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“If you can’t solve a problem, then there is

an easier problem you can solve: find it.”

George Pólya, How to Solve It: A New As-

pect of Mathematical Method



RESUMO

Mostramos como determinar, sob condições bastante gerais, se dois polinômios β-quasi-

homogêneos em duas variáveis, com coeficientes reais, dados são R-semialgebricamente

Lipschitz equivalentes. Seguindo a estratégia usada em BIRBRAIR, FERNANDES, and

PANAZZOLO (2009), mostramos primeiro como determinar se duas funções polinomiais

reais de uma variável dadas são Lipschitz equivalentes comparando os valores e também as

multiplicidades das funções polinomiais dadas nos seus pontos cŕıticos, e então mostramos

como reduzir, sob condições bastante gerais, o problema daR-equivalência Lipschitz semi-

algébrica de polinômios β-quasihomogêneos em duas variáveis, com coeficientes reais, ao

problema da equivalência Lipschitz de funções polinomiais reais de uma variável. Como

aplicação dos nossos resultados principais sobre R-equivalência Lipschitz semialgébrica de

polinômios β-quasihomogêneos em duas variáveis, investigamos as propriedades, no con-

texto da R-equivalência Lipschitz semialgébrica, de uma famı́lia espećıfica de polinômios

quasihomogêneos, que foi usada antes em HENRY and PARUSIŃSKI (2004), para mostrar

que a equivalência bi-Lipschitz de germes de funções anaĺıticas (R2, 0) → (R, 0) admite

moduli cont́ınuo. Das nossas conclusões decorre que a R-equivalência Lipschitz semi-

algébrica de polinômios β-quasihomogêneos em duas variáveis também admite moduli

cont́ınuo.

Palavras-chave: R-equivalência Lipschitz semialgébrica; polinômios quasihomogêneos;

moduli cont́ınuo.



ABSTRACT

We show how to determine, under fairly general conditions, whether two given β-quasi-

homogeneous polynomials in two variables, with real coefficients, are R-semialgebraically

Lipschitz equivalent. Following the strategy used in BIRBRAIR, FERNANDES, and

PANAZZOLO (2009), we first show how to determine whether two given real polyno-

mial functions of a single variable are Lipschitz equivalent by comparing the values and

also the multiplicities of the given polynomial functions at their critical points, and then

we show how to reduce, under fairly general conditions, the problem of R-semialgebraic

Lipschitz equivalence of β-quasihomogeneous polynomials in two variables, with real co-

efficients, to the problem of Lipschitz equivalence of real polynomial functions of a single

variable. As an application of our main results on R-semialgebraic Lipschitz equivalence

of β-quasihomogeneous polynomials in two variables, we investigate the properties, in

the context of R-semialgebraic Lipschitz equivalence, of a specific family of quasihomoge-

neous polynomials, which has been used before in HENRY and PARUSIŃSKI (2004), to

show that the bi-Lipschitz equivalence of analytic function germs (R2, 0)→ (R, 0) admits

continuous moduli. As a byproduct, our conclusions show that the R-semialgebraic Lip-

schitz equivalence of real β-quasihomogeneous polynomials in two variables also admits

continuous moduli.

Keywords: R-semialgebraic Lipschitz equivalence; quasihomogeneous polynomials; con-

tinuous moduli.
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1 INTRODUCTION

In HENRY and PARUSIŃSKI (2003), Henry and Parusiński showed that the

bi-Lipschitz classification of complex analytic function germs admits continuous moduli.

This fact had not been observed before and interestingly it contrasts with the fact that

the bi-Lipschitz equivalence of complex analytic set germs does not admit moduli, see

MOSTOWSKI (1985). The moduli space of bi-Lipschitz equivalence of function germs

is not yet completely understood but it is worth noting that recently Câmara and Ruas

have made progress in the study of the moduli space of bi-Lipschitz equivalence of quasi-

homogeneous function germs, in the complex case, see CÂMARA and RUAS (2020).

In HENRY and PARUSIŃSKI (2004), Henry and Parusiński showed that the

bi-Lipschitz classification of real analytic function germs admits continuous moduli. Then,

in BIRBRAIR, FERNANDES, and PANAZZOLO (2009), Birbrair, Fernandes and Panaz-

zolo described the semialgebraic bi-Lipschitz moduli in the “simplest possible case” (as

they have called it): quasihomogeneous polynomial functions defined on the Hölder tri-

angle Tβ := {(x, y) ∈ R2 : 0 ≤ x, 0 ≤ y ≤ xβ}. Independently, the particular case of

weighted homogeneous polynomial functions of two real variables has been considered by

Koike and Parusiński in KOIKE and PARUSIŃSKI (2013).

In this thesis, we consider the problem of classifying β-quasihomogeneous poly-

nomials in two variables with real coefficients modulo R-semialgebraic Lipschitz equiva-

lence. Here and throughout the text, β always denotes a rational number > 1. (We define

β-quasihomogeneous polynomials and R-semialgebraic Lipschitz equivalence in the intro-

duction to Chapter 4.) Our main goal is to extend the results obtained in BIRBRAIR,

FERNANDES, and PANAZZOLO (2009) for the classification of germs of functions de-

fined on the Hölder triangle to germs of functions defined on the whole plane.

Following the strategy used in BIRBRAIR, FERNANDES, and PANAZZOLO

(2009), we solve the problem of determining whether two given real polynomial functions

of a single variable are Lipschitz equivalent (Lipschitz equivalence of real polynomial

functions of a single variable is defined in the introduction to Chapter 3), and then

we try to reduce the problem of determining whether two given β-quasihomogeneous

polynomials, with real coefficients, in two variables are R-semialgebraically Lipschitz

equivalent to the problem of determining whether two given polynomial functions of a

single variable are Lipschitz equivalent.

The Lipschitz equivalence problem for polynomial functions of a single vari-

able is solved in Chapter 3 (see Theorem 3.1a, Theorem 3.1b, and Theorem 3.1c). Again,

we follow the approach taken in BIRBRAIR, FERNANDES, and PANAZZOLO (2009),

which consists in comparing the values and also the multiplicities of the given poly-

nomial functions at their critical points. The reduction to the single variable case is

carried out in Chapter 4, under fairly general conditions. Still following the approach
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taken in BIRBRAIR, FERNANDES, and PANAZZOLO (2009), we associate with each β-

quasihomogeneous polynomial F (X, Y ) ∈ R[X, Y ] a pair of polynomial functions f+, f− :

R→ R, called the height functions of F , which encode a great deal of information about

the original polynomial. Then, we consider the following questions:

1. Suppose that two given β-quasihomogeneous polynomials F,G ∈ R[X, Y ] of degree

d ≥ 1 are R-semialgebraically Lipschitz equivalent. Is it possible to arrange their

height functions in pairs of Lipschitz equivalent functions (i.e. either f+ ∼= g+ and

f− ∼= g−, or f+ ∼= g− and f− ∼= g+)?

2. Suppose that the height functions of two given β-quasihomogeneous polynomials

F,G ∈ R[X, Y ] of degree d ≥ 1 can be arranged in pairs of Lipschitz equivalent

functions. Are F and G R-semialgebraically Lipschitz equivalent?

We show that if the zero sets of the polynomials F and G have points both on

the right half-plane and on the left half-plane then the answer to the first question is yes

(see Corollary 4.3 and Remark 4.7). Also, we obtain some fairly general conditions under

which the answer to the second question is affirmative (see Theorem 4.2, Corollary 4.11,

and Corollary 4.12). These are our main results on R-semialgebraic Lipschitz equivalence

of β-quasihomogeneous polynomials. These results, along with those on Lipschitz equiv-

alence of polynomial functions of a single variable (namely, Theorem 3.1a, Theorem 3.1b,

and Theorem 3.1c) enable us to determine, under fairly general conditions, whether two

given β-quasihomogeneous polynomials are R-semialgebraically Lipschitz equivalent.

In BIRBRAIR, FERNANDES, and PANAZZOLO (2009), the questions stated

above were both answered affirmatively in the case where the equivalence is restricted to

the Hölder triangle Tβ, assuming that the given β-quasihomogeneous polynomials vanish

identically on ∂Tβ and do not vanish at the interior points of Tβ. Here, we generalize

the methods devised by Lev Birbrair, Alexandre Fernandes, and Daniel Panazzolo. This

generalization leads to the theory of β-transforms and inverse β-transforms developed in

Sections 4.1, 4.2, 4.3, and 4.4. Our main results on R-semialgebraic Lipschitz equivalence

of β-quasihomogeneous polynomials in two variables are proved using this theory.

We provide some interesting applications of the main results obtained in this

thesis. In Section 3.2, we apply our main results on Lipschitz equivalence of real poly-

nomial functions of a single variable to construct a set of normal forms for the Lipschitz

equivalence of polynomial functions of degree d, for d = 1, 2, 3. In Section 4.5, we apply

our main results on R-semialgebraic Lipschitz equivalence of β-quasihomogeneous poly-

nomials in two variables to investigate the properties, in the context of R-semialgebraic

Lipschitz equivalence, of a specific family of quasihomogeneous polynomials, which has

been used before in HENRY and PARUSIŃSKI (2004) to show that the bi-Lipschitz

equivalence of analytic function germs (R2, 0) → (R, 0) admits continuous moduli. As a
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byproduct, our conclusions show that the R-semialgebraic Lipschitz equivalence of real

β-quasihomogeneous polynomials in two variables also admits continuous moduli.
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2 PRELIMINARIES

In this chapter, we discuss some basic concepts and results that are used in

the subsequent chapters, where the research problem of this thesis is addressed.

Overview of this chapter. In Section 2.1, we introduce the concept of multiplicity of a

nonconstant analytic function f : I → R at a point t0 ∈ I that is used in this thesis. The

main result of this section is Proposition 2.2, which provides a local form for nonconstant

analytic functions f : I → R around a point t0 ∈ I, in terms of the multiplicity of f at t0.

This result is used in Chapter 3 (more precisely, in the proof of Lemma 3.3).

In Section 2.2, we review the fundamentals of semialgebraic sets and mappings,

and prove some basic results that are used throughout this thesis. The main goals of this

section are Proposition 2.4, which says that if a real semialgebraic function of a single

real variable is differentiable then its derivative is also semialgebraic, and also Corollary

2.4 and Corollary 2.5, according to which one-sided limits and one-sided derivatives of

real semialgebraic functions of a single variable are well-defined in the extended real line

R = [−∞,+∞], at the points where it makes sense to define them. These results are

essential in providing a solid foundation for the next chapters.

In Section 2.3, we discuss the effect of a semialgebraic (bi-)Lipschitz transfor-

mation on the initial velocity of a continuous semialgebraic path in R2. Virtually all the

results of this section are used in the subsequent chapters (more precisely, in Chapter 4).

2.1 Multiplicity of an analytic function at a point of its domain

A function f : I → R, where I ⊆ R is an open interval, is analytic if for each

t0 ∈ I, there exist δ > 0 such that (t0 − δ, t0 + δ) ⊆ I and a convergent power series1∑∞
k=0 ck(t− t0)k such that f(t) =

∑∞
k=0 ck(t− t0)k for all t ∈ (t0 − δ, t0 + δ). Let us recall

the most basic facts about analytic functions:

(a) If f, g : I → R are analytic functions, and c ∈ R, then f±g, cf , and f ·g are analytic

functions. Also, if g does not vanish on I, then f/g is analytic.

(b) If f : I → R and g : J → R are analytic functions such that f(I) ⊆ J then the

composition g ◦ f : I → R is analytic.

(c) Every analytic function f : I → R has derivatives of all orders, and for each t0 ∈ I,

the power series representation of f around t0 is precisely its Taylor series around

t0:

f(t) =
∞∑
k=0

f (k)(t0)

k!
· (t− t0)k, for all t ∈ (t0 − δ, t0 + δ).

1A power series
∑∞

k=0 ck(t−t0)k is convergent if there exists η > 0 such that, for each τ ∈ (t0−η, t0+η),
the infinite series

∑∞
k=0 ck(τ − t0)k is a convergent series of real numbers.



16

(d) If f : I → R is an analytic function then, for each k ≥ 1, the k-th derivative

f (k) : I → R is analytic.

(e) If
∑∞

k=0 ck(t− t0)k is a convergent power series, then g : (t0 − δ, t0 + δ)→ R defined

by g(t) :=
∑∞

k=0 ck(t− t0)k is analytic. Moreover, the derivative g′ can be found by

differentiating the series term-by-term:

g′(t) =
∞∑
k=0

(k + 1)ck+1(t− t0)k, for all t ∈ (t0 − δ, t0 + δ).

(f) Let f, g : I → R be analytic functions. If the set {t ∈ I : f(t) = g(t)} has a limit

point in I, then f(t) = g(t) for all t ∈ I.

We refer to (LIMA, 1999, Chapter X) and (THOMSON, BRUCKNER, and

BRUCKNER, 2008, Chapter 10) for a thorough introductory treatment of the fundamen-

tals of the theory of real analytic functions, with proofs of the facts listed above. Now, we

turn to the main topic of this section: the concept of multiplicity of an analytic function

at a point of its domain.

Proposition 2.1. If f : I → R is a nonconstant analytic function defined on an open

interval I ⊆ R then, for each t0 ∈ I, there exist an integer r ≥ 1 and an analytic function

g : (t0 − δ, t0 + δ)→ R such that

f(t)− f(t0) = (t− t0)r · g(t), for all t ∈ (t0 − δ, t0 + δ),

and g(t0) 6= 0.

Proof. Let f : I → R be a nonconstant analytic function and let t0 be an arbitrary point

of I. Since f is analytic, there exists a convergent power series
∑∞

k=0 ck(t − t0)
k such

that f(t) =
∑∞

k=0 ck(t − t0)k for all t ∈ (t0 − δ, t0 + δ). Let r := min{k ≥ 1 : ck 6= 0},
which is well-defined because f(t) − f(t0) is not identically zero. Then f(t) − f(t0) =

(t− t0)r ·
∑∞

k=0 cr+k(t− t0)k, for all t ∈ (t0− δ, t0 + δ). Now, we only need to note that the

function g : (t0 − δ, t0 + δ) → R given by g(t) :=
∑∞

k=0 cr+k(t − t0)k is analytic and that

g(t0) = cr, so g(t0) 6= 0. �

Clearly, the integer r ≥ 1 in the statement of Proposition 2.1 is uniquely

determined by f and t0. We call it the multiplicity of f at t0.

Remark 2.1. A straightforward computation shows that t0 is a critical point of f if and

only if the multiplicity of f at t0 is ≥ 2.

Proposition 2.2. Let f : I → R be a nonconstant analytic function defined on an open

interval I ⊆ R and let t0 ∈ I. If f has multiplicity k at t0 then there exist an increasing
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analytic diffeomorphism u : I0 → (−ε, ε), defined on an open subinterval I0 ⊆ I containing

t0, with u(t0) = 0, and a constant ρ ∈ R \ {0} such that

f ◦ u−1(t) = f(t0) + ρtk, for |t| < ε.

Proof. Suppose that f has multiplicity k at t0. Then, by Proposition 2.1, there exists

δ > 0 such that (t0 − δ, t0 + δ) ⊆ I and

f(t)− f(t0) = (t− t0)k · g(t), for all t ∈ (t0 − δ, t0 + δ),

where g : (t0 − δ, t0 + δ) → R is an analytic function such that g(t0) 6= 0. Let us rewrite

the above equation as

f(t)− f(t0) = ρ · (t− t0)k · ĝ(t), for all t ∈ (t0 − δ, t0 + δ),

where ρ := g(t0) and ĝ(t) := g(t)/g(t0). Since ĝ(t0) = 1, we can assume (shrinking δ > 0

if necessary) that ĝ(t) > 0 for all t ∈ (t0 − δ, t0 + δ). Then, we have

f(t)− f(t0) = ρ · uk(t),

where u : (t0 − δ, t0 + δ) → R, given by u(t) = (t − t0) · ĝ
1
k (t), is a well-defined analytic

function. Since u′(t0) = ĝ
1
k (t0) = 1 > 0, we can assume (again, shrinking δ > 0 if

necessary) that u′(t) > 0 for all t ∈ (t0 − δ, t0 + δ). Thus, u is an increasing analytic

diffeomorphism from (t0 − δ, t0 + δ) to an open interval J containing u(t0) = 0. Take an

arbitrary ε > 0 such that (−ε, ε) ⊆ J . Then I0 := u−1((−ε, ε)) is an open subinterval of

I containing t0 and u : I0 → (−ε, ε) is an increasing analytic diffeomorphism such that

u(t0) = 0 and

f ◦ u−1(t) = f(t0) + ρtk, for |t| < ε.

�

2.2 Basic notions of semialgebraic sets and mappings

In this section, we review the fundamentals of semialgebraic sets and mappings,

and prove some basic results that are used throughout this thesis. For the most part, the

material presented in this section is drawn from COSTE (2002). In preparing this section,

we have also found useful the article NEYMAN (2003). For an extensive treatment of

semialgebraic sets and mappings, see COSTE (2002), BENEDETTI and RISLER (1990),

or BOCHNAK, COSTE, and ROY (1998).
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Let SAn be the smallest collection of subsets of Rn satisfying the following

conditions:

i. For each P ∈ R[X1, . . . , Xn], the sets {x ∈ Rn : P (x) = 0} and {x ∈ Rn : P (x) > 0}
belong to SAn.

ii. For any A,B ∈ SAn, each of the sets A ∪B, A ∩B, and Rn \ A belong to SAn.

The members of SAn are called semialgebraic subsets of Rn.

Proposition 2.3. Every semialgebraic subset of Rn is the union of finitely many semi-

algebraic subsets of the form

{x ∈ Rn : P (x) = 0 and Q1(x) > 0 and · · · and Qk(x) > 0},

where k ∈ N0 and P,Q1, . . . , Qk ∈ R[X1, . . . , Xn].

Proof. Clearly, the class C of all finite unions of such subsets satisfies properties (i) and

(ii) above, so SAn ⊆ C. It is also clear that every member of C is a semialgebraic set, so

we also have C ⊆ SAn. �

Examples.

(a) The semialgebraic subsets of R are the finite unions of intervals (the empty set and

the singletons are regarded as degenerate intervals).

(b) Every algebraic subset of Rn (i.e. a set defined as the zero set of a system of

polynomial equations) is a semialgebraic set.

(c) Let F : Rm → Rn be a polynomial mapping: F = (F1, . . . , Fn), where Fi ∈
R[X1, . . . , Xm], for i = 1, . . . , n. If A is a semialgebraic subset of Rn, then F−1(A)

is a semialgebraic subset of Rm.

(d) If A ⊆ Rm and B ⊆ Rn are semialgebraic then A × B is a semialgebraic subset of

Rm+n.

Theorem 2.1 (Tarski-Seidenberg). Let A be a semialgebraic subset of Rn+1 and let

π : Rn+1 → Rn be the projection on the first n coordinates. Then π(A) is a semialge-

braic subset of Rn.

Proof. See (COSTE, 2002, Theorem 2.3), (BOCHNAK, COSTE, and ROY, 1998, Theo-

rem 2.2.1) or (BENEDETTI and RISLER, 1990, Theorem 2.3.4). �

Corollary 2.1. If A is a semialgebraic subset of Rn+k, then its image by the projection

on the space of the first n coordinates is a semialgebraic subset of Rn.

Corollary 2.2. If A is a semialgebraic subset of Rm and F : Rm → Rn is a polynomial

mapping, then the direct image F (A) is a semialgebraic subset of Rn.
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Often, the most convenient way of showing that a given subset A ⊆ Rn is

semialgebraic is to verify that A can be defined by a formula of the language of ordered

fields with parameters in R. Let us denote this language by L. A formula of L is obtained

by the following rules:

1. For each P ∈ R[X1, . . . , Xn], the formulas P = 0 and P > 0 belong to L.

2. If Φ and Ψ are formulas of L, then so are the formulas Φ and Ψ, Φ or Ψ, and not

Φ (formally denoted by Φ ∧Ψ, Φ ∨Ψ, and ¬Φ, respectively).

3. If Φ is a formula of L and X is a variable ranging over R, then so are the formulas

∃X Φ and ∀X Φ.

Clearly, for each semialgebraic subsetA ⊆ Rn, there exists a formula Φ(X1, . . . , Xn) ∈
L such that

A = {(x1, . . . , xn) ∈ Rn : Φ(x1, . . . , xn)}.

The next result shows that, conversely, every set of this form is semialgebraic.

Theorem 2.2 (Tarski-Seidenberg — logical formulation). If Φ(X1, . . . , Xn) is a formula

of L, then the set {(x1, . . . , xn) ∈ Rn : Φ(x1, . . . , xn)} is semialgebraic.

Proof. See (COSTE, 2002, Theorem 2.6), (BOCHNAK, COSTE, and ROY, 1998, Propo-

sition 2.2.4) or (BENEDETTI and RISLER, 1990, Theorem 2.6). �

Example. If A is a semialgebraic subset of Rn, then A (topological closure of A) is

semialgebraic. By the logical formulation of Tarski-Seidenberg’s Theorem, it suffices to

note that

A = {x ∈ Rn : ∀ε ∈ R, ε > 0⇒ ∃y ∈ Rn, y ∈ A and ‖x− y‖2 < ε2}.

Let A ⊆ Rm and B ⊆ Rn be semialgebraic sets. A mapping f : A→ B is said

to be semialgebraic if its graph

Γf := {(x, y) ∈ A×B : y = f(x)}

is a semialgebraic subset of Rm × Rn.

