to the EI.

Figure 40 shows how the method behaves for subsequent iterations with w = 0.20,

which favors the exploration aspect. This time, the optimal region is found much earlier, since a

higher priority is given to the exploration.

Different w can also be employed in different iterations. Fuhg, Fau and Nacken-

horst[202] discuss different approaches of varying this factor, e.g. a decreasing strategy, a greedy

strategy (where only extreme values, 0 and 1, are used), and a switching strategy (where values



106

Figure 39 – Weighted Expected Improvement (WEI) criteria for different w.

Source: the author

Figure 40 – Weighted Expected Improvement (WEI) for multiple iterations with w = 0.20.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6
Source: the author

change smoothly through the iterations). Such an approach can also be used to select different

points in the same iteration so that these points can be evaluated in parallel[274]. This practice can

increase the robustness and accuracy of the algorithm. A similar approach can also be employed

for the LCB, described in Section 5.3.1.
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5.3.5 Constraint handling

For constrained optimization problems, the constraint functions should be considered

in the definition of the acquisition function. Therefore, an appropriate method should be chosen

to handle constrained optimization problems. In some cases, when the feasible region is relatively

small, even finding feasible sampling points is not a trivial task. A higher number of initial

sampling points could be used to assist in finding feasible designs. Otherwise, a few initial

iterations could be devoted to first finding a feasible sampling point[288, 289, 290]. Once a feasible

point is found, the algorithm may try to improve upon it[273, 291].

Usually, to ease model building and evaluation, the sampling points for all models

(related to the expensive objective and constraint functions) are the same throughout the process.

This approach will also be adopted in this work, even though some researchers have been working

on different criteria in recent years[284]. For the LCB criterion, constraints can be considered as in

bio-inspired algorithms: by the penalization of infeasible designs, where the design’s feasibility

can be estimated by the constraint approximated model. However, in probabilistic approaches,

namely the PI, the EI, and the WEI, it is common to employ appropriate procedures, since usual

penalty methods may detract from their probabilistic essence. For instance, it makes no sense to

have a negative Probability of Improvement (PI).

First, for these cases, since the improvement should be performed upon the best

feasible point ymin, f eas, it should replace ymin on the evaluation of the acquisition function[292, 293].

That also means that, ideally, an infeasible design should not be picked as a new sampling point,

since those may not improve upon the current optimum design. When the optimization problem

has a costly objective function but the constraint functions are cheap to evaluate, one may perform

the exact evaluation of the constraint. If the constraint is violated, the expected improvement of

a point can be set to 0:

CE[I(x)] =

 E[I(x)] , if g j(x)≤ 0

0 , if g j(x)> 0
(5.34)

This approach often returns very good results. That way, it is rather simple to extend usual SAO

to problems where constraints are cheap and, therefore, can be evaluated by their exact function.

However, when the constraints are costly to evaluate, they should also be approxi-

mated by a surrogate model to maintain efficiency. This introduces uncertainty to the process,

and the task of handling these constraints becomes much more complicated. A variety of methods

have been proposed, but there is no silver bullet to handle constrained optimization[294, 58]. It
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is not trivial to derive a method that is able to minimize the objective function while satisfying

approximated constraints with a reasonable number of evaluations[295].

The most basic approach, denominated in this work as the direct approach, is to

evaluate the Expected Improvement (EI) by[55, 290, 268]:

CE[I(x)] =

 E[I(x)] , if ĝ j(x)≤ 0

0 , if ĝ j(x)> 0
(5.35)

which is very similar to Eq. (5.34), but the exact constraint g j(x) is replaced here by the

approximated constraint ĝ j(x). Other authors proposed similar methods based on the penalization

of the acquisition function according to the estimated constraint. Instead of setting the CE[I(x)] to

0 for an infeasible individual, Sasena, Papalambros and Goovaerts[61] suggested the penalization

of the EI by a constant penalty factor P. The authors denominate this method as the Penalty-

adjusted Expected Improvement (PaEI). Parr et al.[292], on the other hand, penalize the prediction

of the model ŷ if ĝi is violated, which in turn affects the EI.

Figure 41 depicts the prediction of an RBF for the exact constraint:

g(x) = 0.2− x1 x2 ≤ 0 (5.36)

Here, any point below the gray plane is considered to be feasible, according to the predicted

surface. However, when we compare it to the exact constraint, we can see that the prediction

fails to estimate the real constraint threshold at some points, especially in regions with a lower

sampling density. Thus, it is not advisable to rely entirely on the approximation of the constraint.

Figure 41 – Approximate constraint response.

(a) Predicted constraint surface (b) Comparison with the exact constraint
Source: the author

In fact, it is important to consider the uncertainty in the process[37]. This way,

Schonlau[296] proposed that one could use the Probability of Feasibility (PF) to penalize the EI at
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a given point x. This approach is often denominated as the Constrained Expected Improvement

(CEI)[40, 37]. The assessment of the PF resembles the evaluation of the PI and is given by:

Pj[F(x)] = Φ

(
−

ĝ j(x)
ŝ(x)

)
=

1
2

[
1+ erf

(
−ĝ j(x)
ŝ(x)
√

2

)]
(5.37)

Thus, considering that all expensive constraints are independent from each other, the CEI is

given by:

CE[I(x)] = E[I(x)]
nc

∏
j=1

Pj[F(x)] (5.38)

where nc is the number of expensive constraints. This approach is a good baseline for the

constraint-handling problem, since it considers the uncertainty of the process[296, 60, 40, 291]. Thus,

if a region has a lower sampling density, the method knows that the prediction ĝ(x) is less

reliable.

Basudhar et al.[295] suggest that the PF may also be assessed using a classification

model, such as the Support Vector Machine (SVM). The idea behind these techniques is the

same, and their result seems to be fairly close. The use of a classification model is more adequate

for problems where the number of expensive constraint functions is very high since there is no

need to build nc models. That being said, Sohst, Afonso and Suleman[297] follow the same idea

of building only one model for all expensive constraint functions but use a Ordinary Kriging

(OK) model. While this is not adequate, as Kriging is more suitable for approximating smooth

functions, the authors show that the results are also fairly accurate for low-dimensional problems.

Figure 42 shows how the function P[F(x)] behaves. In the contour plot, it is shown

the contours for some values of P[F(x)]. In regions closer to the sampling points, the contour

lines are closer to each other, and the PF goes very quickly from 0% to 100%. This means

that there is more certainty about these boundaries. However, for low sampling density regions,

P[F(x)] changes more slowly throughout the design space.

One may note that the PF actually penalizes a large region located in the feasible

space. This is especially important because, for engineering problems, the global optimum is

often located in the boundary of the feasible space[292]. Thus, the PF may take many iterations to

locate this point since it penalizes designs that are actually closer to the true feasibility threshold,

especially in an unexplored region. Parr et al.[292] suggest that further improvement of the PF

could be made by directly searching for solutions laying on constraint boundaries.

To overcome this issue, some researchers presented modified formulations, where a

feasibility function F(x) is employed. These are considered just as the PF, and penalize the EI
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Figure 42 – Behavior of the Probability of Feasibility (PF) function.

(a) PF surface
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Source: the author

by:

CE[I(x)] = E[I(x)]
nc

∏
j=1

Fj(x) (5.39)

Examples of different feasibility functions can be found in the literature. Tutum, Deb and

Baran[62] proposed the consideration of:

F(T )
j (x) =


2− erf

(
− ĝ(x)

ŝ(x)

)
, if 0 < erf

(
− ĝ(x)

ŝ(x)

)
≤ 1

0 , otherwise
(5.40)

A very similar function is also employed by Wang, Hu and Li[289]. On the other hand, Bagheri et

al.[63] use:

F(B)
j (x) = min

(
2Φ

(
− ĝ(x)

ŝ(x)

)
,1
)

(5.41)

Finally, Sohst, Afonso and Suleman[297] propose that a sine function can be used to handle the

uncertainty more generously, as in:

F(S)
j (x) = sin

(
Pj[F(x)] × π

2

)n
(5.42)

The authors state that the best results were found for n = 0.15.

Figure 43 shows how these different feasibility functions behave for different g(x),

where:

g(x) =− ĝ(x)
ŝ(x)

(5.43)



111

All of these approaches favor points closer to the feasibility boundary, in comparison with the

method proposed by Schonlau[296]. Also, one may argue that completely penalizing infeasible

designs may limit the update of the threshold approximation[288], as does Tutum, Deb and

Baran[62] as soon as ĝ < 0.0. The approach proposed by Sohst, Afonso and Suleman[297],

however, applies a very smooth penalty for unfeasible designs. Further research is still needed

to define the most appropriate constraint handling method[37]. In this work, these different

constraint handling approaches will be compared.

Figure 43 – Different feasibility functions.

Source: the author

Furthermore, a couple of other methods can be employed to handle constraints in

SAO. Sasena, Papalambros and Goovaerts[61] proposed the SuperEGO algorithm, which applies

a penalty factor when the PF in a given point is lower than some fixed threshold τ , which is

defined as 0.95 by default. Other constraint handling methods can be derived based on augmented

Lagrange multipliers[298, 299], or even by performing the multi-objective optimization of the EI

and the PF[300]. Also, note that these probabilistic criteria can also be used for the LCB, even

though it might be necessary to adopt adequate modifications[297]. These approaches will not

receive a major focus in this work.

In engineering optimization, sometimes, the user desires to optimize a cheap objec-

tive function (e.g. the mass or cost of a structure) while respecting a couple of costly constraints

(e.g. displacement, critical load, fundamental frequency). To handle these problems, one may

replace the Expected Improvement (EI) for the actual improvement[118]:

I(x) = max(ymin− y(x),0) (5.44)

Then, the actual improvement may be penalized by the feasibility functions in the same way as

the EI, as in Eqs. (5.38) and (5.39).
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5.3.6 Handling of discrete variables

Usually, the surrogate modeling techniques described in this work are derived con-

sidering that variables are continuous in the design space. However, on engineering problems,

this is often not the case. For example, optimization of laminate structures is often performed

using discrete design variables[5]. Appropriate methods need to be employed so that surrogate

models can be used in discrete problems[58, 37, 301].

On Surrogate-Based Optimization (SBO), the discrete nature of the data should be

taken into account during the initial sampling (see Section 5.1.3) and in the infilling phase, as

only feasible data points should be added. Stork et al.[58] comment that this aspect is still an open

issue, and they describe different approaches that may be employed in these cases. First, the

basic approach is to simply round the result of a continuous optimization problem to the nearest

discrete value[37]. The authors denominate this as the naive approach, and, even though it is very

straightforward, it may not find the true optima for the discrete optimization problem.

On the other hand, mapping approaches may solve this issue. By the use of dummy

variables or auto-encoders, the optimization process and the definition of sampling points may

consider the discrete nature of the data[302]. In that matter, the special encoding presented in

Section 4.2.1 may assist in the use of such mapping approaches.

Figure 44 shows how a discrete space can be normalized. For RBF and Kriging

models, predicted response is a function of the distance between sampling and prediction points.

Here, distances can be evaluated using, for instance, the Euclidean distance. Thus, it is very

straightforward to generalize RBF and Kriging to dealing with discrete spaces. For combinatorial

problems, Zaefferer et al.[234] suggest that an isotropic Gaussian correlation function may be used

to evaluate the correlation between two data points. The authors also evaluate the correlation

between binary strings using appropriate distance functions, such as the Hamming distance,

instead of the usual Euclidean distance.

Furthermore, discrete variables can also be handled by using inherently discrete

models, such as regression trees or random forests; custom-fit solutions[303], which only work

for specific problems; and extraction of its numeric features[304]. However, for the optimization

of composite structures, these approaches do not seem as robust or promising as the other ones

described.

Finally, some authors have proposed different algorithms to deal with these kinds

of problem. On the topic of mixed-variable optimization, Müller, Shoemaker and Piché[305]
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Figure 44 – Normalization of the discrete space for surrogate modeling.

(a) Fenotypical representation (b) Normalization (c) Assessment of distances
Source: the author

presented the Surrogate Optimization-Mixed Integer (SO-MI), a computational algorithm for

expensive mixed-integer optimization problems. In this algorithm, the initial sample is evaluated

using a LHS where points are rounded to the nearest integer, as described in Section 5.1.3, and a

RBF model is fitted to these points. Infill points are then chosen according to an exploitation

criterion, where candidate solutions are derived from the perturbation of the current best design.

The nature of each design variable is taken into account when defining these candidate solutions.

Also, it is important to remember that finding the best design requires the use of an appropriate

optimization algorithm, such as the Genetic Algorithm (GA)[305]. A similar approach can be

found in the MATSuMoTo toolbox for MATLAB, which was developed by the same authors[306].

Later, the same authors proposed an improvement over the SO-MI algorithm, now

under the name of Mixed Integer Surrogate Optimization (MISO)[307]. MISO allows for the

use of different infill criteria, such as the EI and the bumpiness function. Once again, similar

to a mapping approach, candidate solutions are always drawn from proper discrete designs. In

this work, a similar approach will be employed, where candidate solutions are drawn from the

discrete space and different acquisition functions can be employed. Figure 45 demonstrates how

the infilling phase for discrete laminate problems will be handled. We will take advantage of

the special encoding for laminates described in Section 4.2.1, where designs are defined by an

integer matrix. Each row is related to a design variable (thickness, orientation, or material) and

each column to a specific ply. To simplify model implementation, the integer matrix is later

transformed into a normalized vector and, then, model evaluation is performed.
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Figure 45 – Handling of discrete variables during the infilling process.
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6 MULTI-FIDELITY MODELS

In engineering design, multiple models of a physical phenomenon are sometimes

available with different levels of approximation. Therefore, the user is able to perform Surrogate-

Based Optimization (SBO) using either lower or higher fidelity sources, and the choice for one or

the other should take the accuracy and computational cost of each source into consideration. The

building of a surrogate using a LF source may incur in an accumulation of errors[69], while the

computational time associated with the evaluation of the sampling points can be prohibitive for a

surrogate built considering a High-Fidelity (HF) source, depending on the number of sampling

points required[38].

Multi-Fidelity Models (MFMs) allow for a promising way of performing the trade-

off between accuracy and efficiency for SBO. By using information from both HF and LF

simulations in the surrogate model building, MFMs may reduce the number of HF evaluations

needed to achieve the required accuracy[308, 309]. In the last few years, some effort has also been

made to further extend these to deal with multi-level fidelity surrogates, where more than two

levels of fidelity are explored[259, 310, 256, 311].

Figure 46 presents the prediction of a surrogate using a regular single-fidelity model

and a Multi-Fidelity Model (MFM). The consideration of information from a LF source allows

for a much better exploration of the design space since more sampling points can be evaluated

roughly under the same budget[312]. Thus, MFMs have the potential to reduce computational

effort, while also enhancing the model accuracy[313, 52, 312].

Figure 46 – Improvement of the model accuracy by the use of a MFM.

(a) Ordinary Kriging (OK) model prediction (b) Multi-Fidelity Model (MFM) prediction
Source: the author

To use a MFM, different levels of approximation for a particular problem should be
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available. Cheng, Lu and Zhen[311] point out five main approaches that can be used to derive a

LF source: simplification of a physics model, linearization, dimensionality reduction, coarser

discretization, and partially converged results.

Simplification of a physics model is a very popular method in aerodynamics, where

the Navier-Stokes equations can be easily replaced by the Euler equations, which disregards

viscosity[70, 314]. Another example is in the use of the Kreuzer model instead of the full-linearized

Navier-Stokes in photoacoustic sensor tests[309]. Similarly, in solid mechanics, 3D models could

be replaced by simpler 2D models based on plate or shell theories or even 1D models based on

beam theories. If the correlation between physics models is high, the approach is usually able to

provide very good results. Even so, not all areas have such possibilities available. Dimensionality

reduction is a more general approach that can be easily employed in optimization problems[315].

For instance, Xiao et al.[310] use Proper Orthogonal Decomposition (POD) to derive a LF source,

achieving great results in the optimization of an airfoil. Nachar et al.[316], on the other hand, use

Proper Generalized Decomposition (PGD) to provide a simpler way of analyzing viscoplastic

structures.

For engineering problems where analysis is performed using mesh-dependent meth-

ods (e.g. FEM and IGA), the definition of a LF source by the use of a coarser discretization is

very straightforward. Cai et al.[313] performed the optimization of a long cylinder pressure vessel

using 3D models on ANSYS. For the HF model, a 20 mm grid mesh is employed, while a 40

mm grid mesh is used in the LF model. Guo et al.[78] performed the optimization of Variable

Stiffness Composites (VSCs) using 2D models. For the assessment of the buckling load of a

square plate, the HF model is built using 10,000 elements, while the LF has only 625 elements.

A similar procedure is later employed by the same authors[79] in the optimization of circular and

elliptical cylinders, where the HF model has 5 to 6 times the number of elements from the LF

source. Rohit and Ganguli[317] performed an optimization procedure using coarse (5 elements)

and refined (70 elements) meshes for uncertainty quantification of beam vibration. The authors

show that the model is able to provide an average accuracy higher than 99.99% using only 2 HF

and 10 LF sampling points.

Wang et al.[318] tried to minimize strains on the boom of a bucket wheel reclaimer.

The authors employ an interesting approach, where different physics models are considered

alongside coarser meshes. That way, the HF source was built using 374,000 Timoshenko beam

elements, where analyses take about 71 s, while the LF source presented 46,750 Euler-Bernoulli
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beam elements, where analyses take approximately 13 s. Similar approaches are also employed

in Computational Fluid Dynamic (CFD) analyses, where mesh discretization is employed for

further simplification after the Navier-Stokes are replaced by the Euler equations. Ruan et al.[74]

employed a 2D model to perform the aircraft drag coefficient prediction using nearly 3 million

elements. The LF model was then derived using a coarser mesh with 566,281 elements. Likewise,

Song et al.[52] used a 3D model with 284,412 nodes as the HF source, while the LF source was

derived by the use of a 2D model with only 9,646 nodes. The same models were also later

employed by Shi et al.[45].

Finally, the LF model can also be derived by the relaxation of a numerical conver-

gence threshold, thus resulting in partially converged results. This approach is employed by

Bertram and Zimmermann[314], where the Navier-Stokes equations are solved using a model

with 21,821 nodes. For the HF source, 5000 solver iterations are performed, which is able to

achieve a convergence level of 10−6. The LF source, however, performs only 150 iterations,

which is able to achieve residuals in the range [10−3,10−1].

It is important to note that, if the HF and LF sources are not well correlated, MFMs

may produce less accurate results. Thus, these models are not a panacea for the improvement

of the model prediction[74]. Toal[319] suggests that the correlation between sources should be

reasonably high, presenting an r2 > 0.9. Otherwise, a single-fidelity model built with the same

equivalent budget, but based solely on expensive HF simulations, may still perform better.

