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Abstract
In this paper a smart home controller proposal is formalized as a multi-objective integer linear programming problem that
minimizes energy consumption and maximizes comfort. A comfort objective function is tested for several tariff scenarios
including one with renewable sources as local off-grid micro-generation. The proposed model specifies best times to activate
real household appliances based on energy consumption data, given load-limiting constraint and user preferences, by use of a
weighted aggregation function. The proposed scenarios have shown excellent results for energy saving without a significant
reduction in comfort.

Keywords Demand side management · Renewable sources · Operations research · Smart home

1 Introduction

Energy efficiency has matured from the technological fringe
to daily reality. Smart appliances, smart grids and renewable
energy converged to our homes putting pressure in our old
habits in face of new sustainable environment. Energy man-
agement for home owners has become a de facto requirement
for modern households, where smart home controller (SHC)
offers the framework intowhich a sustainable and energy effi-
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cient house can be built upon, removing some of the burden
from the user.
However, creating a SHC that adjusts human desires (like
comfort) to grid responses (to achieve lower costs and better
use of energy) is complex and, most of the time, conflicting.
The technological advances in computers and communi-
cation networks enabled, in the last years, the increased
opportunity to use optimization models in real (or quasi real)
time applications.
In Di Giorgio and Pimpinella (2012) it is presented an
optimizationmodel using integer linear programming tomin-
imize a single objective function (energy cost) and an event-
driven SHC is then proposed. Amore proactive control based
in fuzzy and adaptive methods (adjust-based learning rules)
for smart homes is proposed in Vainio et al. (2008). Simi-
lar studies using mono-objective optimization models can be
seen in Kantarci and Mouftah (2011) and Lentini (2012).
Further developments in Antunes et al. (2002) proposed an
integer multi-objective linear programming for cost analy-
sis in planning, maintenance and operation of new power
generators. Similar works from Fehrenbach et al. (2014),
Shaikh et al. (2016) and Grandclment et al. (2015) expanded
themulti-objective approach and presented energy efficiency
optimization proposals using SHC for the management of
electrical loads in changing political and technological sce-
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narios for temperature adjustments, being temperature the
comfort variable.
Similar works like Cho (2013) and Casella et al. (2016) pro-
posed different theoretical loads and tariffs models for an
integer linear programming that optimizes demand in real
time. In Rasheed et al. (2015) it is proposed a different load
classification; related cost and comfort equations, loads oper-
ation time are discretized and all loads are considered within
a single cycle, finally Bezerra Filho et al. (2015) proposed
and compared the same load classification and scenarios as
in Di Giorgio and Pimpinella (2012), adding further comfort
variability.
Other related works like Corno and Razzak (2012) model
a real-time load configuration scenario providing minimal
energy consumption and satisfying users demand. In Kofler
et al. (2012) a semantic representation based onweb ontology
language (WOL) is proposed to define energy consumption
databases for control systems in smart homes. Solutions for
ubiquitous home networks based on a network of active
sensors for the intelligent home control system are pro-
posed in SUH and KO (2008) and Hernndez et al. (2013).
Authors such as Leite and Montovani (2015a) and Leite
and Montovani (2015b) have proposed smart grid optimized
architectures.
The remaining of this paper is organized as follows. In the
second section the problem statement is presented, in the
third section the architecture is proposed, in the fourth sec-
tion results are discussed, and finally, some conclusions and
recommendations for future research are given in the last
section.

2 Problem Statement

The search for the optimal dispatch time for electrical loads
in a controllable home environment using integer linear pro-
gramming is a complex problem due to a high number
of decision variables and constraints; nevertheless, several
authors Di Giorgio and Pimpinella (2012), Cho (2013),
Rasheed et al. (2015), Bezerra Filho et al. (2015) and Lai
et al. (2015) have shown the potentials to this approach. The
main goal, to many of these models, is to find the scheduling
of loads with the lowest cost considering a restriction given
by the user comfort, thus defining a multi-objective problem.
For cost objectives the time-of-use (ToU) tariffmodel, as pro-
posed in Brazil by the Resolution 773/2017 of the National
Electric Energy Agency (ANEEL), is used in varying hours.
Since comfort, in this paper, is defined as the minimal dis-
tance between the users chosen start time and the actual start
time proposed by the SHC, the user inputs his preference
using a variable weighted aggregation function.