Examples.

(a) If f : A → B is a polynomial mapping (all its coordinates are polynomial), then it

is semialgebraic.

(b) If f : A→ B is a regular rational mapping (all its coordinates are rational fractions

whose denominators do not vanish on A), then it is semialgebraic.

(c) If f : A→ R is a semialgebraic function, then |f | is semialgebraic.



20

(d) If f : A→ R is semialgebraic and f ≥ 0, then
√
f is a semialgebraic function.

(e) If A ⊆ Rn, is a nonempty semialgebraic subset, then the function

Rn −→ R

x 7−→ d(x,A) = inf{‖x− y‖ : y ∈ A}

is continuous semialgebraic.

From Tarski-Seidenberg Theorem, we can obtain some important properties

of semialgebraic mappings.

Corollary 2.3.

i. The direct image and the inverse image of a semialgebraic set by a semialgebraic

mapping are semialgebraic.

ii. The composition of two semialgebraic mappings is semialgebraic.

iii. The semialgebraic functions from A to R form a ring.

Proposition 2.4. Let A ⊆ R be semialgebraic open set and let f : A→ R be a semialge-

braic function. If f is differentiable, then the derivative f ′ : A→ R is semialgebraic.

Proof. By definition,

f ′(x) := lim
w→x

f(w)− f(x)

w − x
,

so f ′(x) is the only real number y satisfying the following condition:

∀ε > 0 ∃δ > 0 ∀w 0 < |w − x| < δ ⇒
∣∣∣∣f(w)− f(x)

w − x
− y
∣∣∣∣ < ε

Thus, the graph of f ′ is the set

Γf ′ :=
{

(x, y) ∈ R2 :

∀ε
(
ε > 0⇒ ∃δ

(
δ > 0 ∧ ∀w

(
0 < |w − x| < δ ⇒

∣∣∣∣f(w)− f(x)

w − x
− y
∣∣∣∣ < ε

)))}
The inequality 0 < |w − x| < δ can be rewritten as a formula Φ(w, x) ∈ L:

Φ(w, x) : (δ − w + x > 0) ∧ (δ + w − x > 0) ∧ ¬(w − x = 0)
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We show that the inequality
∣∣∣f(w)−f(x)w−x − y

∣∣∣ < ε can also be rewritten as a formula of

L. Let C := {(w, x) ∈ A × A : w 6= x}, which is a semialgebraic subset of R2, and let

F : C × R2 → R be the function given by

F (w, x, y, ε) :=

∣∣∣∣f(w)− f(x)

w − x
− y
∣∣∣∣− ε.

Since f is semialgebraic, so is F . Then the set

F−1((−∞, 0)) =

{
(w, x, y, ε) ∈ C × R2 :

∣∣∣∣f(w)− f(x)

w − x
− y
∣∣∣∣ < ε

}
is semialgebraic, and hence there exists a formula Ψ(w, x, y, ε) ∈ L such that

∀(w, x, y, ε) ∈ C × R2,

∣∣∣∣f(w)− f(x)

w − x
− y
∣∣∣∣ < ε⇔ Ψ(w, x, y, ε).

Thus, Γf ′ is defined by the following formula:

∀ε (ε > 0⇒ ∃δ (δ > 0 ∧ ∀w (Φ(w, x) < δ ⇒ Ψ(w, x, y, ε))))

Clearly, this formula can be rewritten as a formula of L, so by Theorem 2.2, it follows

that Γf ′ is a semialgebraic set, and therefore f ′ is a semialgebraic function. �

Proposition 2.5. Let U be a semialgebraic open subset of Rn, and let f : U → R be a

semialgebraic function. If f admits a partial derivative ∂f/∂xi on U , then this derivative

is semialgebraic.

Proof. This result can be proved by an argument similar to the one used in Proposition 2.4:

from the definition of the partial derivative ∂f/∂xi, we obtain a formula of L that describes

its graph; then, by Theorem 2.2, it follows that the graph Γ∂f/∂xi is a semialgebraic set,

and therefore ∂f/∂xi is a semialgebraic function. �

Now, we set out to establish an important fact about semialgebraic functions

that is tacitly used several times in this thesis, namely, that “semialgebraic functions of

a single variable always have (possibly infinite) one-sided limits” (Corollary 2.4). As a

consequence, we obtain another important fact that is also tacitly used several times in

this thesis, namely, that “semialgebraic functions of a single variable always have (possibly

infinite) one-sided derivatives” (Corollary 2.5). In order to obtain these results, we prove

that “semialgebraic functions of a single variable are monotone on a small interval ending

at any left limit point of its domain and also on a small interval starting at any right limit

point of its domain ” (Proposition 2.7). Before we can prove these facts, we need to show

that the graph of any semialgebraic function is contained in the zero set of a nonzero

polynomial (Proposition 2.6) — this is our starting point. The proofs of Proposition 2.6
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and of Proposition 2.7 presented here, are based on the proofs given for these results in

NEYMAN (2003).

Proposition 2.6. For every semialgebraic map f : A→ Rn, A ⊆ Rm semialgebraic, there

exists a nonzero polynomial P ∈ R[X1, . . . , Xm, Y1, . . . , Yn] such that P (x, f(x)) = 0 for

all x ∈ A.

Proof. Let f : A→ Rn be a semialgebraic map. By Proposition 2.3, the graph of f is the

union of finitely many nonempty sets Gi, of the form

Gi = {(x, y) ∈ Rm × Rn : fi(x, y) = 0 and gij(x, y) > 0, j = 1, . . . , ki},

with fi, gij ∈ R[X1, . . . , Xm, Y1, . . . , Yn]. Since the graph of a function cannot contain

an open set, each one of the polynomials fi is not identically zero, so P =
∏

i fi ∈
R[X1, . . . , Xm, Y1, . . . , Yn] is a nonzero polynomial. Let us denote by Γf the graph of f .

Since Γf = ∪iGi ⊆ ∪if−1i (0) = P−1(0), we have P (x, f(x)) = 0 for all x ∈ A. �

Lemma 2.1. Let A ⊆ R be a nonempty semialgebraic subset.

i. If a is a limit point of A∩ (a,+∞), then there exists δ > 0 such that (a, a+ δ) ⊆ A.

ii. If a is a limit point of A∩ (−∞, a), then there exists δ > 0 such that (a− δ, a) ⊆ A.

Proof. We prove only the first part of the lemma, the second part being analogous. Since

A is a nonempty semialgebraic subset of R, there exists a finite number n ≥ 1 of disjoint

intervals I1, . . . , In such that A = I1 ∪ · · · ∪ In. (Some of these intervals may be actually

singletons.) Suppose that a is a limit point of A ∩ (a,+∞). Then, it is a limit point

of Ik ∩ (a,+∞), for a certain k ∈ {1, . . . , n}. From this we can deduce that Ik is a

nondegenerate interval, that a is less than the supremum of Ik and that a is greater than

or equal to the infimum of Ik. Hence, there exists δ > 0 such that (a, a+δ) ⊆ Ik ⊆ A. �

Proposition 2.7. Let A ⊆ R be a nonempty semialgebraic subset, and let f : A → R be

a semialgebraic function.

i. If a is a limit point of A∩ (a,+∞), then there exists δ > 0 such that (a, a+ δ) ⊆ A

and f is monotone on (a, a+ δ).

ii. If a is a limit point of A∩ (−∞, a), then there exists δ > 0 such that (a− δ, a) ⊆ A

and f is monotone on (a− δ, a).

Proof. As in the previous lemma, we only prove the first part, the second part being

analogous. By Proposition 2.6, there exists a nonzero polynomial P ∈ R[X, Y ] such that

P (x, f(x)) = 0 for all x ∈ A. We prove the proposition by induction on degX P + degY P ,

where degX P and degY P stand for the degree of P with respect to the variables X and

Y , respectively.

In the base case, degX P + degY P = 1, we have degX P = 0 or degY P = 0.

Let us show that degY P = 0 is not possible. Suppose that degY P = 0. Then, we have
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P (x, y) = mx + q, where m, q ∈ R, m 6= 0. Since P (x, f(x)) = 0 for all x ∈ A, it

follows that A = {−q/m}. But this contradicts our assumption that A has a limit point.

Hence, we have degX P = 0. Then P (x, y) = my + q, where m, q ∈ R, m 6= 0. Since

P (x, f(x)) = 0 for all x ∈ A, it follows that f(x) = −q/m for all x ∈ A. Therefore, f is

constant. By hypothesis, a is a limit point of A ∩ (a,+∞), so by Lemma 2.1 there exists

δ > 0 such that (a, a+ δ) ⊆ A. Then it follows that f |(a,a+δ) is constant, and therefore it

is monotone.

Now we prove the induction step. For every choice of signs ε = (ε1, ε2) ∈
{−1, 0, 1}2, the set

Aε =

{
x ∈ A ∩ (a,+∞) : sign

∂P

∂X
(x, f(x)) = ε1 and sign

∂P

∂Y
(x, f(x)) = ε2

}
is semialgebraic. Also, note that ∪εAε = A ∩ (a,+∞). Then, since a is a limit point of

A∩ (a,+∞), it follows that a is a limit point of Aε for a certain ε = (ε1, ε2) ∈ {−1, 0, 1}2.
If ε1 = 0 or ε2 = 0, the existence of δ > 0 such that (a, a+δ) ⊆ A and f |(a,a+δ) is monotone

follows from the induction hypothesis. (For example, if ε1 = 0 then ∂P/∂X(x, f(x)) = 0

for all x ∈ Aε, and degX ∂P/∂X + degY ∂P/∂X < degX P + degY P .)

Now, suppose that ε1 6= 0 and ε2 6= 0. By Lemma 2.1, there exists δ > 0 such

that (a, a+ δ) ⊆ Aε ⊆ A. We claim that the restriction f |(a,a+δ) is decreasing if ε1 · ε2 > 0

and it is increasing if ε1 · ε2 < 0. We prove only that if ε1 > 0 and ε2 > 0 then f |(a,a+δ)
is decreasing, the other cases being analogous. So assume that ε1 > 0 and ε2 > 0. We

begin by proving that for each point x0 ∈ (a, a + δ) there exists θ > 0 such that (x0 −
θ, x0 +θ) ⊆ (a, a+δ) and f |(x0−θ,x0+θ) is decreasing. Fix an arbitrary point x0 ∈ (a, a+δ).

By hypothesis, ∂P/∂X(x0, f(x0)) > 0 and ∂P/∂Y (x0, f(x0)) > 0. Since the partial

derivatives ∂P/∂X(x, y) and ∂P/∂Y (x, y) are continuous, there exist θ > 0 and η > 0

such that ∂P/∂X(x, y) > 0 and ∂P/∂Y (x, y) > 0 for all (x, y) ∈ [x0−θ, x0 +θ]× [f(x0)−
η, f(x0)+η]. Shrinking θ, if necessary, we can assume that (x0−θ, x0 +θ) ⊆ (a, a+δ) and

f((x0−θ, x0 +θ)) ⊆ (f(x0)−η, f(x0)+η). Now, given two points x1, x2 ∈ (x0−θ, x0 +θ),

if x1 < x2 then P (x2, f(x2)) = 0 = P (x1, f(x1)) < P (x2, f(x1)), and hence f(x2) < f(x1).

This shows that f |(x0−θ,x0+θ) is decreasing. Now, we prove that f |(a, a+ δ) is decreasing.

Take any two points x1, x2 ∈ (a, a + δ), with x1 < x2. For each point x ∈ [x1, x2], take

θx > 0 such that (x− θx, x+ θx) ⊆ (a, a+ δ) and f |(x−θx,x+θx) is decreasing. Then, take a

partition x1 = t0 < t1 < · · · < tn−1 < tn = x2, whose norm is smaller than some Lebesgue

number of the open cover [x1, x2] ⊆ ∪x∈[x1,x2](x−θx, x+θx), so that for each i ∈ {1, . . . , n},
there exists x ∈ [x1, x2] for which [ti−1, ti] ⊆ (x−θx, x+θx). Since f |(x−θx,x+θx) is decreasing

for each x ∈ [x1, x2], we have: f(x1) = f(t0) > f(t1) > · · · > f(tn−1) > f(tn) = f(x2).

Therefore, f |(a,a+δ) is decreasing. �



24

Corollary 2.4. Let A ⊆ R be a nonempty semialgebraic subset, and let f : A → R be a

semialgebraic function.

i. If a is a limit point of A ∩ (a,+∞), then the right-hand limit limx→a+ f(x) is well-

defined in the extended real line R = [−∞,+∞].

ii. If a is a limit point of A ∩ (−∞, a), then the left-hand limit limx→a− f(x) is well-

defined in the extended real line R = [−∞,+∞].

Corollary 2.5. Let A ⊆ R be a nonempty semialgebraic subset, and let f : A → R be a

semialgebraic function. For any point a ∈ A, we have:

i. If a is a limit point of A∩(a,+∞), then the right derivative f ′+(a) := limx→a+
f(x)−f(a)

x−a

is well-defined in the extended real line R = [−∞,+∞].

ii. If a is a limit point of A∩(−∞, a), then the left derivative f ′−(a) := limx→a−
f(x)−f(a)

x−a

is well-defined in the extended real line R = [−∞,+∞].

2.3 Transformation of paths by Lipschitz maps

Let γ : [0, ε)→ R2 be a continuous semialgebraic path such that γ(0) = 0. By

Corollary 2.5, the right derivative γ′+(0) := limt→0+
γ(t)
t

is a well-defined element of R2

(even without the assumption that γ is continuous). We call γ′+(0) the initial velocity of

γ. Given a germ of semialgebraic Lipschitz map Φ: (R2, 0) → (R2, 0), we can transform

γ into another continuous semialgebraic path γ̃ := Φ ◦ γ. In this section, we investigate

the effect of such a transformation on the initial velocity γ′+(0).

Lemma 2.2. Let Φ: (R2, 0) → (R2, 0) be a germ of semialgebraic Lipschitz map, let

γ : [0, ε) → R2 be a continuous semialgebraic path such that γ(0) = 0, and let γ̃(t) :=

Φ(γ(t)). If γ has finite initial velocity then γ̃ also has finite initial velocity, that is, if

limt→0+ |γ(t)/t| <∞ then limt→0+ |γ̃(t)/t| <∞.

Proof. First, note that the initial velocity γ̃′+(0) is well-defined, because γ̃ = Φ ◦ γ is a

semialgebraic path. Since Φ is Lipschitz and Φ(0) = 0, there exists K > 0 such that

|Φ(x, y)| ≤ K |(x, y)|. Then, ∣∣∣∣ γ̃(t)

t

∣∣∣∣ =

∣∣∣∣Φ(γ(t))

t

∣∣∣∣ ≤ K

∣∣∣∣γ(t)

t

∣∣∣∣ ,
which implies that γ̃′+(0) is finite, given that γ′+(0) is finite, by hypothesis. �

Lemma 2.3. Let Φ: (R2, 0) → (R2, 0) be a germ of semialgebraic Lipschitz map. Let

γ1, γ2 : [0, ε)→ R2 be two continuous semialgebraic paths, with finite initial velocity, such

that γ1(0) = γ2(0) = 0, and let γ̃i(t) := Φ(γi(t)), i = 1, 2. If γ′1+(0) = γ′2+(0), then

γ̃′1+(0) = γ̃′2+(0).
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Proof. Let K > 0 be a Lipschitz constant for Φ. Then |γ̃1(t)− γ̃2(t)| ≤ K |γ1(t)− γ2(t)|,
and we have: ∣∣∣∣ γ̃1(t)t − γ̃2(t)

t

∣∣∣∣ ≤ K

∣∣∣∣γ1(t)t − γ2(t)

t

∣∣∣∣ , for t > 0.

Also, from limt→0+ γi(t)/t = γ′i+(0) and γ′1+(0) = γ′2+(0), we see that

lim
t→0+

∣∣∣∣γ1(t)t − γ2(t)

t

∣∣∣∣ = 0,

since both γ1 and γ2 have finite initial velocity.

Then, by the Squeeze Theorem,

lim
t→0+

∣∣∣∣ γ̃1(t)t − γ̃2(t)

t

∣∣∣∣ = 0.

Hence, γ̃′1+(0) = γ̃′2+(0). �

Corollary 2.6. Let Φ: (R2, 0) → (R2, 0) be a germ of semialgebraic Lipschitz map, let

γ1, γ2 : [0, ε)→ R2 be two continuous semialgebraic paths, with finite initial velocity, such

that γ1(0) = γ2(0) = 0, and let γ̃i(t) := Φ(γi(t)), i = 1, 2. If γ′2+(0) = c · γ′1+(0), with

c > 0, then γ̃′2+(0) = c · γ̃′1+(0).

Proof. Consider the path γ0(t) := γ1(ct), 0 ≤ t < ε/c, and let γ̃0(t) := Φ(γ0(t)). By

Lemma 2.3, since γ′0+(0) = c · γ′1+(0) = γ′2+(0), we have γ̃′0+(0) = γ̃′2+(0). On the other

hand, γ̃0(t) = Φ(γ0(t)) = Φ(γ1(ct)) = γ̃1(ct), so γ̃′0+(0) = c · γ̃′1+(0). Hence, γ̃′2+(0) =

c · γ̃′1+(0). �

Corollary 2.7. Let Φ: (R2, 0) → (R2, 0) be a germ of semialgebraic bi-Lipschitz map.

Let γ1, γ2 : [0, ε) → R2 be two continuous semialgebraic paths, with finite initial velocity,

such that γ1(0) = γ2(0) = 0, and let γ̃i(t) := Φ(γi(t)), i = 1, 2. The initial velocities of the

paths γ1 and γ2 have the same direction2 if and only if the initial velocities of the paths

γ̃1 and γ̃2 have the same direction.

2We say that two vectors u and v have the same direction if u = c · v, for some c > 0.
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3 LIPSCHITZ EQUIVALENCE OF POLYNOMIAL FUNCTIONS OF A SIN-

GLE VARIABLE

Two polynomial functions f, g : R→ R are Lipschitz equivalent, written f ∼= g,

if there exist a bi-Lipschitz homeomorphism φ : R → R and a constant c > 0 such that

g ◦φ = cf . In this chapter, we address some questions regarding this equivalence relation

that are relevant for the solution of the problem considered in the next chapter.

Overview of this chapter. In Section 3.1, we show how to determine whether any

two given polynomial functions f, g : R → R are Lipschitz equivalent. Following BIR-

BRAIR, FERNANDES, and PANAZZOLO (2009), we show that if two polynomial func-

tions f, g : R → R are Lipschitz equivalent then they have the same degree and there is

a 1-1 correspondence between the critical points of f and the critical points of g which

preserves multiplicity (see Lemma 3.2 and Lemma 3.3). Then, we provide effective criteria

to determine whether any two polynomial functions f, g : R→ R of the same degree d ≥ 1

are Lipschitz equivalent, considering the following cases separately: (a) f and g have no

critical points (Theorem 3.1a) (b) f and g have only one critical point (Theorem 3.1b)

(c) f and g have the same number p ≥ 2 of critical points (Theorem 3.1c).

In Section 3.2, we apply these results to find a complete set of normal forms

for polynomial functions of degree d, along with criteria to determine the corresponding

canonical form for each polynomial function of degree d, for d = 1, 2, 3 (see Proposition

3.1, Proposition 3.2, and Proposition 3.3).

In Section 3.3, we discuss some qualitative properties of bi-Lipschitz homeo-

morphisms φ : R→ R that satisfy an equation of the form g ◦ φ = cf , where f, g : R→ R
are nonconstant polynomial functions of the same degree, and c > 0 is a constant.

We begin by noting that such bi-Lipschitz homeomorphisms are actually Nash diffeor-

morphisms and that they are not necessarily affine functions. Then, as we investigate

the asymptotic behavior of such bi-Lipschitz homeomorphisms φ : R → R, we find that

φ(t) = (λt+ k) +α(t), where λ, k ∈ R, λ 6= 0, and α : R→ R is a Lipschitz Nash function

that can be analytically extended to R∪{∞} ∼= P1(R) and satisfies lim|t|→+∞ α(t) = 0 (see

Proposition 3.5). We show how to compute the constants λ, k, in general (see Proposition

3.6 and Remark 3.2), and then we work out an example to illustrate our formulas.

3.1 Lipschitz classification of polynomial functions of a single variable

In this section, we provide effective criteria to determine whether any two given

polynomial functions f, g : R→ R are Lipschitz equivalent. The case of constant functions

is trivial: if two polynomial functions are Lipschitz equivalent, then one of them is constant

if and only if the other one is constant; furthermore, two constant functions are Lipschitz
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equivalent if and only if they have the same sign (positive, negative or zero). So we focus

on nonconstant polynomial functions. In this case, φ is necessarily semialgebraic. This

follows from the next lemma, which is an adapted version of (BIRBRAIR, FERNANDES,

and PANAZZOLO, 2009, Lemma 3.1).

Lemma 3.1. Let f, g : R → R be nonconstant polynomial functions. If φ : R → R is a

homeomorphism such that g ◦ φ = f , then φ is semialgebraic.

Proof. Let s1 < . . . < sp be all the critical points of g, so we have

R = (−∞, s1] ∪ [s1, s2] ∪ · · · ∪ [sp−1, sp] ∪ [sp,+∞),

and g is monotone and injective on each of the intervals (−∞, s1], [s1, s2], . . . , [sp−1, sp],
and [sp,+∞). Let ti := φ−1(si), for i = 1, . . . , p.

