

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA METALÚRGICA E DE MATERIAIS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA E CIÊNCIA DE MATERIAIS

HELOINA NOGUEIRA DA COSTA

CIMENTO ÁLCALI ATIVADO À BASE DE CINZAS DO CARVÃO MINERAL E ESCÓRIA DE ACIARIA

FORTALEZA

2022

HELOINA NOGUEIRA DA COSTA

CIMENTO ÁLCALI ATIVADO À BASE DE CINZAS DO CARVÃO MINERAL E ESCÓRIA DE ACIARIA

Tese apresentada ao Programa de Pós-Graduação em Engenharia e Ciência de Materiais da Universidade Federal do Ceará, como requisito parcial à obtenção do título de Doutora em Engenharia e Ciência de Materiais. Área de concentração: Processo de Transformação e Degradação dos Materiais.

Orientador: Prof. Dr. Ricardo Emílio F. Quevedo Nogueira Coorientador: Prof. Dr. Antonio Eduardo B. Cabral

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) au

C872c Costa, Heloina Nogueira da. CIMENTO ÁLCALI ATIVADO À BASE DE CINZAS DO CARVÃO MINERAL E ES ACIARIA / Heloina Nogueira da Costa. – 2022. 217 f. : il. color.

Tese (doutorado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de em Engenharia e Ciência de Materiais, Fortaleza, 2022.

Orientação: Prof. Dr. Ricardo Emílio F. Quevedo Nogueira. Coorientação: Prof. Dr. Antonio Eduardo Bezerra Cabral.

1 cimento 2 álcali-ativação 3 nastas 4 geonolímero 5 cinza volante I Título

HELOINA NOGUEIRA DA COSTA

CIMENTO ÁLCALI ATIVADO À BASE DE CINZAS DO CARVÃO MINERAL E ESCÓRIA DE ACIARIA

Tese apresentada ao Programa de Pós-Graduação em Engenharia e Ciência de Materiais da Universidade Federal do Ceará, como requisito parcial à obtenção do título de Doutora em Engenharia e Ciência de Materiais. Área de concentração: Processo de Transformação e Degradação dos Materiais.

Aprovada em: ___/ ___/

BANCA EXAMINADORA

Prof. Dr. Ricardo Emílio F. Quevedo Nogueira (Orientador) Universidade Federal do Ceará (UFC)

> Prof. Dr. Antonio Eduardo Bezerra Cabral Universidade Federal do Ceará (UFC)

Prof. Dr. Pierre Basílio Almeida Fechine Universidade Federal do Ceará (UFC)

Prof. Dra. Ana Paula Kirchheim Universidade Federal do Rio Grande do Sul (UFRS)

> Prof. Dr. Marcelo de Souza Picanço Universidade Federal do Pará (UFPA)

A Deus.

Aos meus pais, familiares e amigos.

AGRADECIMENTOS

A Deus, toda minha gratidão.

A meu pai Francisco, à minha mãe Pastora e a todos meus familiares. Agradeço especialmente ao meu noivo, Jardlon Costa, pelo apoio, pela motivação, pelo cuidado como companheiro e como profissional da saúde, que me ajudou a lidar com a síndrome da fibromialgia nesse período, e, principalmente, por estar diariamente compartilhando sonhos comigo.

Ao Prof. Dr. Ricardo Emílio e ao Prof. Dr. Eduardo Cabral por terem acreditado em mim, por acreditarem na presente pesquisa e por todo o suporte, pela amizade, pelos conselhos e pelas orientações no decorrer desse percurso.

Aos professores Dr. Pierre Fechine, Dra. Ana Paula Kirchheim e Dr. Marcelo Picanço pelo tempo disponibilizado para participar da banca examinadora, pelas valiosas colaborações e sugestões.

À Universidade Federal do Ceará (UFC), pela formação propiciada nos cursos de mestrado e doutorado. Agradeço especialmente ao Campus de Crateús, pelo acolhimento quando eu estava nos primeiros semestres dessa jornada, e por me permitir conciliar a docência e a pós-graduação. Aos colegas professores do curso de engenharia civil, muito obrigada.