After defining HF and LF sources, appropriate sampling points should be defined

from each source. Similar to single-fidelity models, it is not easy to define an optimal sample

size beforehand. Also, data can be nested, where the location of the HF data points is the same

as some of the LF data points, or non-nested, where the sampling spaces can be completely

different. Nested data allows for an easier estimate of the model parameters separately, which

may improve computational efficiency for larger data sets[76]. Model building under a non-nested

sample is still an open issue, but most approaches try to perform an approximation of the LF

response on the HF sampling locations. Thus, a non-nested sample may incur a better exploration

of the design space under the same budget. In this work, only nested data will be studied.

For MFMs, the optimal ratio between HF and LF sampling points is also unknown[308].

Toal[319] suggests that the number of cheap and expensive evaluations should be related to the

computational cost of each source. As a conservative approach, the author proposes that:

fr >
1.75

1+1/Cr
, where 0.10 < fr < 0.80 (6.1)
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where fr is the percentage of the total evaluation budget converted to cheap evaluations, and Cr

is the relative expense, given by:

Cr =
Cc

Ce
(6.2)

where Cc is the cost of the cheap function evaluation and Ce is the cost of the expensive function

evaluation. There should always be slightly more cheap points than expensive ones. On that

matter, Song et al.[52] also suggest that Cr should be lower than 0.2. Usually, analysis cost is

measured by the computational time spent. One should note that the number of LF sampling

points should not be extremely high, as this would make model building and model evaluation

costs prohibitive.

After defining the HF and LF sources and assessing appropriate sampling points,

MFMs can be built using three different approaches. The simplest one is related to the use of

a scaling function to adjust the LF response. The function employed is usually a low-order

polynomial[318], but more complex models, e.g. SVRs, can also be employed[43]. When input

parameters are different in the HF and LF sources, one may build a MFM by using space mapping

approaches[320]. These are straightforward when the LF response is defined via dimensionality

reduction methods. The third method is the use of multi-fidelity Bayesian models[308, 74], which

is the main focus of this work.

Multi-fidelity Bayesian models were first introduced by Kennedy and O’Hagan[71]

with the use of the KOH autoregressive model, which is known today as Cooperative Kriging

(Co-Kriging). The Co-Kriging is the most widely used MFM[74], but recent works have been

presented introducing novel methods. For instance, Co-Kriging inspired the development of

a Cooperative Support Vector Regression (Co-SVR)[45], Cooperative Radial Basis Functions

(Co-RBF)[309, 52], and even Linear Regression based methods have been proposed[321]. In

addition, other MFMs derived from the Kriging model were proposed, such as the Multi-Fidelity

Gaussian Process (MFGP)[256, 315], the Multi-Fidelity High Dimensional Model Representation

(MF-HDMR)[313], the Evofusion[322, 316], and the Hierarchical Kriging (HK)[72].

In most cases, static MFMs are employed for SBO, where the surrogate is not

updated during the optimization process. In structural optimization problems, these have been

employed for the optimization of engine models using Co-Kriging[319, 69] and the optimization of

long cylinder pressure vessels using the Multi-Fidelity High Dimensional Model Representation

(MF-HDMR)[313]. In Computational Fluid Dynamic (CFD) problems, different static MFMs
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have been employed in the optimization of lift and drag coefficients or in the analysis of pressure

relief valves, such as the Co-Kriging[314, 74], the Co-RBF[70, 52], the Co-SVR[45], and the HK[72].

As already stated in the previous sections, the use of adaptive sampling techniques is

very interesting for optimization problems, since accuracy in the global optimum region can be

iteratively improved. Some MFMs also allow for the use of error-based exploration, similar to

single-fidelity GP models. Here, however, along with the definition of the new sampling point

location, its fidelity should also be chosen, since there are two possible sources for the infill

point[76]. In addition, very few papers deal with approximate constraint functions using MFMs,

although the extension of single-fidelity constraint-handling approaches can be performed with

relative ease [323].

Zhou et al.[43] performed the optimization of a long cylinder pressure vessel using

an SVR-based scaling function. The authors try to balance out exploitation and exploration

to select a new infill point. All new points are evaluated by the HF source. Nachar et al.[316]

used a Kriging-based MFM, the Evofusion, in the maximization of the von Mises stress for

viscoplastic structures. The authors use a variant of the EI as the method to select new sampling

points. However, the authors claim that the method could be improved by a better choice

of acquisition functions, and a comparison between different acquisition functions could be

performed. Durantin et al.[309] employed Co-RBF for the optimization of the geometry of a gas

sensor. The selection of new points is performed by the maximization of the bumpiness function.

Again, all new points are evaluated using the HF source.

Huang et al.[324] proposed the Multiple Fidelity Sequential Kriging Optimization

(MFSKO) algorithm, which employed the Co-Kriging along with an acquisition function de-

nominated as Augmented Expected Improvement (AEI) to perform the sequential sampling.

This function is derived from the EI by considering both the relative expense and the correlation

between sources to select the new point’s fidelity. The authors then apply the method for design

improvement on a metal-forming process by minimizing the die wear. The authors derive a LF

source by replacing a 27,000-element mesh for a 10,000-element mesh.

Regarding CFD analysis, Zhou et al.[308] employed a Kriging-based MFM to estimate

the lift coefficient of an airfoil. The new sampling points are selected by the maximization of the

mean squared error. The authors then evaluate the so-called predicted improvement level for the

HF and LF sources, and the source with the highest level will be used for the evaluation of the

new sampling point.
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Zhang, Han and Zhang[73] presented a similar optimization problem, but the model

was built using Hierarchical Kriging (HK). The HK model allows for a nice way for estimating

the prediction variance for the HF and LF sources separately, which allow for the evaluation of

the EI from both sources. Then, by the maximization of the EI, the authors select both the new

sample location and its fidelity. This approach is denominated as VF-EI. Guo et al.[78] and Guo

et al.[79] also employed the VF-EI to the optimization of Variable Stiffness Composites (VSCs).

Later, Ruan et al.[76] proposed a similar approach, denominated as Variable Fidelity

Probability of Improvement (VF-PI), where, instead of using the EI to select new data points, the

PI is employed. The authors apply the approach to the optimization of a micro-aerial vehicle

fuselage and state that VF-PI may perform better than the VF-EI if there is a strong correlation

between the sources.

In this work, MFMs will be employed along with adaptive sampling for the opti-

mization of composite structures. The focus will be given to Cooperative Kriging (Co-Kriging)

and, due to its interesting approaches to tackle SAO, to Hierarchical Kriging (HK). Similar

to the single-fidelity models, the addition of new points will be performed using error-based

exploration. The following sections will further describe each model and discuss how error-based

exploration can be performed in these cases.

6.1 Cooperative Kriging

The Cooperative Kriging (Co-Kriging) was the first Bayesian Multi-Fidelity Model

(MFM) employed, proposed by Kennedy and O’Hagan[71]. Co-Kriging is based on autoregressive

models[325], which assume that the expensive response is the true one. Thus, you can not learn

from the LF source if the HF evaluation at the same point is already known. This is known as the

Markov assumption[40, 259].

Due to the Markov assumption, one may think that using nested data would be

wasteful. However, the use of nested sampling space means that the correlation between sources

can be drawn much more easily, making model building more simple. General recommendations

follow that the use of a nested data is advisable for the Co-Kriging model building, although not

necessary[40, 74].

Considering the Markov assumption, the MFM prediction is given by[74]:

ŷh = ρ ŷl + ŷd (6.3)
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where ρ is a scaling factor, ŷl is a model based on the LF sample, and ŷd is a model which

represents the difference between LF and HF sources, which will be denominated here as the

difference model. The Markov assumption allows different levels of fidelity to present different

correlation structures and, thus, model hyper-parameters can be set independently.

Co-Kriging is able to correlate multiple sets of data, derived from different fidelity

sources. Thus, the sample can be defined by input-output pairs D= {(xi,yi)}, where:

x =
[
xl xh

]T
=
[
xl,1 xl,2 . . . xl,nl xh,1 xh,2 . . . xh,nh

]T

y =
[
yl(xl) yh(xh)

]T
=
[
yl(xl,1) . . . yl(xl,nl) yh(xh,1) . . . yh(xh,nh)

]T (6.4)

where subscripts h and l correspond to the HF and LF samples, respectively. For nested samples,

xh ⊂ xl .

The local features of the cheap and expensive responses can be represented by the

Gaussian Processes Zl and Zh. For an autoregressive model:

Zh(x) = ρ Zl(x)+Zd(x) (6.5)

where Zd represents a GP model for the difference between HF and LF responses. In regular

Kriging, the covariance between data can be evaluated by Eq. (5.19). For the Co-Kriging,

regarding the different sources of data, covariance matrices are given by[40]:

cov(yl,yl) = σ
2
l ΨΨΨl(xl,xl)

cov(yl,yh) = ρ σ
2
l ΨΨΨl(xl,xh)

cov(yh,yh) = ρ
2

σ
2
l ΨΨΨl(xh,xh)+σ

2
d ΨΨΨd(xh,xh)

(6.6)

and the Co-Kriging complete covariance matrix is then given by:

C =

 σ2
l ΨΨΨl(xl,xl) ρ σ2

l ΨΨΨl(xl,xh)

ρ σ2
l ΨΨΨl(xl,xh) ρ2 σ2

l ΨΨΨl(xh,xh)+σ2
d ΨΨΨd(xh,xh)

 (6.7)

where ΨΨΨl and ΨΨΨd are the correlation matrices, which depend on the correlation function ψ .

Similar to the single-fidelity Kriging, correlation functions should be able to guarantee that

correlation matrices are positive definite[314]. For the Gaussian kernel:

Ψl(xi,x j) = exp

(
−

m

∑
k=1

θk,l |xi,k− x j,k|pk,l

)

Ψd(xi,x j) = exp

(
−

m

∑
k=1

θk,d |xi,k− x j,k|pk,d

) (6.8)
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Here, there are two sets of parameters to be adjusted, one for each GP. Due to the Markov

assumption, the building of these models can be performed separately[76]. The LF model is fitted

just as the Ordinary Kriging (OK) model, presented in Section 5.2.2. Thus, its hyper-parameters

can be defined by maximizing the ln-likelihood function:

lnLl =−
nl

2
ln(2π)− nl

2
ln(σ2

l )−
1
2

ln |ΨΨΨl(xl,xl)|−
(yl−1 µl)

T ΨΨΨl(xl,xl)
−1 (yl−1 µl)

2σ2
l

(6.9)

where the MLEs for µl and σl are given by:

µ̂l =
1T ΨΨΨl(xl,xl)

−1y
1T ΨΨΨl(xl,xl)−11

σ̂
2
l =

(y−1µ̂l)
T ΨΨΨl(xl,xl)

−1(y−1µ̂l)

nl

(6.10)

Finally, substituting these estimators in Eq. (6.9) and removing the constant terms we end up

with the cheap model concentrated ln-likelihood function:

lnLl ≈−
nl

2
ln(σ̂2

l )−
1
2

ln |ΨΨΨl(xl,xl)| (6.11)

Just as in the single-fidelity Kriging model, pk,l can be set to 2.0 to make the optimization process

easier. In this case, the assessment of the MLE for θk,l is an unconstrained optimization problem

defined by:
find θθθ l = {θ1,l,θ2,l, . . . ,θm,l}

that minimizes − lnLl(θθθ l)

with θθθ L ≤ θθθ l ≤ θθθU

(6.12)

Once the LF model is built, the goal now is to build the difference model. From the

sampling point responses, the difference vector can be defined by:

d(xh) = yh(xh)−ρ yl(xh) (6.13)

where ρ is a scaling factor, which is a hyper-parameter for the model. If data is nested, this

evaluation is straightforward. If not, we may estimate yl(xh) using the already fitted cheap

model[40]:

yl(x)≈ ŷl(x) = µ̂l +ψψψ
T
l ΨΨΨ

−1
l (yl−1 µ̂l) (6.14)

Figure 47 shows how the estimate for yl may be performed using the LF model, if data is not

nested. Note how, in this case, the Kriging model is able to provide reliable estimates for the

cheap function response.
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Figure 47 – Approximation of yl by the LF model prediction.

Source: the author

Then, we must fit the difference model. Now, the ln-likelihood function is given by:

lnLd =−nh

2
ln(2π)− nh

2
ln(σ2

d )−
1
2

ln |ΨΨΨd(xh,xh)|−
(d−1 µd)

T ΨΨΨd(xh,xh)
−1 (d−1 µd)

2σ2
d

(6.15)

where the MLEs for µd and σd are:

µ̂d =
1T ΨΨΨd(xh,xh)

−1d
1T ΨΨΨd(xh,xh)−11

σ̂
2
d =

(d−1µ̂d)
T ΨΨΨd(xh,xh)

−1(d−1µ̂d)

nh

(6.16)

Then, substituting these estimators in Eq. (6.15) and removing the constant terms, the difference

model concentrated ln-likelihood function is given by:

lnLd ≈−
nh

2
ln(σ̂2

h )−
1
2

ln |ΨΨΨd(xh,xh)| (6.17)

Once again, pk,h can be set to 2.0. Here, in addition to the correlation function hyper-parameters,

we must also fit the scaling factor ρ . Thus, the evaluation of the MLE for the parameters is an

unconstrained optimization problem defined by:

find {ρ,θ1,d,θ2,d, . . . ,θm,d}

that minimizes − lnLd(ρ,θθθ d)

with ρL ≤ ρ ≤ ρU

θθθ L ≤ θθθ d ≤ θθθU

(6.18)

Toal[319] suggests that, when the correlation between sources is poor, ρ should not be optimized,

as this procedure tends to give the LF source more importance than it should in these cases.
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Figure 48 shows an example of the difference model. The model represents how the

HF and LF sources are correlated, and how they differ through the design space. In this case, the

difference model is able to show that, for x ∈ [0,1], d is expected to decrease smoothly, and it

fits almost perfectly the true difference function.

Figure 48 – Difference model prediction.

Source: the author

That way, Co-Kriging building requires two optimization processes: one for the

building of a LF model, where there are nl design variables and a nl × nl correlation matrix

ΨΨΨl , and other for the difference model, where there are nh +1 design variables and a nh×nh

correlation matrix ΨΨΨh. The correlation matrix size is important, since, in each optimization

process, it should be inverted multiple times. Therefore, computational complexity for building

the Co-Kriging model is O(Nl n3
l m+Nd n3

h m), where Nl is the number of times Eq. (6.11) is

evaluated and Nd is the number of times Eq. (6.17) is evaluated.

Finally, the Co-Kriging prediction can be evaluated by:

ŷh(x) = µ̂ + cT C−1 (y−1 µ̂) (6.19)

where c is given by:

c =

 ρ σ̂2
l ψψψ l(xl,x)

ρ2 σ̂2
l ψψψ l(xh,x)+ σ̂2

d ψψψd(xh,x)

 (6.20)

and the MLE for µ is:

µ̂ =
1T C−1y
1T C−11

(6.21)

which can be computed beforehand along with C−1 (y−1 µ̂).
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Figure 49 presents an example of the Co-Kriging predictor along with a regular

single-fidelity Kriging predictor. The consideration of information from a LF source allows for

a much better exploration of the design space, and the Co-Kriging fits almost perfectly the HF

function. Similar to the single-fidelity Kriging model, the approximation quality of Co-Kriging is

a function of the number of hyper-parameters[314]. This means that prediction accuracy decreases

for high-dimensional functions.

Figure 49 – Improvement of the model accuracy by the use of the Co-Kriging.

(a) Ordinary Kriging (OK) prediction (b) Co-Kriging prediction
Source: the author

Recently, some researchers tried to improve upon Co-Kriging initial formulation

to better tackle some optimization problems. In cases where data is not nested, Ruan et al.[74]

proposed the Improved Cooperative Kriging (ICK) model, which presents a different approach

to predict the difference vector. The authors state that the ICK performs much better than

Co-Kriging when sources are not well-correlated. Xiao et al.[310] extended the Co-Kriging

formulation to multi-level multi-fidelity data by attributing different weights to different levels

of fidelity.

6.1.1 Adaptive sampling

The Co-Kriging model also allows for the use of error-based exploration to assist

in the choice of new sampling points[67]. This is very similar to the single-fidelity model case,

discussed in greater detail in Section 5.3. On the Co-Kriging model, the posterior variance may

be computed by[40]:

ŝ2(x)≈ ρ
2

σ̂
2
l + σ̂d− cT C−1 c+

(1−1T C−1 c)2

1T C−1 1
(6.22)
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Similar to the Ordinary Kriging (OK), the final term is often ignored since it is frequently very

small.

Figure 50 shows the confidence interval (ŷ± ŝ) for the Ordinary Kriging (OK) and

the Co-Kriging prediction. For the Co-Kriging, while variance is always zero at the HF sampling

points (as in the OK), it may not be zero at the location of the LF data. However, if the model is

confident on the difference model prediction, variance in these points will be very low and, thus,

these will not be favored in error-based exploration. This "confidence" is related to lower values

of θi,d
[40].

Figure 50 – Confidence interval using different models.

(a) Ordinary Kriging (OK) (b) Co-Kriging
Source: the author

After assessing the posterior variance, we may employ any of the infill criteria

discussed in Section 5.3, such as the LCB or the EI. Figure 51 presents three iterations of the EI

using Co-Kriging. Due to a bad choice of initial data, the initial model prediction is very poor.

However, the EI is still able to find a design very close to the global optima on the third iteration.

Unfortunately, for the Co-Kriging model, there is no easy method to choose the right

fidelity to sample in a given iteration. Here, each new point is evaluated by both sources (HF and

LF). Although simple, this approach is performed by different researchers[43, 309]. Kontogiannis

and Savill[77] propose that, if the error predicted on the new data is lower than a threshold, then

only the LF source is used. Even so, if q consecutive iterations are performed without a HF

evaluation, then both HF and LF sources are evaluated. Here, q may be related to the relative

expense:

q =
1

Cr
=

Ce

Cc
(6.23)
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Figure 51 – Expected Improvement (EI) criterion for Co-Kriging.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3
Source: the author

Although interesting, it is not easy to define an appropriate threshold for the method. Another

interesting approach is the Augmented Expected Improvement (AEI), which was proposed by

Huang et al.[324]. Here, the EI is evaluated for each by fidelity by including two multiplicative

factors, related to the correlation between models for a given x and the relative expense[326, 37].

This allows for the definition of the source to be evaluated. However, there is no statistical

or mathematical justification for the approach, and other authors have already shown that the

method might present unsatisfactory results[73].

6.2 Hierarchical Kriging

The Hierarchical Kriging (HK) was proposed by Han and Görtz[72] with the main

goal of being a more simple multi-fidelity approach, although as robust as other alternatives such

as the Co-Kriging. The Hierarchical Kriging (HK) considers that the Kriging trend term, which

is constant in Ordinary Kriging (OK), is based on a Kriging model built using the LF sample.

Thus, Eq. (5.16) can be written as[72]:

ŷ(x) = β0 ŷl(x)+Z(x) (6.24)

where β0 is a constant scaling factor and Z(x) represents the autocorrelated localized deviations.