Suppose that φ is an increasing homeomorphism (the case where φ is a de-

creasing homeomorphism can be treated similarly). Then, we have t1 < · · · < tp. On each

of the intervals (−∞, t1], [t1, t2], . . . , [tp−1, tp], and [tp,+∞), we have φ = g−1 ◦ f . More

precisely:

φ|(−∞,t1] =
(
g|(−∞,s1]

)−1 ◦ f |(−∞,t1],
φ|[ti,ti+1] =

(
g|[si,si+1]

)−1 ◦ f |[ti,ti+1], for 1 ≤ i < p,

φ|[tp,+∞) =
(
g|[sp,+∞)

)−1 ◦ f |[tp,+∞).

Since f and g are polynomial functions, we see that each of the restrictions φ|(−∞,t1],
φ|[t1,t2], . . . , φ|[tp−1,tp], and φ|[tp,+∞) is a semialgebraic function (being the composition of

two semialgebraic functions). Thus, φ is a semialgebraic function. �

Lemma 3.2. Let f, g : R → R be nonconstant polynomial functions. If f and g are

Lipschitz equivalent, then deg f = deg g.

Proof. Let f(t) =
∑d

i=0 ait
i and g(t) =

∑e
i=0 bit

i, where ad, be 6= 0. Suppose that f and g

are Lipschitz equivalent, so that g ◦φ = cf , for some bi-Lipschitz function φ : R→ R and

some constant c > 0. We must show that d = e.

Let λ := limt→+∞ φ(t)/t. This limit is well-defined in the extended real line,

because φ is semialgebraic (see Lemma 3.1). Also, since φ is bi-Lipschitz, λ is a nonzero

real number.

Since lim|t|→+∞ |φ(t)| = +∞, we have:

lim
|t|→+∞

g(φ(t))

φ(t)e
= lim
|t|→+∞

g(t)

te
= be (1)
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On the other hand, since cf = g ◦ φ, we have:

c · lim
t→+∞

f(t)

te
= lim

t→+∞

g(φ(t))

te
= lim

t→+∞

g(φ(t))

φ(t)e
· lim
t→+∞

(
φ(t)

t

)e
(2)

From (1) and (2), we obtain:

lim
t→+∞

f(t)

te
=
be · λe

c

Since be · λe/c is a nonzero real number, it follows that d = e. �

Lemma 3.3. Let f, g : R→ R be two polynomial functions of the same degree d ≥ 1, and

suppose that φ : R → R is a bijective function such that g ◦ φ = cf , for some constant

c > 0. The following conditions are equivalent:

i. φ is bi-Lipschitz;

ii. The multiplicity of f at t is equal to the multiplicity of g at φ(t), for all t ∈ R;

iii. φ is bi-analytic.

Proof. (i)⇒ (ii) : Pick any point t0 ∈ R. Let k be the multiplicity of f at t0, and let l be

the multiplicity of g at φ(t0). For any pair of functions u, v : R→ R, we write u ∼ v near t0

to indicate that there exist constants A,B > 0 such that A |v(t)| ≤ |u(t)| ≤ B |v(t)|, for t

sufficiently close to t0. Then, f(t)−f(t0) ∼ (t−t0)k near t0 and g(s)−g(φ(t0)) ∼ (s−φ(t0))
l

near φ(t0). Since g ◦ φ = cf , this implies that (t − t0)k ∼ (φ(t) − φ(t0))
l near t0. And

since we are assumig that φ is bi-Lipschitz, it follows that (t − t0)k ∼ (t − t0)l near t0.

Therefore, k = l.

(ii)⇒ (iii) : Pick any point t0 ∈ R. Suppose that f̂ := cf has multiplicity k at t0. By

Proposition 2.2, there exist an increasing analytic diffeomorphism u : I → (−ε, ε), with

t0 ∈ I, and a constant ρ ∈ R \ {0}, such that u(t0) = 0 and f̂ ◦ u−1(t) = a + ρtk, for

|t| < ε; where a := f̂(t0) = g ◦ φ(t0). Since we are assuming that condition (ii) holds, the

multiplicity of g at the point φ(t0) is also k. Then, as before, there exist an increasing

analytic diffeomorphism v : J → (−ε′, ε′), with φ(t0) ∈ J , and a constant σ ∈ R \ {0},
such that v(φ(t0)) = 0 and g ◦ v−1(t) = a + σtk, for |t| < ε′. Shrinking the interval I, if

necessary, we can assume that φ(I) ⊆ J . Hence, we can write f̂ ◦ u−1(t) = g ◦ v−1(φ̄(t)),

where φ̄ := v ◦ φ ◦ u−1 : (−ε, ε) → (−ε′, ε′); and then it follows that φ̄(t) = νt, where

ν = ±
∣∣ ρ
σ

∣∣ 1k , depending on whether φ is increasing (positive sign) or decreasing (negative

sign). In particular, this shows that φ̄ is analytic. Therefore, φ|I = v−1 ◦ φ̄ ◦ u is analytic;

so φ is analytic at t0. Since the point t0 ∈ R is arbitrary, it follows that φ is an analytic

function. In order to show that φ−1 is also analytic, note that φ−1 : R→ R is a bijective

function such that f ◦ φ−1 = c−1g, satisfying condition (ii) with f and g interchanged:

the multiplicity of g at t is equal to the multiplicity of f at φ−1(t), for all t ∈ R. Then,

by what we have already proved, it follows that φ−1 is analytic.
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(iii)⇒ (i) : Suppose that φ is bi-analytic. Then, in particular, φ is a homeomorphism,

so φ is monotone and lim|t|→+∞ |φ(t)| = +∞. Also, by Lemma 3.1, φ is a semialgebraic

function. Let f(t) =
∑d

i=0 ait
i and g(t) =

∑d
i=0 bit

i, with ad, bd 6= 0. Since g ◦ φ = cf and

lim|t|→+∞ |φ(t)| = +∞, we have

lim
t→−∞

(
φ(t)

t

)d
= lim

t→+∞

(
φ(t)

t

)d
= c · ad

bd
(3)

Let l+ := limt→+∞ φ(t)/t and l− := limt→−∞ φ(t)/t. Both these limits are well-defined in

the extended real line because φ is semialgebraic. It follows from (3) that we actually

have l+, l− ∈ R\{0} and |l+| = |l−|. (Notice that to obtain this last equality from (3), we

use the fact that d > 0.) By L’Hôpital’s rule, limt→+∞ φ
′(t) = l+ and limt→−∞ φ

′(t) = l−.

(The existence of these limits in the extended real line is guaranteed by the fact that

φ′ is semialgebraic — see Proposition 2.4, so L’Hôpital’s rule can be applied.) Thus,

limt→+∞ |φ′(t)| = limt→−∞ |φ′(t)| > 0; so that |φ′| can be continuously extended to a

positive function defined on the compact space R ∪ {∞} ∼= P1(R). Hence, there exist

constants A,B > 0 such that A ≤ |φ′(t)| ≤ B, for all t ∈ R. Therefore, φ is bi-Lipschitz.

�

From the last two lemmas, it follows that if two polynomial functions f, g : R→
R are Lipschitz equivalent, then they have the same degree and the same number of critical

points. The first assertion is precisely the content of Lemma 3.2. The second assertion is

an immediate consequence of Lemma 3.3: if φ : R → R is a bi-Lipschitz homemorphism

such that g◦φ = cf , for some constant c > 0, then φ induces a 1-1 correpondence between

the critical points of f and the critical points of g, because it preserves multiplicity (see

Remark 2.1).

The next results provide effective criteria to determine whether any two given

nonconstant polynomial functions f, g : R → R, of the same degree, are Lipschitz equiv-

alent. In Theorem 3.1a, we address the case where f and g have no critical points; in

Theorem 3.1b, the case where both f and g have only one critical point; and in Theorem

3.1c, the case where f and g have the same number p ≥ 2 of critical points.

Theorem 3.1a. Let f, g : R→ R be polynomial functions of the same degree d ≥ 1. If f

and g have no critical points, then f and g are Lipschitz equivalent.

Proof. If f and g have no critical points, then they are both bi-analytic diffeomorphisms.

Hence, f = g ◦ φ, where φ := g−1 ◦ f is a bi-analytic diffeomorphism. By Lemma 3.3, φ

is bi-Lipschitz. �

Theorem 3.1b. Let f, g : R → R be polynomial functions of the same degree d ≥ 1.

Suppose that f has only one critical point t0, with multiplicity k, and that g has only one
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critical point s0, with the same multiplicity k. Also, suppose that f(t0) and g(s0) have the

same sign3(positive, negative or zero). We have:

i. If d is odd, then f and g are Lipschitz equivalent.

ii. If d is even, then f and g are Lipschitz equivalent if and only if t0 and s0 are either

both minimum points, or both maximum points of f and g, respectively.

Proof. First, consider the case where d is odd. If a real polynomial function of a single

variable, of odd degree, has only one critical point, then it is a homeomorphism. Thus,

under the assumption that d is odd, f and g are homeomorphisms. Choose a constant

c > 0 such that g(s0) = cf(t0), and define φ := g−1 ◦ f̂ : R → R, where f̂ := cf . The

function φ is a bijection such that g ◦ φ = cf , and the multiplicity of f at t is equal to

the multiplicity of g at φ(t) for all t ∈ R. By Lemma 3.3, φ is bi-Lipschitz.

Now, suppose that d is even. If a real polynomial function of a single variable,

of even degree, has only one critical point, then this critical point is a point of global

extremum. Applying this to f and g, we see that t0 is a point of global extremum of f

and s0 is a point of global extremum of g. If f and g are Lipschitz equivalent, then t0

and s0 are either both minimum points or both maximum points of f and g, respectively.

Otherwise, we would have f̂(R) ∩ g(R) = {f̂(t0)} = {g(s0)}, which is absurd, since the

equation g ◦ φ = cf implies that f̂(R) = g(R). Conversely, suppose that t0 and s0 are

either both minimum points or both maximum points of f and g, respectively. Pick any

constant c > 0 for which g(s0) = cf(t0), and define φ : R→ R by

φ|(−∞,t0] :=
(
g|(−∞,s0]

)−1 ◦ f̂ |(−∞,t0], φ|[t0,+∞) :=
(
g|[s0,+∞)

)−1 ◦ f̂ |[t0,+∞).

Clearly, φ is a bijection such that g ◦φ = cf , and the multiplicity of f at t is equal to the

multiplicity of g at φ(t) for all t ∈ R. Hence, by Lemma 3.3, φ is bi-Lipschitz. �

For the case in which f and g have the same number p ≥ 2 of critical points, we

introduce an adapted version of the notion of multiplicity symbol defined in BIRBRAIR,

FERNANDES, and PANAZZOLO (2009).

Let f : R → R be a polynomial function of degree d ≥ 1, having exactly p

critical points, with p ≥ 2. Let t1 < . . . < tp be the critical points of f , with multiplicities

µ1, . . . , µp, respectively. The multiplicity symbol of f is the ordered pair (a, µ) whose first

entry is the p-tuple a = (f(t1), . . . , f(tp)), and second entry is the p-tuple µ = (µ1, . . . , µp).

Let g : R→ R be another polynomial function of degree d ≥ 1, having exactly

the same number p ≥ 2 of critical points. Let s1 < . . . < sp be the critical points of

g, with multiplicities ν1, . . . , νp, respectively. The multiplicity symbol of g is the ordered

pair (b, ν), where b = (g(s1), . . . , g(sp)) and ν = (ν1, . . . , νp).

The multiplicity symbols (a, µ) and (b, ν) are said to be:

3Clearly, this is a necessary condition for f and g to be Lipschitz equivalent.
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i. directly similar, if there exists a constant c > 0 such that b = c · a, and ν = µ;

ii. reversely similar, if there exists a constant c > 0 such that b = c · a, and ν = µ.

For any p-tuple x = (x1, . . . , xp), x := (xp, . . . , x1) is the p-tuple x written in reverse

order.

The multiplicity symbols (a, µ) and (b, ν) are said to be similar if they are

either directly similar or reversely similar.

Theorem 3.1c. Let f, g : R → R be polynomial functions of the same degree d ≥ 1,

having the same number p ≥ 2 of critical points. Then, f and g are Lipschitz equivalent

if and only if their multiplicity symbols are similar.

Proof. First, suppose that f and g are Lipschitz equivalent. Then there exist a bi-Lipschitz

function φ : R→ R and a constant c > 0 such that g◦φ = cf . Let t1, . . . , tp be the critical

points of f , with multiplicities µ1, . . . , µp, and let s1, . . . , sp be the critical points of g,

with multiplicities ν1, . . . , νp. (As we noted just after the proof of Lemma 3.3, if two

real polynomial functions of a single variable are Lipschitz equivalent, then they have

the same number of critical points.) Let (a, µ) be the multiplicity symbol of f and (b, ν)

the multiplicity symbol of g. By Lemma 3.3, φ preserves multiplicities. Thus, if φ is

increasing, then we have φ(ti) = si and µi = νi, for i = 1, . . . , p. Also, since g ◦ φ = cf ,

it follows that bi = g(si) = c · f(ti) = c · ai, for i = 1, . . . , p. Hence, if φ is increasing

then the multiplicity symbols of f and g are directly similar. On the other hand, if φ

is decreasing, then we have φ(tp+1−i) = si and µp+1−i = νi, for i = 1, . . . , p. Also, since

g ◦ φ = cf , it follows that bi = g(si) = c · f(tp+1−i) = c · ap+1−i, for i = 1, . . . , p. Hence,

if φ is decreasing then the multiplicity symbols of f and g are reversely similar. In either

case, we conclude that the multiplicity symbols of f and g are similar.

Now we prove the converse. Suppose that the multiplicity symbols of f and

g are similar. Replacing (if necessary) g with g ◦ α, where α := −id : R → R (which is

bi-Lipschitz), we may assume that the multiplicity symbols of f and g are directly similar.

Let t1 < . . . < tp be the critical points of f , with multiplicities µ1, . . . , µp, respectively;

and let s1 < . . . < sp be the critical points of g, with multiplicities ν1, . . . , νp, respectively.

Since we are assuming that the multiplicity symbols of f and g are directly similar, there

exists a constant c > 0 such that g(si) = cf(ti), for i = 1, . . . , p; and µi = νi, for

i = 1, . . . , p. Let f̂ := cf and ci := g(si) = f̂(ti). (Note that ci 6= ci+1, for 1 ≤ i < p.)

The functions f̂ |[ti,ti+1] : [ti, ti+1] → [ci, ci+1] and g|[si,si+1] : [si, si+1] → [ci, ci+1] are both

monotone and injective, for 1 ≤ i < p. The same is true for the functions f̂ |(−∞,t1]
and g|(−∞,s1], and also for the functions f̂ |[tp,+∞) and g|[sp,+∞). Moreover, the functions

f̂ |(−∞,t1] and g|(−∞,s1] are either both increasing or both decreasing because f̂(t1) = g(s1),

f̂(t2) = g(s2), and µ1 = ν1. Since f̂(t1) = g(s1) and |f̂(t)|, |g(t)| → +∞, as |t| → +∞, this

implies that f̂((−∞, t1]) = g((−∞, s1]). Similarly, the functions f̂ |[tp,+∞) and g|[sp,+∞)
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are either both increasing or both decreasing because f̂(tp−1) = g(sp−1), f̂(tp) = g(sp),

and µp = νp. Since f̂(tp) = g(sp), and |f̂(t)|, |g(t)| → +∞, as |t| → +∞, this implies

that f̂([tp,+∞)) = g([sp,+∞)). Define φ : R→ R by

φ|(−∞,t1] :=
(
g|(−∞,s1]

)−1 ◦ f̂ |(−∞,t1]
φ|[ti,ti+1] :=

(
g|[si,si+1]

)−1 ◦ f̂ |[ti,ti+1], for 1 ≤ i < p

φ|[tp,+∞) :=
(
g|[sp,+∞)

)−1 ◦ f̂ |[tp,+∞)

Clearly, φ is a bijection such that g ◦ φ = cf , and it takes ti to si, for i = 1, . . . , p. Since

the multiplicity symbols of f and g are directly similar, it follows that the multiplicity of

f at t is equal to the multiplicity of g at φ(t) for all t ∈ R. Hence, by Lemma 3.3, φ is

bi-Lipschitz. �

3.2 Normal forms for the Lipschitz equivalence of nonconstant polynomials of

degree ≤ 3

A set of polynomial functions of degree d is called a complete set of normal

forms for the Lipschitz equivalence of polynomial functions of degree d if it contains exactly

one element of each Lipschitz equivalence class of polynomial functions of degree d. In

this section, we find a complete set of normal forms for the Lipschitz equivalence of

polynomial functions of degree d, for d = 1, 2, 3, and we provide criteria to determine the

corresponding normal form of each polynomial function of degree d, for d = 1, 2, 3. We

begin with the trivial case of the polynomial functions of degree 1.

Proposition 3.1. Every polynomial function f : R→ R of degree 1 is Lipschitz equivalent

to the identity function idR : R→ R.

Proof. Given any polynomial function f : R→ R of degree 1, we have f = idR ◦ φ, where

φ = f is a bi-Lipschitz function (because every affine function is bi-Lipschitz). Hence the

result. �

The next result provides a complete set of canonical forms for polynomial

functions of degree 2, along with criteria for determining the corresponding canonical

form of each quadratic function.

Proposition 3.2. Every polynomial function f : R→ R of degree 2 is Lipschitz equivalent

to exactly one of the polynomial functions listed on the left column of Table 1 (the one

on the same row as the only distinctive feature that it possesses among those listed on the

right column of the table).

Proof. Every polynomial function from R to R, of degree 2, has only one critical point,

which has multiplicity 2. Given two polynomial functions f, g : R→ R, of degree 2, denote
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by t0 the critical point of f , and by s0 the critical point of g. By Theorem 3.1b, f and g

are Lipschitz equivalent if and only if the following conditions hold:

i. f(t0) and g(s0) have the same sign.

ii. t0 and s0 are either both minimum points, or both maximum points of f and g,

respectively.

Since the quadratic functions listed on the left column of Table 1 cover all

possibilities (t2 + 1 has a positive minimum, t2 has a minimum equal to zero, t2 − 1 has

a negative minimum, −t2 + 1 has a positive maximum, −t2 has a maximum equal to

zero, and −t2 − 1 has a negative maximum), it follows that each polynomial function

f : R → R of degree 2 is Lipschitz equivalent to exactly one of these functions (the one

whose distinctive feature coincides with the one possessed by f). �

Table 1 – Normal forms for the Lipschitz equivalence of quadratic functions

Normal form Distinctive feature
t2 + 1 positive minimum
t2 minimum equal to zero
t2 − 1 negative minimum
−t2 + 1 positive maximum
−t2 maximum equal to zero
−t2 − 1 negative maximum

Source: Elaborated by the author.

Now we set out to find a complete set of normal forms for the Lipschitz equiv-

alence of cubic functions. The next lemma facilitates this task by ensuring that such a

complete set of normal forms can be found whose members are all cubic functions of a

specific simple form.

Lemma 3.4. Every polynomial function f : R→ R of degree 3 is Lipschitz equivalent to

a cubic function of the form t3 + pt+ q.

Proof. If f(t) = a3t
3 + a2t

2 + a1t+ a0, with a3 6= 0, then

1

|a3|
f

(
t− a2

3a3

)
has the form ±t3 + pt + q, where the coefficient of t3 is equal to +1 if a3 > 0 and it

is equal to −1 if a3 < 0. So if a3 > 0 then the transformation above turns f(t) into a

function of the form t3 + pt + q, as we wanted. On the other hand, if a3 < 0 then this

transformation turns f(t) into a function of the form −t3 + pt+ q, but this can be turned

into a function of the desired form by substituting −t for t. In any case, the resulting

function is Lipschitz equivalent to f(t). �
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The next result provides a complete set of canonical forms for polynomial

functions of degree 3, along with criteria for determining the corresponding canonical

form of each cubic function.

Proposition 3.3. Every polynomial function f : R→ R of degree 3 is Lipschitz equivalent

to exactly one of the cubic functions listed on the left column of Table 2 (the one on the

same row as the only set of distinctive features that it possesses among those listed on the

right column of the table).4,5

Proof. By Lemma 3.4, there exists a complete set of normal forms for the Lipschitz

equivalence of cubic functions among the polynomial functions of the form t3 + pt + q.

So we begin by classifying the cubic functions of this reduced form. First, we note that

a cubic function of the form t3 + pt + q has no critical points if p > 0, it has only one

critical point (of multiplicity 3) if p = 0, and it has exactly two critical points if p < 0.

By Theorem 3.1a, all polynomial functions of the form t3 + pt+ q, with p > 0,

are Lipschitz equivalent. Thus, all such functions are Lipschitz equivalent to t3 + t. By

Theorem 3.1b, t3 + q and t3 + q̃ are Lipschitz equivalent if and only if q and q̃ have the

same sign. Thus, each polynomial function of the form t3 + q is Lipschitz equivalent to

exactly one of the functions: t3 + 1, t3, or t3 − 1, according as q is positive, zero, or

negative, respectively.

Now, let f(t) = t3 + pt + q and g(t) = t3 + p̃t + q̃, with p < 0 and p̃ < 0.