Table 1 Symbols related to the objective functions

Symbol Meaning

M Number of loads

P̄m Mean power of mth load

P̂m Peak power of mth load

Nm Duration, in samples, of mth load

Ism Minimal start time for mth load

Iem Maximum end time for mth load

S Sample for first planning instant

E Sample for last planning instant

μmi i th decision variable for mth load

Pk Peak limit for kth time slot

C Energy cost for given period

Ibm Best start time for mth load

Clm Comfort level for mth load

2.1 Mathematical Formulation

These notations, as presented by Di Giorgio and Pimpinella
(2012) and Bezerra Filho et al. (2015), are introduced to
model the programming problem (Table 1).

In order to make reading easier, Eqs. (1) and (2) are pro-
posed for cost and comfort, respectively.

f1 =
C∑

c=1

Iem−Nm∑

i=Ism

⎛

⎝
i+(Nm+1)∑

n=i

P̄m[n − i]TsC[n]
⎞

⎠ μmi (1)

f2 =
M∑

m=1

Iem−Nm∑

i=Ism

(
Clm

√(
i − I 2bm

))
μmi (2)

Such as both above equations could be used complemen-
tary as:

fcost = α × f1 + (1 − α) × f2 (3)

Subject to:

Iem−Nm∑

i=Ism

μmi = 1 (4)

∑

m∈Mk

⎛

⎝
k−(k−Iem+Nm )∑

i=k−(Nm−1)

P̂m[k − i]μmi

⎞

⎠ ≤ Pk (5)

μmi ∈ [0, 1] (6)

Energy cost is given in Eq. (1) as the minimization of
cost. The comfort is given in Eq. (2) as the minimal dis-
tance from expected and real starting time. The optimization
model employedwas theminimization of the function formu-
lated from the association of cost (Eq. 1) and comfort (Eq. 2)
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Fig. 1 System architecture model

objectives within determined weights as given by Eq. (3) (Di
Giorgio and Pimpinella 2012; Bezerra Filho et al. 2015).

Constraint set (4) limits every load as having only one
starting time, between the minimum start time (Ism) and the
maximum end time that would still allow the load to be run
(Ism−Nm). Constraint set (5) limits the overall loading for the
entire SHC to be less than a peak limiting load from the kth
start time and duration, to the last possible ending time plus
duration. Constraint set (6) states that all decision variables
are binary.

3 Smart Home Controller Architecture

3.1 Loads Definition

Loads, in this work, are characterized as:

– Controllable loads (CL) Loads that can be switched
on/off for a certain period of time with or without degra-
dation of service quality. These loads are connected to
smart plugs (SP) or directly to the SHC. Examples of
CL loads are air conditioners, pool filter pump, non-
programmable washer, dishwasher, outdoor lighting;

– Detectable loads (DL) These are non-controllable loads
that have estimated power consumption as the difference
in energy measurement of the smart meter (SM) and all
CL and SP. Examples of DL loads are audiovisual equip-
ment; computer equipment; lighting; toasters, mixers.

3.2 Architecture

The architecture of the home automation system test sce-
nario proposed in this paper is illustrated in Fig. 1. The SHC
is responsible for the management of all loads and renew-
able energy generation. The SHC defines the operation of
the loads by reading information from the measuring devices

and outputs execution commands given by the programming
after running the objective function optimization, as shown
in SHC architecture (Fig. 1).

The SHC performs the following tasks:

1. Communicates with (smart plugs—SP) through the net-
work coordinator (Zigbee manager) to acquire power
consumption and send operating commands to the equip-
ment connected using RS485 and MODBUS;

2. Receives the load operational status from the smart meter
through RS232 and ABNT messaging protocol;

3. Receives load expectancy from the user through the
human–machine interface (HMI) using TCP/IP—
ethernet;

4. Directly schedules controllable loads by defining operat-
ing hours for each equipment;

5. Defines the way micro-generation equipment operates;
6. Activates, when necessary, the liquefied petroleum gas

(LPG) heating system.

3.2.1 System Function

The system was validated through an industrial platform
associated to the SP developed in lab, as previewed in Fig. 2.

To validate the SHC, a programmable logic controller
(PLC) was used as slave to a supervisory control and data
acquisition (SCADA)application installed in a personal com-
puter (PC) SCADAserver. In this case the PLCwas used only
as the master controller network coordinator (Zigbee Mas-
ter), sensor reader and load logic controller.