Similar to regular Kriging, Z(x) can be assumed to come from a stochastic process with mean

zero and covariance given by:

cov(y,y) = σ
2

ΨΨΨ (6.25)
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where ΨΨΨ is the correlation matrix, which depends on the correlation function. Again, using the

Gaussian kernel:

Ψi j = ψ(xi,x j) = exp

(
−

m

∑
k=1

θk |xi,k− x j,k|pk

)
(6.26)

In the HK model, just like in the Co-Kriging, the process starts by fitting a Kriging

model to the LF sample. Thus, the model hyper-parameters should be set by solving the

unconstrained optimization problem:
find θθθ l = {θ1,l,θ2,l, . . . ,θm,l}

that minimizes − lnLl(θθθ l)

with θθθ L ≤ θθθ l ≤ θθθU

(6.27)

where lnLl is given by Eq. (6.11).

This procedure allows us to perform an estimate for the LF Kriging model by:

ŷl(x) = µ̂l +ψψψ
T
l ΨΨΨ

−1
l (yl−1 µ̂l) (6.28)

To understand the correlation between the HF and LF sources, the LF model predic-

tion is evaluated at the HF sampling points:

F = ŷl(xh) (6.29)

where, if data is nested, F⊂ yl . Then, the building of the HK can be performed by maximizing

its corresponding ln-likelihood function:

lnL =−nh

2
ln(2π)− nh

2
ln(σ2)− 1

2
ln |ΨΨΨ(xh,xh)|−

(yh−β0 F)T ΨΨΨ(xh,xh)
−1 (yh−β0 F)

2σ2

(6.30)

By differentiating and equating to zero, the MLE for β0 and σ2 can be defined as:

β̂0 =
FT ΨΨΨ

−1 yh

FT ΨΨΨ
−1 F

σ̂
2 =

(yh−β0 F)T ΨΨΨ(xh,xh)
−1(yh−β0 F)

nh

(6.31)

The assessment of β̂0 is very similar to the evaluation of µ̂ in Ordinary Kriging (OK), as shown

in Eq. (5.22). However, instead of a constant additive term, β0 represents a scaling factor applied

to ŷl , which then serves as the HK trend.
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Substituting Eq. (6.31) in Eq. (6.30), we can derive the Hierarchical Kriging (HK)

concentrated ln-likelihood function:

lnL≈−nh

2
ln(σ̂2)− 1

2
ln |ΨΨΨ(xh,xh)| (6.32)

Then, the rest of HK hyper-parameters can be set by maximizing this function. Considering pk =

2.0 for simplification, the MLE for θθθ can be found by the following unconstrained optimization

problem:
find θθθ = {θ1,θ2, . . . ,θm}

that minimizes − lnL(θθθ)

with θθθ L ≤ θθθ ≤ θθθU

(6.33)

Similar to Co-Kriging, the building of the Hierarchical Kriging (HK) model also requires two

optimization processes: one for the building of a Kriging model based on the LF sample, and

other for the building of the HK itself. While the former considers nl design variables and

presents a nl× nl correlation matrix ΨΨΨl , the other considers nh design variables and presents

a nh×nh correlation matrix ΨΨΨ. Note that the size of these matrices is the same as those from

Co-Kriging, which means that there should be little difference in the building cost for these two

methods, as their time complexity is very similar: O(Nl n3
l m+Nh n3

h m). Here, Nl is the number

of times Eq. (6.11) is evaluated, while Nh is the number of times Eq. (6.32) is evaluated.

Once the HK model is built, its prediction can be evaluated by:

ŷ(x) = β̂0 ŷl(x)+ψψψ
T

ΨΨΨ
−1 (yh− β̂0 F) (6.34)

where ψψψ is given by:

ψi(x) = exp

(
−

m

∑
k=1

θk |xi,k− xk|pk

)
(6.35)

It is worth noting that, while the evaluation of the Co-Kriging model uses a (nl +nh)× (nl +nh)

covariance matrix C, the evaluation of the HK uses two correlation matrices: ΨΨΨ and ΨΨΨl (for the

evaluation of ŷl), which are nh×nh and nl×nl , respectively. This means that the evaluation of

the HK model is cheaper than the evaluation of the Co-Kriging model.

Figure 52 presents an example of the Hierarchical Kriging (HK) prediction. Al-

though simpler than the Co-Kriging, the HK also seems to attain a good approximation quality,

representing the HF source almost perfectly while only performing four HF evaluations.
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Figure 52 – Improvement of the model accuracy by the use of the Hierarchical Kriging (HK).

(a) Ordinary Kriging (OK) prediction (b) Hierarchical Kriging (HK) prediction
Source: the author

6.2.1 Adaptive sampling

For Hierarchical Kriging (HK), the assessment of the posterior variance is given by:

ŝ2(x) = σ̂
2

[
1−ψψψ

T
ΨΨΨ
−1

ψψψ +
(ŷl−FT ΨΨΨ

−1
ψψψ)2

FT ΨΨΨ
−1F

]
(6.36)

This time, the third term might be relevant and, thus, should not be neglected. Using the model

prediction ŷ(x) and the posterior variance ŝ2(x), all infill criteria discussed in Section 5.3 can

be employed, such as the EI and the PI. Similar to Co-Kriging, the choice of the infill point’s

fidelity can be performed arbitrarily, or simply based on the relative expense of each source.

However, to better deal with that matter using HK, Zhang, Han and Zhang[73]

proposed the VF-EI. Here, along with the HK posterior variance, the LF model posterior variance

is also evaluated by:

ŝ2
l (x) = σ̂

2
l

[
1−ψψψ

T
l ΨΨΨ
−1
l ψψψ l +

(1−1T ΨΨΨ
−1
l ψψψ l)

2

1T ΨΨΨ
−1
l 1

]
(6.37)

which is the same as the Ordinary Kriging (OK) variance, shown in Eq. (5.28). Note that ŝl ,

by itself, would guide the infilling based on the improvement of the LF source[73], which is not

helpful. However, the HK allows for an easy method to guarantee that both posterior variances

assist in finding new infill points related to the improvement over the HF source[73]. Here, a

variable-fidelity posterior variance ŝ2(x, f ) can be evaluated by:

ŝ2(x, f ) =

 β 2
0 ŝ2

l (x) , if f = 1

ŝ2(x) , if f = 2
(6.38)
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where f = 1 for the LF model and f = 2 for the HK model. Figure 53 shows the confidence

interval (ŷ± ŝ) for the HK model, comparing ŝ for f = 1 or f = 2. The scaled LF posterior

variance is much greater than that of the HK one. Indeed, Zhang, Han and Zhang[73] comment

that, if the LF model is able to correctly capture the trend of the HF source, the uncertainty of the

HK model is usually much lower than the LF model. This way, this approach tends to add more

LF data during its iterations, which is a preferred feature for improving computational efficiency.

Figure 53 – Confidence interval of the HK model.

(a) LF model ( f = 1) (b) HK model ( f = 2)
Source: the author

After evaluating the posterior variance for both fidelities, the VF-EI can be computed

by:

E[I(x), f ] =

 (ymin− ŷ(x))Φ

(
ymin− ŷ(x)

ŝ(x, f )

)
+ ŝ(x, f )φ

(
ymin− ŷ(x)

ŝ(x, f )

)
, if ŝ(x, f )> 0

0 , if ŝ(x, f ) = 0

(6.39)

Then, whichever fidelity attains the highest EI is chosen to evaluate the new infill

point. Figure 54 shows how the VF-EI behaves for the same sampling set used in Figure 53. Here,

local exploitation is favored, and the location and value of the maximum VF-EI are basically the

same for both fidelities ( f = 1,2). In these cases, both sources can be evaluated, and the new

point is indeed very close to the global optima.

In other cases, when global exploration is important, the difference in fidelities for

the evaluation of ŝ2 is very important. Figure 55 shows three iterations for the VF-EI using a

very poor initial sample. The first point is evaluated only by the LF source. The second one,

however, is evaluated by both sources, as it favors exploitation. Indeed, this point is very close to

the global optima. For the third point, only the LF source is evaluated, once again.
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Figure 54 – Addition of a new point by the VF-EI criterion.

(a) LF model ( f = 1) (b) HK model after the infill
Source: the author

Figure 55 – Variable Fidelity Expected Improvement (VF-EI) criterion for HK.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3
Source: the author

This approach allows for a much more efficient method, since the expensive HF

source does not need to be evaluated in every iteration, but only where it is expected to provide a

major improvement to the model. The authors also argue that, in comparison to the AEI (which

was discussed shortly for the Co-Kriging method), the VF-EI can be derived analytically and is

free of empirical parameters, which means that the method is fully adaptive[73]. Recently, Guo et

al.[78] and Guo et al.[79] used the VF-EI in the unconstrained optimization of Variable Stiffness

Composites (VSCs), showing very good results.

Ruan et al.[76] proposed the VF-PI, which is very similar to the VF-EI, but the choice

of infill points is now performed by the maximization of the P[I(x, f )]:

P[I(x), f ] = Φ

(
ymin− ŷ(x)

ŝ(x, f )

)
(6.40)

The authors state that the method is able to provide better results when the correlation between
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the LF and HF sources is high.

6.2.1.1 Novel variable fidelity acquisition functions

Following the same idea, similar methods can also be derived for other criteria, e.g.

the LCB and the WEI. Thus, if ŝ(x, f )> 0, we may define a Variable Fidelity Weighted Expected

Improvement (VF-WEI) method by:

WE[I(x), f ] = w(ymin− ŷ(x))Φ

(
ymin− ŷ(x)

ŝ(x, f )

)
+(1−w) ŝ(x, f )φ

(
ymin− ŷ(x)

ŝ(x, f )

)
(6.41)

where w ∈ [0,1] is an user-defined parameter which allows the user to control the importance

of exploration and exploitation aspects. Lower w favor exploration, while higher w favor

exploitation. Note that this method is very similar to the VF-EI proposed by Zhang, Han and

Zhang[73]. However, the consideration of w makes it so that the user has more control over how

the selection of new data points should be performed.

Figure 56 depicts how the VF-WEI behaves for the first three iterations, considering

w = 0.2. Note that, while the data chosen is very similar to those from the VF-EI method (shown

in Figure 55), the acquisition function prioritizes regions further from the current data points.

This is especially noticeable in Iterations 1 and 2. This is very important for the optimization of

complex multi-modal functions.

Figure 56 – Variable Fidelity Weighted Expected Improvement (VF-WEI) criterion for HK.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3
Source: the author

Alternatively, one may also derive a Variable Fidelity Lower Confidence Bound

(VF-LCB) approach as in:

LCB(x, f ) = ŷ(x)−β ŝ(x, f ) (6.42)
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where, this time, β ≤ 0 is a user-defined parameter. While lower β favor exploitation, higher β

favor exploitation.

Figure 57 shows how the VF-LCB method behaves for β = 3.0. Note that, in

Iterations 1 and 2, the method greatly favors exploration, adding data from the LF source.

For Iteration 3, however, exploitation is more important, and both the LF and HF sources are

evaluated. Note that, here, the point is very close to the optima.

Figure 57 – Variable Fidelity Lower Confidence Bound (VF-LCB) criterion for HK.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3
Source: the author

6.3 Computational implementation

In this work, optimization of composite structures will be performed using BIOS,

acronym for Biologically Inspired Optimization System. This is an in-house software developed

in LMCV to perform structural optimization using meta-heuristics[327].

Initially, BIOS was focused on optimization by nature-inspired algorithms[15, 16].

However, recent works have been extending BIOS to SBO, allowing for different single-fidelity

models (RBF and Kriging) and acquisition functions (PI, EI, and WEI)[2, 282].

In this work, we focused on the implementation of MFMs, namely the Co-Kriging

and the Hierarchical Kriging (HK). Furthermore, we improved the handling of discrete and

constrained optimization, adding new methods to BIOS. Also, the LCB acquisition function was

added as an alternative to the probabilistic acquisition functions.
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7 NUMERICAL EXAMPLES

In this chapter, the results obtained in the optimization of different problems using

Sequential Approximate Optimization (SAO) will be presented in three topics. First, the al-

gorithms will be put to test using mathematical and analytical engineering benchmarks. The

results found will be compared with those from the literature whenever it is possible. Second,

the algorithms will be applied to problems involving FG structures. Finally, these will be applied

to laminate problems. Figure 58 shows a general flowchart for the algorithm employed in this

work. Several methods will be tested, which will be presented in the following.

Figure 58 – Algorithm employed for SAO in this work.

0

Infill criteria

Define the
initial sample.

Define model hyper-
parameters (θ) via

maximization of the
likelihood estimator.

Evaluate the rest of
model parameters

(e.g. μ, σ). 

Have the stopping
criteria been met?

Add the new data
point to the sample.

Model building

Find the location of the new
point via optimization of the

acquisition function.

Evaluate the new point
using the appropriate

source(s).

End the 
 optimization.

NO

YES

Source: the author

The initial sample will be defined via the LHSN method, with N = 20. For Multi-

Fidelity Models (MFMs), the sample will always be nested, and the HF sample will be drawn

from a subset of the LF sample. As for the number of data points used, these will be defined in

each problem individually. Regarding the model building phase, a comparative study will be

carried out using several modeling criteria. The following models will be tested (along with their

respective acronyms):

– Kriging - KRG;

– Cooperative Kriging - COKRG;

– Hierarchical Kriging - HKRG.
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Note that, for Multi-Fidelity Models (MFMs), the maximization of the likelihood estimator is

performed twice in each iteration, as described in Sections 6.1 and 6.2.

Concerning infill criteria, four main acquisition functions will be used in this work:

– Lower Confidence Bound (LCB);

– Probability of Improvement (PI);

– Expected Improvement (EI);

– Weighted Expected Improvement (WEI).

In these cases, for a more robust process, both fidelities will be evaluated in each iteration. That

means that, after using the acquisition function to define the most promising new data point, the

new trial design will be evaluated using the HF and LF sources.

For the Hierarchical Kriging, four other acquisition functions will be tried out, which

correspond to the variable-fidelity version of each method:

– Variable Fidelity Lower Confidence Bound (VF-LCB);

– Variable Fidelity Probability of Improvement (VF-PI);

– Variable Fidelity Expected Improvement (VF-EI);

– Variable Fidelity Weighted Expected Improvement (VF-WEI).

Since sample is nested, all iterations will add a LF data point. However, the addition of the HF

data point will follow what was discussed in Section 6.2.1.

Note that the VF-LCB and the VF-WEI criteria have not yet been proposed in the

literature, even though these can be easily derived similar to the VF-EI and the VF-PI, as shown

in Section 6.2.1.1. Also, all LCB and WEI based approaches will employ a cyclic approach,

where β ∈ [1.0,2.0,3.0] for the LCB and w ∈ [0.20,0.35,0.50] for the WEI.

In some problems, it is necessary to use an appropriate constraint-handling technique.

For the LCB method, a simple adaptive penalty approach will be employed[186]. For the

probabilistic infill criteria (namely the EI, PI, and WEI), different approaches will also be tried

out:

– Direct approach (Direct);

– Probability of Feasibility (PF);

– Feasibilibity function proposed by Tutum, Deb and Baran[62] (FFT);

– Feasibilibity function proposed by Bagheri et al.[63] (FFB);

– Feasibilibity function proposed by Sohst, Afonso and Suleman[297] (FFS).

Two main stopping criteria will be considered, one related to the maximum number
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of High-Fidelity (HF) points evaluated (Nmax) and other to the maximum number of iterations

without improvement (Genstall). Unless stated otherwise, this work considers Nmax = 100 and

Genstall = 10.

Regarding the building of the models, which involves the maximization of several

likelihood functions throughout the process, a PSO algorithm will be employed. For continuous

problems, a PSO will also be employed for the optimization of acquisition functions. Table 11

presents the parameters for the PSO employed in each phase. The difference in the algorithm

parameters is due to the higher cost of evaluating the likelihood function for model building.

Table 11 – Parameters used for the PSO algorithm employed for model building and infill
criteria.

Phase Model building Infill criteria

Ngen 200 250
Np 50 100
Genstall 50 100
w 0.72 0.72
c1 1.50 1.50
c2 1.50 1.50
Topology Ring Ring

The performance of SAO algorithms will be assessed using appropriate metrics. The

accuracy of each approach will be defined by the NRMSE:

NRMSE =
ymin− yopt

yopt
(7.1)

which compares the best result found with the true optimum. When necessary, the success rate

will also be shown. The efficiency will be defined by the number of HF (nev,h) and LF (nev,l)

evaluations performed in the entire process and during the adaptive sampling (which will be

shown in parenthesis). The time spent through each approach will also be shown. Since all

methods employed in this work are stochastic, Nr = 10 runs will be carried out for each problem

and the average of these metrics will be shown.

All simulations were carried out on a computer running on an Intel i9-9820 X @

3.30GHz, 10 cores, and 128 GB RAM. No parallelization procedure was adopted.

7.1 Mathematical and analytical engineering benchmarks

In this section, the results for the mathematical and analytical engineering bench-

marks will be shown. Five different problems will be used. The first three are related to
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mathematical problems commonly used in the literature for the optimization of multi-fidelity

problems. To validate our implementation, our results will be compared to those from dif-

ferent papers using similar methods, namely: KRG-PI, KRG-EI, COKRG-PI, COKRG-EI,

HKRG-VF-PI, and HKRG-VF-EI.

The other two problems are related to the optimization of simple beam structures.

Here, a variety of methods will be employed, so that these may be compared appropriately. Focus

on engineering problems will be further extended in the following sections.

Unless stated otherwise, the initial sample will be defined via the LHSN method,

with N = 20, using nh = 3m and nl = 6m. Since these problems are used for benchmarking

purposes, another stopping criterion will be considered: if the algorithm finds the optimum

design, it stops. Furthermore, as these have a really fast evaluation, there is no reason to compute

their time spent.

7.1.1 Forrester function

The first problem presented in this work is the minimization of the Forrester function:

yh(x) = (6x−2)2 sin(12x−4) , x ∈ [0,1] (7.2)

This is a well-known problem proposed by Forrester, Sobester and Keane[40] for Surrogate-Based

Optimization (SBO), and is commonly used for example purposes in many works related to SAO

and MFMs. The optimum of this problem is given by f (0.757) =−6.021.

In these works, the Low-Fidelity (LF) function is usually represented by:

yl,a(x) = A [6(x+D)−2]2 sin[12(x+D)−4]+B(x+D−0.5)+C , x ∈ [0,1] (7.3)

with A = 0.5, B = 10.0, C = −5.0, and D = 0.0. Figure 59 shows these two functions, along

with a representation of the correlation between the responses. Note that these functions show

quite a distinct behavior, presenting a R2 = 0.55. This problem will be known in this work as

Forrester 1a.

