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a b s t r a c t

In this paper the application of the Particle Swarm Optimization (PSO) method to estimate the Weibull
parameters for wind resources in the Brazilian Northeast Region (BRNER) is reported. For the present
research, wind speed data from three 80 m towers installed at different sites in the regionwere collected.
The measuring periods for each tower site are: February 2012 to January 2013 for Maracanaú, August
2012 to July 2013 for Parnaíba, and May 2012 to March 2013 for Petrolina. Aiming to compare with the
PSO performance, five numerical methods are applied to calculate the Weibull distribution parameters.
Best performance for all analyzed sites is achieved by the PSO method, with a correlation higher than 99%
and an error close to zero. PSO proves to be a valuable technique for characterization of the particular
wind conditions found in the BRNER.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

For decades, Brazil has been giving priority to large hydro-
power plants as a base of the country's electricity generation ma-
trix. The Brazilian power station structure at the end of the year
2014 shows that the greatest fraction belongs to large and medium
hydro-power plants (ca. 67% of the total electrical power) [1], giving
to the country leadership positions as regards to the use of
renewable energy sources to generate electrical energy. Despite the
significant participation, the proportional share of such hydro-
power plants in the Brazilian electricity generating structure is
slowly decreasing in recent years. In practice, there is no more
significant potential for new large hydro-power plants. Although a
large theoretical potential exists in the northern region (Amazon
basin), its use is very debatable for ecological reasons.

In recent years, the Brazilian government has been developing
policies to diversify the country's electricity generation matrix. One
of the strategies was the so-called “Incentive Programme for
Alternative Energy Sources” (PROINFA), a governmental pro-
gramme to promote the use of wind power, biomass fuels and small
hydro-electric power plants. Success was obtained mainly in the
. Carneiro), sofiapinheirom@
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wind sector. In 2014, the figures for the wind sector achieved a
nominal power output of 3838 MW, a share of 2.88% of total power
generation capacity, according to the Brazilian Agency for Electric
Energy (ANEEL).

As observed in Refs. [2,3], the main characteristics associated
with BRNER wind resources are a well defined seasonal pattern for
wind speed, with typically low speed values during the first half of
the year and higher speeds along the second half. BRNER is located
in the continuous trade winds paths, triggered by the sub-
equatorial atmospheric circulation and intensified by sea breezes
along the shoreline. Trade winds are caused by the mid-latitude
surface air masses moving (converging) towards heated low pres-
sure equatorial latitudes. This movement is deflected westward,
opposite to Earth rotation, due to the principle of conservation of
angular momentum (Coriolis effect). Additional deflections may
occur near the coast line due to thermal sea-land and inland gra-
dients and to orographic influences. In the case of BRNER trade
winds come free from obstacles from a very large oceanic surface,
thus having remarkable intensity, constancy and low turbulence.

Trade winds from both terrestrial hemispheres converge to an
equatorial region known as Intertropical Convergence Zone (ITCZ).
In their travel to the lower equatorial pressures, trade winds air
masses become warm and humid, resulting in, deep convective
clouds, showers and thunderstorms along the ITCZ. ITCZ latitude
migrates seasonally, reaching the BRNER from March to May and
bringing its main and usually only rainy season. ITCZ returns to and
remains at equatorial latitudes for the remaining 9 months of the
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year resulting in prevailing dry climate for large areas of the region,
which is associated. With remarkably strong and constant wind
speeds. The cyclic alternating wet-dry periods caused by the ITCZ
annual migration induce a remarkable seasonality in wind speeds,
reaching maximum fluctuations of ca. ±30 around the annual
average [4].

To evaluate the wind energy potential in a region, a modeling of
the wind stochastic behavior is required, making possible to iden-
tify seasonality patterns and to predict the wind resource behavior
[5]. There are several probabilistic frequency distributions used to
represent wind speed data, such as Weibull, Gamma, Normal and
Log-Normal; the well-known Weibull distribution is the standard
function used by the wind energy community to model wind speed
frequency distribution all over the world. However, studies have
shown that some methods to determine the Weibull parameters
lead to an unsatisfactory adjustment capability to the used wind
distribution histograms [3]. In this way, alternative methods to
calculate the Weibull parameters should be investigated [6].