À Companhia Siderúrgica do Pecém (CSP) e à usina termelétrica Energia Pecém -EDP pela colaboração e disponibilização dos subprodutos para o desenvolvimento da pesquisa, e à indústria de cimento Apodi pelo suporte laboratorial.

Aos professores(as) Dra. Suely Barroso, Dra. Sandra Soares, Dr. Marcos Sassaki e Dr. Marcelo Medeiros pela colaboração.

Aos colegas, Milena, Rafaela, Janine, Carla, Luis França, Lucas Benício, Daniel, Lucas Lima, Phablo, Denilck, Adrielton e Marília, pelo apoio, pelas reflexões e sugestões durante essa trajetória.

Aos técnicos e colaboradores dos laboratórios, Raquel Argonz (Laboratório de Materiais Cerâmicos), Lucas Samuel (Laboratório de Materiais Avançados), Wesley e Jonhy (Laboratório de Química dos Ligantes), João e Rodrigo (Laboratório de Caracterização de Materiais), César (Laboratório de Raios X), Marlos (Central Analítica), Assis e Ricardo (Laboratório de Solos), Helano (Laboratório de Materiais de Construção Civil) e, especialmente, ao Paulo Vítor e ao Manoel, pelo apoio no Laboratório de Materiais de Construção Civil (LMCC), durante o período mais restrito da Pandemia de COVID-19, quando a Universidade adotou o trabalho remoto. Também agradeço ao Prof. Eduardo Cabral, como coordenador do LMCC, por ter permitido o acesso e a execução da parte experimental nesse período, respeitando as medidas sanitárias exigidas no período.

A emoção de agradecer a todos não cabe no peito. Primeiramente, pelo período atípico em que a pesquisa foi desenvolvida, em meio a tanta incerteza e o medo das implicações da Pandemia de COVID-19, que envolvia tanto às limitações de recursos, quanto o temor à própria doença. Segundo, pelo reconhecimento dessa rede de apoio tão importante para desenvolver qualquer projeto. A todos aqui citados e aqueles não citados, que estão comprometidos com o desenvolvimento da ciência e da educação: muito obrigada!

"A nossa curiosidade e a nossa vontade de realizar nos movem, nos fazem avançar, mesmo que imperfeitamente."

RESUMO

A disponibilidade de escórias siderúrgicas e de cinzas do carvão mineral na Região Metropolitana de Fortaleza (RMF) motiva a busca pelo reaproveitamento e por aplicações desses materiais em novas cadeias produtivas. Nessa perspectiva, tem-se a possibilidade de utilização desses subprodutos como precursores de cimentos álcali-ativados, no entanto, é necessário investigar a viabilidade de uso dos mesmos. Portanto, a presente pesquisa tem como objetivo obter cimentos álcali-ativados à base de cinza volante, cinza pesada, escória de dessulfuração KR (Kanbara Reactor) e escória de aciaria BOF (Basic Oxygen Furnace), com uso de soluções de silicato e hidróxido de sódio. Inicialmente, realizou-se a caracterização química, física e mineralógica dos subprodutos na forma de pó. Em seguida, foram realizados estudos preliminares produzindo pastas cimentícias. Em outra etapa, realizou-se o estudo de propriedades no estado fresco, do comportamento mecânico e das características microestruturais obtidas de misturas binárias e unárias. Os principais resultados obtidos indicam que a cinza pesada e as escórias de aciaria possuem potencial uso como precursores para cimentos álcali-ativados, principalmente, quando combinados com a cinza volante. Observou-se que as pastas obtidas da escória KR apresentaram propriedades cimentantes e a formação de gel C-A-S-H (aluminossilicato de cálcio hidratado), embora com resistências à compressão abaixo de 7 MPa. O cimento produzido com a combinação de 75% de cinza volante e 25% de cinza pesada apresentou comportamento mecânico satisfatório para aplicações estruturais, com resistência à compressão, aos 28 dias, de 47,4 MPa. A sua microestrutura é formada por gel tipo N-A-S-H (aluminossilicato de sódio hidratado). O cimento produzido com 50% de cinza volante e 50% de escória BOF atingiu resistência à compressão, aos 28 dias, de 62,3 MPa, também indicado para aplicações estruturais. A incorporação de escória BOF promove a formação de géis do tipo C-(N)-A-S-H (aluminossilicato de cálcio-sódio hidratado) e C-A-S-H. Por fim, os cimentos obtidos da mistura da cinza pesada e da escória de aciaria BOF apresentaram resistências à compressão entre 10 MPa e 13 MPa, sendo indicado para compósitos não estruturais. Também apresentaram a formação de géis de aluminossilicatos, principalmente, nas superfícies das partículas. Portanto, atesta-se a viabilidade de obtenção de cimentos álcali-ativados a partir das cinzas do carvão mineral e das escórias siderúrgicas estudadas.

