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Abstract— This work presents an LPV (Linear Parameter Varying) controller design for the trajectory track-
ing problem of nonholonomic wheeled mobile robots (NWMR). The scheduling varying parameters are defined
as the feedforward velocities which the robot has to track according to a desired trajectory. The proposed model
also includes the robot’s motion over a tilted environment. A tilt-compensation scheme is used to maintain the
ground speed of the robot if the robot is subjected to an inclination. The compensation is computed on the
feedforward velocities. For practical purposes, the inclination angle is measured by an Inertial Measuring Unit.
Thus, a sensor fusion model is proposed to fuse data from an accelerometer and a gyroscope. Simulation results
are presented in order to evaluate the performance of the controller, sensor fusion and tilt-compensation models.

Keywords— LPV Control, Mobile Robot Control, Sensor Fusion

Resumo— Este trabalho descreve um controlador LPV (Linear Parameter Varying) projetado para o problema
de seguimento de trajetória de robôs móveis não holonômicos. Os parâmetros variantes são definidos como sendo
as velocidades de feedforward que o robô deverá seguir para o seguimento de uma trajetória desejada. O trabalho
proposto também inclui um modelo de navegação de robôs não-holonômicos para planos inclinados. Um esquema
de compensação de inclinação é usado para manutenção da velocidade planar (Ground Speed) caso o robô esteja
se movimentando em um plano inclinado. A compensação é realizada para as velocidades de feedforward. Para
aplicações práticas, o ângulo de inclinação é medido por uma IMU (Inertial Measuring Unit). Portanto, um
modelo de fusão sensorial é proposto fundir dados de um acelerômetro e um giroscópio. Resultados de simulação
são apresentados para validação do desempenho do controlador, da fusão e da compensação de inclinação.

Palavras-chave— Controle LPV, Controle de Robô Móvel, Fusão Sensorial

1 INTRODUCTION

Research on autonomous vehicles, robots or
automated-guided vehicles (AGV) have increased
over the last years as the technology further facil-
itated embedded solution of complex control sys-
tems and algorithms. For such applications, it
is useful the study of different control strategies
which would better suit a specific problem. Ter-
restrial autonomous vehicles, for example, may
have its trajectory generated by a path planning
algorithm based on some objective, e.g., explo-
ration and obstacle avoidance. The trajectory
tracking of the planned path is a classical mo-
bile robot problem that has been studied over the
past decades. Path planning in uncontrolled en-
vironments have shown to be a challenging task
depending on the constraints of the autonomous
vehicles, which further motivates the study of con-
trol strategies for the trajectory tracking problem.

Many different strategies for trajectory track-
ing of autonomous vehicles have been developed
over the last years. In (Ramı́rez-Mart́ınez et al.,
2014) an adaptive controller is proposed based on
the changing motion of a non-holonomic wheeled
mobile robot (NWMR). In (Bui et al., 2013) a
Lyapunov-based controller is proposed for trajec-
tory tracking of an AGV using a laser sensor to
follow a desired trajectory. In (Fan et al., 2012)
a straight-line following algorithm is proposed us-

ing PID controller and Fuzzy control. A Linear
Parameter Varying (LPV) controller for a four-
wheeled omnidirectional vehicle is proposed in
(Rotondo et al., 2015) as well as a fault-tolerant
scheme that maintain system stability in a case of
a faulty actuator.

Trajectory tracking of a NWMR is a non-
linear problem that may be tackled using either
non-linear (Klancar et al., 2005) or linear (Forte
et al., 2018) controllers over a linearized operat-
ing point. A Lyapunov-based stability study is
performed in (Tzafestas, 2014), where it is proved
that a simple set of positive error state feedback
gains may guarantee system stability. The main
problem, however, lies in maintaining a desired
closed-loop performance. Nonetheless, if the non-
linear system is modeled as an LPV model, an
LPV controller is able to guarantee a desired per-
formance over a space of operating points (Boyd
et al., 1994),(Nogueira et al., 2018).