In order to determine whether these cubic functions are Lipschitz equivalent, we need to

compute their multiplicity symbols. The critical points of f(t) are

t1 = −
(
|p|
3

) 1
2

and t2 =

(
|p|
3

) 1
2

,

each of multiplicity 2. Hence, the multiplicity symbol of f(t) is

((k + q,−k + q), (2, 2)),

where k = 2 ·
(
|p|
3

) 3
2
. Similarly, we find that the multiplicity symbol of g(t) is

((k̃ + q̃,−k̃ + q̃), (2, 2)),

where k̃ = 2 ·
(
|p̃|
3

) 3
2
.

4The last row of the table should be regarded as an infinite family of rows indexed by the parameter
θ.

5In the last row of the table, gcv denotes the greatest critical value of the function, lcv denotes the
least critical value of the function, and the equality (gcv : lcv) = (θ+ 2 : θ−2) is meant to be understood
as an equality of ratios.
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Since k+ q > −k+ q and k̃+ q̃ > −k̃+ q̃, the multiplicity symbols of f and g

are similar if and only if they are directly similar. Hence, by Theorem 3.1c, f and g are

Lipschitz equivalent if and only if

k̃ + q̃ = λ · (k + q) and − k̃ + q̃ = λ · (−k + q),

for some λ > 0. Equivalently, f and g are Lipschitz equivalent if and only if

k̃ = λk and q̃ = λq,

for some λ > 0.

For λ > 0, we have:

k̃ = λk and q̃ = λq

⇔ |p̃|3/2 = λ|p|3/2 and q̃ = λq

⇔ p̃ = λ2/3p and q̃ = λq

⇔

q2p̃3 − p3q̃2 = 0

q and q̃ have the same sign.

Hence, if f and g are Lipschitz equivalent, then q and q̃ are either both equal to zero or

both nonzero. Moreover, if q and q̃ are both equal to zero, then f and g are Lipschitz

equivalent; and if q and q̃ are both nonzero, then f and g are Lipschitz equivalent if and

only if the following conditions are satisfied:

i. (p̃, q̃) belongs to the cusp q2X3 − p3Y 2 = 0.

ii. q and q̃ have the same sign.

If we identify the cubic function t3 +pt+ q with the point (p, q) ∈ R2, then the

Lipschitz equivalence class of t3 + pt+ q is represented by: the cusp branch {(x, y) ∈ R2 :

q2x3 − p3y2 = 0, y > 0} if q > 0, the cusp branch {(x, y) ∈ R2 : q2x3 − p3y2 = 0, y < 0}
if q < 0, the negative x-axis {(x, 0) ∈ R2 : x < 0} if q = 0. Since any fixed vertical line

x = x0, with x0 < 0, intersects each of these sets on a single point (see Figure 1), we can

obtain a single representative for the Lipschitz equivalence class of each cubic function of

the form t3 + pt+ q, with p < 0, by fixing an arbitrary negative value for p and letting q

run through all real values. Choosing p = −3, we see that the family of cubic functions

{t3− 3t+ θ : θ ∈ R} contains a single representative for the Lipschitz equivalence class of

each cubic function of the form t3 + pt+ q, with p < 0.

By Theorem 3.1c, t3 + pt+ q, with p < 0, is Lipschitz equivalent to t3− 3t+ θ

if and only if the multiplicity symbols of these functions are similar. Note that both these

functions have two critical points, each of multiplicity 2, so we only need to compare their
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Figure 1 – Lipschitz equivalence classes of t3 + pt+ q, for p < 0

Source: Elaborated by the author.

critical values if we want to decide whether their multiplicity symbols are similar. The

critical values of t3− 3t+ θ are θ+ 2 and θ− 2. Thus, t3 + pt+ q, with p < 0, is Lipschitz

equivalent to t3 − 3t + θ if and only if (gcv : lcv) = (θ + 2 : θ − 2), where gcv and lcv

denote, respectively, the greatest and the least critical value of t3+pt+q, and the equality

is meant to be understood as an equality of ratios.

By the argument above, the cubic functions listed on the left column of Table

2, form a complete set of normal forms for the Lipschitz equivalence of cubic functions.

Now, we show that the distinctive features listed on the right column of the table allow us

to determine the corresponding normal form of any given cubic function. Let f : R→ R be

an arbitrary cubic function. By Lemma 3.4, f is Lipschitz equivalent to a cubic function

g : R → R of the form g(t) = t3 + pt + q. Note that f and g have the same number of

critical points (see the remark just after the proof of Lemma 3.3). First, suppose that

f has no critical points. Then, g has no critical points either, so p > 0 and hence g is

Lipschitz equivalent to t3 + t. Therefore, f is Lipschitz equivalent to t3 + t. Now, suppose

that f has only one critical point. Then g has only one critical point too, so p = 0 and

hence g(t) = t3 + q is Lipschitz equivalent to exactly one of the functions: t3 + 1, t3, t3−1,

according as q is positive, zero, or negative, respectively. Since f and g are Lipschitz
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equivalent, the critical value of f and the critical value of g, which is q, have the same

sign. Therefore, f is Lipschitz equivalent to one of the functions: t3+1, t3, t3−1, according

as the critical value of f is positive, zero, or negative, respectively. Finally, suppose that f

has two critical points. Then g has two critical points too, so p < 0 and hence g is Lipschitz

equivalent to the cubic function t3−3t+θ, for which (gcv(g) : lcv(g)) = (θ+2 : θ−2), where

gcv(g) and lcv(g) denote the greatest and the least of the critical values of g, respectively.

Since f and g are Lipschitz equivalent, we have (gcv(f) : lcv(f)) = (gcv(g) : lcv(g)),

where gcv(f) and lcv(f) denote the greatest and the least of the critical values of f ,

respectively. Therefore, f is Lipschitz equivalent to the cubic function t3 − 3t + θ for

which (gcv(f) : lcv(f)) = (θ + 2 : θ − 2). �

Table 2 – Normal forms for the Lipschitz equivalence of cubic functions

Normal form Distinctive features
t3 + t no critical points
t3 + 1 only one critical point, critical value > 0
t3 only one critical point, critical value = 0
t3 − 1 only one critical point, critical value < 0
t3 − 3t+ θ (θ ∈ R) two critical points, (gcv : lcv) = (θ + 2 : θ − 2)

Source: Elaborated by the author.

3.3 On the bi-Lipschitz transformation φ

Let f, g : R → R be any two nonconstant polynomial functions that are Lips-

chitz equivalent. By definition, there exist a bi-Lipschitz homeomorphism φ : R→ R and

a constant c > 0 such that g ◦ φ = cf . What can we say about the function φ? Clearly,

it is an algebraic function and, by Lemma 3.3, it is also bi-analytic; so φ is a bi-Lipschitz

Nash diffeomorphism. It can be an affine function, for example. Indeed, as the next

proposition shows, this is exactly what happens whenever the polynomial functions f and

g have degree 1 or 2.

Remark 3.1. A Nash function on R is an analytic algebraic function on R, that is, an

analytic function f : R→ R that satisfies an equation ad(t)(f(t))d+· · ·+a1(t)f1(t)+a0(t) =

0, where ad, . . . , a0 are real polynomial functions of a single variable, and ad 6= 0. A Nash

diffeomorphism on R is a bijective Nash function on R whose inverse is also a Nash

function.

Proposition 3.4. Let f, g : R → R be Lipschitz equivalent polynomial functions, with

g ◦ φ = cf , where φ : R → R is a bi-Lipschitz homeomorphism and c > 0 is constant.

If the degree of the polynomial functions f and g is equal to 1 or 2, then φ is an affine

function.
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Proof. Clearly, if f and g are polynomial functions of degree 1 then φ = g−1 ◦ (cf) is

an affine function. Now, suppose that f and g are polynomial functions of degree 2, say

f(t) = a2t
2+a1t+a0 and g(t) = b2t

2+b1t+b0, with a2, a1, a0, b2, b1, b0 ∈ R, a2, b2 6= 0. Since

f and g are quadratic functions, each of them has only one critical point (of multiplicity

2). Thus, f has only one critical value, which is −∆f/4a2, and g has only one critical

value, which is −∆g/4b2, where ∆f = a21 − 4a2a0 and ∆g = b21 − 4b2b0. By Theorem 3.1b,

the critical points of f and g are either both minimum values or both maximum values

of f and g. This means that a2 and b2 have the same sign. Moreover, since φ sends the

critical point of f to the critical point of g, the equality g ◦ φ = cf implies that

− ∆g

4b2
= c ·

(
−∆f

4a2

)
. (4)

Having gathered all this information, we can now prove that φ is indeed an affine function.

By completing the square, the equation g ◦ φ = cf can be written in the form:

b2 ·
(
φ(t) +

b1
2b2

)2

− ∆g

4b2
= c ·

(
a2 ·

(
t+

a1
2a2

)2

− ∆f

4a2

)

By (4), it follows that

b2 ·
(
φ(t) +

b1
2b2

)2

= c · a2 ·
(
t+

a1
2a2

)2

.

Since a2 and b2 have the same sign, we can write c · a2/b2 = k2, with k 6= 0, and then we

can rewrite the above equation as

(φ(t)− s0)2 = k2 · (t− t0)2,

where s0 = −b1/2b2 and t0 = −a1/2a2. Moving all terms to the left side and factoring

the difference of squares, we obtain:

((φ(t)− s0) + k · (t− t0)) · ((φ(t)− s0)− k · (t− t0)) = 0.

Since φ is analytic, it follows that

φ(t) = −kt+ (kt0 + s0) or φ(t) = kt+ (−kt0 + s0).

In either case, φ is an affine function. �

Of course, φ is not always an affine function. For example, suppose that f and

g have p ≥ 3 critical points. Denote by t1, . . . , tp the critical points of f , and by s1, . . . , sp

the critical points of g. By the remark just after the proof of Lemma 3.3, φ(t1), . . . , φ(tp)
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are exactly the critical points of g, so reordering the si if necessary we have φ(ti) = si, for

i = 1, . . . , p. But there is no reason why the points (t1, s1), . . . , (tp, sp) should all lie on a

straight line; so φ is not necessarily an affine function.

Note, however, that φ might not be an affine function even if f and g had

less than 3 critical points. We illustrate this point by giving an example of two Lipschitz

equivalent polynomial functions f and g having no critical points for which φ is not an

affine function. By Proposition 3.4, any two such polynomial functions f and g must have

degree ≥ 3. Consider, for example6, the polynomial functions f, g : R→ R given by

f(t) = t3 + t2 + t and g(t) = t3 − t2 + t.

Both these functions have no critical points, so by Theorem 3.1a, they are Lipschitz

equivalent.

Actually, there exist infinitely many bi-Lipschitz functions φ : R → R such

that g ◦ φ = cf , for some constant c > 0. More precisely, for each constant c > 0, there

exists a unique bi-Lipschitz function φ : R → R such that g ◦ φ = cf (such function φ is

given by φ := g−1 ◦ f̂ , where f̂ := cf). None of these functions is affine. In order to see

this, we show that there is no affine function φ : R → R such that g ◦ φ = cf , for some

constant c > 0.

Suppose that there exist a, b, c ∈ R satisfying the following conditions:g(at+ b) = cf(t), for all t ∈ R

a 6= 0, c > 0

Since f and g are polynomial functions of degree 3, the condition

g(at+ b) = cf(t), for all t ∈ R

is equivalent to the following system of equations:

g(b) = cf(0)

a · g′(b) = cf ′(0)

a2 · g′′(b) = cf ′′(0)

a3 · g′′′(b) = cf ′′′(0)

6This example has been suggested to me by Prof. Vincent Grandjean.
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Thus, we can restate our hypothesis by saying that there exist a, b, c ∈ R such that

b3 − b2 + b = 0

a · (3b2 − 2b+ 1) = c

a2 · (3b− 1) = c

a3 = c

a 6= 0, c > 0

(5)

Since c = a3, the second and third equations of the system above can be

rewritten as:

a · (3b2 − 2b+ 1) = a3 and a2 · (3b− 1) = a3.

And since a 6= 0, it follows that

3b2 − 2b+ 1 = a2 and 3b− 1 = a.

Hence,

3b2 − 2b+ 1 = (3b− 1)2.

Equivalently,

b · (3b− 2) = 0.

Therefore,

b = 0 or 3b− 2 = 0. (6)

On the other hand, the first equation of the system, tells us that

b = 0 or b2 − b+ 1 = 0. (7)

From (6) and (7), it follows that b = 0. Since a = 3b − 1 and c = a3, it follows that

a = −1 and c = −1. This shows that the only triple of real numbers that could possibly

satisfy (5) is (a, b, c) = (−1, 0,−1). However, (a, b, c) = (−1, 0,−1) is not a solution of

(5), since it does not satisfy the condition c > 0. So the system does not admit any solu-

tions, and hence there is no affine function φ : R→ R such that g◦φ = cf , for some c > 0.

Now we investigate the asymptotic behavior of the bi-Lipschitz transformation

φ relating any two given Lipschitz equivalent polynomial functions f, g : R→ R. We begin

with an auxiliary result, which shows that the function φ(t)/t, defined on R∗ := R \ {0},
can be extended to an analytic function defined on R∗ ∪{∞} ⊆ P1(R), whose value at∞
is a nonzero real number.
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Figure 2 – Graph of the function φ such that g ◦ φ = f , obtained by
plotting the zeros of the equation g(y)− f(t) = 0, for
f(t) = t3 + t2 + t and g(t) = t3 − t2 + t

Source: Elaborated by the author.

Lemma 3.5. Let φ : R → R be a bi-Lipschitz homeomorphism that satisfies an equation

of the form g ◦ φ = cf , where f, g : R → R are nonconstant polynomial functions of the

same degree, and c > 0 is a constant. We have:

i. limt→+∞ φ(t)/t = limt→−∞ φ(t)/t = λ, where λ ∈ R \ {0}

ii. The function ψ : R→ R defined by

ψ(t) :=

tφ(t−1), if t ∈ R \ {0}

λ, if t = 0
(8)

is analytic.7

Proof.

7This fact and the approach taken here to prove it have been suggested to me by Prof. Maria
Michalska.
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i. Let f(t) =
∑d

i=0 ait
i and g(t) =

∑d
i=0 bit

i, where ad, bd 6= 0, and let

l+ := lim
t→+∞

φ(t)

t
and l− := lim

t→−∞

φ(t)

t
.

Both of these limits are well-defined in the extended real line because φ is semial-

gebraic (see Lemma 3.1). Also, since φ is bi-Lipschitz, l+ and l− are nonzero real

numbers.

Claim. ld+ = ld− = c · ad
bd

Proof of the Claim. Since cf = g ◦ φ, we have

c · lim
t→+∞

f(t)

td
= lim

t→+∞

g(φ(t))

td
= lim

t→+∞

g(φ(t))

φ(t)d
· lim
t→+∞

(
φ(t)

t

)d
. (9)

On the other hand, since lim|t|→+∞ |φ(t)| = +∞, we have

lim
|t|→+∞

g(φ(t))

φ(t)d
= lim
|t|→+∞

g(t)

td
= bd. (10)

From (9) and (10), we obtain c · ad = bd · ld+. Hence, ld+ = c · ad/bd. The proof of the

equality ld− = c · ad/bd is completely analogous. �

By the claim above, we have ld+ = ld−, which implies that |l+| = |l−| (note that

d ≥ 1). On the other hand, since φ is monotone and lim|t|→+∞ |φ(t)| = +∞, either

φ(t) and t have the same sign for large values of |t|, or φ(t) and t have opposite

signs for large values of |t|. In any case, l+ and l− have the same sign, and therefore

l+ = l−.

ii. By Lemma 3.3, ψ is analytic at every point t ∈ R \ {0}, so we only need to prove

that ψ is analytic at t = 0. Let P (X, Y ) := g(Y ) − cf(X) and let P ∗(X, Y, Z) be

the homogeneization of P . Also, let f(t) =
∑d

i=0 ait
i and g(t) =

∑d
i=0 bit

i, where

ad, bd 6= 0 and d ≥ 1, so

P (X, Y ) =
d∑
i=0

biY
i − c ·

d∑
i=0

aiX
i

and

P ∗(X, Y, Z) =
d∑
i=0

biY
iZd−i − c ·

d∑
i=0

aiX
iZd−i.
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Since g(φ(t)) = cf(t), we have P (t, φ(t)) = 0 for all t ∈ R. Equivalently,

P ∗(t, φ(t), 1) = 0 for all t ∈ R. Since P ∗ is a homogeneous polynomial, it follows

that P ∗(1, φ(t)/t, 1/t) = 0 for all t ∈ R \ {0}. Equivalently,

P ∗(1, tφ(t−1), t) = 0 for all t ∈ R \ {0}.

Let P̃ (Y, Z) := P ∗(1, Y, Z). From the computations above, it follows that

P̃ (ψ(t), t) = 0 for all t ∈ R.

Now, we show that the equation P̃ (y, z) = 0 determines y as an analytic function

of z in a neighborhood of (λ, 0), and from this we deduce that ψ is analytic at 0.

The partial derivatives of P̃ at (y, 0) are given by

∂P̃

∂y
(y, 0) = d · bd · yd−1 and

∂P̃

∂z
(y, 0) = bd−1 · yd−1 − c · ad−1.

Since P̃ (λ, 0) = 0 and ∂P̃
∂y

(λ, 0) = d · bd · λd−1 6= 0, the Implicit Function Theorem

guarantees that there exists an analytic function ψ̃ : I → J from an open interval I

containing 0 to an open interval J containing λ such that

P̃ (y, z) = 0⇔ y = ψ̃(z), for all y ∈ J, z ∈ I.

Since ψ is continuous and ψ(0) = λ, there exists an open interval I0 ⊆ I containing

0 such that ψ(t) ∈ J for all t ∈ I0. And since P̃ (ψ(t), t) = 0 for all t ∈ I0, it follows

that ψ(t) = ψ̃(t) for all t ∈ I0. Hence, ψ is analytic at t = 0.

�

Proposition 3.5. Let φ : R → R be a bi-Lipschitz function that satisfies an equation of

the form g ◦φ = cf , where f, g : R→ R are nonconstant polynomial functions of the same

degree, and c > 0 is a constant. Then there exist λ, k ∈ R, with λ 6= 0, such that

φ(t) = (λt+ k) + α(t), (11)

where α : R→ R is a Lipschitz Nash function such that:

i. lim|t|→+∞ α(t) = 0

ii. α can be analytically extended to R ∪ {∞} ∼= P1(R).

Proof. Let λ ∈ R \ {0} and ψ : R → R be as in Lemma 3.5. We prove that the limit

lim|t|→+∞ φ(t)− λt is a well-defined real number. For t 6= 0, we have

φ(t)− λt = tψ(t−1)− λt =
ψ(t−1)− λ

t−1
.
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Hence,

lim
|t|→+∞

φ(t)− λt = lim
t→0

φ(t−1)− λt−1 = lim
t→0

ψ(t)− λ
t

= ψ′(0) ∈ R.

Now, let k := lim|t|→+∞ φ(t) − λt. Obviously, the only function α : R → R
satisfying (11) is the one given by α(t) := φ(t) − (λt + k), which is a Lipschitz Nash

function (because it is the difference of two Lipschitz Nash functions). From the definition

of k, it follows that lim|t|→+∞ α(t) = 0. It remains to show that α can be analytically

extended to R ∪ {∞} ∼= P1(R).

For t ∈ R \ {0}, we have

α(t−1) = φ(t−1)− (λt−1 + k)

= (ψ(t)− λ) · t−1 − k

On the other hand, since ψ(0) = λ and ψ′(0) = k, we have

ψ(t) = λ+ kt+
∞∑
k=2

ckt
k,

for |t| sufficiently small. Hence,

α(t−1) =
∞∑
k=1

ck+1t
k,

for |t| sufficiently small.

Therefore, the function α̂ : R ∪ {∞} → R defined by

α̂(t) :=

α(t), if t ∈ R

0, if t =∞

is analytic. �

The next proposition shows how to compute the constants λ and k appearing

in equation (11).

Proposition 3.6. Let f, g : R→ R be nonconstant polynomial functions that are Lipschitz

equivalent,8 so that g◦φ = cf , for some bi-Lipschitz function φ : R→ R and some constant

c > 0. Let λ := lim|t|→+∞ φ(t)/t and k := lim|t|→+∞ φ(t)−λt (λ is well-defined, by Lemma

3.5; and k is well-defined, by Proposition 3.5). If f(t) =
∑d

i=0 ait
i and g(t) =

∑d
i=0 bit

i,

with ad, bd 6= 0, then we have:

i. bd · λd − c · ad = 0

8By Lemma 3.2, f and g have the same degree.
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ii. k =
c · ad−1 − bd−1 · λd−1

d · bd · λd−1

Remark 3.2. It follows from (i) that

λ =

(
c · ad
bd

) 1
d

, if d is odd.

But if d is even, we have only the equality of absolute values

|λ| =
∣∣∣∣c · adbd

∣∣∣∣ 1d ,
so we still need to determine the sign of λ if we want to determine its value. This can be

done by analyzing the behavior of φ: if φ is increasing then λ > 0, if φ is decreasing then

λ < 0.

Proof. Retaining the notation used in the proof of Lemma 3.5, we have

P̃ (ψ(t), t) = 0, for all t ∈ R, (12)

where P̃ (y, z) =
∑d

i=0 biy
izd−i − c ·

∑d
i=0 aiz

d−i.

Setting t = 0 in (12), we get P̃ (λ, 0) = 0. This proves (i).

Now, differentiating both sides of (12), we get

∂P̃

∂y
(ψ(t), t) · ψ′(t) +

∂P̃

∂z
(ψ(t), t) = 0, for all t ∈ R.