Palavras-chave: cimento; pastas; álcali-ativação; geopolímero; cinza volante; cinza pesada; escória BOF; escória KR

ABSTRACT

The availability of steel slag and coal ash in the Metropolitan Region of Fortaleza (RMF) motivates the search for reuse and applications of these materials in new production chains. In this perspective, the possibility of using these by-products as precursors of alkali-activated cements, however, it is necessary to investigate their feasibility of use. Therefore, the present research aims to obtain alkali-activated cements based on fly ash, bottom ash, KR steel slag (Kanbara Reactor) and BOF steel slag (Basic Oxygen Furnace), using sodium silicate and hydroxide solutions. Initially, the chemical, physical and mineralogical sodium characterization of the by-products in powder form was carried out. Then, preliminary studies were carried out producing cement pastes. In another step, the study of properties in the fresh state, of the mechanical behavior and of the microstructural characteristics obtained from binary and unary mixtures was carried out. The main results obtained indicate that bottom ash and steel slag have potential use as precursors for alkali-activated cements, especially when combined with fly ash. It was observed that the pastes obtained from KR slag showed cementing properties and the formation of C-A-S-H gel (hydrated calcium aluminosilicate), although with compressive strengths below 7 MPa. Cement produced with the combination of 75% fly ash and 25% bottom ash showed satisfactory mechanical behavior for structural applications, with a compressive strength, at 28 days, of 47,4 MPa. Its microstructure is formed by N-A-S-H gel (hydrated sodium aluminosilicate). Cement produced with 50% fly ash and 50% BOF slag obtained a compressive strength, at 28 days, of 62,3 MPa, it can also be indicated for structural applications. The incorporation of BOF slag promotes the formation of C-(N)-A-S-H (hydrated calcium-sodium aluminosilicate) and C-A-S-H gels. Finally, cements obtained from the mixture of heavy ash and BOF steel slag showed compressive strengths between 10 MPa and 13 MPa, being indicated for non-structural composites, showed the formation of aluminosilicate gels, mainly on the surfaces of the particles. Therefore, the feasibility of obtaining alkali-activated cements from coal ash and steel slag studied is confirmed.

keywords: cement; pastes; alkali-activation; geopolymer; fly ash; bottom ash; BOF slag; KR slag.