To improve the understanding over the behavior of each method for different kinds

of LF sources, other LF functions will also be tried out. For the problem Forrester 1b, the LF

function is given by a shift in the y-direction:

yl,b(x) = yh(x)−5 = (6x−2)2 sin(12x−4) −5, x ∈ [0,1] (7.4)
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Figure 59 – Forrester 1a problem.

(a) HF and LF function (b) Correlation between fidelities
Source: the author

which means that the absolute difference between the two sources is constant (yh− yl = 5). This

can be seen in Figure 60. Here, these two functions are very well correlated (R2 = 1.00), even

though their results are very different.

Figure 60 – Forrester 1b problem.

(a) HF and LF function (b) Correlation between fidelities
Source: the author

For the problem Forrester 1c, the LF function is given by a shift in the x-direction:

yl,c(x) = yh(x+0.2) = [6(x+0.2)−2]2 sin[12(x+0.2)−4], x ∈ [0,1] (7.5)

which can be seen in Figure 61. This time, the correlation between these functions is poor

(R2 = 0.57).

Finally, for the problem Forrester 1d, the LF function is given by the consideration

of a constant multiplicative term:

yl,d(x) = 3yh(x) = 3(6x−2)2 sin(12x−4), x ∈ [0,1] (7.6)
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Figure 61 – Forrester 1c problem.

(a) HF and LF function (b) Correlation between fidelities
Source: the author

which means that the relative difference between the two fidelities is constant:

yh− yl

yh
= 2 (7.7)

which can be seen in Figure 62. Once again, the correlation between these function is very high

(R2 = 1.00).

Figure 62 – Forrester 1d problem.

(a) HF and LF function (b) Correlation between fidelities
Source: the author

Problems Forrester1a, Forrester1b, and Forrester1c have been previously tested by

Zhang, Han and Zhang[73], who solved them using three different algorithms: KRG-EI, COKRG-

AEI, and HKRG-VF-EI. Forrester 1d, on the other hand, is a novel problem presented in this

work. Table 12 shows the results obtained for these problems, using different modeling criteria

and acquisition functions, also comparing those with the results found in the literature. In these

4 cases, our results for the KRG model are kept the same, since it is not affected by the different
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LF models. It is important to remember that the Augmented Expected Improvement (AEI) is a

criterion proposed by Huang et al.[324], where two seemingly arbitrary multiplicative factors are

introduced to the EI function, allowing for the definition of which fidelity to add in each iteration.

However, the method seems to heavily prioritize the addition of HF sampling points.

Table 12 – Averaged results for the Forrester problem.

Type Source SAO algorithm NRMSE Success rate nev,h nev,l

1a

Present work

KRG-PI 8.36% 90% 13 (10) -
KRG-EI 0.00% 100% 11 (8) -

COKRG-PI 8.36% 90% 10 (7) 13 (7)
COKRG-EI 0.00% 100% 8 (5) 11 (5)

HKRG-VF-PI 0.00% 100% 6 (3) 10 (4)
HKRG-VF-EI 0.00% 100% 6 (3) 9 (3)

Zhang, Han and Zhang[73]
KRG-EI 0.00% - 13 (10) -

COKRG-AEI 0.00% - 11 (8) 9 (3)
HKRG-VF-EI 0.00% - 9 (6) 25 (19)

1b

Present work

KRG-PI 8.36% 90% 13 (10) -
KRG-EI 0.00% 100% 11 (8) -

COKRG-PI 2.10% 30% 20 (17) 23 (17)
COKRG-EI 1.57% 50% 17 (14) 20 (14)

HKRG-VF-PI 0.00% 100% 9 (6) 12 (6)
HKRG-VF-EI 0.00% 100% 6 (3) 10 (4)

Zhang, Han and Zhang[73]
KRG-EI 0.02% - 11 (8) -

COKRG-AEI 0.00% - 11 (8) 7 (1)
HKRG-VF-EI 0.00% - 8 (5) 28 (22)

1c

Present work

KRG-PI 8.36% 90% 13 (10) -
KRG-EI 0.00% 100% 11 (8) -

COKRG-PI 8.39% 90% 11 (8) 14 (8)
COKRG-EI 0.00% 100% 11 (8) 14 (8)

HKRG-VF-PI 1.31% 80% 12 (9) 17 (11)
HKRG-VF-EI 0.00% 100% 9 (6) 13 (7)

Zhang, Han and Zhang[73]
KRG-EI 0.00% - 11 (8) -

COKRG-AEI 0.00% - 11 (8) 8 (2)
HKRG-VF-EI 0.00% - 10 (7) 17 (11)

1d Present work

KRG-PI 8.36% 90% 13 (10) -
KRG-EI 0.00% 100% 11 (8) -

COKRG-PI 0.00% 90% 9 (6) 12 (6)
COKRG-EI 0.00% 100% 7 (4) 10 (4)

HKRG-VF-PI 0.00% 80% 9 (6) 12 (6)
HKRG-VF-EI 0.00% 100% 6 (3) 10 (4)

For problem Forrester 1a, all approaches managed to find the optimum design in
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all cases, except for the KRG-PI and the COKRG-PI, which presented a success rate of 90%.

That is expected: since the problem is multimodal, the Probability of Improvement (PI) criterion

should behave worse than the Expected Improvement (EI). However, the HKRG-PI still managed

to find the optimum in all cases. Furthermore, the HKRG-based approaches presented the lowest

number of evaluations. Our results are very similar to those presented by Zhang, Han and

Zhang[73], although ours present a lower number of evaluations. This difference is likely related

to the termination criteria employed.

In problem Forrester 1b, HKRG-based methods still managed to find the optimum

with ease, even though they required slightly more evaluations (in comparison to Forrester 1a).

However, the performance of the COKRG-based methods reduced dramatically, as they behaved

worse than the single-fidelity KRG (both in terms of accuracy and number of evaluations). It is

worth noting that the COKRG-AEI, used by Zhang, Han and Zhang[73], seemed to not present

the same problem. However, we can understand the reasoning for this issue by taking a closer

look at the Co-Kriging formulation. In problem Forrester 1b, the LF source is given by the

addition of a constant term to the HF function. Considering that yh(x) = yl(x)+C, where C is a

constant, the MLE for ρ can be derived from Eq. (6.15) as:

∂ lnLd

∂ρ
= 0 ⇒ ρ =

yh−1 µd

yh +1C
(7.8)

Since the MLE for µd is given by Eq. (6.16), to satisfy both equations, ρ = 1.0 and µd =−C, as

in:

ρ =
yh−1(−C)

yh +1C
= 1.0 and µ̂d =−1T ΨΨΨd(xh,xh)

−1 1
1T ΨΨΨd(xh,xh)−11

C =−C (7.9)

These also mean that, also by Eq. (6.16), σd = 0.0. Finally, as sample is nested, the covariance

matrix, shown in Eq. (6.7), becomes singular, since it presents linearly dependent columns for

ρ = 1.0 and σd = 0.0. For exemplification purposes, Figure 63 shows an example for the initial

prediction of the Co-Kriging model for this problem. The model is not able to represent the true

function, even though the correlation between the sources is very high.

The rest of the problems did not present the same issues. The results found for

problem Forrester 1c were very similar to the ones found for Forrester 1a, even though, here, the

HKRG-VF-PI also presented a slight decrease in accuracy and efficiency. The HKRG-VF-EI

was still the most efficient method while maintaining a 100% success rate. This problem clearly

shows the superiority of the EI for such multimodal problems.
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Figure 63 – Co-Kriging initial prediction for problem Forrester 1b.

Source: the author

Finally, results found for Forrester 1d are very good across all models, even though

some of them presented a success rate lower than 100% (namely, the ones which employed the

PI-based methods).

Overall, Multi-Fidelity Models (MFMs) were able to reduce the number of HF

evaluations required to find the global optimum, with a few occasional exceptions. In particular,

the COKRG model suffers the most when the LF source is related to the incorporation of a

constant additive term. Moreover, these results show that the correlation factor (R2) by itself

is not sufficient to determine if Bayesian MFMs will improve upon the single-fidelity model

response. The absolute and relative difference between fidelities also seems to play a role in the

performance of the MFM.

7.1.2 Hartmann3 function

The minimization of the Hartmann3 function is also commonly performed for

benchmarking purposes for SBO[53, 73]. This is a 3-dimensional function given by:

yh(x) =−
4

∑
i=1

ci exp

[
−

3

∑
j=1

αi j
(
x j− pi j

)2

]
, xi ∈ [0,1] (7.10)

where

αi j =


3.0 10 30

0.1 10 35

3.0 10 30

0.1 10 35

 , ci =


1

1.2

3

3.2

 , pi j =


0.3689 0.1170 0.2673

0.4699 0.4387 0.7470

0.1091 0.8732 0.5547

0.0382 0.5743 0.8828

 (7.11)

The optimum of this problem is given by f (0.114,0.556,0.852) =−3.863.
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A multi-fidelity version for the problem was proposed by Huang et al.[324], where

the authors use a LF source given by:

yl(x) = yh(x)+7.6MA3(x) (7.12)

where

MA3 =
[
1 xT

]


0.5850 −0.1620 −0.1895 −0.2155

−0.1620 0.2250 −0.1040 0.1630

−0.1895 −0.1040 0.2630 0.0965

−0.2155 0.1630 0.0965 0.2740


1

x

 (7.13)

where x is the design variable column vector.

Figure 64 shows the correlation between the responses for these two functions.

Again, these two functions present quite a distinct behavior, as the response from the LF source

is very different. The correlation factor between these responses is R2 = 0.60.

Figure 64 – Correlation between sources for the Hartmann3 function.

Source: the author

This problem was solved by Zhang, Han and Zhang[73] using the KRG-EI, COKRG-

AEI, and HKRG-VF-EI algorithms. Later, Ruan et al.[76] also solved it, this time using the

KRG-PI, COKRG-AEI, HKRG-VF-PI, and the HKRG-VF-EI. Finally, Huang et al.[324] also

solved it using the COKRG-AEI algorithm, even though the authors considered a different

number of initial LF source evaluations (10m).

The results found can be seen in Table 13, along with the results obtained by these

authors. The best results were obtained by the HKRG-VF-EI, which achieved the lowest NRMSE

and the highest success rate, while also performing the lowest amount of HF evaluations. The

COKRG-EI also achieved similar NRMSE, even though it needed almost double the amount of
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HF evaluations. Here, the advantages of the Variable Fidelity (VF) adaptive sampling are more

clear: the HKRG-VF-EI was able to efficiently substitute a number of HF evaluations with LF

evaluations, while still finding the optimum design rather quickly. The results found here are

also very similar to the ones found by other authors.

Table 13 – Averaged results for the Hartmann3 problem.

Source SAO algorithm NRMSE Success rate nev,h nev,l

Present work

KRG-PI 0.05% 50% 42 (33) -
KRG-EI 0.05% 60% 35 (26) -

COKRG-PI 0.05% 20% 44 (35) 53 (35)
COKRG-EI 0.01% 60% 34 (25) 43 (25)

HKRG-VF-PI 0.06% 20% 28 (19) 42 (24)
HKRG-VF-EI 0.01% 80% 19 (10) 48 (30)

Zhang, Han and Zhang[73]
KRG-EI 0.06% - 47 (38) -

COKRG-AEI 0.05% - 56 (47) 21 (3)
HKRG-VF-EI 0.08% - 21 (12) 32 (14)

Ruan et al.[76]

KRG-PI 0.22% - 49 (40) -
COKRG-AEI 0.10% - 22 (13) 57 (39)
HKRG-VF-PI 0.15% - 27 (18) 43 (25)
HKRG-VF-EI 0.17% - 27 (18) 43 (25)

Huang et al.[324] COKRG-AEI < 0.14% - 25 (16) 32 (2)

7.1.3 Ackley5 function

In this section, the minimization of the Ackley function will be performed. Even

though this function is not very popular for SBO in general, some authors have optimized it

using MFMs[324, 73, 76]. The HF function is given by:

yh(x) =−aexp

[
−b

√
1
m

m

∑
i=1

x2
i

]
− exp

[
1
m

m

∑
i=1

cos(cxi)

]
+a+ exp(1) , xi ∈ [−2,2] (7.14)

where a = 20, b = 0.2, and c = 2π . The problem is m-dimensional, and Figure 65 shows its

behavior for the two-dimensional case. The problem is highly multimodal, as there are multiple

local minima alongside with only one global optima. In this work, the five-dimensional case will

be used. The optimum of this problem is given by f (0,0,0,0,0) = 0.0.

To derive a LF source, the authors add a quadratic polynomial MA5:

yl(x) = yh(x)+0.74MA5(x) (7.15)
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Figure 65 – Two-dimensional Ackley function.

Source: the author

where

MA5 =
[
1 xT

]


585.0 −0.635 −0.565 −3.315 −6.450 −3.055

−0.635 0 0 0 2.630 5.300

−0.565 0 0 0 −0.313 −1.550

−3.315 0 0 −0.950 0 0

−6.450 2.630 −0.313 0 −12.40 −3.620

−3.055 5.300 −1.550 0 −3.620 −10.10



1

x

×10−3

(7.16)

where x is the design variable column vector.

Figure 66 shows the correlation between responses for these two functions. The

behavior is similar to the one seen in Forrester 1b, where the LF source seems to be almost a

simple shift in the y-direction. However, the correlation factor is very high (R2 = 0.99).

Similar to the Hartmann3 problem, this problem was solved by Zhang, Han and

Zhang[73] (using the KRG-EI, COKRG-AEI, and HKRG-VF-EI), Ruan et al.[76] (using the KRG-

PI, COKRG-AEI, HKRG-VF-PI, and HKRG-VF-EI), and Huang et al.[324] (using the COKRG-

AEI). Once again, Huang et al.[324] considered a different number of initial LF evaluations

(10m).

Table 14 shows the results obtained for this problem. Here, since yopt = 0.0, the

NRMSE is replaced by the absolute difference between the best result found and the optimum.

Also, the stopping criterion is replaced by one where the process stops when the absolute



147

Figure 66 – Correlation between sources for the Ackley5 function.

Source: the author

difference is lower than 0.100. It is interesting to note that, here, the best-performing approach,

in terms of absolute difference, was the single-fidelity method, KRG-EI. However, the HKRG-

VF-PI and the HKRG-VF-EI managed to find very similar results, and the latter needed a much

lower number of HF evaluations. Similar to problem Forrester 1b, the COKRG model behaved

very badly for this problem. This model seems to be incapable of providing a good approximation

quality when the models are related by an almost constant additive term.

Table 14 – Averaged results for the Ackley5 problem.

Source SAO algorithm Absolute difference nev,h nev,l

Present work

KRG-PI 0.847 75 (60) -
KRG-EI 0.072 55 (40) -

COKRG-PI 0.461 66 (51) 81 (51)
COKRG-EI 0.241 56 (41) 83 (53)

HKRG-VF-PI 0.090 54 (39) 69 (39)
HKRG-VF-EI 0.076 35 (20) 73 (43)

Zhang, Han and Zhang[73]
KRG-EI 0.100 86 (71) -

COKRG-AEI 0.100 51 (36) 159 (129)
HKRG-VF-EI 0.100 35 (20) 162 (132)

Ruan et al.[76]

KRG-PI 0.160 88 (73) -
COKRG-AEI 0.100 31 (16) 83 (53)
HKRG-VF-PI 0.152 34 (19) 89 (59)
HKRG-VF-EI 0.148 36 (21) 95 (65)

Huang et al.[324] COKRG-AEI 1.776 25 (10) 73 (23)
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7.1.4 Optimization of a simply supported beam

This section presents the first engineering benchmark problem, which is related to

the optimization of a simply supported beam shown in Figure 67. Here, we consider that the

beam length is L = 5 m, the distributed load is q = 10 kN/m, the Young modulus is E = 21662

kPa, and the shear modulus is G = 8528.35 kPa.

Figure 67 – Simply supported beam.

q

L

Source: the author

In this problem, the aim is to minimize the maximum displacement of the beam,

considering the width b and height h of the cross section as design variables. Two constraints

will be considered, related to a maximum cross-sectional area Amax = 0.8 and a restriction on the

cross-section aspect-ratio (h≤ 3b). Since these constraints are naturally cheap to evaluate, they

will be evaluated exactly, as there is no need to build an additional surrogate model to estimate

their values. The optimization problem may be formulated as:

find x = {b,h}

that minimizes w(x)

subject to g1(x) =
A

Amax
−1≤ 0

g2(x) =
h

3b
−1≤ 0

with 0.4 m≤ b≤ 1.0 m

1.0 m≤ h≤ 2.0 m

(7.17)

Considering shear deformations, and assuming that the cross-section may not be

perpendicular to the neutral axis after deformation, the beam maximum displacement may be

obtained using the Timoshenko theory:

wT (x) =
5qL4

384E I
+

qL2

8GA
(7.18)

Using this function to evaluate the maximum displacement, the optimum is found at wT (0.516;1.549)=

28.1 mm. Figure 68 shows the constrained space for this problem. Even though this problem is
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seemingly simple, the constraints make it so that it is not trivial to find the feasible region with

few evaluations.

Figure 68 – Constrained space for the simply supported beam problem.
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Instead of the Timoshenko solution, we may compute the displacement in a simplified

way by the Euler-Bernoulli theory, known as the classical beam theory, which disregards shear

deformations. Here, the maximum displacement is given by:

wE(x) =
5qL4

384E I
(7.19)

Figure 69 shows how the displacement changes in the design space by each theory.

The results obtained by both approaches seem to be very similar. However, when we analyze the

relative difference between the two functions, we see that it may be close to 40% for higher h.

Indeed, the difference between these two approaches should increase as h/L increases. At the

optimum point, the relative difference is 24.23%. Even so, the correlation factor between these

two approaches is very high (R2 = 0.99).

In this problem, the initial sample is defined using nh = 1.5m = 3 and nl = 3m = 6.

Table 15 shows the results obtained using a variety of approaches. With the exception of

the COKRG-WEI, all COKRG-based approaches performed very poorly. Also, no PI-based

approach was able to improve upon the single-fidelity version (KRG-PI). Once again, HKRG

behaved exceptionally well, especially using VF-LCB and VF-WEI, where, on average, only

one extra HF evaluation was required to find the global optima. It is worth remembering that

none of these approaches have been proposed in the literature, being variable-fidelity extensions

of the LCB and the WEI, respectively.
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Figure 69 – Assessment of the displacement of the simply supported beam via different sources.

(a) Timoshenko (b) Euler-Bernoulli (Classical theory)

(c) Relative difference (d) Correlation between sources
Source: the author

7.1.5 Optimization of a Functionally Graded beam

Finally, in this problem, the optimization of a FG clamped beam is performed, which

is shown in Figure 70. In this problem, L = 10 m and P = 40 kN.

Figure 70 – Functionally Graded (FG) clamped beam.

P

L

Ceramic Metal

Source: the author

The beam has a circular cross-section of radius r, and the material gradation is given
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Table 15 – Averaged results for the simply supported beam problem.