Yet another practical problem arises when one
needs to correctly estimate the pose of the mo-
bile robot. Some works propose strategies that
increase localization precision based on vision sen-
sors (Alatise and Hancke, 2017), Global Position-
ing System (GPS) (Skobeleva et al., 2016), or
Light Detection and Ranging (LiDAR) systems
(Lima et al., 2016). Most works use the effec-
tive sensor fusion techniques and Inertial Measur-
ing Units (IMUs) to combine sensory data from
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different sensors so that the limitation of individ-
ual sensors are compensated. The work in (Forte
et al., 2018), for example, proposes a sensor fusion
technique to estimate the heading of a NWMR us-
ing a magnetometer and a gyroscope which copes
with the heavily noisy magnetic measurements
and biased gyroscopic measurements.

In this paper it is considered a three-
dimensional model of a NWMR able to include the
robot’s movement over a tilted terrain. A LPV-
based control scheme driven to a NWMR subject
to variations on reference velocities, which may
be caused by both reference changes and tilt com-
pensation. The former from the forward portion
control law the latter from pitch variations when it
moves over irregular terrain. For such purpose, an
inertial measurement unit (IMU) under a sensor
fusion model framework is applied to accurately
estimate the actual pitch angle.

2 MOBILE ROBOT KINEMATIC
MODEL

Traditional NWMR forward kinematic models
take in linear and angular velocities and describe
motion over a navigational plane XY , through the
well-established model (Kanayama et al., 1990)ẋẏ

θ̇

 =

cosψ 0
sinψ 0

0 1

 · [v
ω

]
, (1)

where v and ω are linear velocities and angular
velocities with respect to the body frame of the
robot, and [ẋ ẏ θ̇] are velocities on the navigational
frame. Such model can be extended to take into
account the pitch angle θ so inclination may be
included. Such approach is useful if a NWMR
is intended to navigate through irregular terrains
so climbing moves (up and down) occur naturally
as the mobile follows a desired path. Using an
inertial to navigational frame rotation matrix, one
describes the kinematic motion with respect to a
linear velocity on the body frame byẋẏ
ż

 =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

v0
0


(2)

=

cosψ cos θ − sinψ − cosψ sin θ
sinψ cos θ cosψ − sinψ sin θ

sin θ 0 cos θ

v0
0


(3)

=

cosψ cos θ
sinψ cos θ

sin θ

v0
0

 (4)

Fig. 1 shows the angles associated with the stud-
ied NWMR kinematic model. Note that pitch an-
gle θ for rotation does not follow traditional aero-
nautics direction, but the opposite one instead, so

 

Yaw Frame Rotation

Pitch Frame Rotation

Navigational Frame

Figure 1: Robot Frame Rotation

one should take its transpose in order to get the
model in Eq. (2).

The angular velocity is simply included in (4)
to describe mobile robot yaw motion. The com-
plete model is given by

ẋ
ẏ
ż

θ̇

 =


cosψ cos θ 0
sinψ cos θ 0

sin θ 0
0 1

 . [vω
]

(5)

Model (5) describes three-dimensional motion of
a NWMR subjected to pitch and yaw rotations.
Although the new state z appears explicitly in the
model, it should not affect any trajectory tracking
algorithm used for (1). This is simply due to the
fact that there is no point in tracking z reference
as the NWMR is physically unable to follow it.

Reference tracking controllers are commonly
designed using (1) aiming to obtain a nonlinear
control law. Performance tracking from linear
control specs are reachable for a linear model ob-
tained by taking body frame referenced errors for
the XY -plane (Klancar et al., 2005). The same
principle is extended herein to include pitch vari-
ations leading to the extended error model

e =

e1e2
e3

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 .
xr − xyr − y
ψr − ψ

 ,
(6)

where pr = [xr yr θr]
T are reference trajectory

coordinates and p = [x y θ]T are current robot
coordinates. Taking time derivative of (6) one gets ė1

ė2
ė3

 =

 cose3 0
sine3 0

0 1

[ vr
ωr

]
+

 −1 e2
0 −e1
0 −1

[ uv
uω

]
.