The use of computational intelligence techniques can optimize
determination of the Weibull parameters and hence reduce esti-
mation errors of wind turbines electricity production. Therefore,
the present work describes the use of the PSO technique to estimate
the Weibull parameters adjusted for the wind conditions found in
the BRNER. The methodology presented is innovative for the
particular wind conditions considered, characterized by a well-
defined seasonal pattern. The need for further research for that
specific wind regime is demonstrated in Refs. [3,6].
Fig. 2. Characteristic days for Maracanaú.
2. Brazilian northeast region (BRNER) wind potential

2.1. Analysis of the wind speed data

The BRNER has an area of 1.5 million km2 (18% of Brazilian ter-
ritory), the size of France, Italy, United Kingdom and Germany put
together, and an estimated population of 53 million inhabitants or
28% of the Brazilian population [7]. For the present project, wind
speed datawere collected in 80mmeasurement towers installed in
three sites of three states in the BRNER: Parnaíba (state of Piauí),
Maracanaú (state of Cear�a) and Petrolina (state of Pernambuco)
(Fig. 1). The measurement periods for the three sites are: February
2012eJanuary 2013 for Maracanaú, August 2012eJuly 2013 for
Parnaíba, May 2012eMarch 2013 for Petrolina.
Fig. 1. Measuremen
For each tower, the following sensors were installed: three an-
emometers (Maximum #40) at 78, 50 e 20 m height; a wind di-
rection sensor (#200P) at 78 m; an ambient temperature sensor
(#110S) and a pyranometer (LI-200SZ) at 14 m. Additionally, a data
logger (NRG Symphonie PLUS) collects the data every 2 s and gives
10 min average values for the analysis. The collected data are used
for the development of a statistical analysis to characterize the
wind potential of the mentioned sites in the BRNER.

Statistical analysis allows understanding of the future behavior
of the stochastic process associated with the wind speed, aiming to
estimate the electricity generation and the capacity factor of wind
turbines, wind potential assessment of regions of interest and the
impacts associated with operation of electrical systems. In this way,
this statistical analysis of wind speed series is performed to detect
seasonality patterns and behaviors that may assist in the descrip-
tion of the stochastic process.

Fig. 2 shows characteristic days for the mentioned period in
Maracanaú, with each day representing the average of the days of
the specific month (wind speed values measured at 78 m). The
analysis of the generated surface allows to identify wind speed
daily and monthly patterns and consequently, thinking in terms of
WECs connected to the grid in the Brazilian case, to evaluate the
wind potential as a complementary source to hydroelectric plants.
The wind resource seasonal characteristic, complementary to the
t towers sites.



Fig. 4. Characteristic days for Petrolina.
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seasonal hydro regime, is easily identified: lowest wind speed
values are found during the rainy period (JanuaryeApril), while the
highest wind speed values (between 5 m/s and 7 m/s) occur in the
dry period (JulyeOctober). Considering the daily curves, the highest
values are found between 10 am and 5 pm in all the observed
months.

Fig. 3 shows characteristic days for the mentioned period in
Parnaíba, with wind speed values measured at 78 m. As was the
case in Maracanaú, the wind resource complementary character-
istic to the seasonal hydro regime is easily identified: Parnaíba
shows the highest wind speed values between September and
December (most of the values higher than 8.5 m/s); even in other
periods, as between April and August, a good wind potential is
available (values higher than 6m/s). Considering the daily patterns,
the highest values are found between 1 pm and 1 am in all the
observed months.

Fig. 4 shows characteristic days for the observed months in
Petrolina, with wind speed values measured at 78 m. As it can be
observed, the wind resource complementary characteristic to the
seasonal hydro regime is not so easily identified as was the case in
Maracanaú and Parnaíba. One of the reasons of this behavior can be
found in the localization of Petrolina in a central area of the BRNER,
ca. 650 km far from the coastline. Considering the monthly
behavior, Petrolina shows the highest wind speed values between
July and November. Considering the daily patterns, the site is
characterized for a low variation throughout the day in all observed
months. In most of the second semester, a small decrease of the
values is observed in the morning period; in the rest of the day
values higher than 7 m/s are found, with low variability.

Table 1 summarizes the main statistical parameters obtained
from the wind speed values of Maracanaú, Parnaíba and Petrolina.
For each location three different analysis periods are considered:
from January to June (first semester or 1st S), from July to December
(second semester or 2nd S) and the whole year (annual), aiming to
identify the influence of seasonal factors (such as rain distribution)
over wind speed behavior.