The working logic is as follows:

1. Through the supervisory application (SA) the user inputs
his preferences;

2. The SA generates a text file (Input.txt) that is used by the
MATLAB code to optimize best times with weight based
energy efficiency and comfort;

3. The MATLAB code outputs the answers in a text file
(Output.txt) to the SA;

4. The SA shows the daily schedule for the home loads and
sends it to the PLC using TCP/IP—ethernet;

5. The PLC programming, using the SA data, control loads
directly connected and communicates with the Zigbee
Master using RS 485 industrial protocolMODBUS-RTU
sending action commands to SP and reading current
response from loads connected to the actionable SP;

6. The PLC activates the solar and wind inverters (1 and
2) based on schedule and voltage condition (V1 and V2)
for micro-generation of electricity. These inverters feed
outside lights without priority status from the SHC. Also,
depending on the temperature status of the TT01 sensor,
the liquid petroleum gas (LPG) system is fired for heating
water purpose;
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Fig. 2 System architecture implemented

7. As data are collected from all loads, the SA show actual
and scheduled energy consumption in a status screen dis-
play;

8. With these data, including load current from SP and cur-
rent reading fromSM, the SA calculatesDL for a realistic
demand measurement in order to maintain peak shaving
capacity. The communication between SCADA Server
and SM is through a RS232 connection using ABNT
(Brazilian association of technical norms) protocol.

4 Simulation Results

The IBM ILOG CPLEX, a benchmark solver in the aca-
demic and industrial areas, provides good performance even
with many variables and can be used with user-written appli-
cations. MATLAB is a high-level language and interactive
environment for numerical computation, visualization and
programming. Real residential load simulations are tested
for five scenarios in CPLEX using the cplexbilp. MATLAB
is used for easier data management and communication with
SCADA interface while providing a working embeddable
framework for CPLEX.

4.1 Experimental Scenarios

Scenarios are presented with a common load-set and price
tariff allocation. Thus, some real-load parameters are mea-
surable: number and duration of stages/cycles and average

and peak power load, while others are controllable by the
SHC: their start time.

– Stage is the amount of time spent by a load performing a
specific function, e.g., the time a washer spends only on
the rinsing activity;

– Cycle is the period of time that encompasses all the stages
of a load, e.g., the time a washing machine performs all
its stages (washing, rinsing, drying).

Real loads used throughout this paper are presented in
Fig. 3. The renewable source in scenario 4, being off-grid,
is battery-enabled and supplies a relatively small load (out-
door lights 0.30 kW). It can be considered as always able
to provide energy when demanded; this remains true since
usual batteries in off-grid setups can provide energy for long
periods with a single small charge.

Some loads are described in Table 2. All values were
obtained from the smart meter with timed description and
user preferences. The actual, expected and range of operat-
ing hours were also captured. Relevance for each load is also
described.

Pricing is based on a estimated tariff (Table 3) where peak
and off-peak are considered as well as mixed and conven-
tional energy values.

4.1.1 Scenario 1

Time-of-use (ToU) tariff. Variable pricing on hourly basis.
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Fig. 3 Controllable and detectable loads (real representation)

Table 2 Loads’ full description

ID Description Stages �t(min) P̄(kW) P̂(kW) UP Scheduled Rn

Start Start End

01 Booster pump 01 20 2.00 3.00 08:00 07:00 17:00 0.1

02 Filter pump 01 120 0.75 1.75 08:00 07:00 17:00 0.1

03 Clothes iron 01 120 1.00 1.20 16:00 14:00 17:00 0.3

04 Washing machine 08 10 10 0.13 0.51 0.70 0.51 08:00 07:00 17:00 0.5

4 6 2 0.30 0.26 0.15 0.30 0.26 0.15

2 2 7 0.15 0.15 0.22 0.15 0.15 0.30

05 Outdoor lights 01 270 0.30 0.30 18:00 17:00 23:55 0.3

06 Indoor lights 01 270 0.15 0.30 18:00 17:00 23:00 0.7

07 Office AC 14 10 5 … 1.30 …1.30 1.70 1.30 … 20:00 17:00 23:55 1.0

08 Suite AC 07 30 20 5 2.00 2.00 2.00 2.10 … 20:00 17:00 23:55 1.0

5 5 5 5 2.00 …2.00 …2.20 2.00

09 Single AC1 01 240 1.10 1.20 20:00 17:00 23:55 1.0

10 Single AC2 07 10 10 5 0.90 0.90 0.90 1.10 …1.10 20:00 17:00 23:55 1.0

5 5 5 5 0.90 …0.90 1.10 …1.10

11 Dishwasher 05 5 10 15 0.03 1.76 0.03 0.03 1.76 0.03 21:00 18:00 22:00 0.3

5 10 1.76 0.03 1.76 0.03

Table 3 Daily cost-of-use
values

Tariff Period Price ($cents/kWh)

Conventional [00:00–23:59] 22.50

ToU: off-peak [00:00–17:59] and [23:00–23:59] 11.25

ToU: intermediate [18:00–18:59] and [22:00–22:59] 33.75

ToU: peak [19:00–21:59] 45.00

4.1.2 Scenario 2

Time-of-use (ToU) tariff. SHC for mono-objective optimiza-
tion, cost only.