LISTA DE FIGURAS

Figura 1 - Localização das unidades produtoras de cinzas do carvão mineral e de escórias na
RMF16
Figura 2 - Subdivisão dos capítulos da tese
Figura 3- Géis e produtos secundários formados durante o processo de álcali-ativação de acordo com o tipo de sistema
Figura 4 – Modelo esquemático da estrutura molecular: a) sodalita; b) gel N-A-S-H; c) vidro
Figura 5 - Espectro de raios X com a presença de halo amorfo e fases cristalinas25
Figura 6 - Etapas do processo de álcali-ativação de sistemas de baixo teor de cálcio (geopolimerização)25
Figura 7- Modelos representativos dos géis C-S-H e C-A-S-H com diferentes razões Ca/Si e Al/Si: a) gel C-S-H sem a presença de Al, (Ca/Si=2,25); b) gel C-A-S-H (Ca/Si = 0,2 e Al/Si=0,84); c) gel C-A-S-H (Ca/Si=0,2 e Al/Si=1,05); d) Gel C-A-S-H (Ca/Si=0,18 e Al/S=1,18)
Figura 8 - Fases formadas no processo de álcali-ativação em função de Ca+Mg e Si/Al30
Figura 9 - Representação gráfica da tendência de comportamento
Figura 10 - Diagrama de fase do sistema Na ₂ O-SiO ₂ -H ₂ O em temperatura ambiente45
Figura 11 - Processo de formação da escória granulada de alto forno
Figura 12 - Diagrama SiO ₂ -CaO-Al ₂ O ₃
Figura 13 - Produção das escórias BOF, EAF e panela
Figura 14 - Formação de cinzas volantes
Figura 15 - Geração de cinzas durante a queima de carvão mineral em usina termoelétrica56
Figura 16 - Cinza volante: a) seca; b) peneirada
Figura 17 - Cinza pesada: a) grãos antes da britagem; b) britador de mandíbulas; c) grãos antes da moagem; d) moinho de bolas; e) peneiras; f) precursor peneirado63
Figura 18 - Processamento da escória de dessulfuração KR: a) dimensão original; b) após a britagem; c) após moagem e peneiramento
Figura 19 - Escória BOF; a) escória recebida; b) aparelho de abrasão; c) escória moída e

peneirada	64
Figura 20 - Etapas da caracterização dos precursores e estudos preliminares	65
Figura 21-Corpos de prova: a) prismático; b) cúbico cortado; c) cúbico moldado	70
Figura 22 - Distribuição granulométrica dos precursores	72
Figura 23 - Microscopia dos precursores: a) cinza volante; b) cinza pesada; c) escória BOF; escória KR	d) 77
Figura 24 -Espectroscopia de Infravermelho: a) cinza volante; b) cinza pesada; c) escória BC d) escória KR	OF; 78
Figura 25 - Análises térmicas TG/DSC: a) cinza volante; b) cinza pesada	79
Figura 26 - Análises térmicas TGA/DSC: a) escória BOF; b) escória KR	80
Figura 27 - Difratogramas de raios X: a) cinza volante; b) cinza pesada	80
Figura 28 - Difratogramas de raios X: a) escória BOF; b) escória KR	81
Figura 29 - Resultados de resistência à compressão das pastas de escória KR	82
Figura 30 - Índices físicos das pastas de escória KR: a) absorção de água e índice de vazios massa específica	; b) 83
Figura 31 - Análises térmicas: a) Pasta M2; b) Pasta M3; c) Pasta M4; d)Pasta M5; e) Pas M6	sta 84
Figura 32 - Espectroscopia de Infravermelho - FTIR	86
Figura 33 - Difratogramas de raios X das pastas: a) M2; b) M3; c) M4; d) M5; e) M6	87
Figura 34 - Resultados de resistência à compressão das pastas de cinza volante	89
Figura 35 - Resultados de resistência à compressão das pastas de cinza pesada	90
Figura 36 - Resultados de resistência à compressão das pastas com escória BOF	91
Figura 37 - Corpos de prova danificados (B04HS2)	92
Figura 38 - Esquema demonstrativo das variações no sistema VP e o indicativo das análises dos ensaios realizados	s e 98
Figura 39 - Ensaios no estado fresco: a) mini abatimento Kantro; b) medição do diâmetro espalhamento; c) Tempo de fluidez no Funil Marsh; d) Tempo de pega no aparelho de Vio	de cat 00

Figura 40 - Ensaios mecânicos: a) compressão; b) tração na flexão; c) corpos de prova após