The seasonality is verified in the three sites: higher wind speed
values in the second semester (months with almost zero precipi-
tation) and lower wind speeds in the first semester (rainy months).
Maracanaú shows a second semester average wind speed 31%
higher than the first semester average, while for Parnaíba, the
second semester average is 30% higher than that for the first se-
mester. Petrolina follows clearly another pattern: the difference
between semesters is only 8.8%, confirming a low variability
behavior. To remember, Petrolina is ca. 650 km far from the
coastline, while Maracanaú and Parnaíba are located near to the
ocean. Therefore, differences between wind speed variations
measured near and far from the coast can be explained by the
Fig. 3. Characteristic days for Parnaíba.
influence of the sea on the coastal wind regime.
Taking into account the standard deviation, while Maracanaú

and Parnaíba show lower values in the second semester, Petrolina
has no variation between the semesters and shows the lowest
annual value of the three sites.
2.2. Particle Swarm Optimization method

The solution of different optimization problems involving Arti-
ficial Intelligence (AI) techniques are widely used in different ap-
plications [8]. Optimization heuristic techniques include
probabilistic models developed from the observation of natural
phenomena aiming to find the optimal solution of a function. These
optimization methods do not ensure that the solution is the best
one, but that the solution can quickly converge to the best existing
one [9].

Particle Swarm Optimization (PSO) is an evolutionary optimi-
zation technique developed by Dr. Eberhart and Dr. Kennedy in
1995, inspired by the social behavior of a set of birds in flight with
its random movement locally, but globally determined [10]. In the
algorithm, the particles are initially launched into the search space,
each having the following characteristics:

� A position and a velocity;
� Knowledge of their position and the value of the objective
function for this position;

� Knowledge of the neighborhood: the best position found and
the value of its objective function;

� Storage of the best position found.

In each period of time the particle behavior is determined from
three available choices:

a) go its own way;
b) heading out to its best position found;
c) follow to the best position found by some of its neighbors.

The stop condition is determined by two conditions: a pre-set
number of iterations or when no further improvement is possible
(stagnation). Three terms determine the next particle movement:

� the inertia term ðw* vðtÞÞ, which forces the particle to move in
the same direction,

� the cognitive term ðc1*r1* ðpðtÞ � xðtÞÞ, which forces the parti-
cle to return to a previous position that is better than the present
and

� the social learning term ðc2* r2*ðgðtÞ � xðtÞÞ, which forces the
particle to follow the direction of his best neighbors.



Table 1
Statistical parameters of the wind speed data.

Wind speed (m/s) Maracanaú Parnaíba Petrolina

1st S 2nd S Annual 1st S 2nd S Annual 1st S 2nd S Annual

Minimum 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
Maximum 14.60 14.80 14.80 16.80 15.90 16.80 13.40 14.30 14.30
Average 4.87 6.39 5.63 6.57 8.54 7.55 6.40 6.96 6.71
Median 4.80 6.40 5.60 6.60 8.70 7.60 6.60 7.10 6.90
Standard deviation 2.17 2.08 2.26 2.19 2.09 2.36 1.79 1.79 1.81
Variance 4.73 4.31 5.10 4.78 4.37 5.55 3.22 3.20 3.19
Number of measurements 52,686 52,302 47,424
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After finding the two best values, the particle updates its ve-
locity and position according to:

vðtþ 1Þ ¼ ðw* vðtÞÞ þ ðc1*r1* ðpðtÞ � xðtÞÞ þ ðc2* r2*ðgðtÞ � xðtÞÞ
(1)

xðt þ 1Þ ¼ xðtÞ þ vðt þ 1Þ (2)

vðtÞ is the particle velocity, xðtÞ is the particle position, c1 e c2 are
social and cognitive parameters, r1 e r2 are random numbers be-
tween 0 and 1, pðtÞ is the best position reached by each particle, gðtÞ
is the best solution of all available in the entire population of par-
ticles and w is the inertia weight.

Eq. (1) is used to calculate the new speed of the particle ac-
cording to its previous speed and the distance between its current
position, its best position and the best of the group. Its new position
is then given according to Eq. (2).