Model Infill criterion wopt (mm) NRMSE nev,h nev,l

KRG

LCB 28.10 0.00% 6 (3) -
PI 28.31 0.76% 12 (9) -
EI 28.10 0.00% 8 (5) -

WEI 28.10 0.00% 7 (4) -

Co-KRG

LCB 31.73 12.93% 7 (4) 10 (4)
PI 41.42 47.40% 14 (11) 17 (11)
EI 28.48 1.37% 7 (4) 10 (4)

WEI 28.10 0.00% 7 (4) 10 (4)

H-KRG

LCB 28.10 0.00% 4 (1) 7 (1)
PI 28.47 1.33% 18 (15) 21 (15)
EI 28.10 0.00% 6 (3) 9 (3)

WEI 28.10 0.00% 6 (3) 9 (3)

VF-LCB 28.10 0.00% 4 (1) 8 (2)
VF-PI 28.44 1.19% 16 (13) 20 (14)
VF-EI 28.10 0.00% 5 (2) 8 (2)

VF-WEI 28.10 0.00% 4 (1) 7 (1)

by:

Vm =
( x

L

)N
and Vc = 1−Vm (7.20)

where Vm and Vc refer to the metal and ceramic volume fractions, respectively, and N is a

parameter which defines the material gradation. Equivalent material properties are evaluated via

the rule of mixtures:

E(x) =Vm(x)Em +Vc(x)Ec (7.21)

where Em = 90 GPa and Ec = 380 GPa are the metal and ceramic Young’s moduli, respectively.

Once again, the aim is to minimize the maximum displacement of the beam, consid-

ering r and N as design variables. Two constraints will be considered, now related to a maximum

cost Cmax = 50 M.U. (Monetary Units), and a minimum percentage of ceramic in the beam

V c,min = 50%. Again, these constraints are cheap to evaluate, and they will be evaluated exactly.
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The optimization problem may be formulated as:

find x = {r,N}

that minimizes w(x)

subject to g1(x) = 1− V c

V c,min
≤ 0

g2(x) =
C

Cmax
−1≤ 0

with 0.20 m≤ r ≤ 1.00 m

0.00≤ N ≤ 10.0

(7.22)

where V c is the percentage of ceramic in the beam, evaluated as:

V c =
1
L

∫
L

Vc dx =
N

N +1
(7.23)

and C is the total cost of the beam, evaluated as:

C =V [(1−V c)CM +V cCC] (7.24)

where V is the beam volume, and CM = 1 M.U./m3 and CC = 5 M.U./m3 are the cost of the metal

and the ceramic.

Using the unit load method and considering the Euler-Bernoulli theory, the tip

displacement of the beam can be evaluated as:

w(x) =
∫ L

0

M(x)M(x)
E(x) I

dx =
∫ L

0

P(L− x)2

E(x) I
dx (7.25)

This integral can be solved numerically using a 10-point Gauss quadrature rule. Using this

function, the optimum of the problem is found at w(0.728,1.0) = 0.1025 mm. Figure 71 shows

the constrained space for this problem.

Alternatively, we may use the Rayleigh-Ritz method to find an approximation for

the beam displacement. The weak form of the problem is given by:

Π =
1
2

∫ L

0
E I w,xx dx+Pw(L) (7.26)

Assuming a displacement described by:

w(x) = ax2 (7.27)

we may find a considering the principle of stationary total potential energy:

∂Π

∂a
= 0 ⇒ a =

PL(N +1)
4 I (Ec N +Em)

(7.28)
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Figure 71 – Constrained space for the FG beam problem.
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Source: the author

Thus, the displacement may be estimated by:

w(x) =
PL(N +1)

4 I (Ec N +Em)
x2 (7.29)

and the maximum beam displacement (at x = L) is given by:

w(x) =
PL3 (N +1)

4 I (Ec N +Em)
(7.30)

This function can be used as a LF function for the beam displacement.

Figure 72 shows how the displacement changes in the design space according to each

source. The unit load method presents slightly higher displacements, and the relative difference

between the two approaches is close to 20% for higher N. In the optimum, the difference is

6.05%. Once again, the correlation factor between these two approaches is very high (R2 = 0.99).

The initial sample for this problem is defined using nh = 1.5m = 3 and nl = 3m = 6.

Table 16 shows the results obtained using each SAO approach. This example clearly shows that

the use of Multi-Fidelity Models (MFMs) is no panacea for the improvement of the optimization

process. It is easy to see that the single-fidelity KRG-based approaches performed better than

most MFMs. Even so, when Variable Fidelity (VF) approaches are used, the HKRG model

excels at finding the optimum using few HF evaluations. The best approach was the VF-LCB,

where, on average, only one extra HF evaluation was necessary to find the optimum. Moreover,

no PI-based approach was able to achieve good results for this problem.
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Figure 72 – Assessment of the displacement of the FG beam via different sources.

(a) Unit load method (b) Rayleigh-Ritz

(c) Relative difference (d) Correlation between sources
Source: the author

Table 16 – Averaged results for the FG beam problem.

Model Infill criterion wopt (mm) NRMSE nev,h nev,l

KRG

LCB 0.1025 0.00% 5 (2) -
PI 0.1033 0.84% 32 (29) -
EI 0.1025 0.00% 6 (3) -

WEI 0.1025 0.00% 6 (3) -

COKRG

LCB 0.1025 0.00% 7 (4) 10 (4)
PI 0.1030 0.51% 22 (19) 25 (19)
EI 0.1027 0.21% 10 (7) 13 (7)

WEI 0.1025 0.00% 6 (3) 9 (3)

HKRG

LCB 0.1025 0.00% 8 (5) 11 (5)
PI 0.1037 1.26% 28 (25) 31 (25)
EI 0.1027 0.25% 13 (10) 16 (10)

WEI 0.1025 0.02% 10 (7) 13 (7)
VF-LCB 0.1025 0.00% 4 (1) 11 (5)

VF-PI 0.1034 0.95% 30 (27) 36 (30)
VF-EI 0.1025 0.00% 5 (2) 11 (5)

VF-WEI 0.1025 0.00% 6 (3) 14 (8)
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7.2 Numerical FGM problems

In this section, problems related to the optimization of FG plates and shells will be

solved. These structures often require numerical approaches to evaluate the structural response.

In this work, Isogeometric Analysis (IGA) will be employed to evaluate quantities of interest

through both solid continuum and shallow shell theories. Unless stated otherwise, the initial

sample will be defined via the LHSN method, with N = 20. The number of HF and LF initial

sampling points will depend on the cost of each source and on the problem’s dimensionality.

Since time spent is a major concern for these problems, it will also be used to measure the

efficiency of each SAO approach, along with the number of HF and LF evaluations. Material

properties found in this Section can be found in Table 1.

7.2.1 Maximization of the buckling load of a unidirectional FG plate

The first example deals with the maximization of the buckling load factor of a simply

supported square plate made of Aluminum (Al) as metal and Alumina (Al2O3) as ceramic,

with a/h = 10, subject to a unidirectional uniform compressive load Nx. Equivalent material

properties are estimated via the Mori-Tanaka model and the material gradation is defined by 9

control points through the thickness, symmetric with respect to the mid-plane. Due to symmetry,

there are only 5 design variables. A constraint will be used to limit the maximum percentage of

ceramic material V c,max. Thus, the optimization problem can be formulated as:

find x = {x1,x2, . . . ,x5}

that minimizes −λnorm(x)

subject to g1(x) =
V c(x)
V c,max

−1≤ 0

with 0≤ xi ≤ 1

(7.31)

where λnorm is evaluated by Eq. (3.54) and:

V c =
1
h

∫ h/2

−h/2
Vc dz (7.32)

This integral can be evaluated numerically, using a 10-point Gaussian quadrature rule.

This problem was first proposed by Do, Lee and Lee[1], where a DNN was used as

a surrogate model to improve the efficiency of the process. The authors used 10,000 sampling

points to train and validate the model, and then optimized the problem considering three different

V c,max: 35%, 50%, and 65%. Structural analyses were performed considering the HSDT. Later,
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Ribeiro et al.[2] used a single-fidelity RBF-based SAO to optimize the problem, showing more

accurate results while only requiring around 50 sampling points. This time, the authors used the

FSDT to carry out the structural analyses.

In this work, the HF source will be represented by a 3D model using a 10×10×2

cubic NURBS mesh, while the LF source will be represented by a FSDT model using a 8×8

cubic NURBS mesh. These two meshes are depicted in Figure 73.

Figure 73 – Mesh used for each source for the maximization of the buckling load of a FG plate.

(a) HF source, 10×10×2 cubic NURBS mesh (b) LF source, 8×8 cubic NURBS mesh
Source: the author

Figure 74 shows the correlation between responses for these two cases. Here, the

correlation factor is very high (R2 = 0.99), and the average relative difference between sources

is close to 2.27%. Each HF evaluation takes, on average, 28.75 s, while each LF evaluation takes

only 0.64 s. This means that the relative expense is Cr = 0.022. The 3D model offers slightly

lower critical buckling load factors than those obtained via the 2D model. Thus, the LF source,

although cheaper, may lead to less conservative designs when compared to the HF source.

Finally, this problem will be solved using single and multi-fidelity SAO approaches.

Due to the cost of each HF evaluation, for the single-fidelity case (KRG model), only 5 initial

sampling points will be used. For the MFMs, some points will be replaced with a number of LF

sampling points: the initial sample will have 3 HF and 20 LF data points.

In this work, similar to other researchers, three different versions for the problem will

be considered, with three different V c,max: 35%, 50%, and 65%. Table 17 shows the optimum

design for each case. Figure 75 shows how the optimum design ceramic volume fraction changes

along the structure thickness for each case. The optimum buckling load factor found by Do, Lee

and Lee[1] and by Ribeiro et al.[2] can be found in Table 3. It is worth mentioning that these
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Figure 74 – Correlation between sources for the optimization of a unidirectional FG plate.

Source: the author

works used different plate theories to evaluate the buckling load, while the present work uses a

3D model as the HF source.

Table 17 – Optimum design for different V c,max
[1, 2]

V c,max
Design variables

λnormx1 x2 x3 x4 x5

35% 1.00 1.00 0.40 0.00 0.00 9.893
50% 1.00 1.00 1.00 0.00 0.00 12.58
65% 1.00 1.00 1.00 0.45 0.00 14.09

Table 18 shows the results found for V c,max = 35%. The results show that almost all

approaches were able to accurately find the optimum. However, PI-based approaches showed a

higher NRMSE in all cases. The KRG model required more HF evaluations to find the optimum,

as at least 20 HF evaluations were performed in all cases. For the COKRG and the HKRG,

however, most cases managed to achieve a stopping criteria after only 15 HF evaluations. This

difference, although seemingly negligible, is able to reduce the time spent in the multi-fidelity

approaches in about 25%.

For the VF approaches, it is important to note that the VF-LCB and the VF-PI were

not able to efficiently determine the need to perform a HF evaluation, as the number of HF points

was very close to the other methods. For the VF-EI and the VF-WEI, however, there was a major

decrease in the number of HF evaluations performed. The time spent was up to 65% faster in

these cases, in comparison to the results from the KRG model.

It is important to note that, while MFMs require less HF evaluations, they also

present a higher complexity, and model building and evaluation are way more expensive. Figure
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Figure 75 – Optimum design for each case for the optimization of a unidirectional FG plate.

(a) V c,max = 35% (b) V c,max = 50%

(c) V c,max = 65%
Source: the author

Table 18 – Averaged results for the maximization of the buckling load of a unidirectional FG
plate considering V c,max = 35%.

Model Infill criterion λnorm NRMSE nev,h nev,l Time spent (s)

KRG

LCB 9.893 0.00% 22 (17) - 625
PI 9.823 0.70% 27 (22) - 772
EI 9.893 0.00% 21 (16) - 607

WEI 9.893 0.00% 20 (15) - 586

COKRG

LCB 9.893 0.00% 15 (12) 32 (12) 480
PI 9.814 0.80% 21 (18) 38 (18) 639
EI 9.893 0.00% 14 (11) 31 (11) 436

WEI 9.893 0.00% 14 (11) 31 (11) 440

HKRG

LCB 9.893 0.00% 14 (11) 31 (11) 443
PI 9.782 1.12% 23 (20) 40 (20) 729
EI 9.893 0.00% 14 (11) 31 (11) 436

WEI 9.893 0.00% 14 (11) 31 (11) 430
VF-LCB 9.893 0.00% 14 (11) 32 (12) 436

VF-PI 9.761 1.34% 29 (26) 46 (26) 927
VF-EI 9.892 0.01% 7 (4) 31 (11) 225

VF-WEI 9.893 0.00% 6 (3) 31 (11) 194
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76 shows how the cost of the building phase change for different models, depending on the

sample size (nh +nl). The building phase cost seems to be heavily influenced by the sample size,

which is in agreement with what is expected. It is worth to remember that time complexity for

building these models is proportional to the cube of the number of sampling points.

Figure 76 – Time spent for the building phase for each model for the maximization of the
buckling load of a unidirectional FG plate.

Source: the author

As MFMs present a higher sample size due to the incorporation of LF sampling

points, they also present a more expensive model building. This means that, when choosing the

number of LF sampling points, regardless of how cheap these evaluations are, the user should

not introduce an overwhelmingly large amount of points, as these might make the model too

complex.

That being said, the most expensive phase of the process is still the evaluation of

data points. Figure 77 shows how the time spent is divided between different phases for SAO:

model building, HF and LF data points evaluation, and definition of the new data via the infill

criterion. Indeed, the optimization process is usually more efficient when MFMs are employed,

especially when the HKRG model is used with the VF-EI or VF-WEI approaches. However, this

does not occur when PI-based approaches are employed. For this problem, these approaches are

both less accurate and less efficient than the other methods.

It is also interesting to discuss the relative contribution of each phase. For the Kriging

model, the data points evaluation corresponds to roughly 97.5% of the total cost, as all analysis

are performed using the High-Fidelity (HF) source. Furthermore, as the total number of sampling

points is lower, model building and evaluation are cheaper.

On MFMs, however, model building and, to a lower degree, model evaluation are
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Figure 77 – Cost of each phase of the process for the maximization of the buckling load of a
unidirectional FG plate.

(a) Total time spent in each phase

(b) Percentage contribution relative to the total cost of each method
Source: the author

much more expensive. Even so, the evaluation of HF data points is still the most expensive part

of the process, being responsible to at least 80% of the total cost of the process. This also helps

to understand why the VF-EI and VF-WEI approaches are so much cheaper than the others: as

the evaluation of data points is, by far, the most expensive phase, the total cost of the process can

be greatly decreased by reducing the number of HF evaluations required.

Table 19 shows the results for V c,max = 50%. Overall, similar results were found.

Once again, MFMs were able to show a gain in efficiency when compared to the KRG model,

where VF-EI and VF-WEI showed an even greater reduction in the time spent, as they only

required 4 and 3 extra evaluations on average, respectively. Also, PI-based approaches struggled

to find the optimum. Very similar conclusions can be made for the results considering V c,max =

65%, which can be found in Table 20.
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Table 19 – Averaged results for the maximization of the buckling load of a unidirectional FG
plate considering V c,max = 50%.

Model Infill criterion λnorm NRMSE nev,h nev,l Time spent (s)

KRG

LCB 12.576 0.00% 21 (16) - 593
PI 12.443 1.06% 28 (23) - 819
EI 12.576 0.00% 20 (15) - 578

WEI 12.576 0.00% 22 (17) - 637

COKRG

LCB 12.576 0.00% 14 (11) 31 (11) 439
PI 12.491 0.68% 25 (22) 42 (22) 772
EI 12.576 0.00% 14 (11) 31 (11) 430

WEI 12.576 0.00% 14 (11) 31 (11) 429

HKRG

LCB 12.576 0.00% 14 (11) 31 (11) 429
PI 12.433 1.14% 23 (20) 40 (20) 700
EI 12.576 0.00% 14 (11) 31 (11) 423

WEI 12.576 0.00% 14 (11) 31 (11) 423
VF-LCB 12.576 0.00% 14 (11) 32 (12) 439

VF-PI 12.415 1.28% 26 (23) 43 (23) 798
VF-EI 12.576 0.00% 7 (4) 31 (11) 236

VF-WEI 12.576 0.00% 6 (3) 31 (11) 197

Table 20 – Averaged results for the maximization of the buckling load of a unidirectional FG
plate considering V c,max = 65%.

Model Infill criterion λnorm NRMSE nev,h nev,l Time spent (s)

KRG

LCB 14.091 0.00% 22 (17) - 642
PI 14.043 0.34% 30 (25) - 875
EI 14.091 0.00% 22 (17) - 626

WEI 14.091 0.00% 22 (17) - 625

COKRG

LCB 14.091 0.00% 15 (12) 32 (12) 475
PI 14.046 0.32% 23 (20) 40 (20) 733
EI 14.091 0.00% 14 (11) 31 (11) 446

WEI 14.091 0.00% 14 (11) 31 (11) 430

HKRG

LCB 14.033 0.41% 14 (11) 31 (11) 431
PI 14.040 0.36% 29 (26) 46 (26) 905
EI 14.091 0.00% 14 (11) 31 (11) 423

WEI 14.091 0.00% 14 (11) 31 (11) 423
VF-LCB 14.091 0.00% 14 (11) 32 (12) 440

VF-PI 13.979 0.79% 29 (26) 47 (27) 929
VF-EI 14.091 0.00% 7 (4) 31 (11) 222

VF-WEI 14.091 0.00% 6 (3) 31 (11) 217

7.2.2 Maximization of the buckling load of a tridirectional FG plate

This example deals with the maximization of the buckling load factor of a simply

supported square plate made of stainless steel (SUS304) as metal and silicon nitride (Si3N4) as

ceramic. Once again, the plate is subject to a unidirectional uniform compressive load Nx and its
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equivalent material properties are estimated via the Mori-Tanaka model. This time, however,

material gradation is defined by a trivariate B-Spline function with 144 control points. The

design mesh is shown in Figure 78.

Figure 78 – Design mesh for the optimization of a tridirecional FG plate.

Source: the author

The design variables are, once again, the ceramic volume fraction in the control

points. However, we consider that the volume fraction distribution is symmetric at the center

of the plate in all three dimensions. Thus, there are only 18 design variables. Similar to the

previous example, a limitation on the maximum percentage of ceramic material will be imposed.

This way, the optimization problem can be described as:

find x = {x1,x2, . . . ,x18}

that minimizes −λnorm(x)

subject to g1(x) =
V c(x)
V c,max

−1≤ 0

with 0≤ xi ≤ 1

(7.33)

where λnorm is evaluated by Eq. (3.53) and:

V c =
1
V

∫
V

Vc dv (7.34)

Again, this integral can be evaluated numerically, using an adequate Gaussian quadrature rule.