Setting t = 0 in this equation, we obtain9

∂P̃

∂y
(λ, 0) · k +

∂P̃

∂z
(λ, 0) = 0

Performing explicit computations, we get

d · bd · λd−1 · k + (bd−1λ
d−1 − c · ad−1) = 0.

From this, (ii) follows. �

Let us revisit the example of the polynomial functions f(t) = t3 + t2 + t and

g(t) = t3 − t2 + t. Figure 2 shows the graph of the bi-Lipschitz function φ : R → R such

that g ◦φ = f . Now, we obtain the graph of the function α : R→ R given by Proposition

9In the proof of Proposition 3.5, we showed that k = ψ′(0).
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3.5. We begin by computing the coefficients λ and k that appear in equation (11). By

Proposition 3.6, we have:

λ =

(
c · a3
b3

) 1
3

and k =
c · a2 − b2 · λ2

3 · b3 · λ2
(13)

In the example under consideration, we have: c = a3 = b3 = a2 = 1 and b2 = −1.

Substituting these values into (13), we obtain: λ = 1 and k = 2/3. Thus,

φ(t) =

(
t+

2

3

)
+ α(t), for all t ∈ R. (14)

Since lim|t|→+∞ α(t) = 0, the above equation shows that the line y = t+2/3 is asymptotic

to the graph of φ.

Figure 3 – Graph of the function φ such that g ◦ φ = f , for
f(t) = t3 + t2 + t and g(t) = t3 − t2 + t, along with the asymptotic
line y = t+ 2/3

Source: Elaborated by the author.

Also by (14), the graph of α is the zero set of the polynomial

g((t+ 2/3) + y)− f(t). Since we do not have a simple explicit expression for α, this

provides a convenient means for graphing this function.
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Figure 4 – Graph of the function α, obtained by plotting the zeros
of the equation g((t+ 2/3) + y)− f(t) = 0, for f(t) = t3 + t2 + t and
g(t) = t3 − t2 + t

Source: Elaborated by the author.
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4 R-SEMIALGEBRAIC LIPSCHITZ EQUIVALENCE OF β-QUASIHOMO-

GENEOUS POLYNOMIALS

Let β be a rational number > 1 and let d be a positive integer. A polynomial

F (X, Y ) ∈ R[X, Y ] is said to be β-quasihomogeneous of degree d if

F (tX, tβY ) = tdF (X, Y ) for all t > 0.

The positive integer d is called β-quasihomogeneous degree of F (X, Y ).

Remark 4.1. According to this definition, the zero polynomial is β-quasihomogeneous of

degree d, for all rational numbers β > 1 and all positive integers d. But we restrict our

attention to nonzero β-quasihomogeneous polynomials, so whenever we say that F (X, Y ) is

a β-quasihomogeneous polynomial of degree d, it is implied that F is a nonzero polynomial.

Remark 4.2. In this thesis, we consider only polynomials with real coefficients. So,

throughout the text, the word “polynomial” is meant to be understood as “real polynomial”.

If β = r/s, where r > s > 0 and gcd(r, s) = 1, then the β-quasihomogeneous

polynomials of degree d are those of the form

F (X, Y ) =
m∑
k=0

ckX
d−rkY sk,

where the coefficients ck are real numbers, cm 6= 0, and m ≤ bd/rc.
In this chapter, we address the problem of determining whether any two given

β-quasihomogeneous polynomials are R-semialgebraically Lipschitz equivalent. Two β-

quasihomogeneous polynomials F (X, Y ) and G(X, Y ) are said to be R-semialgebraically

Lipschitz equivalent if there exists a germ of semialgebraic bi-Lipschitz homeomorphism

Φ: (R2, 0)→ (R2, 0) such that G ◦ Φ = F .

Following the approach taken in BIRBRAIR, FERNANDES, and PANAZ-

ZOLO (2009), we reduce this problem to the simpler one of Lipschitz classification of

polynomial functions of a single variable (which has been solved in Chapter 3). In or-

der to do this, we associate two polynomial functions of a single variable with each β-

quasihomogeneous polynomial F (X, Y ): the right height function f+ : R → R, given by

f+(t) := F (1, t), and the left height function f− : R → R, given by f−(t) := F (−1, t).

Since

F (x, t |x|β) =

|x|
d f+(t), if x > 0

|x|d f−(t), if x < 0
,
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it is clear that the height functions f+ and f− encode a great deal of information about

the behavior of the function given by (x, y) 7→ F (x, y), for all (x, y) ∈ R2. So, we consider

the following questions:

1. Can we say that if two given β-quasihomogeneous polynomials F (X, Y ) andG(X, Y )

are R-semialgebraically Lipschitz equivalent, then their height functions can be

arranged in pairs of Lipschitz equivalent functions (i.e. either f+ ∼= g+ and f− ∼= g−,

or f+ ∼= g− and f− ∼= g+)?

2. Can we say that if the height functions of two given β-quasihomogeneous polynomi-

als can be arranged in pairs of Lipschitz equivalent functions then these polynomials

are R-semialgebraically Lipschitz equivalent?

In this chapter, we obtain fairly general conditions under which each of these

questions is answered affirmatively. So, under appropriate conditions, the problem of

determining whether two given β-quasihomogeneous polynomials are R-semialgebraically

Lipschitz equivalent will be reduced to the problem of determining whether their height

functions (which are polynomial functions of a single variable) can be arranged in pairs

of Lipschitz equivalent functions. Since the problem of determining whether two given

polynomial functions of a single variable are Lipschitz equivalent has already been solved

in Chapter 3, this will enable us to determine, under fairly general conditions, whether

two given β-quasihomogeneous polynomials are R-semialgebraically Lipschitz equivalent.

Overview of this chapter. In Section 4.1, we show that if two β-quasihomogeneous

polynomials F (X, Y ) and G(X, Y ) of the same β-quasihomogeneous degree d, whose

zero sets contain points both on the left half-plane and on the right half-plane, are R-

semialgebraically Lipschitz equivalent, then their height functions can be arranged in

pairs of Lipschitz equivalent functions. (See Corollary 4.3, Remark 4.7.) We begin by

introducing a special type of germ of semialgebraic map Φ: (R2, 0) → (R2, 0) called β-

isomorphism, and the so-called β-transform, which turns each β-isomorphism Φ into a

pair (λ, φ), where λ = (λ+, λ−) is an ordered pair of nonzero real numbers having the

same sign and φ = (φ+, φ−) is an ordered pair of bi-Lipschitz functions from R to R
(see Proposition 4.8). We distinguish two kinds of β-isomorphisms: direct and reverse

(see Proposition 4.2 and the paragraph following it). We show that if F (X, Y ) and

G(X, Y ) are two β-quasihomogeneous polynomials such that G ◦ Φ = F , where Φ is a

β-isomorphism, theng+ ◦ φ+ = |λ+|−d f+ and g− ◦ φ− = |λ−|−d f− if Φ is direct

g− ◦ φ+ = |λ+|−d f+ and g+ ◦ φ− = |λ−|−d f− if Φ is reverse
,
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where f+, f− are the height functions of F , g+, g− are the height functions of G, and

(λ, φ) = ((λ+, λ−), (φ+, φ−)) is the β-transform of Φ (see Proposition 4.9). Then, we

show that if two β-quasihomogeneous polynomials F (X, Y ) and G(X, Y ) of the same β-

quasihomogeneous degree d whose zero sets contain points both on the left half-plane and

on the right half-plane, are R-semialgebraically Lipschitz equivalent, then there exists a

β-isomorphism Φ such that G◦Φ = F (see Theorem 4.1); hence, by applying Proposition

4.9, we conclude that the height functions of F and G can be arranged in pairs of Lipschitz

equivalent functions (see Theorem 4.1 and Corollary 4.3).

In the next three sections, we address the problem of determining appropriate

conditions to ensure that if the height functions of two given β-quasihomogeneous poly-

nomials of the same β-quasihomogeneous degree d can be arranged in pairs of Lipschitz

equivalent functions, then these polynomials areR-semialgebraically Lipschitz equivalent.

We begin by expressing the above hypothesis on the height functions in terms

of a certain group action. In Section 4.2, we introduce a group, called the group of proto-

transitions, whose elements are ordered pairs (λ, φ), where λ = (λ1, λ2) is an ordered

pair of nonzero real numbers having the same sign and φ = (φ1, φ2) is an ordered pair of

bi-Lipschitz Nash diffeomorphisms on R; then we define a family of group actions of the

group of proto-transitions on Cω×Cω, depending on an integer parameter d ≥ 1. For each

d ≥ 1, we denote by (g1, g2)◦(λ, φ) the action of the proto-transition (λ, φ) on the element

(g1, g2) ∈ Cω × Cω. By the end of Section 4.2, we show that the height functions f+, f−

and g+, g− of two given β-quasihomogeneous polynomials F (X, Y ) and G(X, Y ) can be

arranged in pairs of Lipschitz equivalent functions if and only if (g+, g−)◦(λ, φ) = (f+, f−),

for some proto-transition (λ, φ) (see Corollary 4.4).

In Section 4.3, we introduce a special type of proto-transition, called β-transition,

and we show how to construct from any given β-transition (λ, φ) a map germ Φ: (R2, 0)→
(R2, 0) called the inverse β-transform of (λ, φ). We show that Φ is actually a germ of

semialgebraic bi-Lipschitz map (see Corollary 4.7); also, we show that if F (X, Y ) and

G(X, Y ) are β-quasihomogeneous polynomials of the same β-quasihomogeneous degree d

such that (g+, g−)◦(λ, φ) = (f+, f−), where (λ, φ) is a β-transition, then G◦Φ = F , where

Φ is the inverse β-transform of (λ, φ) (see Proposition 4.17), and then it follows that F

and G are R-semialgebraically Lipschitz equivalent (see Corollary 4.8).

All this brings us to the following problem: suppose that the height functions

f+, f− and g+, g− of two given β-quasihomogeneous polynomials F (X, Y ) and G(X, Y ) of

the same β-quasihomogeneous degree d can be arranged in pairs of Lipschitz equivalent

functions, so that (g+, g−)◦(λ, φ) = (f+, f−) for some proto-transition (λ, φ). Under what

conditions, can we choose this proto-transition among the β-transitions? In Section 4.4,

we obtain fairly general conditions under which such a choice is possible (see Proposition

4.21 and Corollary 4.10), so that we can apply Corollary 4.8 to conclude that F and G are
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R-semialgebraically Lipschitz equivalent (see Theorem 4.2, Corollary 4.11, and Corollary

4.12).

Finally, in Section 4.5, we consider a specific family of quasihomogeneous poly-

nomials, which has been used before in HENRY and PARUSIŃSKI (2004) to show that

the bi-Lipschitz equivalence of analytic function germs (R2, 0) → (R, 0) admits contin-

uous moduli. Using results obtained in this thesis, we investigate the properties of this

family in the context of R-semialgebraic Lipschitz equivalence. As a byproduct, our con-

clusions show that the R-semialgebraic Lipschitz equivalence of real β-quasihomogeneous

polynomials in two variables admits continuous moduli.

4.1 β-isomorphisms and the β-transform

In this section, we show that if two β-quasihomogeneous polynomials of the

same β-quasihomogeneous degree d whose zero sets contain points both on the left half-

plane and on the right half-plane are R-semialgebraically Lipschitz equivalent, then their

height functions can be arranged in pairs of Lipschitz equivalent functions. (See Theorem

4.1 and Corollary 4.3 at the end of this section.)

A germ of semialgebraic bi-Lipschitz map Φ = (Φ1,Φ2) : (R2, 0) → (R2, 0) is

said to be a β-isomorphism if the following conditions are satisfied:

i. There exist β-quasihomogeneous polynomials F (X, Y ) and G(X, Y ) of the same

β-quasihomogeneous degree d such that G ◦ Φ = F .

ii. limx→0+ Φ1(x, 0)/x 6= 0 and limx→0− Φ1(x, 0)/x 6= 0

Remark 4.3. For any germ of semialgebraic bi-Lipschitz homeomorphism Φ: (R2, 0) →
(R2, 0), the path Φ(x, 0), 0 ≤ x < ε, has finite nonzero initial velocity.

In fact, it is immediate from Lemma 2.2 that the path Φ(x, 0), 0 ≤ x < ε, has

finite initial velocity. On the other hand, there exists A > 0 such that Φ(x, 0) ≥ A |x|,
because Φ is bi-Lipschitz and Φ(0, 0) = 0; so we have |Φ(x, 0)/x| ≥ A, for x 6= 0. Hence,

limx→0+ Φ(x, 0)/x 6= 0. Similarly, we can prove that the path Φ(−x, 0), 0 ≤ x < ε, also

has finite nonzero initial velocity.

Remark 4.4. Let Φ: (R2, 0)→ (R2, 0) be any germ of semialgebraic bi-Lipschitz map. It

is immediate from Lemma 2.3 that for all t ∈ R, we have:

i. The initial velocity of the path Φ(x, txβ), 0 ≤ x < ε, is equal to the initial velocity

of the path Φ(x, 0), 0 ≤ x < ε.

ii. The initial velocity of the path Φ(−x, txβ), 0 ≤ x < ε, is equal to the initial velocity

of the path Φ(−x, 0), 0 ≤ x < ε.
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Hence, for all t ∈ R,

lim
x→0+

Φ1(x, tx
β)

x
= lim

x→0+

Φ1(x, 0)

x
and lim

x→0+

Φ1(−x, txβ)

x
= lim

x→0+

Φ1(−x, 0)

x
. (15)

Also, for all t ∈ R,

lim
x→0+

Φ2(x, tx
β)

x
= lim

x→0+

Φ2(x, 0)

x
and lim

x→0+

Φ2(−x, txβ)

x
= lim

x→0+

Φ2(−x, 0)

x
. (16)

Proposition 4.1. Let Φ: (R2, 0)→ (R2, 0) be a germ of semialgebraic bi-Lipschitz homeo-

morphism. Suppose that there exist β-quasihomogeneous polynomials F (X, Y ) and G(X, Y )

of degree d such that G ◦ Φ = F . We have:

i. If Φ is a β-isomorphism then, for each t ∈ R, Φ2(x, t |x|β) = O(|x|β) as x→ 0.

ii. If there exist t0, t1 ∈ R such that

Φ2(x, t0 |x|β) = O(|x|β) as x→ 0+ and Φ2(x, t1 |x|β) = O(|x|β) as x→ 0−,

then Φ is a β-isomorphism.

Proof. Suppose that Φ is a β-isomorphism. Let β = r/s, where r > s > 0 and gcd(r, s) =

1. Then we have

G(X, Y ) =
m∑
k=0

ckX
d−rkY sk,

where the coefficients ck are real numbers, cm 6= 0, and m ≤ bd/rc.
By hypothesis, G(Φ(x, y)) = F (x, y). Thus, for any t ∈ R and x 6= 0 suffi-

ciently small,

G(Φ(x, t |x|β)) = F (x, t |x|β) .

Since the polynomials F and G are β-quasihomogeneous of the same β-quasihomogeneous

degree d, this implies that

G

(
Φ1(x, t |x|β)

|x|
,
Φ2(x, t |x|β)

|x|β

)
= f(t),

where

f(t) =

F (1, t), if x > 0

F (−1, t), if x < 0
.

Hence, for each t ∈ R and x 6= 0 sufficiently small, y = Φ2(x, t |x|β)/ |x|β is a zero of the

nonconstant polynomial

Ht,x(y) := G(x̃, y)− f(t) ∈ R[y],
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where x̃ := Φ1(x, t |x|β)/ |x|. Applying Cauchy’s bound on the roots of a polynomial, we

obtain∣∣∣∣∣Φ2(x, t |x|β)

|x|β

∣∣∣∣∣ ≤ 1 + max

{∣∣∣∣cm−1cm

∣∣∣∣ |x̃|r , . . . , ∣∣∣∣ c1cm
∣∣∣∣ |x̃|r(m−1) , ∣∣∣∣c0x̃d − f(t)

cmx̃d−rm

∣∣∣∣} . (17)

Since Φ is a β-isomorphism, we have

lim
x→0+

Φ1(x, 0)

x
6= 0 and lim

x→0+

Φ1(−x, 0)

x
6= 0

Then, by (15), we obtain

lim
x→0+

Φ1(x, t |x|β)

|x|
6= 0 and lim

x→0−

Φ1(x, t |x|β)

|x|
6= 0, for all t ∈ R. (18)

From (17) and (18), it follows that, for each t ∈ R, Φ2(x, t |x|β)/ |x|β is bounded for x 6= 0

sufficiently small. This proves (i).

Now, suppose that for certain t0, t1 ∈ R, Φ2(x, t0 |x|β)/ |x|β is bounded for

x > 0 sufficiently small, and Φ2(x, t1 |x|β)/ |x|β is bounded for x < 0 sufficiently small.

Then

lim
x→0+

Φ2(x, t0x
β)

x
= lim

x→0+

Φ2(x, t0x
β)

xβ
· xβ−1 = 0

and

lim
x→0+

Φ2(−x, t1xβ)

x
= lim

x→0+

Φ2(−x, t1xβ)

xβ
· xβ−1 = 0

Thus, by (16),

lim
x→0+

Φ2(x, 0)

x
= 0 and lim

x→0+

Φ2(−x, 0)

x
= 0 .

On the other hand, by Remark 4.3, the paths Φ(x, 0), 0 ≤ x < ε, and Φ(−x, 0), 0 ≤ x < ε,

both have (finite) nonzero initial velocity. Hence,

lim
x→0+

Φ1(x, 0)

x
6= 0 and lim

x→0+

Φ1(−x, 0)

x
6= 0 .

Therefore, Φ is a β-isomorphism. �

Proposition 4.2. If Φ: (R2, 0)→ (R2, 0) is a β-isomorphism then the initial velocities of

the paths Φ(x, 0), 0 ≤ x < ε, and Φ(−x, 0), 0 ≤ x < ε, are horizontal10 and have opposite

directions.

Proof. Let Φ be a β-isomorphism. By Proposition 4.1, we have Φ2(x, 0) = O(|x|β) as

x → 0. Then, limx→0+ Φ2(x, 0)/x = limx→0+ Φ2(−x, 0)/x = 0. Since the paths Φ(x, 0),

0 ≤ x < ε, and Φ(−x, 0), 0 ≤ x < ε, both have nonzero finite initial velocity (Remark

10We say that a vector (v1, v2) ∈ R2 is horizontal if v1 6= 0 and v2 = 0.
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4.3), it follows that both of them have horizontal initial velocity. By Corollary 2.7, the

initial velocities of the paths Φ(x, 0), 0 ≤ x < ε, and Φ(−x, 0), 0 ≤ x < ε, do not have

the same direction. Since they are both horizontal, they have opposite directions. �

It follows from Proposition 4.2 that each β-isomorphism Φ: (R2, 0) → (R2, 0)

satisfies one of the following conditions:

(A) limx→0+ Φ1(x, 0)/x > 0 and limx→0− Φ1(x, 0)/x > 0

(B) limx→0+ Φ1(x, 0)/x < 0 and limx→0− Φ1(x, 0)/x < 0

A β-isomorphism Φ is said to be direct if it satisfies (A), and it is said to be reverse if it

satisfies (B).

Proposition 4.3. Let Φ: (R2, 0)→ (R2, 0) be a germ of semialgebraic bi-Lipschitz homeo-

morphism. Suppose that there exist β-quasihomogeneous polynomials F (X, Y ) and G(X, Y )

of the same β-quasihomogeneous degree d, such that G ◦Φ = F . The following assertions

are equivalent:

i. Φ is a β-isomorphism

ii. For any continuous semialgebraic path γ : [0, ε) → R2 such that γ(0) = 0, if the

initial velocity of γ is horizontal, then the initial velocity of γ̃ := Φ ◦ γ is horizontal.

Proof. First, we prove that (i) ⇒ (ii). Suppose that Φ is a β-isomorphism. Take any

continuous semialgebraic path γ : [0, ε)→ R2 such that γ(0) = 0, whose initial velocity is

horizontal. Since the initial velocities of the paths α+, α− : [0, ε)→ R2, given by α+(t) =

(t, 0) and α−(t) = (−t, 0), are both horizontal and have opposite directions, the initial

velocity of γ has either the same direction as the initial velocity of α+, or the same

direction as the initial velocity of α−. By Corollary 2.7, this implies that the initial

velocity of γ̃ := Φ ◦ γ has either the same direction as the initial velocity of α̃+ := Φ ◦α+,

or the same direction as the initial velocity of α̃− := Φ ◦ α−. In any case, the initial

velocity of γ̃ is horizontal: by Proposition 4.2, the initial velocities of α̃+ and α̃− are both

horizontal (and have opposite directions) because Φ is a β-isomorphism.

Now, we prove that (ii) ⇒ (i). Assume that condition (ii) is satisfied. We

show that limx→0+ Φ1(x, 0)/x 6= 0 and limx→0− Φ1(x, 0)/x 6= 0. Since the initial velocity

of the path α+ is horizontal, it follows from our assumption that the initial velocity of

the path α̃+ = Φ ◦ α+ is horizontal. Hence, limx→0+ Φ1(x, 0)/x 6= 0. Similarly, since the

initial velocity of the path α− is horizontal, it follows from our assumption that the initial

velocity of the path α̃− = Φ ◦ α− is horizontal. Hence, limx→0+ Φ1(−x, 0)/x 6= 0. And

since limx→0− Φ1(x, 0)/x = − limx→0+ Φ1(−x, 0)/x, we have limx→0− Φ1(x, 0)/x 6= 0. �

Let Φ and Ψ be β-isomorphisms. We say that Ψ is composable with Φ if

there exist β-quasihomogeneous polynomials F (X, Y ), G(X, Y ), H(X, Y ), all of the same

β-quasihomogeneous degree d, such that H ◦Ψ = G and G ◦ Φ = F .
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Proposition 4.4. Let Φ,Ψ: (R2, 0) → (R2, 0) be β-isomorphisms. If Ψ is composable

with Φ, then Ψ ◦ Φ is a β-isomorphism.