(7)
A commonly used control input veloci-

ties which assures stability (Kanayama et al.,
1990),(Tzafestas, 2014) of (7) is given by

uv = vrcose3 − vv
uω = ωr − vω

(8)

where vr, ωr are feedforward velocities and vv, vω
are velocities from a closed-loop controller. Using

DOI: 10.17648/sbai-2019-111174465

http://dx.doi.org/10.17648/sbai-2019-111174


inputs (8) on (7) yields following non-linear model ė1
ė2
ė3

 =

 0 uω 0
−uω 0 0

0 0 0

 e1
e2
e3


+

 0
sine3

0

uv +

 1 0
0 0
0 1

[ vv
vω

]
.

(9)

Finally, linearizing system (9) over operating
point ė1 = ė2 = ė3 = vv = vω = 0 leads to

ė =

 0 ωr 0
−ωr 0 vr

0 0 0

 e+

1 0
0 0
0 1

 . [vv
vω

]
, (10)

where ωr and vr are feedforward linear and angu-
lar velocities from inverse kinematics and v and
ω are linear and angular velocities of the mobile
robot. The general reference tracking scheme of
a NWMR is shown in Figure 2. It can be readily
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Figure 2: Reference Tracking Scheme

seen from (10) that different feedforward veloc-
ities lead to different models. Linear controller
from (Forte et al., 2018) is suitable for a constant
set of velocities but may exhibit lack of robustness
if variations in feedforward inputs are needed. So
that, natural choices include either non-linear or
LPV controllers which are capable of keeping a
desired performance over a set of operating con-
ditions. This paper follows the LPV approach to
properly schedule the linear velocity, as becomes
clear in the controller design at the next section.

2.1 Tilt Compensation

Feedforward inputs vr, ωr are obtained from the
feedforward loop according to the desired refer-
ence tracking from the path planning layer. Of-
ten simple planning rules do not consider elevation
which may lead to velocities change in the lower
control layer as tilt variations happen. There-
fore, in order to track theXY -plane linear velocity
from the feedforward control law it is mandatory
to monitor the pitch angle from the mobile robot,
so that feedforward inputs may be updated. For
such goal it is proposed in this paper control law

vr =
vr0

cos θ
(11)

where vr0 is the base feedforward velocity given by
the reference trajectory block. Proposed feedfor-
ward law seamlessly compensates for irregularity
on terrain as if the robot were navigating over a
perfect plane, i.e., it is able to keep constant XY -
plane velocity (ground speed).

3 LPV CONTROLLER DESIGN

The discussion in the previous section clearly pro-
vokes changes in linear reference velocity. So that,
it is desirable the controller to cover all possible
feedforward velocities as irregularities on terrain
appear. For this goal, a polytopic LPV approach
was chosen with polytopes defined by matrix (10)
at each possible operating points.

The LPV system is defined by

ė = A(p(t))e+Bu =

=

 0 ωr 0
−ωr 0 p(t)

0 0 0

 e+

1 0
0 0
0 1

 , (12)

where p(t) ∈ [vrmin vrmax] defines the mini-
mum and maximum possible feedforward veloci-
ties. The objective is to find an LPV controller
K(p(t)) that guarantees both stability and per-
formance over the polytopic region. Moreover, al-
though there is no assumption that wr varies, the
robot does exhibit no problems when performing
non-straight trajectories.

This problem can be approached using Lya-
punov stability, linear matrix inequalities (LMIs)
and convex optimization tools. Given a system
closed-loop ẋ = (An − BK)x, the existence of a
quadratic function on the form

V (x) = xTWx > 0, (13)

the satisfaction of

V̇ (x) = xT [(An−BK)TW +W (An−BK)]x < 0,
(14)

where W is a semi-definite-positive matrix, is
a sufficient condition that assures stability of the
system (Boyd et al., 1994). The polytopic prob-
lem is stated when An refers to each vertex of the
polytopic region, whose solution is to find a sin-
gle matrix W that satisfies (13) and (14) of each
vertex.