It is important to note that this problem is much more complex than the previous one,

especially due to the higher dimensionality. Do, Nguyen-Xuan and Lee[18] employed a DNN

to fit this problem, using 10,000 sampling points to train and validate the model. The authors

show that it took 189,983 s to evaluate all sampling points and 656 s to train the model. Then,

the authors conducted the optimization process considering the HSDT and using three different

V c,max: 30%, 50%, and 70%. On average, it took 21 s to perform the optimization process on the

static single-fidelity model. Thus, for one optimization process, it took, on average, 190,660 s,
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or roughly 53 hours, where 99.6% of this time was spent evaluating all data points. Note that a

very high number of data points is required in this case because the authors used a single-fidelity

model to perform the optimization process. For a reliable optimization process, the authors need

to make sure that the model has a sufficiently good global accuracy. That being said, the DNN

still struggled to find the global optimum for this problem, as, for V c,max = 50% and V c,max =

70%, the optimum found actually violated the ceramic fraction constraint.

In this work, optimization was performed using single and multi-fidelity models,

using the sources presented in Figure 73. Thus, for the HF source, a 3D solid continuum mesh

was used, while a 2D mesh (considering the FSDT) was used for the LF source. Figure 79 shows

the correlation between these two sources. Once again, the correlation is very high (R2 = 0.99),

even though, this time, there seems to be an almost constant absolute difference between the

response found. This time, each HF evaluation takes around 28.85 s, while the LF source takes

only 0.69 s, which means that the relative expense is Cr = 0.024.

Figure 79 – Correlation between sources for the optimization of a tridirecional FG plate.

Source: the author

Table 21 shows the optimum designs obtained in this work, and compares them to the

ones found by Do, Nguyen-Xuan and Lee[18]. Note that designs obtained by our algorithm are

better than the ones of Do, Nguyen-Xuan and Lee[18]. Here, SS1 and SS2 refer to the different

boundary conditions for simply supported plates, as shown in Figure 10. The SS2 condition was

adopted for the optimization process. For reference, the response found using the SS1 condition

is also shown.

Figure 80 shows the optimum design for V c,max = 30%. Note that, in the loaded

faces, there is more ceramic than the non-loaded ones. Also, there is more ceramic near the center

of the plate, where displacements are higher. In the inner side of the plate there is gradually less
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Table 21 – Optimum design for different V c,max.
V c,max 30% 50% 70%

Control points Ref.[18] This work Ref.[18] This work Ref.[18] This work
1 1 1 1 1 1 1
2 1 0 1 0 1 1
3 0 0 0.548 1 1 1
4 1 1 1 1 1 1
5 1 0.318 1 1 1 1
6 0 1 1 1 1 1
7 0 1 0.998 1 1 1
8 0.526 0 1 1 1 1
9 1 1 1 1 1 1

10 0 0 1 1 1 1
11 0 0 0 0 1 0
12 0 0 0 0 0 0
13 0 0 0 0 1 1
14 0 0 0 0 0.242 0
15 0 0 0 0 0 1
16 0 0 0 0.615 0 1
17 0 0 0 0 0 0
18 0 0 0 0 1 0.408

λnorm

2D, HSDT, SS1[18] 2.906 - 3.241 - 3.506 -
2D, FSDT, SS1 2.832 2.869 3.244 3.256 3.462 3.504
2D, FSDT, SS2 2.610 2.635 2.975 2.984 3.171 3.207
3D 2.564 2.587 2.911 2.923 3.111 3.147

V c 29.86% 30.00% 50.28% 50.00% 71.29% 70.00%

ceramic than in the outer side.

Figure 81 now shows the optimum design for V c,max = 50%. Aside from the fact

that there is more ceramic in the plate, similar observations can be brought up. Here it is more

clear that the outer side of the plate has gradually more ceramic than the inner side.

Finally, Figure 82 shows the optimum design for V c,max = 70%. Here, almost the

entire outer side of the plate is covered in ceramic. The exception is the non-loaded face.

However, there is a gradual reduction as one gets closer to the internal side of the plate.

For single-fidelity approaches (using the Kriging model), 18 initial sampling points

were used, while, for MFMs, the initial sample had 10 HF and 24 LF data points. Table 22 shows

the results found for V c,max = 30%. It is clear that this problem is indeed much harder than the

previous example, which had only 5 design variables. After all, surrogate models, and especially

GP models, often struggle in approximating high-dimensional spaces. However, with exception

to the PI-based methods, all approaches managed to find designs very close to the optima.

In terms of accuracy, LCB-based approaches were, consistently, the best-performing
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Figure 80 – Optimum design for the optimization of a tridirectional FG plate considering
V c,max = 30%.

xy
z

(a) Ceramic distribution throughout the plate

(b) Ceramic distribution at x = a/3 (c) Ceramic distribution at y = a/3
Source: the author

Figure 81 – Optimum design for the optimization of a tridirectional FG plate considering
V c,max = 50%.

xy
z

(a) Ceramic distribution throughout the plate

(b) Ceramic distribution at x = a/3 (c) Ceramic distribution at y = a/3
Source: the author

methods. In that matter, the HKRG-LCB stood out, showing an average NRMSE of only 0.03%.

However, LCB-based approaches were the most time-consuming methods in almost all cases.

Also, in all cases, MFMs managed to reduce the number of HF evaluations required. However, in

this case, the gain in efficiency for these models is very slight or nonexistent in most cases. The

exception are the Variable Fidelity (VF) approaches, where the reduction in the number of HF
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Figure 82 – Optimum design for the optimization of a tridirectional FG plate considering
V c,max = 70%.

xy
z

(a) Ceramic distribution throughout the plate

(b) Ceramic distribution at x = a/3 (c) Ceramic distribution at y = a/3
Source: the author

Table 22 – Averaged results for the maximization of the buckling load of a tridirectional FG
plate considering V c,max = 30%.

Model Infill criterion λnorm NRMSE nev,h nev,l Time spent (s)

KRG

LCB 2.584 0.12% 46 (28) - 1473
PI 2.549 1.48% 32 (14) - 959
EI 2.580 0.26% 41 (23) - 1257

WEI 2.580 0.28% 40 (22) - 1226

COKRG

LCB 2.585 0.08% 39 (29) 53 (29) 1596
PI 2.539 1.85% 26 (16) 40 (16) 866
EI 2.580 0.26% 32 (22) 46 (22) 1152

WEI 2.582 0.19% 28 (18) 42 (18) 990

HKRG

LCB 2.586 0.03% 35 (25) 49 (25) 1308
PI 2.526 2.36% 31 (21) 45 (21) 1088
EI 2.564 0.88% 22 (12) 36 (12) 737

WEI 2.561 0.99% 23 (13) 37 (13) 756
VF-LCB 2.584 0.10% 21 (11) 48 (24) 853

VF-PI 2.536 1.97% 26 (16) 41 (17) 910
VF-EI 2.577 0.40% 15 (5) 38 (14) 557

VF-WEI 2.576 0.43% 17 (7) 39 (15) 641

evaluations was even more noticeable. These approaches managed to perform the optimization

process 1.5 to 2.2 times faster when compared to their single-fidelity counterparts. It is worth

to notice that, while the HKRG-VF-EI and HKRG-VF-WEI were the most efficient methods,

these also showed a high average NRMSE. Overall, the best performing approach was the

HKRG-VF-LCB method, which showed a low NRMSE while also reducing the number of HF
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evaluations required to find the optimum.

Figure 83 shows how the building cost changes as the sample size (nh+nl) increases.

Note that the cost quickly increases, and, soon, it is almost as expensive as the evaluation cost.

This is the reason why, in this problem, there is very little gain in efficiency using most MFM

methods. However, if evaluation costs were higher, these methods would certainly be more

appealing in terms of efficiency. It is interesting to note that, for the same sample size (nh +nl),

building of the Kriging model is more expensive than the MFMs. This likely occurs because, for

the building of Kriging, multiple full size matrices need to be inverted, while building of MFMs

require inversion of two separate matrices, one nh×nh and one nl×nl .

Figure 83 – Time spent for the building phase for each model for the maximization of the
buckling load of a tridirectional FG plate.

Source: the author

Figure 84 compares the time spent for each approach, showing how the computational

cost is divided for each phase of the process. Notice that, while LF evaluations present a very

minor overall cost, these also contribute to higher building and infilling costs, as sample size

increases. However, we can see more easily that, indeed, MFMs are slightly more efficient

overall, especially when we look at Variable Fidelity (VF) approaches.

Regarding the relative cost of each phase, on Kriging, HF evaluations correspond to

90% to 95% of the total cost, while, on MFMs, these only correspond to 65% to 85%. On the

other hand, while model building corresponds to around 5% of the total cost on Kriging, it may

take up to 22% of the total cost on MFMs. This clearly shows that the trade-off between HF and

LF data points should be made with caution, and not an overwhelmingly large amount of points

should be used in the model, as this would make it too expensive to build and evaluate.

Table 23 shows the results for V c,max = 50%. Overall, the results were very similar to
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Figure 84 – Cost of each phase of the process for the maximization of the buckling load of a
tridirectional FG plate.

(a) Total time spent in each phase

(b) Percentage contribution relative to the total cost of each method
Source: the author

the ones for V c,max = 30%. Here, the KRG-LCB showed a higher NRMSE, and was outperformed

by KRG-EI and KRG-WEI. On the other hand, for the HKRG, the opposite happened: HKRG-

LCB showed a very low error (NRMSE of 0.00%), while HKRG-EI and HKRG-WEI performed

poorly. Interestingly enough, all VF-based approaches, with exception to the VF-PI, performed

very well in terms of NRMSE. Here, considering both the accuracy and the efficiency of the

method, the best performing approaches were indeed the HKRG-VF-EI and the HKRG-VF-WEI,

even though the HKRG-VF-LCB did seem to find the optimum in almost all cases, showing an

NRMSE of 0.00%.

Finally, Table 24 shows the results for V c,max = 70%. Here, once again, the best

performing methods, in terms of accuracy, were the LCB-based ones. EI and WEI-based

approaches also performed well, even though the HKRG-EI and HKRG-WEI showed poor
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Table 23 – Averaged results for the maximization of the buckling load of a tridirectional FG
plate considering V c,max = 50%.

Model Infill criterion λnorm NRMSE nev,h nev,l Time spent (s)

KRG

LCB 2.895 0.96% 45 (27) - 1459
PI 2.870 1.81% 36 (18) - 1082
EI 2.922 0.02% 43 (25) - 1372

WEI 2.913 0.32% 41 (23) - 1304

COKRG

LCB 2.923 0.01% 36 (26) 50 (26) 1414
PI 2.872 1.72% 26 (16) 40 (16) 874
EI 2.922 0.02% 29 (19) 43 (19) 1060

WEI 2.922 0.04% 28 (18) 42 (18) 995

HKRG

LCB 2.923 0.00% 36 (26) 50 (26) 1403
PI 2.860 2.16% 33 (23) 47 (23) 1174
EI 2.905 0.60% 22 (12) 36 (12) 720

WEI 2.877 1.55% 22 (12) 36 (12) 721
VF-LCB 2.923 0.00% 29 (19) 50 (26) 1159

VF-PI 2.854 2.35% 29 (19) 44 (20) 1014
VF-EI 2.921 0.04% 14 (4) 40 (16) 548

VF-WEI 2.921 0.06% 15 (5) 40 (16) 582

results, in terms of accuracy. One more time, the VF-LCB, VF-EI, and VF-WEI showed

excellent results, where the VF-LCB presents a lower NRMSE, while VF-EI and VF-WEI

present a lower number of HF evaluations and, therefore, time spent.

Table 24 – Averaged results for the maximization of the buckling load of a tridirectional FG
plate considering V c,max = 70%.

Model Infill criterion λnorm NRMSE nev,h nev,l Time spent (s)

KRG

LCB 3.147 0.01% 45 (27) - 1416
PI 3.118 0.93% 39 (21) - 1156
EI 3.143 0.13% 42 (24) - 1287

WEI 3.146 0.05% 43 (25) - 1304

COKRG

LCB 3.147 0.01% 40 (30) 54 (30) 1587
PI 3.119 0.90% 31 (21) 45 (21) 1055
EI 3.145 0.08% 29 (19) 43 (19) 997

WEI 3.145 0.09% 29 (19) 43 (19) 1039

HKRG

LCB 3.147 0.00% 36 (26) 50 (26) 1347
PI 3.106 1.32% 33 (23) 47 (23) 1141
EI 3.121 0.84% 25 (15) 39 (15) 829

WEI 3.098 1.57% 22 (12) 36 (12) 725
VF-LCB 3.147 0.01% 25 (15) 42 (18) 927

VF-PI 3.112 1.13% 31 (21) 47 (23) 1109
VF-EI 3.144 0.12% 17 (7) 42 (18) 650

VF-WEI 3.145 0.08% 16 (6) 40 (16) 605
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7.2.3 Maximization of the fundamental frequency of a FG shallow shell

In this section, the maximization of the natural frequency of a SUS304/SI3N4 FG

shallow shell will be performed. The shell is depicted in Figure 85, and it has length L = 0.508

m, R = 2.540 m, and α = 0.1 rad. Shell thickness is considered to be h = 0.0127 m. Equivalent

material properties are estimated via the Mori-Tanaka model, and the material gradation is given

by a univariate B-Spline function with 9 control points in the thickness direction.

Figure 85 – Shallow shell considered for the maximization of the fundamental frequency.
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The goal of this problem is to maximize the natural frequency of the shell. No

symmetry constraint is imposed and, thus, as the design variables are the B-Spline control points,

there are 9 design variables. Here, a limitation on the maximum cost of the shell is imposed, and

the optimization problem is described as:

find x = {x1,x2, . . . ,x9}

that minimizes −ωnorm(x)

subject to g1(x) =
Ctot(x)
Cmax

−1≤ 0

with 0≤ xi ≤ 1

(7.35)

where ωnorm is the normalized natural frequency, given by Eq. (3.55), and:

Ctot =CcV
1
h

∫ h/2

−h/2
Vcdz+CmV

1
h

∫ h/2

−h/2
Vmdz (7.36)

where V is the shell volume, Ctot is the total cost, Cmax = 0.7 M.U. is the maximum cost, and Cc =

20 M.U./m3 and Cm = 1 M.U./m3 are the costs per unit volume for the ceramic and the metal, re-
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spectively. The optimum of this problem is found at x= {1.0,1.0,1.0,0.331,0.0,0.0,0.0,0.0,0.0},

where ωnorm = 4.143×10−3. Figure 86 presents the B-Spline function for the optimum design.

Figure 86 – Optimum design for the maximization of the fundamental frequency of a FG
shallow shell.

Source: the author

In this problem, only the FSDT will be used. The HF source will be given by a

64×64 cubic NURBS mesh. However, two different LF sources will be tested: a 2×2 quadratic

NURBS mesh and a 8×8 quadratic NURBS mesh. Thus, the problem will be optimized two

times, each using a different LF source. Figure 87 depicts these three meshes. On average, the

analysis time for each mesh is: 0.11 s for the 2×2 mesh, 0.23 s for the 8×8 mesh, and 54.81 s

for the 64×64 mesh. In this work, for the single-fidelity models, 9 HF sampling points will be

used. For the MFMs, 5 HF and 16 LF sampling points will be used.

Figure 88 shows the correlation between the HF source and each LF source. In the

first case, using the 2×2 mesh as the LF source, the average error is 5.52%. For the 8×8 mesh,

the average error is much lower (0.29%). As the LF source becomes more refined, the difference

between sources is reduced. That being said, for both cases, the correlation between responses is

very high (R2 ≈ 0.999).

Table 25 shows the results found when the 2× 2 mesh is used as the LF source.

Once again, no PI-based approaches were able to find good results. In this problem, since

the HF analysis is more expensive, the gain in efficiency for MFMs is more noticeable. EI

and WEI-based approaches performed worse using MFMs, especially for the HKRG. These

showed higher NRMSE than their single-fidelity counterparts. However, the gain in efficiency

of VF approaches was very high. LCB-based approaches showed very high accuracy overall,

where both HKRG-LCB and HKRG-VF-LCB showed an NRMSE of 0.00%. In particular, the
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Figure 87 – Meshes used for each source for the maximization of the natural frequency of a FG
shallow shell.

(a) 2×2 quadratic NURBS mesh (b) 8×8 quadratic NURBS mesh

(c) 64×64 cubic NURBS mesh
Source: the author

Figure 88 – Correlation between sources for the maximization of the natural frequency of a FG
shallow shell.

(a) LF source: 2×2 mesh (b) LF source: 8×8 mesh
Source: the author

HKRG-VF-LCB also showed a relevant gain in efficiency, as it performed less HF evaluations

due to the VF approach.

Figure 89 shows the time spent for the building phase for each model for this case.

MFMs showed a higher building cost, as it is related to the cube of the sample size. Still, the

time spent is not very high, as few sampling points are employed in this problem, due to the low

number of design variables.

This aspect is more clear in Figure 90. Here, we note that, for these problems, model

building and infill criteria costs are almost negligible when compared to the cost of performing

the HF evaluations, even for MFMs. This also occurs due to the higher cost of the linearized
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Table 25 – Averaged results for the maximization of the fundamental frequency of a FG shallow
shell using a 2×2 mesh as the LF source.

Model Infill criterion ωn (×10−3) NRMSE nev,h nev,l Time spent (s)

KRG

LCB 4.143 0.01% 39 (30) - 2201
PI 4.102 0.99% 29 (20) - 1600
EI 4.139 0.10% 28 (19) - 1514

WEI 4.141 0.06% 30 (21) - 1615

COKRG

LCB 4.142 0.02% 25 (20) 36 (20) 1395
PI 4.062 1.96% 25 (20) 36 (20) 1368
EI 4.137 0.14% 20 (15) 31 (15) 1105

WEI 4.141 0.07% 22 (17) 33 (17) 1231

HKRG

LCB 4.143 0.00% 23 (18) 34 (18) 1256
PI 4.059 2.03% 25 (20) 36 (20) 1396
EI 4.123 0.49% 19 (14) 30 (14) 1048

WEI 4.124 0.47% 18 (13) 29 (13) 995
VF-LCB 4.143 0.00% 16 (11) 37 (21) 939

VF-PI 4.077 1.60% 21 (16) 33 (17) 1175
VF-EI 4.108 0.84% 8 (3) 31 (15) 452

VF-WEI 4.117 0.64% 8 (3) 33 (17) 485

Figure 89 – Time spent for the building phase for each model for the maximization of the
critical temperature of a FG shallow shell using a 2×2 mesh as the LF source.

Source: the author

buckling analysis for this problem. On average, for the Kriging model, HF analyses cost is

related to 97.8% of the total optimization cost, while, for MFMs, these are related to 94.7%.

Again, model building presents a higher contribution to the total cost in MFMs.

Table 26 shows the results found when the 8× 8 mesh is used as the LF source.

PI-based approaches still behaved poorly, even though we are using a more refined LF source.

However, results found using the HKRG-VF-EI and the HKRG-VF-WEI were much better,

especially for the former. At the same time, results for the HKRG-VF-LCB were not as accurate.