Based on the observed wind speed data, the Weibull distribu-
tion can be described as

fWeibullðvÞ ¼
k
c
$
�v
c

�k�1
$e

�
�

v
c

�k

(3)

k and c are the shape and scale parameters of the Weibull dis-
tribution and v is the wind speed. To improve the fit capability of
the Weibull distribution, the difference between the Weibull
function and the wind speed histograms should be minimized.
Thus, the objective function to be minimized is given by:

εðviÞ ¼
1
2

Xn
i¼0

ðfrealðviÞ � fWeibullðviÞÞ2 (4)

frealðviÞ is the frequency of each wind speed class, fWeibullðviÞ is
the Weibull probability density function (Eq. (3)) and n is the total
number of wind speed classes.

In the present research, PSO was implemented with a random
population of 50 particles, being assigned zero speed for each
particle. Seeking to avoid premature convergence in the initial
search and enhance convergence to the global optimum solution in
the final phase, the inertia weight and acceleration coefficients
(cognitive and social parameters) vary nonlinearly during the
search, as proposed by Ref. [11], following Eqs. (5)e(7). For the
inertia weight (w) were set the maximum and minimum values of
0.9 and 0.4, respectively. For the cognitive and social parameters (c1
and c2) were set the maximum and minimum values of 2.5 and 0,
respectively. The power coefficients a, b, g have been assigned with
the values 0.5, 1.5 and 1.0, respectively. itermax represents the
maximum number of iterations.

wðjÞ ¼
�
1� j

itermax

�a

ðwmax �wminÞ þwmin (5)
c1ðjÞ ¼
�
1� j

itermax

�b

ðc1max � c1minÞ þ c1min (6)

c2ðjÞ ¼
�
1� j

itermax

�g

ðc2min � c2maxÞ þ c2max (7)

Due to the good performance obtained with Intelligent Opti-
mization Algorithms in solving nonlinear optimization problems,
some papers have reported in the last years the use of PSO applied
to the wind sector.

PSO is applied in Ref. [12] to effectively solve a wind turbine
control problem for fixed and variable speed wind turbines,
determining the maximum power coefficient that maximizes
electricity yield. Three methods are used in Ref. [13] for wind speed
prediction at three different sites in Saudi Arabia. PSO is one of the
methods used to train neural networks to predict hourly mean
wind speeds, presenting a better performance when compared to
the others methods.

An application of PSO and Artificial Bee Colony (ABC) algorithms
to optimize the design parameters of variable-speed wind turbines
for electricity production at minimum cost is found in Ref. [14]. It
was found that PSO outperformed the ABC algorithm for this
optimization problem. The wind potential in Taiwan is analyzed in
Ref. [11], combining PSO and a numerical method (maximum
likelihood - ML) to calculate the Weibull parameters. The results
show that the combination PSO-ML has a good performance for
wind energy applications and a rapid convergence in estimating
Weibull parameters.

A modified PSO algorithm to optimize wind farm turbines po-
sition for electricity production is found in Ref. [15]. Simulation
results demonstrate the efficiency of the proposed algorithm for
the micro-siting problem, considering a greater electricity pro-
duction, and the reduction of the algorithm computational time.

A study about power flow in wind energy systems applying a
hybrid Fuzzy e PSO method is found in Ref. [16]. The results reveal
that the method has good performance and is very effective in
reaching an optimal setting for real power generation levels,
voltage magnitudes and LTC (Load Tap Changer) tap positions,
when uncertainties in load demand andwind speed are considered.

An improved PSO algorithm is proposed in Ref. [17] to control
the maximum power point tracking of a wind power generation
system. According to the proposed algorithm, the particle location
depends only on its speed and dynamic change in the best position
neighborhood. The results obtained indicate that the proposed PSO
reduces the algorithm dependence on parameters and improves
global search capability, demonstrating more effectiveness
compared to the traditional PSO.

A combination of PSO and Ant Colony Optimization (ACO) to
predict the electricity production of awind farm in Binaloud, Iran, is
presented in Ref. [18]. Thewind farm output power for 364 days are
used for training and testing of the proposed model. The proposed
hybridization profits from the advantages of both algorithms,
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leading to a high quality prediction with a fast convergence
capability.

Table 2 summarizes the different mentioned PSO applications.
2.3. Investigation of numerical methods for estimation of Weibull
parameters

The wind energy potential in a period may be evaluated by a
probability density function, such as the Weibull distribution. As
mentioned before, this distribution is characterized by two vari-
ables: k, the dimensionless shape parameter and c, the scale
parameter, having the same unit with the wind speed [19]. The
distribution is named Rayleigh distribution if k is equal to 2. Several
numerical methods for the calculation of the Weibull parameters
from an observed wind speed set are found in the literature; in this
way, investigations into the accuracy of the numerical methods for
a specific site should be considered.