ruptura à compressão101
Figura 41 - Redução das amostras: a) fragmentos do corpo de prova rompido; b-c) redução por maceração; d) banho de acetona PA; e) amostra em pó
Figura 42 - Diâmetro de espalhamento no mini abatimento e tempo de escoamento no funil Marsh do sistema VP
Figura 43 - Tempo de início de pega105
Figura 44 - Resultados de resistência mecânica: a) compressão; b) tração na flexão107
Figura 45 - Curvas tensão-deformação: a) VP100.0; b) VP75.25; c) VP50.50; d) VP25.75; e) VP0.100
Figura 46 - Espectros de absorção de radiação infravermelho (FTIR) 111
Figura 47- Análises térmicas: a) VP100.0; b) VP75.25; c) VP50.50; d) VP25.75 112
Figura 48 - Microscopia Eletrônica de Varredura (MEV): a) VP100.0 (100μm); b) VP100.0 (10μm); c) VP75.25 (100μm); d) VP75.25 (10μm); e) VP50.50 (50μm); f) VP50.50 (20μm)
Figura 49 - Microscopia Eletrônica de Varredura (MEV): a) VP25.75 (100μm); b) VP25.75 (10μm); c) VP0.100 (100μm); d) VP0.100 (20μm)
Figura 50 - Mapa de distribuição de elementos químicos: a) VP100.0; b) VP75.25; c) VP50.50; d) VP25.75; e) VP0.100
Figura 51 - Difratômetros de raios X: a) VP100.0; b) VP75.25; c) VP50.50; d) VP25.75; e) VP0.100
Figura 52 - Partícula de escória de aciaria colapsada pela ocorrência de expansão123
Figura 53 -Esquema demonstrativo das variações no sistema VB e o indicativo das análises e dos ensaios realizados
Figura 54 - Espalhamento no mini abatimento das pastas do sistema VB127
Figura 55 - Tempo de início de pega das pastas do sistema VB128
Figura 56 - Resultados de resistência à compressão129
Figura 57 - Resultados de resistência à tração na flexão130
Figura 58 - Curvas tensão-deformação: a) VB100.0; b) VB75.25; c) VB50.50; d) VB25.75; e) VB0.100
Figura 59 - Microscopia Eletrônica de Varredura (MEV): a) VB100.0 (50μm); b) VB100.0 (10μm); c)VB75.25 (50μm); d)VB75.25 (10μm); e) VB50.50 (50μm); f) VB50.50 (10μm)134

Figura 60 - Microscopia Eletrônica de Varredura (MEV): a) VB25.75 (50μm); b) VB25.75 (10μm); c) VB0.100 (50μm); d) VB0.100 (10μm)
Figura 61 - Mapeamento dos elementos químicos: a) VB100.0; b) VB75.25; c) VB50.50; d) VB25.75; e) VB0.100; f) percentual dos elementos presentes
Figura 62 - Espectros de espectroscopia de infravermelho: a) todos os espectros; b)VB100.0;c)VB75.25; d) VB50.50; e) VB25.75; f) VB0.100140
Figura 63 - Análises térmicas: a) VB100.0; b) VB75.25; c) VB50.50; d) VB25.75; e)VB0.100; f) Calorimetria exploratória Diferencial (DSC) de todas as pastas
Figura 64 - Difratogramas de raios X: a) VB100.0; b) VB75.25; c) VB50.50; d) VB25.25; e) VB0.100
Figura 65 - Esquema demonstrativo das variações no sistema PB e síntese das análises e dos ensaios realizados
Figura 66 - Diâmetro de espalhamento no mini abatimento do sistema PB151
Figura 67 - Tempo de início de pega do sistema PB152
Figura 68 - Resultados de resistência à compressão do sistema PB153
Figura 69 - Resultados de resistência à tração na flexão do sistema PB154
Figura 70 - Curvas tensão-deformação: a) PB100.0; b) PB75.25; c) PB50.50; d) PB25.75; e) PB0.100
Figura 71 - Microscopia eletrônica de varredura (MEV): a) PB100.0 (50μm); b) PB100.0 (10 μm); c) PB75.25 (50μm); d) PB75.25 (10 μm); e) PB50.50 (50μm); f) PB50.50 (10 μm)158
Figura 72 - Microscopia eletrônica de varredura (MEV): a) PB25.75 (50 μm); b) PB25.75 (10 μm); c)PB0.100 (50 μm); d) PB0.100 (10 μm)159
Figura 73 - Mapeamento dos elementos químicos via EDS: a) PB100.0; b) PB75.25; c)PB50.50; d) PB25.75; e) PB0.100; f) quantificação elementar
Figura 74 - Espectroscopia de infravermelho: a) espectros de todas as pastas; b) PB100.0; c) PB75.25; d) PB50.50; e) PB25.75; f) PB0.100
Figura 75 - Difratogramas de raios X: a) PB100.0; b) PB75.25; c) PB50.50; d) PB75.25; e) PB0.100