4.1.3 Scenario 3

Time-of-use (ToU) tariff. SHC for multi-objective optimiza-
tion, cost and comfort simultaneously.
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Fig. 4 Load-limiting threshold and tariffs

Fig. 5 Scenario 1: ToU tariff without SHC

4.1.4 Scenario 4

Local micro-generation and time-of-use (ToU) tariff. SHC
for multi-objective optimization, cost and comfort with
added use of off-grid renewable power source.

4.2 Experimental Results Analysis

The SHC optimization for each scenario has a load-limiting
threshold of 3.5 kW which represents the maximum demand
allowed for the user by the grid operator. Detectable charges
(DL) are presented as an inverted Gaussian centered at 19:00

with amplitude of 1.0 kW that decreases the load-limiting
threshold. In Fig. 4 the load-limiting threshold and tariffs
applied to the various scenarios are presented.
Comfort, as described in Eq. (2), is simply a distance from
an expected start time and an actual start time given by the
SHC, most comfort being obtained as loads starting-up when
the user expects them to.
Multi-objective function deals with the simultaneous mini-
mization of cost andmaximization of comfort Eq. (1)where a
parameter α weights cost–comfort responses; for maximum
comfort we have that f2 = Dmax and the relative comfort is
given by:.
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Fig. 6 Scenario 2: ToU tariff with SHC cost optimization

Fig. 7 Scenario 3: ToU tariff with SHC multi-objective optimization (α 0.55)

Relativecomfort = Comfortc
Dmax

× 100 (7)

When all loads are allocated at the time requested by the
user, the relative comfort value will be equal to 1.0 (maxi-
mum).On theother hand,when all loads are allocated furthest
from the time requested by the user the relative comfort will
be equal to 0.0 (minimum).

4.2.1 Scenario 1: ToU Tariff Without SHC

For this pricing scenario a different peak, an intermediate
and off-peak tariffs (3) are used. The cost is $4.50, obtained

for the configuration requested by the user, as presented in
Fig. 5. The load-limiting threshold and the tariff are not used
for optimization purposes as presented in Fig. 5. The con-
figuration requested by the user exceeds the load-limiting
threshold.

In this scenario the pricing scheme causes a greater penalty
to cost as tariffs increase in peak times that are coincident to
the peak load demand (Fig. 5) setup by the user.

123



Journal of Control, Automation and Electrical Systems (2018) 29:718–730 725

Fig. 8 Scenario 3: ToU tariff with SHC multi-objective optimization (α 0.00)

4.2.2 Scenario 2: ToU Tariff with SHC Cost Optimization

Cost optimization is used in the SHC (objective function
f1). The cost obtained in this scenario is $3.06 (32% cost
reduction when compared to scenario 1). In Fig. 6 the SHC
load allocation is presented. In this case loads are relocated
so as not to exceed the load-limiting threshold, in addition
the SHC seeks to allocate the loads at off-peak periods at the
same time aiming for cost reductions.

When cost is implemented in the SHC optimization algo-
rithm by use of a ToU tariff model, the result is delayed loads
(air-conditioning and dishwasher) to less demand-intense
periods. Thus, the peak load restriction and price optimiza-
tion can be attained simultaneously and comfort could be
extremely penalized in such an optimization scheme.

4.2.3 Scenario 3: ToU Tariff with Multi-objective
Optimization

Cost and comfort optimization is used in the SHC (objec-
tive functions f1 and f2), and the cost obtained in this
scenario is dependable in the alpha value selected from $3.06
to $4.03 (up to 32% economy when compared to scenario
1). In Fig. 7 the SHC load allocation is presented. In this
case loads are relocated so as not to exceed the load-limiting
threshold in addition to both seeking off-peak times for cost
and least distance from users input for comfort.
Unlike scenario 2 the washing machine (given the relatively
low influence to comfort) has moved drastically in time,
showing that the SHC input wasn’t trying to penalize much
comfort from higher ranked loads.