Six kinds of numerical methods for estimating Weibull pa-
rameters are reviewed in Ref. [20]: moment (M), empirical (E),
graphical (G), maximum likelihood (ML), modified maximum
likelihood (MML) and energy pattern factor (EPF) method. From
analysis of actual wind speed data observed at three stations
experiencing different weather conditions, it is found that if wind
speed distribution matches well with Weibull function, the six
methods are applicable; but if not, the ML method performs best
followed by theMML andMmethods; the Gmethod gets theworst
performance.

A new method for the estimation of Weibull parameters, called
equivalent energy (EE) method, is considered in Ref. [6]: the
method is based on the energy content of the distribution and
aims to improve the accuracy of the parameters estimation
mainly for wind data sets with relatively high shape factor values.
According to the authors, the Weibull distributions of the Brazil-
ian sites exhibit relatively high shape factor values and reduced
wind direction variations; it was found that errors between 2%
and 7% in the energy content could happen on half of the tested
sites. In this way, the research goal was to develop a method that
should present a mean error of 1% in the energy content of the
wind.

An analysis and comparison of the seven mentioned numeri-
cal methods for the assessment of effectiveness in determining
the Weibull parameters, using wind speed data collected in two
sites in the coastline of Cear�a, Brazil, is found in Ref. [21]. As a
result, the EE method is considered fully adequate to estimate the
k and c parameters for the wind speed data from the coastal area
of Cear�a; the G and the EPF methods are the least effective
methods.

Five numerical methods for the calculation of Weibull parame-
ters are used in Ref. [22]: Mean Wind Speed (MWS), G, ML, MML
and Power Density (PD). These methods aim to fit the wind speed
distributions found in Zafarana, a wind farm in Suez Gulf, Egypt.
Table 2
Main PSO applications in the wind sector.

Authors Application

Kongnam and Nuchprayoon [12] Wind turbine control
Mohandes and Rehman [13] Wind speed prediction
Eminoglu and Ayasun [14] Wind turbine design optimi
Chang [11] Wind energy potential asse
Wan et al. [15] Optimization of the turbine
Liang et al. [16] Power flow in wind energy
Tianpei and Wei [17] Maximum power point trac
Rahmani et al. [18] Wind farm power predictio
The best performances are found for MWS and ML methods.
Aiming to compare with PSO, five numerical methods are used

in this study for estimation of Weibull parameters: Moment
Method (M), Empirical Method (E), Energy Pattern Factor Method
(EPF), Energy Equivalent Method (EE) and Maximum Likelihood
(ML).

The M method determines the k and c parameters with the use
of Eqs. (8) and (9) [20].

v ¼ cG
�
1þ 1

k

�
(8)

s ¼ c
�
G

�
1þ 2

k

�
� G2

�
1þ 2

k

��1=2
(9)

v and s are the mean wind speed and the standard deviation of
the observed data, respectively; G represents the gamma function.

The E method is considered a special case of the M method,
determined using Eqs. (10) and (11) [15].

k ¼
�s
v

��1;086
(10)

v ¼ cG
�
1þ 1

k

�
(11)

The EPF Method is related to the mean wind speed and is
defined by Eqs. (12)e(14) [23].

Epf ¼ v3

ðvÞ3
(12)

k ¼ 1þ 3;69�
Epf
�2 (13)

v ¼ cG
�
1þ 1

k

�
(14)

Epf is the Energy Pattern Factor.
The EE method was developed by Ref. [3], aiming to identify a

methodology for estimation of Weibull parameters with an
adequate adjustment to the wind resource found in the BRNER
(wind data with relatively high shape factor values). The name
comes from the fact that it is based on the equivalence between the
energy density of the Weibull curve and the energy density of the
observed data. The Weibull parameters are determined with the
use of Eqs. (15) and (16).
Strategy

PSO
PSO

zation PSO and ABC
ssment in Taiwan PSO-ML
s positions PSO
systems Hybrid Fuzzy e PSO
king PSO
n PSO e Ant Colony Optimization (ACO)
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Wvi is the frequency of occurrence of each interval, v3 the mean of
the cubic wind speed and εvi the approximation error.