LISTA DE TABELAS

Tabela 1- Características do silicato de sódio	.64
Tabela 2 - Características das soluções de hidróxido de sódio	65
Tabela 3 - Matriz das variáveis das pastas de escória de dessulfuração KR	67
Tabela 4 - Matriz experimental da segunda etapa dos estudos preliminares, com	a
nomenclatura das misturas	70
Tabela 5 - Características físicas dos precursores	71
Tabela 6 - Composição em % de massa de óxidos dos precursores	73
Tabela 7 - Parâmetros de alcalinidade, basicidade e qualidade das escórias	.76
Tabela 8 - Características das pastas do sistema VP	.99
Tabela 9 - Estimativas do módulo de elasticidade e energia de fratura1	.09
Tabela 10 - Composição química superficial obtida por espectroscopia de ener	gia
dispersiva -EDS e as principais relações atômicas1	18
Tabela 11 - Características das pastas cimentícias do sistema VB1	.26
Tabela 12 - Estimativa do módulo de elasticidade e da energia de fratura para o sistema	VB
	.32
Tabela 13 - Razões atômicas obtidas por EDS1	.38
Tabela 14 - Características das pastas do sistema PB1	50
Tabela 15 - Módulo de elasticidade e energia de fratura do sistema PB1	.56
Tabela 16 - Relações atômicas obtidas por EDS do sistema PB1	.62

LISTA DE QUADROS

Quadro 1 - Resumo d	os ensaios e análises	realizadas nas pastas	s do sistema	VB	.126
Quadro 2 – Resumo d	las análises e ensaios	realizados nas pasta	s do sistema	PB	.150

LISTA DE ABREVIATURAS E SIGLAS

ABNT	Associação Brasileira de Normas Técnicas
AFm	Monossulfoaluminatos de cálcio hidratado
ANOVA	Análise de Variância
ASTM	Sociedade Americana de Testes e Materiais
BOF	Basic Oxygen Furnace
C-(N)-A-S-H	Aluminossilicato de cálcio-sódio hidratado
C_2S	Silicato dicálcico
C_3S	Silicato tricálcico
C ₄ AF	Ferro aluminato tetracálcico
C-A-S-H	Aluminossilicato de Cálcio Hidratado
C-A-S-H	Aluminossilicato de cálcio hidratado
CAT	Cimento Álcali-Ativado
CIPP	Complexo Industrial e Portuário do Pecém
COD	Banco de dados aberto de cristalografia
СР	Cinza Pesada
CSD	Banco de dados estrutural de Cambridge
C-S-H	Silicato de cálcio hidratado
CSP	Companhia Siderúrgica do Pecém
DRX	Difração de Raios X
DSC	Calorimetria Exploratória Diferencial
EAF	Eletric Arc Furnace
EDS	Espectroscopia por Energia Dispersiva
FRX	Espectrometria de Fluorescência de Raios X
FTIR	Espectroscopia de Infravermelho com Transformada de Fourier
G_{f}	Energia de fratura
HS	Hidróxido de sódio
KR	Reator Kambara
LACAM	Laboratório de Caracterização de Materiais
LMCC	Laboratório de Materiais de Construção Civil
М	Concentração molar da solução de hidróxido de sódio
MAA	Material Álcali Ativado

	MEV	Microscopia eletrônica de varredura
	N-A-S-H	Aluminossilicato de sódio hidratado
	NBR	Norma Brasileira Regulamentar
	PA	Pureza Analítica
	PB	Grupo de pastas compostas por cinza pesada e escória de aciaria BOF
	pН	Potencial hidrogeniônico
]	RILEM	International union of laboratories and experts in construction
		materials, systems and structures
	RMF	Região Metropolitana de Fortaleza-Ceará
	s/p	Razão entre solução ativadora alcalina e precursor
	SS	Silicato de sódio
7	TGA	Análise Termogravimétrica
	VB	Grupo de pastas compostas por cinza volante e escória de aciaria BOF
	VP	Grupo de pastas compostas por cinza volante e cinza pesada