Overall, the best approach was the HKRG-VF-EI, as it was able to achieve a very low NRMSE



174

Figure 90 – Cost of each phase of the process for the maximization of the fundamental
frequency of a FG shallow shell using a 2×2 mesh as the LF source.

(a) Total time spent in each phase

(b) Percentage contribution relative to the total cost of each method
Source: the author

while presenting a major gain in efficiency. Even though other methods presented a slightly

better accuracy, they showed a much higher computational cost.

7.2.4 Maximization of the critical buckling temperature of a FG plate with a complicated

cutout

This time, the maximization of the critical buckling temperature of a clamped

SUS304/Si3N4 FG square plate with a complicated cutout will be performed. The plate is

depicted in Figure 91. For this problem, a = 10 m, r = 2 m, c = 3 m, and a/h = 100. Once

again, equivalent material properties will be estimated via the Mori-Tanaka scheme, and material

properties will be given by a univariate B-Spline function with 13 control points.
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Table 26 – Averaged results for the maximization of the fundamental frequency of a FG shallow
shell using a 8×8 mesh as the LF source.

Model Infill criterion ωn (×10−3) NRMSE nev,h nev,l Time spent (s)

KRG

LCB 4.143 0.00% 40 (31) - 2178
PI 4.071 1.74% 27 (18) - 1457
EI 4.141 0.05% 28 (19) - 1525

WEI 4.141 0.06% 29 (20) - 1569

COKRG

LCB 4.143 0.00% 23 (18) 34 (18) 1332
PI 4.080 1.53% 23 (18) 34 (18) 1304
EI 4.140 0.08% 22 (17) 33 (17) 1205

WEI 4.141 0.04% 23 (18) 34 (18) 1267

HKRG

LCB 4.141 0.06% 28 (23) 39 (23) 1550
PI 4.060 2.02% 28 (23) 39 (23) 1587
EI 4.099 1.07% 19 (14) 30 (14) 1076

WEI 4.112 0.75% 18 (13) 29 (13) 1034
VF-LCB 4.105 0.91% 16 (11) 39 (23) 976

VF-PI 4.039 2.51% 24 (19) 36 (20) 1399
VF-EI 4.141 0.06% 10 (5) 34 (18) 565

VF-WEI 4.128 0.38% 10 (5) 34 (18) 570

Figure 91 – Square plate with a complicated cutout.

a

r

c

Source: the author

Here, we aim to maximize the critical buckling temperature for the plate. Similar to

the first problem, material gradation is symmetric with respect to the mid-plane, and the B-Spline

control points are the design variables. This time, there are 7 design variables, and two expensive
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constraints will be considered. The optimization problem is given by:

find x = {x1,x2, . . . ,x7}

that minimizes −Tcrit(x)

subject to g1(x) =
ωnorm(x)
ωnorm,max

−1≤ 0

g2(x) = 1− ωnorm(x)
ωnorm,min

≤ 0

with 0≤ xi ≤ 1

(7.37)

where Tcrit is the critical buckling temperature and ωnorm is given by Eq. (3.55). For this

problem, ωnorm,min = 0.009 and ωnorm,max = 0.015. The optimum for this problem is found at

x = {1.0,1.0,1.0,1.0,1.0,0.475,0.0}, where Tcrit = 316.285 K and ωnorm = 0.015. Figure 92

shows the B-Spline for the optimum design.

Figure 92 – Optimum design for the maximization of the critical buckling temperature of a FG
plate with a complicated cutout.

Source: the author

Here, only the FSDT will be employed. HF analyses will be performed using a

2048-element cubic NURBS mesh and, for MFMs, a 32-element cubic NURBS mesh will be

considered as the LF source. Figure 93 depicts both of these meshes. Using the HF source,

linearized buckling and modal analyses take, on average, 28.83 s and 18.42 s. On the other hand,

using the LF source, linearized buckling and modal analyses take 0.42 s and 0.32 s. Thus, it

takes 47.25 s to evaluate one design via the HF source, while it takes only 0.75 s to perform one

LF evaluation. The relative expense is Cr = 0.016.

Figure 94 depicts the correlation between these two sources for both linearized

buckling and modal analyses. Correlation between sources is very high for these two analyses

(R2 ≈ 1.0). However, there is an almost constant relative difference between these. For the

linearized buckling analysis, the average error is 2.76%, while it is 1.82% for the modal analysis.
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Figure 93 – Meshes used for each source for the maximization of the buckling load of a FG
plate with a complicated cutout.

(a) LF source, 32-element cubic NURBS mesh (b) HF source, 2048-element cubic NURBS mesh
Source: the author

Figure 94 – Correlation between sources for the analysis of a FG plate with a cutout.

(a) Linearized buckling analysis (b) Modal analysis
Source: the author

To avoid overwhelming the results, PI and WEI-based methods will not be em-

ployed in this problem. It is important to note that, since the constraint function is expensive,

constraint-handling methods discussed in Section 5.3.5 will be used. Thus, as previously stated,

the following approaches will be employed: the direct approach (Direct), the Probability of

Feasibility (PF), the feasibility function proposed by Tutum, Deb and Baran[62] (FFT), the

feasibility function proposed by Bagheri et al.[63] (FFB), and the feasibility function proposed

by Sohst, Afonso and Suleman[297] (FFS). These methods will be used for SAO with EI-based

methods. For LCB-based methods, however, a simple adaptive penalty will be used, where

unfeasible individuals are penalized. The surrogate model for the constraint function will be

used to determine the feasibility of the design.
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Note that both expensive constraint functions are related to the same structural

response. Thus, it makes no sense to build two models for the two different functions. In this

work, for a more efficient process, only one model will be built. This will be made by considering

only one constraint function, which is given by:

gp(x) = max(g1,g2)≤ 0 (7.38)

Thus, constraint-handling methods will be applied considering a model for the constraint function

gp(x).

Table 27 shows the results found using the single-fidelity Kriging model. These

results already show how the consideration of expensive constraints make the problem much

more complex. Optimization using the LCB with an adaptive penalty approach was not able

to achieve good results for Tcrit , where the error found was higher than 10%. While EI-based

methods were able to find better results, most constraint-handling methods achieved designs that

were still not close to the optima. In terms of accuracy, the best approaches were the PF, proposed

by Schonlau, Welch and Jones[60], and the FFS, proposed by Sohst, Afonso and Suleman[297].

Here, only the case where n = 0.50 was able to achieve good results.

Table 27 – Averaged results for the maximization of the critical temperature of a FG plate with a
complicated cutout using the single-fidelity Kriging model.

Infill criterion Constraint-handling Tcrit NRMSE nev,h Time spent (s)

LCB Adaptive penalty 281.41 11.03% 27 (13) 1279

EI

Direct 305.20 3.50% 35 (21) 1723
PF 316.13 0.05% 39 (25) 1905
FFT 307.69 2.72% 37 (23) 1768
FFB 308.37 2.50% 37 (23) 1813
FFS (n = 0.15) 304.26 3.80% 34 (20) 1636
FFS (n = 0.50) 316.06 0.07% 37 (23) 1812

In terms of the number of evaluations performed, these methods required close to 40

HF evaluations, which means that, in addition to the initial sample, more than 20 HF evaluations

were performed during the adaptive sampling process.

Table 28 now shows the results found using MFMs. Here, the use of LCB-based

methods with an adaptive penalty approach was still not able to achieve good results. Even

though the LCB showed good results for the optimization using cheap constraint functions,

appropriate methods should be derived and tested for optimization using expensive constraints.

For the EI-based methods, results were slightly better in terms of accuracy. Using the COKRG,
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the FFS with n = 0.15 also showed good results. With the HKRG, when VF methods are not

used, most approaches found designs close to the optima, even though the NRMSE for the PF

and the FFS with n = 0.50 were higher than those from the single-fidelity KRG.

Table 28 – Averaged results for the maximization of the critical temperature of a FG plate with a
complicated cutout using the Multi-Fidelity Models (MFMs).

Model Infill Constr. hand. Tcrit NRMSE nev,h nev,l Time spent (s)

COKRG

LCB Adapt. pen. 249.34 21.17% 18 (11) 32 (11) 945

EI

Direct 307.15 2.89% 29 (22) 43 (22) 1634
PF 316.19 0.03% 32 (25) 46 (25) 1868
FFT 305.89 3.29% 29 (22) 43 (22) 1618
FFB 309.63 2.13% 32 (25) 46 (25) 1865
FFS (n = 0.15) 315.52 0.25% 30 (23) 44 (23) 1691
FFS (n = 0.50) 316.09 0.09% 34 (27) 48 (27) 1929

HKRG

LCB Adapt. pen. 238.03 24.74% 18 (11) 32 (11) 933

EI

Direct 307.09 2.91% 25 (18) 39 (18) 1313
PF 315.26 0.34% 28 (21) 42 (21) 1494
FFT 304.10 3.85% 25 (18) 39 (18) 1344
FFB 315.39 0.30% 28 (21) 42 (21) 1496
FFS (n = 0.15) 314.38 0.61% 26 (19) 40 (19) 1354
FFS (n = 0.50) 315.00 0.42% 26 (19) 40 (19) 1384

VF-LCB Adapt. pen. 245.88 22.26% 16 (9) 32 (11) 826

VF-EI

Direct 315.47 0.27% 21 (14) 44 (23) 1222
PF 316.28 0.02% 20 (13) 45 (24) 1198
FFT 315.52 0.25% 21 (14) 43 (22) 1214
FFB 316.23 0.04% 20 (13) 45 (24) 1180
FFS (n = 0.15) 307.39 2.82% 25 (18) 44 (23) 1458
FFS (n = 0.50) 316.22 0.04% 21 (14) 45 (24) 1270

That being said, the HKRG-VF-EI showed very good results for most methods.

Using the PF, the FFB, and the FFS with n = 0.50, the average NRMSE found was very close to

0.00%. Even the FFT and the Direct approach were able to achieve results close to the optima.

Only the FFS with n = 0.15 showed a bad performance in this case. Also, VF approaches

required a lower number of HF evaluations to find the optimum. These methods were able to

find very accurate results only using close to 20 HF evaluations.
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7.3 Laminate problems

In this section, problems related to the optimization of laminate structures will be

described and solved using the proposed algorithms. Note that these require adequate methods

due to the discrete nature of these problems. Thus, for the definition of the initial sample, a

mapping approach will be adopted, as discussed in Section 5.1.3. Again, unless stated otherwise,

the initial sample will be defined via the LHSN method, with N = 20.

Regarding the use of surrogate models, not much will be changed. Since GP models

are built based on a measure of a similarity between data points, one can easily train a model

simply by ignoring the discrete space. Also, no modification will be made to the correlation

functions. Even though the problem is discrete by nature, the Maximum Likelihood Estimator

(MLE) for GPs is still a continuous optimization problem, and, thus, a conventional PSO will be

used to maximize the MLE. For model building, parameters are the same as those presented in

Table 11. However, for the infill process, the discrete nature of data should be considered, so that

only feasible points are added. This way, the modified laminate GA presented in Section 4.2.1

will be employed[15]. The parameters considered for the laminate GA can be found in Table 29.

Table 29 – Parameters used for the laminate GA algorithm employed for infill criteria on discrete
problems.

Ngen 250
Np 100
Genstall 100
Cr 0.80
pmut 10%
pdel 0%
padd 0%
pswap 5%

7.3.1 Maximization of the buckling load of a laminate considering different boundary con-

ditions

The first laminate problem deals with the maximization of the buckling load of a 20-

ply square plate. Here, a/h = 50 and, thus, the thickness of each ply is hi = h/20 = a/1000. In

this problem, the optimal stacking sequence should be found, and ply orientations are considered

as design variables. Only one material is used, which is Material I from Table 7, and the laminate

is balanced and symmetric. Thus, there are five design variables. Also, a constraint limits the
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number of maximum contiguous plies (Ncont,max). The optimization problem is given by:

find x = {θ1,θ2, . . . ,θ5}

that minimizes −λnorm(x)

subject to g1(x) =
Ncont

Ncont,max
−1≤ 0

with θi ∈ {0◦,15◦,30◦,45◦,60◦,75◦,90◦}

(7.39)

where λnorm is given by Eq. (3.56) and, for this problem, Ncont,max = 4.

This problem will be solved with the assistance of single and multi-fidelity models.

Meshes used for each source are depicted in Figure 95. The HF source will be given by the

analysis of a 64×64 cubic NURBS mesh, while the LF source will be evaluated using a 4×4

quadratic NURBS mesh. Both cases consider the FSDT. Due to the multimodal nature of

laminate problems, slightly more data points will be used. Thus, in this problem, n = 2m = 10

initial HF sampling points will be used to fit a Kriging model. For MFMs, the initial sample will

have nh = 5 and nl = 15.

Figure 95 – Mesh used for each source for the maximization of the buckling load of a laminate
square plate.

(a) HF source, 64×64 cubic NURBS mesh (b) LF source, 4×4 quadratic NURBS mesh
Source: the author

This problem will be solved considering two cases. First, a simply supported squared

plate will be optimized, considering the SS1 boundary condition. Then, the same problem will

be solved considering a clamped (CC) square plate. Table 30 shows the optimum design found

for these two cases.

Figure 96 shows the correlation between HF and LF response for these two cases.
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Table 30 – Optimum design for the maximization of the buckling load of a laminate square plate
considering different boundary conditions[3]

Boundary condition Layup λnorm

Simply supported (SS1) [±45◦5]s 64.987
Clamped (CC) [0◦4/90◦2/0◦2/±15◦]s 126.39

For the simply supported case, the correlation factor is very high (R2 = 0.96), similar to previous

examples. The average error is 4.78% and, in the optimum, the error is 1.90%. However,

depending on the layup, errors can be up to 30.41%. For the clamped boundary condition,

however, sources show a much higher difference in their responses. Correlation factor is only

R2 = 0.6643. The error in the optimum design is 27.42%, the average error is 45.47%, and,

depending on the layup, the relative difference can be up to 165.94%. This is due to the slightly

more complex displacement patterns seem in the buckling of a clamped plate, which are not

easily reproduced using the LF mesh. That being said, while the HF source takes 38.43 s to be

evaluated, the LF source takes only 0.26 s. The relative expense is Cr = 0.007.

Figure 96 – Correlation between sources for the maximization of the buckling load of a laminate
square plate considering different boundary conditions.

(a) Simply supported (b) Clamped
Source: the author

Table 31 shows the results for the simply supported case. Just by looking at the

NRMSE, we can see that laminate problems are more complex than FG problems. This becomes

more clear when we compare the results to those from the 5-variable FG problem presented in

Section 7.2.1. It is interesting to note that, here, the PI-based approaches behaved better than the

others, with exception to the VF-PI.

In terms of accuracy, the best approach was the HKRG-PI, which showed an NRMSE

of 0.00%, while also showing a rather good efficiency. The HKRG-VF-EI outperformed other

approaches in terms of efficiency and, unlike HKRG-VF-WEI, it did not present a major loss in
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Table 31 – Averaged results for the maximization of the buckling load of a simply supported
laminate square plate.

Model Infill criterion λnorm NRMSE nev,h nev,l Time spent (s)

KRG

LCB 64.192 1.23% 40 (30) - 1538
PI 64.975 0.03% 33 (23) - 1283
EI 64.803 0.29% 37 (27) - 1420

WEI 64.148 1.30% 39 (29) - 1486

COKRG

LCB 64.558 0.67% 30 (25) 40 (25) 1239
PI 64.989 0.01% 27 (22) 37 (22) 1074
EI 64.774 0.34% 24 (19) 34 (19) 947

WEI 64.665 0.51% 29 (24) 39 (24) 1195

HKRG

LCB 63.856 1.75% 23 (18) 33 (18) 910
PI 64.994 0.00% 23 (18) 33 (18) 919
EI 64.847 0.23% 25 (20) 35 (20) 1007

WEI 64.049 1.45% 25 (20) 35 (20) 990
VF-LCB 63.779 1.87% 17 (12) 41 (26) 712

VF-PI 64.443 0.85% 20 (15) 32 (17) 790
VF-EI 64.905 0.14% 12 (7) 38 (23) 518

VF-WEI 63.248 2.69% 10 (5) 36 (21) 419

accuracy. This approach required only 12 HF evaluations, while its single-fidelity counterpart

required 37 HF evaluations.

Figure 97 shows the cost of each phase of the process. Once again, most of the

time is spent evaluating the HF source. Here, time spent in the infill criteria phase and in the

evaluation of the LF source is almost negligible. However, model building phase takes almost

10% of the total cost for some multi-fidelity approaches.

Table 32 shows the results for the clamped case. It is worth to remember that, here,

correlation between sources is very low, as shown in Figure 96. That being said, most approaches

still managed to find good designs, achieving a very low NRMSE. However, one may note that,

here, Variable Fidelity (VF) approaches were not able to present any gain in efficiency over the

usual approaches. The exception was the VF-PI, which, in turn, was not able to find designs

close to the optimum. The best approach in terms of accuracy was the COKRG-LCB. Despite

the poor correlation, all COKRG and non-VF HKRG approaches managed to find good designs

while also presenting a gain in efficiency when compared to KRG.

Figure 98 shows the cost of each phase of the process, now for the clamped case.

Here, it is even more clear that the VF approaches were not able to present any gain in efficiency

over the others. This is most likely due to the very poor correlation between sources for this case.

Besides, once again, most of the optimization cost is related to the HF evaluations, while the
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Figure 97 – Cost of each phase of the process for the maximization of the buckling load of a
simply supported laminate plate.

(a) Total time spent in each phase

(b) Percentage contribution relative to the total cost of each method
Source: the author

model building phase also represents a sizable contribution to the total cost.

7.3.2 Maximization of the buckling load of a laminate considering different number of plies

In this section, the maximization of the buckling load of a simply supported laminate

square plate will be performed once again. This time, the problem will be solved considering two

different cases: one, for a 2-ply general laminate, and other for a 10-ply symmetric laminate. All

layers present the same material properties: E1 = 1 GPa, E2 = E3 = E1/40, G12 = G13 = 0.6E2,

G23 = 0.5E2, and ν12 = ν13 = ν23 = 0.25. Again, the optimal stacking sequence should be

found, but both the orientation and the thickness of each ply are considered as design variables.

Thus, for the 2-ply case, there are 4 design variables, while, for the 10-ply symmetric case, there
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Table 32 – Averaged results for the maximization of the buckling load of a clamped laminate
square plate.