Fig. 9 Cost and comfort relationship on scenario 03

Further improvement can be found when comfort is the
exclusive goal. As objective function f2 becomes relevant
with low-valued alpha (Fig. 8) the loads are relocated as not
to exceed the load-limiting threshold, but very aggressively
allocate higher ranking loads (comfort wise).

In Fig. 9 a Pareto front approximate representation, cre-
ated from several scenarios, is presented that shows the effect
of varying α in the solution associated with a changing cost
and comfort. One can observe that the variation of com-
fort with respect to cost does not occur in a linear way. It
is possible to choose α values that offer greater comfort than
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Table 4 SHC time allocation for scenario 4 and different α

ID Expected α = 0.55 α = 0.00

Actual � Actual �

01 08:00 08:55 55 07:40 20

02 08:00 09:15 75 08:00 0

03 16:00 14:00 120 14:30 90

04 08:00 15:30 450 08:00 0

05 18:00 18:10 10 18:10 10

06 18:00 18:10 10 18:00 0

07 20:00 21:25 85 21:25 85

08 20:00 22:40 160 22:40 160

09 20:00 19:55 5 19:55 5

10 20:00 20:30 30 20:30 30

11 21:00 19:20 100 19:20 100

the optimal configuration in cost without drastic increases
in its value. For example, values 0.55 and 0.00 for α were
selected for comparison purposes shown in Figs. 7 and 8
where load allocations for these two configurations are pre-
sented.

Given the time, load-limiting and peak tariff constraints
for each load, the main differences between the configura-
tion of Fig. 7 and the one presented in Fig. 6 (equivalent
to the configuration of α = 1) are the displacements
of loads 1–4 which show starting times closer to those
requested by the user. In Fig. 8 α = 0 means that only
the comfort function is considered. It can be observed that
the SHC ignores the peak tariff rate aiming to allocate
the loads in the most faithful way to user request without
exceeding the load-limiting value. In Table 4 the results

obtained for values of α = 1 and α = 0.55 are com-
pared.

From Table 4 it can be observed that load allocation for
α = 0.55 was very close to the user preference. Note that,
despite the comfort increase (α ranging from 1 to 0.55), the
cost remained almost constant.

4.2.4 Scenario 4: Local Micro-generation and ToU Tariff
Using SHC for Multi-objective Optimization

Loads 5 and 6 (indoor and outdoor lights) were considered
battery-supplied and connected to in-situ micro-generators
(wind and solar photovoltaic hybrid system). The optimiza-
tion settings are limited to the remaining 9 loads.

Like scenario 3, the washingmachine (given the relatively
low influence to comfort) hasmoved drastically in time, at the
same time the air-conditioning (higher ranked load) moves
slightly from different alpha values tested.

Figure 13 shows the cost and comfort variations with vari-
able α values. In both cases the comfort analysis is relative
to α. In Fig. 13 several scenarios are simulated and a com-
pilation of the trade-off between the cost in cents and the
relative comfort of the configuration was presented, showing
that values of α of each situation. It can be observed that with
a small variation of α (from 1 to 0.98) it is possible to obtain
a configuration with greater comfort without increasing the
cost.

The same data are used to elaborate Fig. 13. In Fig. 14 the
evolution of both cost (expressed in cents) related to energy
(dotted line) and the relative comfort (filled line) with respect
to α values is presented. The SHC load allocation in this
scenario is presented in Figs. 10, 11 and 12 for the respective

Fig. 10 Scenario 4: Local micro-generation and ToU tariff using SHC for multi-objective optimization (α = 1)
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Fig. 11 Scenario 4: Local micro-generation and ToU tariff using SHC for multi-objective optimization (α = 0.98)

Fig. 12 Scenario 4: Local micro-generation and ToU tariff using SHC for multi-objective optimization (α = 0)

values of α (1, 0.98 and 0) (Fig. 13). It can be seen from
Fig. 14 that, forα values between 0.4 and 0.98, a considerable
32% reduction in cost is achievable for a 10% reduction in
relative comfort.

In Table 5 the results for values of α equal to 1 and 0.98
are compared. From Table 5 and Fig. 9, it can be observed
that the configuration with α = 0.98 presents a configuration
with greater comfort than that of α = 1, although both have
the same cost.