LISTA DE SÍMBOLOS

3	Deformação
σ	Tensão
%	Percentagem
°C	Graus Celsius
20	Ângulo da posição do detector de raios-X
GPa	Gigapascal
MPa	Megapascal
N/m	Newton por metro
N/s	Newton por Segundo

1 INTRODUÇÃO14
1.2 Justificativa
1.3 Objetivo geral17
1.4 Objetivos específicos17
1.5 Estrutura do trabalho17
2 MATERIAIS ÁLCALI-ATIVADOS19
2.1 Introdução
2.2 Metodologia20
2.3 Base conceitual
2.3.1 Sistema de baixo teor de cálcio (geopolímero)23
2.3.2 Sistemas de alto teor de cálcio27
2.3.3 Sistema de teor intermediário de cálcio
2.3.4 Fatores condicionantes para a álcali-ativação32
2.5 Considerações finais
3 MATÉRIA-PRIMA PARA CIMENTOS ÁLCALI-ATIVADOS
3.1 Introdução
3.2 Metodologia
3.3 Base conceitual
3.3.1 Ativadores alcalinos
3.3.2 Precursores
3.4 Considerações finais
4 ESTUDO DO POTENCIAL DE SUBPRODUTOS INDUSTRIAIS DISPONÍVEIS NA
REGIÃO METROPOLITANA DE FORTALEZA PARA APLICAÇÃO EM
CIMENTOS ÁLCALI-ATIVADOS: CARACTERIZAÇÃO E ANÁLISES
PRELIMINARES
4.1 Introdução
4.2 Materiais e Métodos
4.2.1 Materiais
4.2.1 Métodos
4.3 Resultados e discussão71
4.3.1 Resultados de caracterização dos precursores71
4.3.2 Resultados do estudo preliminar com escória de dessulfuração (KR)82
4.3.3 Resultados do estudo preliminar com a cinza volante, com a cinza pesada e com a

SUMÁRIO

escória BOF
4.3 Conclusão
5 ESTUDO DO COMPORTAMENTO MECÂNICO E DAS CARACTERÍSTICAS
MICROESTRUTURAIS DE CIMENTOS DE CINZAS DO CARVÃO MINERAL
ÁLCALI-ATIVADOS
5.1 Introdução
5.2 Procedimentos experimentais
5.2.3 Pastas cimentícias
5.3 Resultados e discussão104
5.3.1 Caracterização no estado fresco104
5.3.2 Caracterização mecânica106
5.3.3 Caracterização química e microestrutural110
5.4 Conclusão
6 EFEITO DA ADIÇÃO DA ESCÓRIA DE FORNO DE OXIGÊNIO BÁSICO EM
CIMENTO ÁLCALI-ATIVADO À BASE DE CINZA VOLANTE122
6.1 Introdução122
6.2 Procedimentos experimentais124
6.2.1 Pastas cimentícias125
6.3 Resultados e discussão127
6.3.1 Efeito da incorporação da escória BOF no estado fresco
6.3.2 Efeito da incorporação da escória BOF no comportamento mecânico129
6.3.3 Efeito da escória BOF nas características químicas e microestruturais133
6.5 Conclusão
7 ATIVAÇÃO ALCALINA DE ESCÓRIA DE FORNO DE OXIGÊNIO BÁSICO E
CINZA PESADA PARA PRODUÇÃO DE CIMENTO DE BAIXA RESISTÊNCIA
INDICADO PARA APLICAÇÕES NÃO ESTRUTURAIS147
7.1 Introdução
7.2 Procedimentos experimentais148
7.2.1 Pastas cimentícias149
7.3 Resultados e discussão151
7.3.1 Comportamento no estado fresco151
7.3.2 Comportamento no estado endurecido153
7.3.3 Características químicas e microestruturais157
7.5 Conclusão

8 CONCLUSÃO	
8.1 Recomendações	
REFERÊNCIAS	172
APÊNDICE	