Proof. Suppose that Ψ is composable with Φ. Then, there exist β-quasihomogeneous

polynomials F (X, Y ), G(X, Y ), H(X, Y ) of the same β-quasihomogeneous degree d such

that H ◦ Ψ = G and G ◦ Φ = F , so H ◦ (Ψ ◦ Φ) = F . Now, take any continuous

semialgebraic path γ : [0, ε) → R2 such that γ(0) = 0, with horizontal initial velocity.

Since Φ is a β-isomorphism, the initial velocity of the continuous semialgebraic path

γ̃ := Φ ◦ γ is horizontal; and since Ψ is a β-isomorphism, the initial velocity of the

continuous semialgebraic path (Ψ◦Φ)◦γ = Ψ◦ γ̃ is horizontal. By Proposition 4.3, Ψ◦Φ

is a β-isomorphism. �

Proposition 4.5. The germ of the identity map I : (R2, 0)→ (R2, 0) is a β-isomorphism.

Moreover, for every β-isomorphism Φ: (R2, 0) → (R2, 0), I is composable with Φ, Φ is

composable with I, and I ◦ Φ = Φ ◦ I = Φ.

Proof. Clearly, for any β-quasihomogeneous polynomial F (X, Y ), we have F ◦ I = F ,

and limx→0 I(x, 0)/x = 1, so I is a β-isomorphism. Now, if Φ: (R2, 0) → (R2, 0) is a

β-isomorphism, then there exist β-quasihomogeneous polynomials of the same β-quasi-

homogeneous degree d such that G ◦ Φ = F . Since G ◦ I = G and G ◦ Φ = F , I is

composable with Φ; and since G ◦ Φ = F and F ◦ I = F , Φ is composable with I.

Obviously, I ◦ Φ = Φ ◦ I = Φ. �

Proposition 4.6. Let Φ: (R2, 0)→ (R2, 0) be a germ of semialgebraic bi-Lipschitz map.

If Φ is a β-isomorphism then Φ−1 is a β-isomorphism. Moreover, Φ is composable with

Φ−1, Φ−1 is composable with Φ, and Φ ◦ Φ−1 = Φ−1 ◦ Φ = I.

Proof. Since Φ is a β-isomorphism, there exist β-quasihomogeneous polynomials F (X, Y ),

G(X, Y ) of the same β-quasihomogeneous degree d, such that G ◦ Φ = F . Hence, there

exist β-quasihomogeneous polynomials F̃ (X, Y ), G̃(X, Y ) of degree d such that G̃◦Φ−1 =

F̃ : for example, take G̃ = F and F̃ = G. Now, we show that for any continuous

semialgebraic path γ̃ : [0, ε) → R2, with γ̃(0) = 0, whose initial velocity is horizontal,

the initial velocity of γ := Φ−1 ◦ γ̃ is horizontal. Fix one such path γ̃ : [0, ε) → R2. Let

α+, α− : [0, ε) → R2 be the continuous semialgebraic paths defined by α+(t) = (t, 0) and

α−(t) = (−t, 0). Since Φ is a β-isomorphism, the initial velocities of the paths α̃+ := Φ◦α+

and α̃− := Φ◦α− are both horizontal and have opposite directions. So, the initial velocity

of γ̃ (which is horizontal) has either the same direction as the initial velocity of α̃+ or the

same direction as the initial velocity of α̃−. Then, by Corollary 2.7, the initial velocity of

γ = Φ−1 ◦ γ̃ has either the same direction as the initial velocity of α+ = Φ−1 ◦ α̃+ or the

same direction as the initial velocity of α− = Φ−1 ◦ α̃−. In any case, the initial velocity

of γ is horizontal. By Proposition 4.3, Φ−1 is a β-isomorphism. Since G ◦ Φ = F and
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F ◦Φ−1 = G, it is clear that both Φ is composable with Φ−1 and Φ−1 is composable with

Φ. Also, it is obvious that Φ ◦ Φ−1 = Φ−1 ◦ Φ = I. �

Now, we introduce the β-transform. Given a β-isomorphism Φ = (Φ1,Φ2) : (R2, 0)→
(R2, 0), we define11 λ := (λ+, λ−) and φ := (φ+, φ−), where:

λ+ := lim
x→0+

Φ1(x, 0)

x
, λ− := lim

x→0−

Φ1(x, 0)

x

φ+(t) := |λ+|−β · lim
x→0+

Φ2(x, t |x|β)

|x|β
, φ−(t) := |λ−|−β · lim

x→0−

Φ2(x, t |x|β)

|x|β

We define the β-transform of Φ to be the ordered pair (λ, φ).

From the definitions above, it follows that, for each t ∈ R:

Φ1(x, t |x|β) = λx+ o(x) as x→ 0 (19)

Φ2(x, t |x|β) = |λ|β φ(t) |x|β + o(|x|β) as x→ 0 (20)

where λ = λ+ and φ = φ+, if x > 0

λ = λ− and φ = φ−, if x < 0
.

Remark 4.5. To obtain (19), we used (15).

Proposition 4.7. Let Φ = (Φ1,Φ2) and Ψ = (Ψ1,Ψ2) be β-isomorphisms such that Ψ is

composable with Φ, and let Z := Ψ ◦ Φ. Let (λ, φ), (µ, ψ) be the β-transforms of Φ, Ψ,

respectively. We have:

i. Asympotic formula for Z1(x, 0).

Z1(x, 0) = λµx+ o(x) as x→ 0, (21)

where λ = λ+, µ = µ+, if x > 0

λ = λ−, µ = µ−, if x < 0
or

λ = λ+, µ = µ−, if x > 0

λ = λ−, µ = µ+, if x < 0
,

according as Φ is direct or reverse, respectively.

11By Proposition 4.2, λ+ and λ− are well-defined nonzero real numbers. By Proposition 4.1 and
Corollary 2.4, φ+(t) and φ−(t) are well-defined real numbers, for each t ∈ R.
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ii. Asympotic formula for Z2(x, t |x|β), with t fixed.

Z2(x, t |x|β) = |λµ|β ψ(φ(t)) |x|β + o(|x|β) as x→ 0, (22)

where λ = λ+, µ = µ+, φ = φ+, ψ = ψ+, if x > 0

λ = λ−, µ = µ−, φ = φ−, ψ = ψ−, if x < 0

or λ = λ+, µ = µ−, φ = φ+, ψ = ψ−, if x > 0

λ = λ−, µ = µ+, φ = φ−, ψ = ψ+, if x < 0
,

according as Φ is direct or reverse, respectively.

Proof. By definition,

Z1(x, 0) = Ψ1(Φ(x, 0)).

Then, by (19) and (20),

Z1(x, 0) = Ψ1(λx, |λ|β φ(0) |x|β) + o(x),

where λ = λ+ and φ = φ+, if x > 0

λ = λ− and φ = φ−, if x < 0
. (23)

And then, by applying (19) to Ψ1 in the equation above, we obtain:

Z1(x, 0) = λµx+ o(x),

where µ = µ+, if λx > 0

µ = µ−, if λx < 0
. (24)

Since λ+ > 0 and λ− > 0, if Φ is direct

λ+ < 0 and λ− < 0, if Φ is reverse
,

it follows from (23) and (24) thatλ = λ+, µ = µ+, if x > 0

λ = λ−, µ = µ−, if x < 0
or

λ = λ+, µ = µ−, if x > 0

λ = λ−, µ = µ+, if x < 0
,

according as Φ is direct or reverse, respectively.
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Now, let t ∈ R be fixed. By definition,

Z2(x, t |x|β) = Ψ2(x̃,Φ2(x, t |x|β)), (25)

where x̃ := Φ1(x, t |x|β). By (20), we have

Φ2(x, t |x|β) = φ(t) |λx|β + o(|x|β), (26)

where λ = λ+ and φ = φ+, if x > 0

λ = λ− and φ = φ−, if x < 0
. (27)

By (19), we have

lim
x→0

x̃

λx
= 1,

so that

lim
x→0

|x̃|β

|λx|β
= 1 (28)

and hence

|λx|β = |x̃|β + o(|x|β). (29)

From (26) and (29), we get

Φ2(x, t |x|β) = φ(t) |x̃|β + o(|x|β).

Thus,

Ψ2(x̃,Φ2(x, t |x|β)) = Ψ2(x̃, φ(t) |x̃|β) + o(|x|β). (30)

By applying (20) to Ψ2 and using (28), we obtain

Ψ2(x̃, φ(t) |x̃|β) = |µ|β ψ(φ(t)) |x̃|β + o(|x|β),

where µ = µ+ and ψ = ψ+, if x̃ > 0

µ = µ− and ψ = ψ−, if x̃ < 0
. (31)

By (29), it follows that

Ψ2(x̃, φ(t) |x̃|β) = |λµ|β ψ(φ(t)) |x|β + o(|x|β). (32)

Then, by (25), (30), and (32), we have

Z2(x, t |x|β) = |λµ|β ψ(φ(t)) |x|β + o(|x|β).
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Since x̃ and λx have the same sign for small values of x, it follows from (31)

that µ = µ+ and ψ = ψ+, if λx > 0

µ = µ− and ψ = ψ−, if λx < 0
. (33)

And since λ+ > 0 and λ− > 0, if Φ is direct

λ+ < 0 and λ− < 0, if Φ is reverse
,

it follows from (27) and (33) thatλ = λ+, µ = µ+, φ = φ+, ψ = ψ+, if x > 0

λ = λ−, µ = µ−, φ = φ−, ψ = ψ−, if x < 0

or λ = λ+, µ = µ−, φ = φ+, ψ = ψ−, if x > 0

λ = λ−, µ = µ+, φ = φ−, ψ = ψ+, if x < 0
,

according as Φ is direct or reverse, respectively. �

Corollary 4.1. Let Φ = (Φ1,Φ2) and Ψ = (Ψ1,Ψ2) be β-isomorphisms such that Ψ is

composable with Φ, and let Z := Ψ ◦ Φ. Let (λ, φ), (µ, ψ), and (ν, ζ) be the β-transforms

of Φ, Ψ, and Z, respectively. We have:

(ν, ζ) =

((λ+µ+, λ−µ−), (ψ+ ◦ φ+, ψ− ◦ φ−)) , if Φ is direct

((λ+µ−, λ−µ+), (ψ− ◦ φ+, ψ+ ◦ φ−)) , if Φ is reverse

Proof. Dividing both sides of (21) by x and then successively letting x→ 0+ and x→ 0−,

we obtain ν+ = λ+µ+ and ν− = λ−µ−, if Φ is direct

ν+ = λ+µ− and ν− = λ−µ+, if Φ is reverse

So, equation (22) can be rewritten as

Z2(x, t |x|β) = |ν|β ψ(φ(t)) |x|β + o(|x|β) as x→ 0, (34)

whereν = ν+, φ = φ+, ψ = ψ+, if x > 0

ν = ν−, φ = φ−, ψ = ψ−, if x < 0
or

ν = ν+, φ = φ+, ψ = ψ−, if x > 0

ν = ν−, φ = φ−, ψ = ψ+, if x < 0
,

according as Φ is direct or reverse, respectively.



60

Dividing both sides of (34) by |x|β and then successively letting x → 0+ and

x→ 0−, we obtain:ζ+ = ψ+ ◦ φ+ and ζ− = ψ− ◦ φ−, if Φ is direct

ζ+ = ψ− ◦ φ+ and ζ− = ψ+ ◦ φ−, if Φ is reverse

�

Corollary 4.2. Let Φ: (R2, 0) → (R2, 0) be a β-isomorphism, and let (λ, φ) be the β-

transform of Φ. The β-transform of Φ−1 is given by:
(
(λ−1+ , λ−1− ), (φ−1+ , φ−1− )

)
, if Φ is direct(

(λ−1− , λ
−1
+ ), (φ−1− , φ

−1
+ )
)
, if Φ is reverse

Proof. By Proposition 4.6, Φ−1 is a β-isomorphism, Φ is composable with Φ−1, Φ−1 is

composable with Φ, and Φ ◦ Φ−1 = Φ−1 ◦ Φ = I, where I : (R2, 0) → (R2, 0) is the germ

of the identity map on R2. Suppose that Φ is a direct β-isomorphism. Let (µ, ψ) =

((µ+, µ−), (ψ+, ψ−)) be the β-transform of Φ−1. We must show that µ+ = λ−1+ , µ− = λ−1− ,

ψ+ = φ−1+ , and ψ− = φ−1− .

By Corollary 4.1, the β-transform of Φ−1 ◦ Φ is given by

((λ+µ+, λ−µ−), (ψ+ ◦ φ+, ψ− ◦ φ−)).

On the other hand, since Φ−1◦Φ = I, the β-transform of Φ−1◦Φ is equal to the β-transform

of I, which is

((1, 1), (idR, idR)).

Thus,

µ+ = λ−1+ , µ− = λ−1− (35)

and

ψ+ ◦ φ+ = ψ− ◦ φ− = idR. (36)

Since Φ is a direct β-isomorphism, we have λ+ > 0 and λ− > 0, so by (35), µ+ > 0

and µ− > 0 and hence Φ−1 is a direct β-isomorphism too. Then, by Corollary 4.1, the

β-transform of Φ ◦ Φ−1 is given by

((λ+µ+, λ−µ−), (φ+ ◦ ψ+, φ− ◦ ψ−)),

and since Φ ◦ Φ−1 = I, it follows that

φ+ ◦ ψ+ = φ− ◦ ψ− = idR. (37)
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From (36) and (37), it follows that

ψ+ = φ−1+ and ψ− = φ−1− .

The case where Φ is a reverse β-isomorphism is analogous. �

Proposition 4.8. Let Φ: (R2, 0) → (R2, 0) be a β-isomorphism, and let (λ, φ) be the

β-transform of Φ. We have:

(a) λ+ and λ− are nonzero real numbers and they have the same sign.

(b) φ+ and φ− are both bi-Lipschitz functions.

Proof. As pointed out just after the proof of Proposition 4.2, λ+ = limx→0+ Φ1(x, 0)/x

and λ− = limx→0− Φ1(x, 0)/x are nonzero real numbers which have the same sign. This

establishes the first part of the proposition. Now, let us prove the second part.

By (20), for any fixed t and t′, we have:

φ+(t)− φ+(t′) = |λ+|−β ·
Φ2(x, t |x|β)− Φ2(x, t

′ |x|β)

|x|β
+
o(|x|β)

|x|β
, as x→ 0+

and

φ−(t)− φ−(t′) = |λ−|−β ·
Φ2(x, t |x|β)− Φ2(x, t

′ |x|β)

|x|β
+
o(|x|β)

|x|β
, as x→ 0−.

On the other hand, since Φ2 is Lipschitz, there exists K > 0 (independent of x, t, t′) such

that ∣∣∣Φ2(x, t |x|β)− Φ2(x, t
′ |x|β)

∣∣∣ ≤ K |t− t′| |x|β .

Thus,

|φ+(t)− φ+(t′)| ≤ |λ+|−βK |t− t′|+
o(|x|β)

|x|β
as x→ 0+ (38)

and

|φ−(t)− φ−(t′)| ≤ |λ−|−βK |t− t′|+
o(|x|β)

|x|β
as x→ 0−. (39)

By letting x→ 0+ in (38), and x→ 0− in (39), we obtain:

|φ+(t)− φ+(t′)| ≤ |λ+|−βK |t− t′| and |φ−(t)− φ−(t′)| ≤ |λ−|−βK |t− t′| .

Therefore, both φ+ and φ− are Lipschitz functions.

Up to this point, our argument shows that, if Φ is a β-isomorphism, then the

functions φ+ and φ− are both Lipschitz. Since Φ−1 is a β-isomorphism (see Proposition

4.6), this conclusion can also be applied to Φ−1. Then, by Corollary 4.2, it follows that

the functions φ−1+ and φ−1− are both Lipschitz too. �
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Proposition 4.9. Let F (X, Y ) and G(X, Y ) be β-quasihomogeneous polynomials of de-

gree d. Suppose that G ◦ Φ = F , for a certain β-isomorphism Φ: (R2, 0) → (R2, 0). Let

f+, f− be the height functions of F , g+, g− the height functions of G, and let (λ, φ) be the

β-transform of Φ. We have:g+ ◦ φ+ = |λ+|−d f+ and g− ◦ φ− = |λ−|−d f−, if Φ is direct

g− ◦ φ+ = |λ+|−d f+ and g+ ◦ φ− = |λ−|−d f−, if Φ is reverse

Proof. By hypothesis, G(Φ(x, y)) = F (x, y). Thus, for all t ∈ R and x 6= 0 sufficiently

small,

G(Φ(x, t |x|β)) = F (x, t |x|β) .

Since F is β-quasihomogeneous, this implies that

G(Φ(x, t |x|β)) = |x|d f(t),

where

f =

f+, if x > 0

f−, if x < 0
.

Multiplying both sides of this equation by |x|−d, we obtain:

G

(
Φ1(x, t |x|β)

|x|
,
Φ2(x, t |x|β)

|x|β

)
= f(t)

Letting x→ 0+, it follows that

G

(
λ+, lim

x→0+

Φ2(x, t |x|β)

|x|β

)
= f+(t) .

Hence,

g(φ+(t)) = |λ+|−d f+(t), (40)

where

g =

g+, if λ+ > 0

g−, if λ+ < 0
.

Similarly, letting x→ 0−, it follows that

G

(
−λ−, lim

x→0−

Φ2(x, t |x|β)

|x|β

)
= f−(t) .



63

Hence,

g(φ−(t)) = |λ−|−d f−(t), (41)

where

g =

g−, if λ− > 0

g+, if λ− < 0
.

Clearly, equations (40) and (41) yield the result. �

Remark 4.6. We can remove the assumption that the β-quasihomogeneous polynomials

F and G have the same β-quasihomogeneous degree d from the hypotheses of Proposition

4.9, and then obtain it as a consequence of the fact that G ◦ Φ = F , where Φ is a β-

isomorphism:

Let F (X, Y ) be a β-quasihomogeneous polynomial of degree dF , and let G(X, Y ) be a β-

quasihomogeneous polynomial of degree dG. If G ◦ Φ = F , where Φ is a β-isomorphism,

then dF = dG.

In order to prove this, we suppose, for the sake of contradiction, that dF 6= dG. Without

loss of generality, assume that dF > dG. As usual, we assume that F and G are not iden-

tically zero. By applying the argument used in the proof of Proposition 4.9, we conclude

that g+ ◦ φ+ ≡ 0 and g− ◦ φ− ≡ 0, if Φ is direct

g− ◦ φ+ ≡ 0 and g+ ◦ φ− ≡ 0, if Φ is reverse
.

Since φ+ and φ− are bijective, it follows that g+ ≡ 0 and g− ≡ 0. And since

G(x, t |x|β) =

|x|
dG g+(t), if x > 0

|x|dG g−(t), if x < 0
,

this implies that G ≡ 0, a contradiction.

Theorem 4.1. Let F (X, Y ) and G(X, Y ) be β-quasihomogeneous polynomials of degree d.

Suppose that F and G are R-semialgebraically Lipschitz equivalent, and let Φ: (R2, 0)→
(R2, 0) be a germ of semialgebraic bi-Lipschitz homeomorphism such that G ◦ Φ = F .

If F−1(0) ∩ {x > 0} 6= ∅ and F−1(0) ∩ {x < 0} 6= ∅, then Φ is a β-isomorphism.

Consequently, we have:g+ ◦ φ+ = |λ+|−d f+ and g− ◦ φ− = |λ−|−d f−, if Φ is direct

g+ ◦ φ− = |λ−|−d f− and g− ◦ φ+ = |λ+|−d f+, if Φ is reverse
,

where f+, f− are the height functions of F , g+, g− are the height functions of G, and

(λ, φ) is the β-transform of Φ.
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Proof. Suppose that F−1(0) ∩ {x > 0} 6= ∅ and F−1(0) ∩ {x < 0} 6= ∅. Since

F−1(0) ∩ {x > 0} =
⋃

t∈f−1
+ (0)

{
(x, txβ) : x > 0

}
,

the condition F−1(0) ∩ {x > 0} 6= ∅ implies that f−1+ (0) 6= ∅. Take t0 ∈ R such that

f+(t0) = 0. In the notation used in the proof of Proposition 4.1, we have:∣∣∣∣∣Φ2(x, t0 |x|β)

|x|β

∣∣∣∣∣ ≤ 1 + max

{∣∣∣∣cm−1cm

∣∣∣∣ |x̃|r , . . . , ∣∣∣∣ c1cm
∣∣∣∣ |x̃|r(m−1) , ∣∣∣∣ c0cm

∣∣∣∣ |x̃|rm} ,

for x > 0 sufficiently small. Since limx→0+

∣∣∣Φ1(x, t0 |x|β)/x
∣∣∣ < ∞ (this is guaranteed by

Remark 4.3 along with (15)), it follows that Φ2(x, t0 |x|β)/ |x|β is bounded, for x > 0

sufficiently small.