The ML method requires extensive numerical iterations for so-
lution of Eq (17) e (18):

k ¼

2
6664
Pn

i¼1 v
k
i lnðviÞPn

i¼1 v
k
i

�
Pn

i¼1 lnðviÞ
n

3
7775
�1

(17)

c ¼
 
1
n

Xn
i¼1

vki

!1=k

(18)

vi is the wind speed n the number of measurements.
The efficiency of the five numerical methods and PSO are

determined using the following statistical tests: correlation (r),
relative bias (RB) and root mean square error (RMSE), described in
Eqs. (19)e(21).

r ¼

PN
i
ðXi � XmedÞ$ðYi � YmedÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i
ðXi � XmedÞ2$ðYi � YmedÞ2

s (19)

RB ¼ Xmed � Ymed

Ymed
(20)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðXi � YiÞ2
N

s
(21)

N is the number of observations, Yi the frequency of observations,
Xi the Weibull frequency, Xmed the mean of Xi and Ymed the mean of
Yi.

3. Results and discussion

Figs. 5e7 show Weibull curves for each of the five used nu-
merical methods and for PSO method and wind speed data histo-
grams for Maracanaú, Parnaíba and Petrolina.

According to Figs. 5e7, Weibull curves for each of the five nu-
merical methods considered and for PSO method have different
coincidence levels with the histograms. Considering only numerical
methods, the best adjustments are found in Figs. 5 and 6, repre-
senting Weibull adjustment to the wind data obtained in coastal
sites; lower adjustments are found in Fig. 7, representing wind data
from a site far from the coast.

Comparing the five used numerical methods and PSO, PSO
method has a very good performance for the estimation of the
Weibull parameters, followed by the EE numerical method. Among
the numerical methods, this result confirms the expectations, since
the EE numerical method was developed to optimize the applica-
tion of the Weibull density function for the wind data found in the
BRNER.

Tables 3e5 show the application of the statistical tests (r, RB e
RMSE) for Maracanaú, Parnaíba e Petrolina, respectively, using a
measurement height of 78 m. These tests are applied to the wind
speed data obtained from February 2012 to January 2013 for Mar-
acanaú, from August 2012 to July 2013 for Parnaíba and from May
2012 to March 2013 for Petrolina.

According to the statistical tests, PSO method shows the best fit
in Tables 3e5. The high correlation and low relative bias and error
values indicate that the method converges to the optimal solution
in the three sites.

It is important to remember that the shape and scale parameters
are calculated using an annual distribution of wind speed data and
because of that these parameters lose in this case their represen-
tative characteristic due to the large seasonal difference observed in
the analysis period (1 year).

According to [3] annual curve should represent all observed
months, hence the estimates of k and c should represent both low
speed data (first semester) as high speed data (second semester).
Figs. 8e10 show k values obtained using E method for all consid-
ered months in the 3 sites. As it can be observed, k monthly values
vary considerably throughout the year, with a peak occurring in the
second semester of the year, showing a difference compared to the
annual value.

Considering data from Maracanaú, Table 3 shows, for the used
methods, a k annual value between 2.6 and 2.9; considering the
monthly variation, Fig. 8 shows that for the second semester most
of k values are found between 3 and 4. Table 4 (data from Parnaíba)
shows a k annual value between 3.2 and 3.9; according to Fig. 9,
most of k values in the second semester are higher than 6. Petrolina
data (Table 5) shows a k annual value between 3.5 and 5.1; ac-
cording to Fig. 10, k values vary between 5 and 7 in the second
semester. For Parnaíba and Petrolina the k annual value shows a
significant difference compared to the k parameters considering
the monthly variation, especially in the dry semester.

Considering data from Maracanaú, Table 3 shows, for the used
methods, a c annual value between 6.3 and 6.9 m/s; considering the
monthly variation, Fig. 11 shows that for the second semester most
of the c values are found between 7 and 8 m/s; Table 4 (data from
Parnaíba) shows a c annual value between 8.3 and 8.9 m/s; ac-
cording to Fig. 12, most of c values are found in the second semester
between 8 and 10 m/s. Petrolina data (Table 5) shows a c annual
value between 7.3 and 7.9 m/s; according to Fig. 13, most of c values
vary between 7 and 8 m/s in the second semester.

4. Conclusions

Attempts to diversify the electricity matrix with the use of
decentralized renewable energy plants have been increasingly
implemented in the last decades worldwide. For the particularly
case of Brazil, success has been obtained mainly with wind plants,
achieving a share of 2.88% of the country total power generation in
2014.