Inequalities (13) and (14) can be rewritten in
an LMI form as

W > 0 (15)

AnW +WAn −BY − Y TBT < 0 (16)

with K = YW−1. The convex optimization
solvers would compute W and Y which would
yield the desired controller, placing the closed-
loop poles within the left-half plane. Solving the
aforementioned inequalities alone, however, would
simply return stabilizing state feedback gains. It
is preferable to limit the region where the closed-
loop poles are placed using the D-Stability so that
some performance criteria are achieved.

3.1 D-Stability

The D-Stability concept consists in defining a cus-
tom stability region instead of the entire complex
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left-half-plane in order to assure desired closed-
loop behavior. The chosen regions are described
in an LMI form as

AnW +WATn −BY − Y TBT − 2hW < 0 (17)[
sinφA1 cosφA2

cosφA3 sinφA4

]
< 0 (18)[

−rW WATn − Y TBT
AnW −BY −rW

]
< 0 (19)

where

A1 = (AnW +WATn −BY − Y TBT )

A2 = (AnW −WATn −BY + Y TBT )

A3 = (WATn −AnW +BY − Y TBT )

A4 = (AnW +WATn −BY − Y TBT ).

LMI (17) defines the region to the left of verti-
cal line σ = h. LMI (18) defines a conic section
with its vertex at the origin of complex plane and
internal angle of 2φ. Finally, LMI (19) defines a
circular region centered at the origin with a ra-
dius of r. The aforementioned LMIs effectively
substitute inequality (16) in order to define the
D-Stability region.

Since it is a polytopic problem, D-Stability
has to be solved for each vertex. The LPV con-
troller is computed by using the affine relation
Y = Y0 + γY1, and consequently, K(γ) = K0 +
γK1, where K0 = Y0W

−1 and K1 = Y1W
−1 .

The problem was modeled using YALMIP parser
from (Lofberg, 2004) and solved using the semi-
definite programming solver SeDuMi 1.3 from
(Sturm, 1999). The proposed controller diagram
scheme is shown in Figure 3.
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Figure 3: Proposed Scheme

4 FUSION MODEL FOR PITCH
ESTIMATION

The estimation of an object’s pitch angle may
be obtained using accelerometers or gyroscopes.
Since accelerometer sensors are able to detect the
acceleration of gravity along its axes, it is possi-
ble to use such effect to compute either the roll or
pitch angles based on the distribution of the grav-
ity vector along the body axes of an IMU. This
behavior can be modeled using similar rotation
matrices to the ones used for deriving the incli-
nation model of the mobile robot. Let ~g be the
gravity vector defined on an inertial frame, the

accelerometer output am of a rotated IMU device
due to gravity is given by (note the gravity does
not affect yaw rotation, thus it is not used)

am = RBI (φ)RBI (θ)~g

=

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

0
0
g


=

 − sin θ
cos θ sinφ
cos θ cosφ

0
0
g

 =

AxAy
Az


(20)

The computation of pitch angle θ can be achieved
using

θa = atan2(−Ax,
√
A2
y +A2

z). (21)

Accelerometer measurement vector am includes
unwanted influences such as Coriolis effect, com-
ponents due to the acceleration of the IMU device,
heavy white-Gaussian noise and bias, depending
on the quality of the IMU. Solely relying on (21)
would compromise any system which uses θ i.e.
the controller and pose estimation (5).

Gyroscopes, on the other hand, normally mea-
sures angular velocities without much noise. The
pitch angle can be computed using simple integra-
tion

θg =

∫
ωy. (22)

However, gyroscopes present a time-varying bias
intrinsic to its construction. Integration of a signal
with a bias would corrupt any estimation after a
while.

This motivates the use of a sensor fusion
model that would combine the advantages of both
accelerometer and gyroscope. The fusion model is
similar to the yaw estimation presented in (Forte
et al., 2018), but with the measurement angle
coming from the accelerometer. The model con-
sists in estimating the time-varying bias from the
gyroscope and removing it from the integration
based on the accelerometer measurement. The
state-space discrete-time model is described by[

θ
bg

]
k

=

[
1 −Ts
0 1

] [
θ
bg

]
k−1

+

[
Ts
0

]
ωy + η

′

g (23)

yk =
[
1 0

] [ θ
bg

]
k−1

+ ηa (24)

where Ts is the sampling time, bg is the estimated
gyroscope bias, ωy is the angular velocity around
the pitch axis, η′g is the process noise associated
with the gyroscope measurement and ηa is the
measurement noise from accelerometer.