Similarly, the assumption that F−1(0) ∩ {x < 0} 6= ∅ ensures the existence

of t1 ∈ R such that f−(t1) = 0 and then, by adapting the argument above, we can prove

that Φ2(x, t1 |x|β)/ |x|β is bounded, for x < 0 sufficiently small. By Proposition 4.1, it

follows that Φ is a β-isomorphism. Now, the final statement is an immediate consequence

of Proposition 4.9. �

Corollary 4.3. Let F (X, Y ) and G(X, Y ) be β-quasihomogeneous polynomials of degree

d. Suppose that F−1(0) ∩ {x > 0} 6= ∅ and F−1(0) ∩ {x < 0} 6= ∅. If F and G are

R-semialgebraically Lipschitz equivalent, thenf+ ∼= g+ and f− ∼= g−, if Φ is direct

f+ ∼= g− and f− ∼= g+, if Φ is reverse
.

Remark 4.7. Let F (X, Y ) and G(X, Y ) be β-quasihomogeneous polynomials of degree d.

Suppose that G ◦ Φ = F , for a certain β-isomorphism Φ: (R2, 0)→ (R2, 0). Then, either

both of the following conditions hold or none of them hold:

i. F−1(0) ∩ {x > 0} 6= ∅ and F−1(0) ∩ {x < 0} 6= ∅

ii. G−1(0) ∩ {x > 0} 6= ∅ and G−1(0) ∩ {x < 0} 6= ∅

We prove that conditions (i) and (ii) are equivalent in the case where Φ is a direct β-

isomorphism; the other case (where Φ is a reverse β-isomorphism) being analogous. Thus,

suppose that Φ is a direct β-isomorphism. By Proposition 4.9, we have

g+ ◦ φ+ = |λ+|−d f+ and g− ◦ φ− = |λ−|−d f−, (42)
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where f+, f− are the height functions of F , g+, g− are the height functions of G, and

(λ, φ) = ((λ+, λ−), (φ+, φ−)) is the β-transform of Φ. Suppose that F−1(0)∩{x > 0} 6= ∅
and F−1(0) ∩ {x < 0} 6= ∅. Then it follows that f+(t0) = 0 for some t0 ∈ R, and

f−(t1) = 0 for some t1 ∈ R. Hence, by (42), g+(s0) = g−(s1) = 0, where s0 = φ+(t0)

and s1 = φ−(t1). Thus, G(1, s0) = g+(s0) = 0 and G(−1, s1) = g−(s1) = 0, from which

we see that G−1(0) ∩ {x > 0} 6= ∅ and G−1(0) ∩ {x < 0} 6= ∅. Conversely, suppose that

G−1(0) ∩ {x > 0} 6= ∅ and G−1(0) ∩ {x < 0} 6= ∅. Then it follows that g+(s0) = 0 for

some s0 ∈ R, and g−(s1) = 0 for some s1 ∈ R. Hence, by (42), f+(t0) = f−(t1) = 0, where

t0 = φ−1+ (s0) and t1 = φ−1− (s1). Thus, F (1, t0) = f+(t0) = 0 and F (−1, t1) = f−(t1) = 0,

from which we see that F−1(0) ∩ {x > 0} 6= ∅ and F−1(0) ∩ {x < 0} 6= ∅.

4.2 The group of proto-transitions

Let R∗ be the multiplicative group of all nonzero real numbers, and let L be

the group of all bi-Lipschitz Nash diffeomorphisms on R. Let H := {(λ1, λ2) ∈ R∗ × R∗ :

λ1λ2 > 0} (considered as a subgroup of the direct product R∗ ×R∗), and let K := L×L
(direct product). Define a binary operation on H ×K by setting:

(µ, ψ) ◦ (λ, φ) :=

((λ1µ1, λ2µ2), (ψ1 ◦ φ1, ψ2 ◦ φ2)) , if λ > 0

((λ1µ2, λ2µ1), (ψ2 ◦ φ1, ψ1 ◦ φ2)) , if λ < 0

for all (λ, φ) = ((λ1, λ2), (φ1, φ2)) and (µ, ψ) = ((µ1, µ2), (ψ1, ψ2)), where λ > 0 means

that λ1 > 0 and λ2 > 0, and λ < 0 means that λ1 < 0 and λ2 < 0.

Proposition 4.10. (H ×K, ◦) is a group. We call it the group of proto-transitions.

Proof. Let (H ×K, ·) be the direct product of H and K, so that

(µ, ψ) · (λ, φ) = ((λ1µ1, λ2µ2), (ψ1 ◦ φ1, ψ2 ◦ φ2)) .

We express the operation ◦ in terms of the operation · , and then we use this

expression to show that (H ×K, ◦) is a group. Let ι : H ×K → H ×K be the identity

map and τ : H ×K → H ×K be given by τ((λ1, λ2), (φ1, φ2)) = ((λ2, λ1), (φ2, φ1)).

Define θ : H → Aut(H ×K) by

θ(λ) :=

ι, if λ > 0

τ, if λ < 0

Clearly, θ is a group homomorphism.

Let π : H ×K → H be the projection homomorphism. Then, α := θ ◦ π : H ×
K → Aut(H ×K) is a group homomorphism such that:
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i. α ◦ ϕ = α for all ϕ ∈ Imα;

ii. Imα is an abelian subgroup of Aut(H ×K).

Also, we have:

(µ, ψ) ◦ (λ, φ) = (α(λ, φ)(µ, ψ)) · (λ, φ).

Hence, the result follows from the following lemma.

Lemma 4.1. Let (G, ·) be a group and let α : G → Aut(G) be a group homomorphism

satisfying the following conditions:

i. α ◦ ϕ = α for all ϕ ∈ Imα;

ii. Imα is an abelian subgroup of Aut(G).

Define a new operation ◦ on G by setting g ◦ h := (α(h)(g)) · h. Then, (G, ◦) is a group.

Proof of Lemma 4.1. First, we prove that the new operation is associative. For all

g1, g2, g3 ∈ G, we have:

(g1 ◦ g2) ◦ g3 = (α(g2)(g1) · g2) ◦ g3
= α(g3) (α(g2)(g1) · g2) · g3
= α(g3) (α(g2)(g1)) · α(g3)(g2) · g3 (43)

On the other hand,

g1 ◦ (g2 ◦ g3) = g1 ◦ (α(g3)(g2) · g3)

= α(α(g3)(g2) · g3)(g1) · α(g3)(g2) · g3
= α(α(g3)(g2))(α(g3)(g1)) · α(g3)(g2) · g3
(i)
= α(g2)(α(g3)(g1)) · α(g3)(g2) · g3
(ii)
= α(g3)(α(g2)(g1)) · α(g3)(g2) · g3 (44)

From (43) and (44), it follows that (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).
Now we prove that the identity element 1 of the group (G, ·) is also an identity

element of G with respect to the operation ◦. In fact, for all g ∈ G, we have:

1 ◦ g = α(g)(1) · g = 1 · g = g

g ◦ 1 = α(1)(g) · 1 = id(g) = g

Finally, we prove that each element g ∈ G has an inverse with respect to the

operation ◦. First, notice that for all g, h ∈ G,

h ◦ g = 1⇔ α(g)(h) · g = 1⇔ α(g)(h) = g−1 ⇔ h = α(g)−1(g−1)⇔ h = α(g−1)(g−1) .
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Thus, h = α(g−1)(g−1) is a left inverse of g with respect to the operation ◦. Let us show

that h is also a right inverse of g. In fact,

g ◦ α(g−1)(g−1) = α(α(g−1)(g−1))(g) · α(g−1)(g−1)
(i)
= α(g−1)(g) · α(g−1)(g−1)

= α(g−1)(g · g−1) = α(g−1)(1) = 1 .

Hence, h = α(g−1)(g−1) is the inverse of g with respect to the operation ◦. �

Now, we define a family of actions of the group of proto-transitions on the set

Cω × Cω, where Cω is the set of all real analytic functions on R.

Proposition 4.11. For each integer d ≥ 1, the map ◦ : (Cω×Cω)× (H×K)→ Cω×Cω

defined by

(g1, g2) ◦ (λ, φ) :=


(
|λ1|d g1 ◦ φ1, |λ2|d g2 ◦ φ2

)
, if λ > 0(

|λ1|d g2 ◦ φ1, |λ2|d g1 ◦ φ2

)
, if λ < 0

is an action of the group of proto-transitions on Cω × Cω.

Proof. First, we notice that the map • : (Cω × Cω)× (H ×K)→ Cω × Cω given by

(g1, g2) • (λ, φ) := (|λ1|d g1 ◦ φ1, |λ2|d g2 ◦ φ2)

is an action of the direct product (H ×K, ·) on Cω × Cω. In fact, we have:

((g1, g2) • (µ, ψ)) • (λ, φ) = (|µ1|d g1 ◦ ψ1, |µ2|d g2 ◦ ψ2) • (λ, φ)

= (|λ1|d |µ1|d (g1 ◦ ψ1) ◦ φ1, |λ2|d |µ2|d (g2 ◦ ψ2) ◦ φ2)

= (|λ1µ1|d g1 ◦ (ψ1 ◦ φ1), |λ2µ2|d g2 ◦ (ψ2 ◦ φ2))

= (g1, g2) • ((µ, ψ) · (λ, φ))

and

(g1, g2) • ((idR, idR), (1, 1)) = (|1|d g1 ◦ idR, |1|d g2 ◦ idR) = (g1, g2).

Now, we express the map ◦ in terms of the action • , and then we use this

expression to show that the map ◦ is an action of the group of proto-transitions on

Cω × Cω.
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Denote by Bij(Cω × Cω) the group of all bijections on Cω × Cω. Let I : Cω ×
Cω → Cω ×Cω be the identity map and T : Cω ×Cω → Cω ×Cω be given by T (g1, g2) =

(g2, g1). Define Θ: H → Bij(Cω × Cω) by

Θ(λ) :=

I, if λ > 0

T, if λ < 0
.

Clearly, Θ is a group homomorphism. Let π : H ×K → H be the projection homomor-

phism. Then A := Θ ◦ π : (H × K, ◦) → Bij(Cω × Cω) is a group homomorphism such

that:

I. A(µ, ψ)((g1, g2) • (λ, φ)) = (A(µ, ψ)(g1, g2)) •α(µ, ψ)(λ, φ), where α = θ ◦ π : H ×
K → Aut(H×K, ·) is the group homomorphism defined in the proof of Proposition

4.10;

II. ImA is an abelian subgroup of Bij(Cω × Cω).

Also, we have:

(g1, g2) ◦ (λ, φ) = (A(λ, φ)(g1, g2)) • (λ, φ).

Hence, the result follows from the following lemma.

Lemma 4.2. Let us use the notation of Lemma 4.1. Also, let X be a set, • : X ×
(G, ·) → X a group action, and A : (G, ◦) → Bij (X) a group homomorphism satisfying

the following conditions:

I. A(h)(x • g) = (A(h)(x)) •α(h)(g) for all x ∈ X and g, h ∈ G;

II. ImA is an abelian subgroup of Bij (X).

Then, the map ◦ : X × (G, ◦)→ X defined by

x ◦ g := (A(g)(x)) • g

is a group action.

Proof of Lemma 4.2. For all x ∈ X and g, h ∈ G, we have:

(x ◦ g) ◦ h = (A(h)(x ◦ g)) •h = (A(h)((A(g)(x)) • g)) •h

(I)
= ((A(h)(A(g)(x))) •α(h)(g)) •h = ((A(h) ◦ A(g))(x)) • (α(h)(g) · h)

(II)
= ((A(g) ◦ A(h))(x)) • (α(h)(g) · h) = (A(g ◦ h)(x)) • (g ◦ h)

= x ◦ (g ◦ h)
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Also, for all x ∈ X,

x ◦ 1 = (A(1)(x)) • 1 = A(1)(x) = idX(x) = x.

�

Proposition 4.12. Let f1, f2, g1, g2 : R → R be polynomial functions, and let d ≥ 1 be a

fixed integer. The following conditions are equivalent:

i. There exist constants c1, c2 > 0 and bi-Lipschitz functions φ1, φ2 : R→ R such that

g1 ◦ φ1 = c1f1 and g2 ◦ φ2 = c2f2

or

g2 ◦ φ1 = c1f1 and g1 ◦ φ2 = c2f2.

ii. There exists a proto-transition (λ, φ) such that

(g1, g2) ◦ (λ, φ) = (f1, f2).

Proof. We prove only that (i) implies (ii), the other implication being immediate. Suppose

that there exist constants c1, c2 > 0 and bi-Lipschitz functions φ1, φ2 : R→ R such that

g1 ◦ φ1 = c1f1 and g2 ◦ φ2 = c2f2

or

g2 ◦ φ1 = c1f1 and g1 ◦ φ2 = c2f2.

Note that since f1, f2, g1, g2 are polynomial functions, we can assume that φ1

and φ2 are bi-Lipschitz Nash diffeomorphisms. Indeed, as pointed out in the beginning

of Section 3.3, if f, g : R → R are nonconstant polynomial functions, and φ : R → R is

a bi-Lipschitz function such that g ◦ φ = cf , where c is a positive constant, then φ is a

bi-Lipschitz Nash diffeomorphism. If instead, f and g are constant functions, then this is

not necessarily true but, in this case, φ can be replaced with any function — for example,

we could take φ = idR. So, even if f and g are constant functions, we can assume that φ

is a bi-Lipschitz Nash diffeomorphism.

If g1 ◦ φ1 = c1f1 and g2 ◦ φ2 = c2f2, then (g1, g2) ◦ (λ, φ) = (f1, f2), where

λ = (c
−1/d
1 , c

−1/d
2 ) and φ = (φ1, φ2). Otherwise, if g2 ◦ φ1 = c1f1 and g1 ◦ φ2 = c2f2, then

(g1, g2) ◦ (λ, φ) = (f1, f2), where λ = (−c−1/d1 ,−c−1/d2 ) and φ = (φ1, φ2). �

Corollary 4.4. Let F (X, Y ) and G(X, Y ) be β-quasihomogeneous polynomials of degree

d. Let f+, f− be the height functions of F , and g+, g− the height functions of G. The
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following conditions are equivalent:

i.

f+ ∼= g+

f− ∼= g−
or

f+ ∼= g−

f− ∼= g+
.

ii. (g+, g−) ◦ (λ, φ) = (f+, f−), for some proto-transition (λ, φ).

4.3 β-transitions and the inverse β-transform

Denote by P the set of all real polynomial functions on R. A proto-transition

(λ, φ) is said to be a β-transition if the following conditions are satisfied:

i. There exist pairs of nonconstant polynomial functions (f1, f2), (g1, g2) ∈ P×P such

that

(g1, g2) ◦ (λ, φ) = (f1, f2);

ii. |λ1|β · lim
|t|→+∞

φ1(t)

t
= |λ2|β · lim

|t|→+∞

φ2(t)

t

Remark 4.8. By Lemma 3.5, the limit lim|t|→+∞ φi(t)/t is a well-defined nonzero real

number, for i = 1, 2.

Let (λ, φ) and (µ, ψ) be β-transitions. We say that (µ, ψ) is composable with

(λ, φ) if there exist pairs of nonconstant polynomial functions (f1, f2), (g1, g2), (h1, h2) ∈
P × P such that (h1, h2) ◦ (µ, ψ) = (g1, g2) and (g1, g2) ◦ (λ, φ) = (f1, f2).

Lemma 4.3. Let φ, ψ : R → R be functions for which the limits lim|t|→+∞ φ(t)/t and

lim|t|→+∞ ψ(t)/t are nonzero real numbers. Then,

lim
|t|→+∞

ψ(φ(t))

t
= lim
|t|→+∞

ψ(t)

t
· lim
|t|→+∞

φ(t)

t
.

Proof. Since lim|t|→+∞ |φ(t)/t| > 0, we have lim|t|→+∞ |φ(t)| = +∞. Then,

lim
|t|→+∞

ψ(t)

t
= lim
|t|→+∞

ψ(φ(t))

φ(t)
.

Hence,

lim
|t|→+∞

ψ(φ(t))

t
= lim
|t|→+∞

ψ(t)

t
· lim
|t|→+∞

φ(t)

t
.

�

Proposition 4.13. Let (λ, φ) and (µ, ψ) be β-transitions. If (µ, ψ) is composable with

(λ, φ) then (µ, ψ) ◦ (λ, φ) is a β-transition.
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Proof. Since (µ, ψ) is composable with (λ, φ), there exist pairs of nonconstant polynomial

functions (f1, f2), (g1, g2), (h1, h2) ∈ P×P such that (h1, h2)◦(µ, ψ) = (g1, g2) and (g1, g2)◦
(λ, φ) = (f1, f2). Hence, (h1, h2) ◦ ((µ, ψ) ◦ (λ, φ)) = (f1, f2).

Now, let (λ, φ) = ((λ1, λ2), (φ1, φ2)) and (µ, ψ) = ((µ1, µ2), (ψ1, ψ2)). By defi-

nition,

(µ, ψ) ◦ (λ, φ) =

((λ1µ1, λ2µ2), (ψ1 ◦ φ1, ψ2 ◦ φ2)), if λ > 0

((λ1µ2, λ2µ1), (ψ2 ◦ φ1, ψ1 ◦ φ2)), if λ < 0
.

Suppose that λ > 0. By Lemma 4.3,

lim
|t|→+∞

ψi ◦ φi(t)
t

= lim
|t|→+∞

ψi(t)

t
· lim
|t|→+∞

φi(t)

t
for i = 1, 2.

Thus,

|λ1µ1|β lim
|t|→+∞

ψ1(φ1(t))

t
= |λ1µ1|β lim

|t|→+∞

ψ1(t)

t
· lim
|t|→+∞

φ1(t)

t

=

(
|µ1|β

ψ1(t)

t

)
·
(
|λ1|β

φ1(t)

t

)
=

(
|µ2|β

ψ2(t)

t

)
·
(
|λ2|β

φ2(t)

t

)
= |λ2µ2|β lim

|t|→+∞

ψ2(t)

t
· lim
|t|→+∞

φ2(t)

t

= |λ2µ2|β lim
|t|→+∞

ψ2(φ2(t))

t
,

so that (µ, ψ) ◦ (λ, φ) is indeed a β-transition. The proof for λ < 0 is analogous. �

Proposition 4.14. The identity element ı̂ := ((1, 1), (idR, idR)) of the group of the proto-

transitions is a β-transition, which we call the identity β-transition. For every β-transition

(λ, φ), ı̂ is composable with (λ, φ), (λ, φ) is composable with ı̂, and ı̂ ◦ (λ, φ) = (λ, φ) ◦ ı̂ =

(λ, φ).

Proof. Clearly, for any pair of nonconstant polynomial functions (f1, f2) ∈ P × P , we

have (f1, f2) ◦ ı̂ = (f1, f2), and

|λ1|β · lim
|t|→+∞

φ1(t)

t
= |λ2|β · lim

|t|→+∞

φ2(t)

t
,

for λ1 = λ2 = 1 and φ1 = φ2 = idR; so ı̂ is a β-transition.

Now, if (λ, φ) is a β-transition, then there exist pairs of nonconstant polynomial

functions (f1, f2), (g1, g2) ∈ P ×P such that (g1, g2) ◦ (λ, φ) = (f1, f2). Since (g1, g2) ◦ ı̂ =

(g1, g2) and (g1, g2) ◦ (λ, φ) = (f1, f2), ı̂ is composable with (λ, φ); and since (g1, g2) ◦
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(λ, φ) = (f1, f2) and (f1, f2)◦ı̂ = (f1, f2), (λ, φ) is composable with ı̂. Obviously, ı̂◦(λ, φ) =

(λ, φ) ◦ ı̂ = (λ, φ). �

Lemma 4.4. Let φ : R → R be a bijective continuous function for which the limit

lim|t|→+∞ φ(t)/t is a nonzero real number. Then,

lim
|t|→+∞

φ−1(t)

t
=

(
lim
|t|→+∞

φ(t)

t

)−1
.

Proof. Note that φ is monotone (because it is an injective continuous function whose

domain is an interval), so φ−1 is also monotone. Since φ−1(R) = R, it follows that

lim|t|→+∞ |φ−1(t)| = +∞. Then,

lim
|t|→+∞

φ(t)

t
= lim
|t|→+∞

φ(φ−1(t))

φ−1(t)
= lim
|t|→+∞

t

φ−1(t)
.

Hence the result. �

Proposition 4.15. If (λ, φ) is a β-transition then (λ, φ)−1 is a β-transition. Moreover,

(λ, φ) is composable with (λ, φ)−1, (λ, φ)−1 is composable with (λ, φ), and (λ, φ)◦(λ, φ)−1 =

(λ, φ)−1 ◦ (λ, φ) = ı̂.

Proof. Let (λ, φ) be a β-transition. Then, there exist pairs of nonconstant polynomial

functions (f1, f2), (g1, g2) ∈ P ×P such that (g1, g2)◦ (λ, φ) = (f1, f2), and hence (f1, f2)◦
(λ, φ)−1 = (g1, g2).

Now, let (λ, φ) = ((λ1, λ2), (φ1, φ2)). We have:

(λ, φ)−1 =

((λ−11 , λ−12 ), (φ−11 , φ−12 )), if λ > 0

((λ−12 , λ−11 ), (φ−12 , φ−11 )), if λ < 0
.

Suppose that λ > 0. By Lemma 4.4,

lim
|t|→+∞

φ−1i (t)

t
=

(
lim
|t|→+∞

φi(t)

t

)−1
, for i = 1, 2.