4.3 Results

Table 6 shows all cost, economy and comfort values for
each simulated scenario. The columns UP cost and UP comf
address the cost and comfort of the user preferences. In
Table 6 one can observe that in scenarios 2 and 3 a reduction
(economy) of 32% occurs and when the micro-generation
is used the economy is even higher (38%). Scenarios 2
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Fig. 13 Cost and comfort relationship on scenario 04

Fig. 14 Pareto fronts for cost and comfort on scenario 04

Table 5 SHC time allocation for scenario 4 and different α

ID Expected α = 1.00 α = 0.98

Actual � Actual �

01 08:00 10:20 140 07:40 20

02 08:00 11:35 215 08:00 0

03 16:00 14:00 120 14:30 90

04 08:00 12:40 280 08:00 0

07 20:00 21:25 85 21:25 85

08 20:00 22:40 160 22:40 160

09 20:00 19:55 5 19:55 5

10 20:00 17:00 180 17:00 180

11 21:00 20:50 10 20:50 10

(multi-objective optimization) and 3 (multi-objective opti-
mization with micro-generation) presented a reduction in
electric energy cost with a relatively small percentage reduc-
tion in comfort. For scenario 3, even consideringoptimization
of maximum economy (α = 1) 83% of relative comfort was
obtained. For the maximum comfort (α = 0), a relative com-
fort of 92.65% was obtained, with a considerable saving of
10.55%.
Caution should be expressed for scenario 4 as results are
even better: since it uses a different base-load, it simply states
possible further gains could be attained in a distributed gen-
eration environment where loads could be entirely removed
from the SHC control set. Further analysis is required with
some form of negative pricing or demand suppression when
considering a similar scenario to this.

5 Conclusions and Recommendations

This article answers two simultaneous goals in energy effi-
ciency problems: cost and comfort. It is not a very simple
task since there is a trade-off between user requests and
diminishing energy costs. In this research we presented a
novel smart home controller architecture for cost and comfort
balancing using mathematical optimization software with

Table 6 Cost, economy and
comfort for all scenarios

Scenario UP cost α SHC cost Economy (%) UP comf SHC comf Relative comf (%)

01 4.50 – – – – – –

02 4.50 – 3.06 32.00 – – –

03 4.50 1.00 3.06 32.00 699 580.2 83.00

03 4.50 0.55 3.06 32.00 699 630.6 90.21

03 4.50 0.00 4.03 10.44 699 647.6 96.65

04 3.79 1.00 2.35 38.05 569 440.1 77.35

04 3.79 0.98 2.35 38.05 569 476.6 83.76

04 3.79 0.00 2.87 24.24 569 533.1 93.69
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Table 7 SHC expected cost—without scaled production

Device Cost (US$)

Main board 35

Display 71

I/O converter 7

Box 20

Power source 3

Assembly costs 27

Total 163

real-load-based simulations for different user preferences
setups. Technical limits to comfort maximization while min-
imizing energy costs within a load-limiting energy contract
are also demonstrated. To the authors best knowledge there
is no other architecture proposed with similar practical rules
in the available literature.
Thiswork has shown that the alpha values in a cost vs comfort
relationship have very steep inclination (Fig. 9) in the Pareto
front. This translates to opportunities in selecting not a single
value but a set of specific intervals for alphas, simplifying
the architecture (most precisely the interface) and decreasing
computational costs as less scenarios (for diverging alphas)
need to be calculated.
The solution implemented herein has some improvements
over other approaches found in the literature, among which:
(i) the Pareto front offers options to the users comfort
x cost dilemma; (ii) the optimization method could be
run for fixed loads and calendars once and kept in mem-
ory only for required profiles; (iii) the architecture doesn’t
require high processing power (as the optimization mech-
anism is done outside the SHC and loaded upon it); (iv)
sensors and actuators are based on off-the-shelf elements,
for SCADA and industrial automation processes, that are
well known and relatively cheap (see Table 7), as a ref-
erence price, a local provider issues a home controller for
approximately 349 US$ (2.2 times the proposed assembled
hardware price for this project), although it’s not a smart
home controller, but merely a conventional controller as it
lacks the optimization algorithms for cost vs. comfort man-
agement.

The solutions provided in the scenarios demonstrate the
improved results obtained by a mathematical optimization
problem in a SHC application. Although invariable with the
architecture, it was shown that economical viability is possi-
ble with minimal comfort deterioration to the user.
Even though this architecture has proven, as this is an opti-
mization problemwith discrete variables that the Pareto front
is non-convex, adopting an aggregated weights function does
not result in good approximation. It’s expected that further
research work by the authors will develop an evolutionary

algorithm for this approximation of the Pareto front formulti-
objective

optimization as well as the possibility of using more than
one activation cycle to some loads.With these improvements
a full-fledged SHC could be tested for speed and economical
analysis.
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