Kalman filtering is commonly used on sen-
sor fusion since the stochastic properties of the
problem are embedded into the optimal estima-
tor. Thus, it is possible to include the noise prop-
erties of a sensor into the filter’s model by com-
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puting the variance of its noise. Its algorithm re-
quires the covariance matrices associated with the
model (23), (24) as well as the model itself. The
covariance matrices used are the same as in (Forte
et al., 2018), with

Qn = q

[
T 2
s

2 0
0 Ts

]
, Rn = V ar(ηa) (25)

where Qn is the process covariance matrix and Rn
is the measurement noise covariance with q as a
tuning parameter adjust the filter’s noise rejection
and bandwidth. The value used for the current
study is q = 0.01.

5 SIMULATION RESULTS

Simulations were performed for the proposed LPV
controller and compared with the well known non-
linear one (Klancar et al., 2005) with tuning gains
gk = 40 and ζ = 0.6 and the recently proposed
linear controller from (Forte et al., 2018). All the
controllers in this study have the nonlinear portion
control law modified to include (11) so the pitch
angle information is fed back. For such analysis,
two different trajectory tracking paths with tilt
variations were considered.

The LPV controller was designed so that
closed-loop poles are within the D-region defined
by h = −1.7 , r = 5 and φ = 25o. The chosen
interval for the parameter is p(t) ∈ [0.2 0.5] Com-
puted LPV controller is given by

K(p(t)) =

[
2.85 0 0

0 41.54 4.66

]
+ (26)

p(t)

[
0 0 0
0 −4.37 7.38

]
.

The first trajectory consists of four straight lines
with an inclination of θ = π

6 upward, followed
by another of θ = −π6 downward. Base feedfor-
ward velocities are varied throughout the refer-
ence tracking. Fig. 4 shows the top-down view
of the pose of the robot and Fig. 5 shows the
three-dimensional pose. Feedforward velocities
with tilt-compensation are presented in Fig. 6.
Control inputs are shown in Fig. 7, pose errors are
shown in Fig. 8 and the sensor fusion estimation
of robot’s pitch is shown in Fig. 9. Note that the
robot feedforward velocities belong to the poly-
tope of the LPV controller. It can be seen that
the LPV controller is superior to the linear con-
troller as the latter is designed considering only a
single set of feedforward velocities. The non-linear
controller also exhibited similar performance com-
pared to LPV controller.

For the second simulation, two straight lines
and a curved trajectory were tracked. The same
controllers from first simulation were used. Figure
10 and 11 show the trajectory, and Fig. 12 shows
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Figure 9: Robot Pitch Estimation

the pose errors. Note that a similar behavior is
achieved when compared to the previous trajec-
tory. The LPV controller is also able to tackle
curved trajectories successfully. There is no need
to include feedforward angular velocities on model
(12) as long as small angular velocities are used.

6 CONCLUSIONS

The paper presented a NWMR model that consid-
ers motion over tilted planes. A tilt-compensation
scheme is used to maintain a constant robot’s
ground speed with respect to its navigational
frame of reference in case of trajectory tracking
over a tilted surface. An LPV controller is de-
signed so that an interval of feedforward velocities
may be used while maintaining a desired closed-
loop performance. The model is validated by in-
troducing disturbance on the pose of the robot
and by observing its rejection.

The proposed controller is compared to both
a classical non-linear and a linear schemes. While
the non-linear controller may be tuned to achieve
faster disturbance rejection, its tuning rules are
not as intuitive as the linear and LPV con-
trollers, whose performance are tuned using the
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The curves showed the faster response of the
LPV controller and that it is not affected by the
different settings of feedforward velocities as long
as they are within the specified polytope.

Future work will study different NWMR so
that further non-linearities are included within an
LPV model to increase the controller’s robustness,
as well as the LPV synthesis to merge controller
design with NWMR model in order to cope with
uncertainties on the robot’s dimensions.
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