Model Infill criterion λnorm NRMSE nev,h nev,l Time spent (s)

KRG

LCB 126.285 0.08% 29 (19) - 1114
PI 126.069 0.25% 33 (23) - 1267
EI 126.340 0.04% 31 (21) - 1185

WEI 126.245 0.11% 30 (20) - 1151

COKRG

LCB 126.371 0.01% 25 (20) 35 (20) 985
PI 126.274 0.09% 28 (23) 38 (23) 1137
EI 126.314 0.06% 22 (17) 32 (17) 870

WEI 126.277 0.09% 24 (19) 34 (19) 926

HKRG

LCB 126.195 0.15% 20 (15) 30 (15) 765
PI 126.209 0.14% 27 (22) 37 (22) 1053
EI 126.340 0.04% 25 (20) 35 (20) 971

WEI 126.360 0.02% 24 (19) 34 (19) 909
VF-LCB 126.329 0.05% 20 (15) 31 (16) 790

VF-PI 124.690 1.34% 7 (2) 29 (14) 303
VF-EI 126.329 0.05% 24 (19) 36 (21) 947

VF-WEI 126.359 0.02% 22 (17) 36 (21) 871

are 10 design variables. The optimization problem may be given by:

find x = {h1, . . . ,hm/2,θ1, . . . ,θm/2}

that minimizes −λnorm(x)

subject to g1(x) =
h

hmax
−1 = 0

with θi ∈ {−90◦,−89◦,−88◦, . . . ,88◦,89◦,90◦}

hi/a ∈ {0.005,0.006,0.007, . . . ,hi,max/a}

(7.40)

where h is the total plate thickness, hi,max is the maximum ply thickness, and λnorm is given

by Eq. (3.56). For the 2-ply case, the maximum ply thickness hi,max/a = 0.095, while, for the

10-ply case, hi,max/a = 0.025. Note that, here, an equality constraint should be satisfied. To

guarantee that all trial designs are feasible, the repair algorithm discussed in Section 4.1 will be

used.

In this problem, we will, once again, consider the fidelity sources depicted in Figure

95. Thus, once again, evaluation of the HF source takes 38.43 s, while evaluation of the LF

source takes 0.26 s. Figure 99 shows how these two sources correlate with each other for both

cases. For the 2-ply case, the sources are well-correlated (R2 = 0.96) and present an average

error of 6.35%. For the 10-ply case, correlation is slightly higher (R2 = 0.99) and the average

error is 4.15%. In both of these, the highest error is close to 20%.

A very similar problem was solved by Ho-Huu et al.[328] and Keshtegar et al.[51].
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Figure 98 – Cost of each phase of the process for the maximization of the buckling load of a
clamped laminate plate.

(a) Total time spent in each phase

(b) Percentage contribution relative to the total cost of each method
Source: the author

Figure 99 – Correlation between sources for the maximization of the buckling load of a laminate
considering different number of plies.

(a) 2-ply (b) 10-ply
Source: the author
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Here, the authors use a simple penalty approach to handle the equality constraint. Also, they

consider that hi,max/a = 0.095 for all cases. Finally, the authors consider ply thickness as a

continuous design variable and, thus, this is a mixed optimization problem. These authors

evaluate the buckling load of laminates using a recently proposed smoothed Mindlin plate

element, the CS-DSG3.

Ho-Huu et al.[328] uses a modified DE, which uses an adaptive mutation mechanism

and is able to handle mixed variable optimization. For the 2-ply and the 10-ply case, the modified

DE algorithm performs 1,600 and 7,860 evaluations, respectively. Keshtegar et al.[51], on the

other hand, uses a Kriging-improved PSO, where the model is used to assist PSO in defining

trial designs. For the 2-ply case, the authors managed to find the optimum with 470 function

evaluations. It is very important to note that, by considering thickness as a design variable,

the problem becomes much more complex. Kalita, Haldar and Chakraborty[155] comment that

thickness is a "hard-to-change" variable, as changing its values may required an extensive design

change in the structure and its components.

In this work, Surrogate-Based Optimization (SBO) will be applied using single and

multi-fidelity models. For single-fidelity models, the initial sample will have 12 HF points for

the 2-ply case and 20 HF points for the 10-ply case. For multi-fidelity models, initial sample will

be made of 6 HF and 24 LF points for the 2-ply case, and 10 HF and 40 LF points for the 10-ply

case.

Table 33 shows the optimum design obtained in this work for these two cases, where

Nply is the number of plies. Here, the optimum designs found by Ho-Huu et al.[328] and Keshtegar

et al.[51] are also shown, along with their buckling load factor using the FSDT. Note that, in both

cases, the optimum design found in this work was much better than those found on the literature,

especially for the 10-ply case. That being said, not all algorithms managed to find the optimum

design. For the 2-ply case, the best response was found using the COKRG-LCB. For the 10-ply

case, the best response was found using the COKRG-PI. Again, this is a very complex problem,

with a very large design space.

Table 34 shows the results for the 2-ply case for SBO using single and multi-fidelity

models. Note that, indeed, this problem is much harder than the previous ones for Surrogate-

Based Optimization (SBO). The average NRMSE for all cases was much higher. That being

said, in almost all cases, the average λnorm was still higher than the one found by the literature.

Here, the best approach in terms of accuracy was the HKRG-LCB, which showed an NRMSE of
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Table 33 – Optimum design for the maximization of the buckling load of a laminate square plate
considering different number of plies.

Nply Source
θi (°) λnorm
hi/a (×10−3) CS-DSG3 FSDT

2

Ho-Huu et al.[328] [-34/38]
26.324 25.331

[90/10]

Keshtegar et al.[51] [39/-34]
26.341 25.576

[8.92/91.08]

This work
[-41/40]

26.865
[8 92]

10
Ho-Huu et al.[328] [37/-37/-36/31/-1]s 37.884 37.348

[9.47/13.04/11.22/6.77/9.50]s

This work
[33/-36/-35/-33/-32]s 47.495
[10/6/13/13/8]s

2.19%, and the best approach in terms of efficiency was the VF-WEI, where the optimization

process took only 377 s, requiring only 11 HF function evaluations, on average. Note that, while

the VF-LCB showed an even lower time, the method was not able to define adequate designs, as

the average NRMSE was much higher than the other methods. With exception to the Variable

Fidelity (VF) approaches, the gain in efficiency by the use of MFMs is very marginal, or even

non-existent in some cases. Still, almost all multi-fidelity approaches presented higher accuracy

than their single-fidelity counterparts.

These averaged results were taken from Nr = 10 runs. Table 35 shows the highest

buckling load found by each approach. All approaches managed to find a design better than

the one from the literature (λopt = 25.576 using the FSDT) on at least one run. Also, note that,

in all cases, the best design found by multi-fidelity approaches were better than the ones from

their single-fidelity counterparts. The optimum design shown in Table 33 was found using the

COKRG-LCB approach, but the HKRG-LCB, HKRG-EI, HKRG-VF-LCB, HKRG-VF-EI, and

the HKRG-VF-WEI also managed to find designs very close to the optimum.

Figure 100 shows the boxplots for the NRMSE for this case. Here, the blue ×

denotes the average NRMSE. In general, the more consistent methods were the WEI-based

approaches, especially on MFMs. However, other methods stood out, namely KRG-EI, COKRG-

LCB, COKRG-EI, HKRG-LCB, HKRG-WEI, HKRG-VF-EI, and HKRG-WEI. In particular,

the HKRG-LCB managed to find designs very close to the optimum and presented a very low

variability. Furthermore, the HKRG-VF-EI and HKRG-VF-WEI also presented good results,
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Table 34 – Averaged results for the maximization of the buckling load of a 2-ply general
laminate.

Model Infill criterion λnorm NRMSE nev,h nev,l Time spent (s)

KRG

LCB 25.613 4.66% 37 (25) - 1061
PI 25.225 6.11% 37 (25) - 1038
EI 25.989 3.26% 32 (20) - 922

WEI 25.482 5.15% 37 (25) - 1063

COKRG

LCB 25.985 3.28% 32 (26) 50 (26) 1029
PI 25.610 4.67% 29 (23) 47 (23) 887
EI 26.112 2.80% 29 (23) 47 (23) 917

WEI 25.934 3.47% 33 (27) 51 (27) 1043

HKRG

LCB 26.277 2.19% 38 (32) 56 (32) 1222
PI 24.405 9.16% 31 (25) 49 (25) 934
EI 25.593 4.74% 31 (25) 49 (25) 960

WEI 26.115 2.79% 38 (32) 56 (32) 1166
VF-LCB 24.059 10.4% 9 (3) 44 (20) 321

VF-PI 25.338 5.69% 26 (20) 49 (25) 778
VF-EI 26.099 2.85% 12 (6) 47 (23) 400

VF-WEI 26.070 2.96% 11 (5) 49 (25) 377

Table 35 – Highest buckling load (λnorm,best) found by each approach for a 2-ply general
laminate.

Model LCB PI EI WEI VF-LCB VF-PI VF-EI VF-WEI

KRG 26.517 25.976 26.409 26.055 - - - -
COKRG 26.865 26.493 26.507 26.287 - - - -
HKRG 26.848 26.390 26.732 26.643 26.735 26.540 26.735 26.735

while also being much more efficient than the others.

Figure 100 – Boxplots for the NRMSE for the maximization of the buckling load of a 2-ply
general laminate.
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Table 36 shows the results for the 10-ply case. This time, the problem is even harder

due to the higher number of variables. Note that, even though the average NRMSE is relatively

high for all approaches, the average λnorm of almost all approaches were still higher than the

one from the literature, shown in Table 33, where λopt = 37.348 when evaluated via the FSDT.

The exception were the PI-based approaches and the HKRG-VF-LCB. Here, MFMs were not

more efficient than the single-fidelity Kriging model. This is because the sample size for this

problem is higher, which means that model building and evaluation are more expensive. Still,

MFMs required less HF evaluations, on average, to find the optimum. Since the cost for each

evaluation was not very expensive, it did not make up for the higher model complexity. However,

in terms of accuracy, MFMs performed exceptionally well when compared to the KRG model.

In particular, the HKRG-LCB and the HKRG-WEI showed a very low average NRMSE when

compared to the other approaches. In terms of efficiency, the HKRG-VF-WEI outperformed the

other approaches. However, it lost in terms of accuracy when compared to the COKRG-EI, the

HKRG-LCB, the HKRG-EI, and the HKRG-WEI.

Table 36 – Averaged results for the maximization of the buckling load of a 10-ply symmetric
laminate.

Model Infill criterion λnorm NRMSE nev,h nev,l Time spent (s)

KRG

LCB 37.561 20.9% 36 (16) - 1415
PI 36.784 22.6% 43 (23) - 1720
EI 37.617 20.8% 42 (22) - 1739

WEI 37.768 20.5% 36 (16) - 1394

COKRG

LCB 39.678 16.5% 31 (21) 61 (21) 1760
PI 37.199 21.7% 31 (21) 61 (21) 1738
EI 41.084 13.5% 31 (21) 61 (21) 1833

WEI 40.081 15.6% 30 (20) 60 (20) 1702

HKRG

LCB 44.390 6.5% 32 (22) 62 (22) 1807
PI 36.657 22.8% 28 (18) 58 (18) 1442
EI 41.747 12.1% 35 (25) 65 (25) 2037

WEI 44.559 6.2% 33 (23) 63 (23) 1919
VF-LCB 32.594 31.4% 10 (0) 52 (12) 672

VF-PI 37.092 21.9% 26 (16) 57 (17) 1363
VF-EI 39.364 17.1% 17 (7) 61 (21) 1206

VF-WEI 40.540 14.6% 14 (4) 55 (15) 862

Figure 101 shows the model building cost for different models. Again, model

building cost is much higher on MFMs due to the higher sample size. However, this also

contributes to their major gain in accuracy. Therefore, there is a clear trade-off here. While the

process for the Kriging model starts with only 20 HF data points, MFMs have 10 HF and 40 LF
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points, which means that nh +nl = 50. Again, model complexity is entirely dependent on the

sample size.

Figure 101 – Time spent for the building phase for each model for the maximization of the
buckling load of a 10-ply symmetric laminate.

Source: the author

This becomes even more clear in Figure 102. Again, we can not see any gain

in efficiency on MFMs, but their gain in accuracy is very noticeable. Still, the VF methods,

presented a lower accuracy in this problem, once again. That being said, the VF-WEI presented a

major reduction in computational cost, while also presenting a gain in accuracy when compared

to some non-VF methods. For this problem, on most MFMs, model building represented almost

half of the total process cost. However, one should note that these models still showed a reduction

on the number of HF evaluations performed. If HF analysis cost was higher, building cost could

be less important for the total optimization cost. Thus, MFMs would be able to show a gain in

efficiency even for this problem.

Table 37 shows the best response found by each method for the Nr = 10 runs

performed. Note that the best design shown in Table 33 was found by the COKRG-PI method.

However, a variety of approaches managed to find very close to the optimum designs. The

exceptions were the HKRG-PI and the HKRG-VF-LCB. In particular, the latter struggled at

defining when a HF data points should be added. This can be seem on Table 36, where, on

average, no HF data points was added during the entire optimization process. Finally, Figure 103

shows the boxplots for the NRMSE for all approaches. Here, we can see that the HKRG-LCB

and the HKRG-WEI were, indeed, the more robust approaches, showing lower errors in most

cases.
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Figure 102 – Cost of each phase of the process for the maximization of the buckling load of a
10-ply symmetric laminate.

(a) Total time spent in each phase

(b) Percentage contribution relative to the total cost of each method
Source: the author

Table 37 – Highest buckling load (λnorm,best) found by each approach for a 10-ply symmetric
laminate.

Model LCB PI EI WEI VF-LCB VF-PI VF-EI VF-WEI

KRG 45.959 46.716 47.180 46.818 - - - -
COKRG 47.328 47.495 47.147 46.561 - - - -
HKRG 47.181 37.579 47.324 47.192 34.799 45.440 47.140 46.827
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Figure 103 – Boxplots for the NRMSE for the maximization of the buckling load of a 10-ply
symmetric laminate.
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8 CONCLUSION

This work investigated the efficient optimization of composite structures using Multi-

Fidelity Models (MFMs). Two different models, the Co-Kriging and the Hierarchical Kriging,

were compared, along with the single-fidelity Kriging model for comparison purposes. Four dif-

ferent acquisition functions were compared: the Lower Confidence Bound (LCB), the Probability

of Improvement (PI), the Expected Improvement (EI), and the Weighted Expected Improvement

(WEI). For the Hierarchical Kriging, Variable Fidelity (VF) versions of these functions were also

tried out, where an effective method was applied for the selection of the fidelity of the new point.

When necessary, different constraint-handling methods were also compared, namely the Direct

approach, the Probability of Feasibility (PF), and the feasibility functions proposed by Tutum,

Deb and Baran[62], Bagheri et al.[63], and Sohst, Afonso and Suleman[297]. These feasibility

functions are denominated here as FFT, FFB, and FFS, respectively.

To allow for an effective study over the approaches employed in this work, methods

for optimization using MFMs were implemented in BIOS, an academic software developed

in C++ on LMCV. Implementation included the creation of classes related to MFMs, namely

Co-Kriging and Hierarchical Kriging. Different acquisition functions and constraint-handling

methods not yet present on BIOS were added.

Important extensions were also added to the analysis software FAST, also developed

in C++ by LMCV collaborators. These allowed for the adequate analysis of FG and laminate

structures. Structural responses were assessed using the Isogeometric Analysis (IGA), where

cubic NURBS meshes were used. Both 3D solid and 2D theories were employed. For the latter,

a shallow shell element based on the Reissner-Mindlin plate theory and Marguerre strains was

employed[82].

In this work, applications ranged from simple mathematical benchmarks, to engi-

neering analytical optimization problems, to numerical FG and laminate problems. Here, special

focus was given to eigenvalue problems, but the examples managed to study a wide range of

relevant aspects for the efficient optimization using MFMs. The effect of dimensionality, corre-

lation between sources, and average error between sources was evaluated. Also, optimization

using expensive constraints and discrete designs was performed with great success.

Co-Kriging behaved well, showing better accuracy than the Kriging model. However,

we showed that, when the LF source is related to the HF source by the addition of a constant

factor, the model is not able to provide accurate approximations. Also, there is no promising
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method to add points in an efficient manner. Hierarchical Kriging showed a high average NRMSE

for some problems when using non-VF EI or WEI. However, the VF-EI and the VF-WEI showed

very good results for most problems, as well as the VF-LCB approach. These also often showed a

major reduction in computational time, since the number of HF evaluations required was reduced

even further. These methods, however, did not seem to provide any improvement over non-VF

methods when sources present a lower correlation.

Regarding adaptive sampling criteria, the LCB method presented a very good accu-

racy, showing the lowest average NRMSE for most problems. However, it was often the most

time consuming method, since it often required more HF evaluations. The EI and the WEI also

showed good results. The PI, however, rarely managed to achieve low average NRMSE values,

and it was unable to find the optimum for the majority of the analytical and numerical problems.

Regarding optimization using expensive constraints, the LCB method was not able

to find the optimum. Here, we considered the adaptive penalty approach, using the model of

the constraint function to assess the feasibility of the design. However, the method was not

able to show consistent results. Appropriate methods should be derived and tested in future

works. For instance, one may try to adapt probabilistic infill criteria to the LCB[297]. On the other

hand, excellent results were found using the EI, especially when considering the Probability of

Feasibility (PF) or the feasibility functions proposed by Sohst, Afonso and Suleman[297] (with

n = 0.50).

Optimization considering discrete designs also showed encouraging results using

MFMs. Due to the inherent complexity of these problems, it is easier to see the gain in accuracy

when comparing MFMs to the single-fidelity Kriging model. Found results were also much

better than those from the literature, and the methods seem to be indeed very promising for the

optimization of laminate composites. Performing adaptive sampling via the EI showed the most

consistent results, but the LCB, the WEI, and even the PI showed good results in many cases.

However, further adaptations could still be made to the methodology to better deal with discrete

spaces.

In general, Multi-Fidelity Models (MFMs) required a lower number of HF evalua-

tions to find results closer to the optimum. Good results were also found in higher dimensional

problems, in optimization considering expensive constraints, and in discrete optimization. On

the other hand, depending on the cost of the HF analysis, one may not see a gain in efficiency.

This occurs because, since MFMs require more sampling points, model complexity is much
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higher. Thus, the cost for evaluating and, especially, building the model is much higher.

The following suggestions can be further explored in future works:

a) Gradually change correlation and/or average relative difference between sources to better

understand their importance for the optimization process;

b) Use different ratios of HF and LF sampling points for the same problem;

c) Further test and study how different constraint-handling methods behave for SBO using

MFMs. In particular, the feasibility function proposed by Sohst, Afonso and Suleman[297]

seems very promising, but further testing with different n is still required;

d) Implement and test different approaches for performing optimization with expensive

constraints using the LCB;

e) Implement and test more appropriate methods for dealing with discrete individuals using

GP models;

f) Optimize laminate problems considering the material and the thickness as design variables;

g) Implement and test different approaches to assist in optimizing higher dimensional prob-

lems, such as Proper Orthogonal Decomposition (POD);

h) Use MFMs for the optimization of Variable Stiffness Composites (VSCs);

i) Use appropriate methods to perform multi-objective optimization using MFMs.
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