Motivated by the increasing relevance of wind power genera-
tion in Brazil, the study here reported investigated the PSO tech-
nique as a method to estimate the Weibull parameters adjusted for
the particular wind conditions found in the BRNER. To characterize
the wind resource of that Brazilian region, wind speed data were
collected in 80 m high measurement towers installed in three sites.
Two of the towers are at the coastal towns of Parnaíba and



Fig. 5. Weibull distribution curves and histogram - Maracanaú (February 2012eJanuary 2013).

Fig. 6. Weibull distribution curves and histogram - Parnaíba (August 2012eJuly 2013).

Fig. 7. Weibull distribution curves and histogram - Petrolina (May 2012eMarch 2013).
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Maracanaú, distant 365 Km from each other. The third tower is
located at Petrolina, ca. 650 Km far from the coastline.

Aiming to compare with PSO, five numerical methods are
chosen for estimation ofWeibull parameters: MomentMethod (M),
Empirical Method (E), Energy Pattern Factor Method (EPF), Energy
Equivalent Method (EE) and Maximum Likelihood (ML).



Table 3
Application of statistical tests for Maracanaú e CE.

Numerical methods Weibull
parameters

Statistical tests

K c r RMSE RB

Equivalent energy method 2.8170 6.3709 0.9744 0.0143 0.0001031
Moment method 2.6900 6.3362 0.9694 0.0151 0.0002445
Empirical method 2.6988 6.3355 0.9696 0.0151 0.0002325
Energy pattern factor method 2.6660 6.3381 0.9689 0.0152 0.0002795
Maximum likelihood 2.6920 6.3267 0.9687 0.0153 0.0002427
Particle Swarm Optimization 2.8546 6.9167 0.9959 0.0055 0.0000594

Table 4
Application of statistical tests for Parnaíba e PI.

Numerical methods Weibull
parameters

Statistical tests

K c r RMSE RB

Equivalent energy method 3.5970 8.3802 0.9686 0.0150 0.0000148
Moment method 3.5590 8.3891 0.9683 0.0150 0.0000153
Empirical method 3.5462 8.3907 0.9681 0.0150 0.0000155
Energy pattern factor method 3.2376 8.4301 0.9585 0.0175 0.0000024
Maximum likelihood 3.5740 8.3654 0.9667 0.0154 0.0000154
Particle Swarm Optimization 3.9143 8.9013 0.9949 0.0061 0.0000060

Table 5
Application of statistical tests for Petrolina e PE.

Numerical methods Weibull
parameters

Statistical tests

K c r RMSE RB

Equivalent energy method 3.8470 7.3377 0.9281 0.0294 0.0000161
Moment method 4.1720 7.3877 0.9460 0.0255 0.0000071
Empirical method 4.1438 7.3905 0.9456 0.0256 0.0000077
Energy pattern factor method 3.5207 7.4579 0.9248 0.0309 0.0000257
Maximum likelihood 4.2320 7.3667 0.9448 0.0258 0.0000061
Particle Swarm Optimization 5.1171 7.9010 0.9962 0.0077 0.0000001

Fig. 8. Shape parameter monthly variation - Maracanaú.

Fig. 9. Shape parameter monthly variation - Parnaíba.

Fig. 10. Shape parameter monthly variation e Petrolina.

Fig. 11. Scale parameter monthly variation e Maracanaú.

Fig. 12. Scale parameter monthly variation e Parnaíba.
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Considering only the numerical methods, EE Method shows the
best results for the near the coast sites. EE produced a high corre-
lation value of 96%, almost zero relative bias and an error of 0.015.
For Petrolina, far from the coast, M and E Method show the best
results. M and E produced correlation values above 94%, low
Fig. 13. Scale parameter monthly variation e Petrolina.



T.C. Carneiro et al. / Renewable Energy 86 (2016) 751e759 759
relative bias and error 0.0255 and 0.0256, respectively. The best
performance for the EE Method for coastal areas agrees with other
paper, using two sites in the coastline of Cear�a, Brazil [20].

Compared with the five used numerical methods, PSO shows
the best performance in the three sites under investigation. Cor-
relation values higher than 99%, relative bias almost zero and an
error lower than 0.0044 are found. Therefore, PSO proves to be a
valuable technique for characterization of the particular wind
conditions found in the BRNER.
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