Thus,

∣∣λ−11

∣∣β lim
|t|→+∞

φ−11 (t)

t
= |λ1|−β

(
lim
|t|→+∞

φ1(t)

t

)−1
=

(
|λ1|β lim

|t|→+∞

φ1(t)

t

)−1
=

(
|λ2|β lim

|t|→+∞

φ2(t)

t

)−1
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= |λ2|−β
(

lim
|t|→+∞

φ2(t)

t

)−1
=
∣∣λ−12

∣∣β lim
|t|→+∞

φ−12 (t)

t
,

so that (λ, φ)−1 is indeed a β-transition. The proof for λ < 0 is analogous.

Since (g1, g2) ◦ (λ, φ) = (f1, f2) and (f1, f2) ◦ (λ, φ)−1 = (g1, g2), it is clear that

both (λ, φ) is composable with (λ, φ)−1 and (λ, φ)−1 is composable with (λ, φ). Also, it is

immediate that (λ, φ) ◦ (λ, φ)−1 = (λ, φ)−1 ◦ (λ, φ) = ı̂. �

Given a β-transition (λ, φ), we define a map Φ: R2 → R2 by setting:

• Φ(x, t |x|β) :=
(
λ1x, |λ1|β φ1(t) |x|β

)
, for x > 0, t ∈ R

• Φ(x, t |x|β) :=
(
λ2x, |λ2|β φ2(t) |x|β

)
, for x < 0, t ∈ R

• Φ(0, y) :=

(
0, |λ1|β lim

|t|→+∞

φ1(t)

t
y

)
=

(
0, |λ2|β lim

|t|→+∞

φ2(t)

t
y

)
, for all y ∈ R

The inverse β-transform of (λ, φ) is the germ Φ: (R2, 0)→ (R2, 0) determined by the map

Φ.

Proposition 4.16. Let (λ, φ) and (µ, ψ) be β-transitions such that (µ, ψ) is composable

with (λ, φ), let Φ and Ψ be their respective inverse β-transforms, and let Z be the inverse

β-transform of (µ, ψ) ◦ (λ, φ). Then, Z = Ψ ◦ Φ.

Proof. For all x > 0, t ∈ R,

Ψ(Φ(x, t |x|β)) = Ψ
(
λ1x, |λ1|β φ1(t) |x|β

)
=


(
λ1µ1x, |λ1µ1|β ψ1(φ1(t)) |x|β

)
, if λ > 0(

λ1µ2x, |λ1µ2|β ψ2(φ1(t)) |x|β
)
, if λ < 0

= Z(x, t |x|β) .

For all x < 0, t ∈ R,

Ψ(Φ(x, t |x|β)) = Ψ
(
λ2x, |λ2|β φ2(t) |x|β

)
=


(
λ2µ2x, |λ2µ2|β ψ2(φ2(t)) |x|β

)
, if λ > 0(

λ2µ1x, |λ2µ1|β ψ1(φ2(t)) |x|β
)
, if λ < 0

= Z(x, t |x|β) .
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Now, we prove that Z(0, y) = Ψ(Φ(0, y)), for all y ∈ R. For λ > 0, we have:

Z(0, y) =

(
0, |λ1µ1|β · lim

|t|→+∞

ψ1 ◦ φ1(t)

t
· y
)

=

(
0, |λ1µ1|β · lim

|t|→+∞

ψ1(t)

t
· lim
|t|→+∞

φ1(t)

t
· y
)

=

(
0,

(
|µ1|β lim

|t|→+∞

ψ1(t)

t

)
·
(
|λ1|β lim

|t|→+∞

φ1(t)

t

)
· y
)

= Ψ(Φ(0, y)).

And for λ < 0, we have:

Z(0, y) =

(
0, |λ1µ2|β · lim

|t|→+∞

ψ2 ◦ φ1(t)

t
· y
)

=

(
0, |λ1µ2|β · lim

|t|→+∞

ψ2(t)

t
· lim
|t|→+∞

φ1(t)

t
· y
)

=

(
0,

(
|µ2|β lim

|t|→+∞

ψ2(t)

t

)
·
(
|λ1|β lim

|t|→+∞

φ1(t)

t

)
· y
)

= Ψ(Φ(0, y)).

�

Remark 4.9. The inverse β-transform of the identity β-transition ı̂ is the germ of the

identity map I : (R2, 0)→ (R2, 0).

Corollary 4.5. Let (λ, φ) be a β-transition and Φ its inverse β-transform. Then, the

inverse β-transform of (λ, φ)−1 is Φ−1.

Now, we prove that the inverse β-transform of a β-transition is a germ of

bi-Lipschitz map.

Lemma 4.5. Let φ : R → R be a bi-Lipschitz function such that g ◦ φ = f for some

nonconstant polynomial functions f, g : R→ R. Then φ is bi-analytic and φ(t)− tφ′(t) is

bounded.

Proof. First, note that by Lemma 3.2, deg f = deg g, so we can apply Lemma 3.3 to

conclude that φ is bi-analytic. Now, by Lemma 3.5, the function ψ : R→ R given by

ψ(t) :=

t · φ(t−1), if t ∈ R \ {0}

lim|t|→+∞ φ(t)/t, if t = 0

is analytic.
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From the definition of ψ, it is immediate that

φ(t)

t
= ψ(t−1) for all t ∈ R \ {0}.

Differentiating both sides of this equation, we get

φ′(t) · t− φ(t)

t2
= −ψ

′(t−1)

t2
for all t ∈ R \ {0}.

Equivalently, we have

φ(t)− tφ′(t) = ψ′(t−1) for all t ∈ R \ {0}.

Hence,

lim
|t|→+∞

φ(t)− tφ′(t) = ψ′(0).

Since the function φ(t)− tφ′(t) is continuous on R, the existence of this limit implies that

this function is bounded. �

Lemma 4.6. Let φ : R → R be a bi-Lipschitz function such that g ◦ φ = f for some

nonconstant polynomial functions f, g : R → R, and let λ be a nonzero real number.

Then, the map Φ: H → R2, defined on the right half-plane H := {(x, y) ∈ R2 : x > 0} by

Φ(x, txβ) := (λx, |λ|β φ(t)xβ)

for all x > 0 and t ∈ R, is Lipschitz on the strip Hδ := {(x, y) ∈ R2 : 0 < x < δ}, for

each δ > 0.

Proof. Let δ > 0 be fixed. We prove that Φ is Lipschitz on both the upper half-strip

Hδ∩{y > 0} and the lower half-strip Hδ∩{y < 0}. Let us see that this implies the result.

Assuming this claim, and using the fact that Φ is continuous, we see that there exists a

constant C > 0 such that

|Φ(x1, y1)− Φ(x2, y2)| ≤ C |(x1, y1)− (x2, y2)| , (45)

whenever (x1, y1) and (x2, y2) both belong to Hδ ∩ {y ≥ 0} or to Hδ ∩ {y ≤ 0}. We show

that (45) still holds for (x1, y1) ∈ Hδ ∩ {y ≥ 0} and (x2, y2) ∈ Hδ ∩ {y ≤ 0}. Let (x̄, 0) be

the point at which the line segment whose endpoints are (x1, y1) and (x2, y2) intersects

the x-axis. By our assumptions, we have:

|Φ(x1, y1)− Φ(x̄, 0)| ≤ C |(x1, y1)− (x̄, 0)|
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and

|Φ(x̄, 0)− Φ(x2, y2)| ≤ C |(x̄, 0)− (x2, y2)| .

Hence,

|Φ(x1, y1)− Φ(x2, y2)| ≤ |Φ(x1, y1)− Φ(x̄, 0)|+ |Φ(x̄, 0)− Φ(x2, y2)|

≤ C (|(x1, y1)− (x̄, 0)|+ |(x̄, 0)− (x2, y2)|)

= C |(x1, y1)− (x2, y2)| ,

where the last equality holds because the point (x̄, 0) lies in the segment whose endpoints

are (x1, y1) and (x2, y2). Therefore, our initial claim implies that Φ is Lipschitz on the

strip Hδ.

In order to establish our initial claim, we first show that for each fixed pair of

points (x1, t1x
β
1 ) and (x2, t2x

β
2 ), either both on Hδ ∩ {y > 0} or both on Hδ ∩ {y < 0},

with x1 6= x2 and t1 6= t2, there exist ω between x1 and x2, and τ between t1 and t2 such

that12

φ(t2)x
β
2 −φ(t1)x

β
1 = (φ(τ)− τφ′(τ)) ·βωβ−1 · (x2−x1) +

φ(t2)− φ(t1)

t2 − t1
· (t2xβ2 − t1x

β
1 ) (46)

In fact,

φ(t2)x
β
2 − φ(t1)x

β
1 = (φ(t1) + q · (t2 − t1))xβ2 − φ(t1)x

β
1 , where q =

φ(t2)− φ(t1)

t2 − t1
= φ(t1) · (xβ2 − x

β
1 ) + q · (t2xβ2 − t1x

β
2 )

= φ(t1) · (xβ2 − x
β
1 ) + q · (t2xβ2 − t1x

β
1 ) + q · t1 · (xβ1 − x

β
2 )

= (φ(t1)− q · t1) · (xβ2 − x
β
1 ) + q · (t2xβ2 − t1x

β
1 )

=
t2φ(t1)− t1φ(t2)

t2 − t1
· (xβ2 − x

β
1 ) +

φ(t2)− φ(t1)

t2 − t1
· (t2xβ2 − t1x

β
1 ) (47)

Since the points (x1, t1x
β
1 ) and (x2, t2x

β
2 ) are either both on Hδ ∩ {y > 0} or

both on Hδ ∩ {y < 0}, the real numbers t1, t2 are either both positive or both negative.

Thus, by Pompeiu’s Mean Value Theorem (DRAGOMIR, 2015, p. 1 – 2), there exists a

real number τ between t1 and t2 such that

t2φ(t1)− t1φ(t2)

t2 − t1
= φ(τ)− τφ′(τ). (48)

Also, by Lagrange’s Mean Value Theorem, there exists a real number ω be-

tween x1 and x2 such that

xβ2 − x
β
1 = βωβ−1 · (x2 − x1). (49)

12By Lemma 4.5, φ is bi-analytic. So, in particular, φ′ : R→ R is a well-defined continuous function.
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Substituting (48) and (49) in (47), we obtain (46).

Now, since φ is Lipschitz, there exists a constant C1 > 0 such that∣∣∣∣φ(t2)− φ(t1)

t2 − t1

∣∣∣∣ ≤ C1,

for t1 6= t2. On the other hand, by Lemma 4.5, φ(t)− tφ′(t) is bounded, so there exists a

constant C2 > 0 such that

∣∣(τφ′(τ)− φ(τ)) · βωβ−1
∣∣ ≤ C2,

provided that 0 < x1, x2 < δ.

Applying these bounds to (46), we obtain:∣∣∣φ(t2)x
β
2 − φ(t1)x

β
1

∣∣∣ ≤ C ·
(
|x2 − x1|+

∣∣∣t2xβ2 − t1xβ1 ∣∣∣) ,
where C = max{C1, C2}, for any pair of points (x1, t1x

β
1 ) and (x2, t2x

β
2 ), either both on

Hδ ∩ {y > 0} or both on Hδ ∩ {y < 0}, thereby proving our initial claim. �

Corollary 4.6. Let (λ, φ) be a β-transition, and let Φ: R2 → R2 be the map defined by:

• Φ(x, t |x|β) :=
(
λ1x, |λ1|β φ1(t) |x|β

)
, for x > 0, t ∈ R

• Φ(x, t |x|β) :=
(
λ2x, |λ2|β φ2(t) |x|β

)
, for x < 0, t ∈ R

• Φ(0, y) :=

(
0, |λ1|β lim

|t|→+∞

φ1(t)

t
y

)
=

(
0, |λ2|β lim

|t|→+∞

φ2(t)

t
y

)
, for all y ∈ R

Then, Φ is Lipschitz on the strip {(x, y) ∈ R2 : |x| < δ}, for each δ > 0.

Proof. Let δ > 0 be fixed arbitrarily. By Lemma 4.6, there exists a constant C+ > 0 such

that Φ|Hδ : Hδ → R2 is C+-Lipschitz. Since Φ|Hδ is uniformly continuous and takes values

in R2, it has a unique continuous extension Φ̃ to H̃δ := {(x, y) ∈ R2 : 0 ≤ x < δ}. Let us

show that Φ̃ = Φ|H̃δ . Obviously, Φ̃(x, y) = Φ(x, y) for all (x, y) ∈ Hδ; and for all y ∈ R,

we have:

Φ̃(0, y) = lim
x→0+

Φ(x, y)

= lim
x→0+

(
λ1x, |λ1|β ·

φ1(t)

t
· y
)
, where t =

y

xβ

=

(
0, |λ1|β · lim

|t|→+∞

φ1(t)

t
· y
)

= Φ(0, y).

Hence, Φ|H̃δ is the continuous extension of Φ|Hδ to H̃δ. And since Φ|Hδ is C+-Lipschitz,

it follows that Φ|H̃δ is C+-Lipschitz too.
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Similarly, we can prove that there exists C− > 0 such that Φ|−H̃δ : −H̃δ → R2

is C−-Lipschitz. Therefore, Φ is C-Lipschitz on the strip {(x, y) ∈ R2 : |x| < δ}, where

C = max{C+, C−}. �

Corollary 4.7. The inverse β-transform Φ: (R2, 0)→ (R2, 0) of every β-transition (λ, φ)

is a germ of semialgebraic bi-Lipschitz map.

Proof. Since φ1 and φ2 are both semialgebraic functions, it is immediate from the defini-

tion of the inverse β-transform that Φ is a germ of semialgebraic map. Also, by Corollary

4.6, both Φ and Φ−1 are germs of Lipschitz maps. (Note that Φ−1 is the inverse β-

transform of (λ, φ)−1, by Corollary 4.5.) Hence the result. �

Proposition 4.17. Let F,G ∈ R[X, Y ] be β-quasihomogeneous polynomials of degree d,

and let f+, f− be the height functions of F and g+, g− the height functions of G. Suppose

that (g+, g−) ◦ (λ, φ) = (f+, f−) for some β-transition (λ, φ). Then, G ◦ Φ = F , where Φ

is the inverse β-transform of (λ, φ).

Proof. First, we show that

G(λ1, |λ1|β φ1(t)) = F (1, t) and G(−λ2, |λ2|β φ2(t)) = F (−1, t). (50)

We consider separately the cases λ > 0 and λ < 0.

If λ > 0, we have

|λ1|d · g+ ◦ φ1 = f+ and |λ2|d · g− ◦ φ2 = f−.

Equivalently,

|λ1|d ·G(1, φ1(t)) = F (1, t) and |λ2|d ·G(−1, φ2(t)) = F (−1, t).

Thus, using the fact that the polynomials F and G are β-quasihomogeneous of degree d,

we obtain (50).

If λ < 0, we have

|λ1|d · g− ◦ φ1 = f+ and |λ2|d · g+ ◦ φ2 = f−.

Equivalently,

|λ1|d ·G(−1, φ1(t)) = F (1, t) and |λ2|d ·G(1, φ2(t)) = F (−1, t).

Again, using the fact that the polynomials F and G are β-quasihomogeneous of degree d,

we obtain (50).
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Now, by using once more the fact that the polynomials F and G are β-

quasihomogeneous of degree d, we obtain from (50):

G(λ1x, |λ1|β φ1(t) |x|β) = F (x, t |x|β) for x > 0, t ∈ R

and

G(λ2x, |λ2|β φ2(t) |x|β) = F (x, t |x|β) for x < 0, t ∈ R.

In other words,

G(Φ(x, y)) = F (x, y) for all (x, y) ∈ R2, with x 6= 0,

where Φ is the inverse β-transform of (λ, φ). Since Φ is continuous13, we have G(Φ(x, y)) =

F (x, y) for all (x, y) ∈ R2. �

Corollary 4.8. Let F,G ∈ R[X, Y ] be β-quasihomogeneous polynomials of degree d, and

let f+, f− be the height functions of F and g+, g− the height functions of G. Suppose

that (g+, g−) ◦ (λ, φ) = (f+, f−) for some β-transition (λ, φ). Then, F and G are R-

semialgebraically Lipschitz equivalent.

Proof. Let (λ, φ) be a β-transition such that (g+, g−) ◦ (λ, φ) = (f+, f−). By Proposition

4.17, G ◦ Φ = F , where Φ is the inverse β-transform of (λ, φ). Since, by Corollary 4.7,

Φ: (R2, 0) → (R2, 0) is a germ of semialgebraic bi-Lipschtiz map, this shows that F and

G are R-semialgebraically Lipschitz equivalent. �

4.4 Shifting from proto-transitions to β-transitions

Let F,G ∈ R[X, Y ] be β-quasihomogeneous polynomials of degree d. Suppose

that the height functions of F and G can be arranged in pairs of Lipschitz equivalent

functions. Our goal is to find conditions under which this assumption implies that F and

G are R-semialgebraically Lipschitz equivalent. By Corollary 4.4, the height functions

f+, f− of F and the height functions g+, g− of G can be arranged in pairs of Lipschitz

equivalent functions if and only if (g+, g−) ◦ (λ, φ) = (f+, f−) for some proto-transition

(λ, φ). In general, such a proto-transition (λ, φ) is not necessarily a β-transition, but since

it is not uniquely determined by (g+, g−) and (f+, f−) we can still ask whether it may

replaced with a β-transition (λ̃, φ̃). In this section, we are interested in finding conditions

under which the answer to this question is affirmative. Then, we can apply Corollary 4.8

to conclude that F and G are R-semialgebraically Lipschitz equivalent.

13Clearly, Φ is continuous on the right half-plane {(x, y) ∈ R2 : x > 0} and also on the left half-
plane {(x, y) ∈ R2 : x < 0}. By Corollary 4.6, Φ is Lipschitz (and therefore continuous) on a strip
{(x, y) ∈ R2 : |x| < δ}. Since the right half-plane, the left half-plane, and the strip around the y-axis
form an open cover of the plane, it follows that Φ is continuous.
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We consider separately the case where F and G are both of the form cXd

and the case where neither F nor G is of this form.14,15 In the first case, we can easily

determine directly from first principles whether F and G areR-semialgebraically Lipschitz

equivalent. In the second case, we follow the strategy sketched above: assuming that the

height functions of F and G can be arranged in pairs of Lipschitz equivalent functions,

so that (g+, g−) ◦ (λ, φ) = (f+, f−), where (λ, φ) is a proto-transition, we find conditions

under which we can construct from the proto-transition (λ, φ) a β-transition (λ̃, φ̃) such

that (g+, g−) ◦ (λ̃, φ̃) = (f+, f−). But first of all, we show that if the height functions of

F and G can be arranged in pairs of Lipschitz equivalent functions, then either both F

and G are of the form cXd or none of them is of this form. This follows from the next

two propositions (see Corollary 4.9).

Proposition 4.18. Let P ∈ R[X, Y ] be a β-quasihomogeneous polynomial of degree d

and let e be the multiplicity of X as a factor of P in R[X, Y ]. Then e ≤ d, with equality

if and only if P is of the form cXd.

Proof. Since P is a β-quasihomogeneous polynomial of degree d ≥ 1, we have P (X, Y ) =∑n
k=0 ckX

d−rkY sk, where cn 6= 0 and 0 ≤ n ≤ bd/rc. Then, clearly, e = d− rn. So e ≤ d,

with equality if and only if n = 0. Since n = 0 if and only if P is of the form cXd, the

result follows. �

Proposition 4.19. Let F,G ∈ R[X, Y ] be β-quasihomogeneous polynomials of degree d.

Denote by eF the multiplicity of X as a factor of F , and by eG the multiplicity of X as

a factor of G, so that F (X, Y ) = XeF · F̃ (X, Y ) and G(X, Y ) = XeG · G̃(X, Y ), where

X - F̃ (X, Y ) and X - G̃(X, Y ). If the height functions of F and G can be arranged in

pairs of Lipschitz equivalent functions, then:

i. eF = eG

ii. For all t > 0, we have:

F̃ (tX, tβY ) = td−eF̃ (X, Y ) and G̃(tX, tβY ) = td−eG̃(X, Y ),

where e = eF = eG.

14We show that if the height functions of F and G can be arranged in pairs of Lipschitz equivalent
functions, then either both F and G are of the form cXd or none of them is of this form (see Corollary
4.9).

15The main reason for us to consider these two cases separately is that only in the second case the
height functions of F and G are nonconstant.
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Proof. Let β = r/s, where r > s > 0 and gcd(r, s) = 1. Since F and G are β-

quasihomogeneous polynomials of degree d, we have:

F (X, Y ) =
m∑
k=0

akX
d−rkY sk and G(X, Y ) =

n∑
k=0

bkX
d−rkY sk,

where am 6= 0, bn 6= 0, and 0 ≤ m,n ≤ bd/rc. Then, eF = d− rm and eG = d− rn.

We prove that m = n — by the equations above, this implies that eF = eG.

Since f+(t) =
∑m

k=0 akt
sk and f−(t) =

∑m
k=0(−1)d−rkakt

sk, we have deg f+ = deg f− = sm;

and since g+(t) =
∑n

k=0 bkt
sk and g−(t) =

∑n
k=0(−1)d−rkbkt

sk, we have deg g+ = deg g− =

sn. Thus, since f+ and f− are Lipschitz equivalent to g+ and g− in some order (by

hypothesis), it follows that sm = sn. Therefore, m = n.

From now on, we drop the subscript and denote simply by e the multiplicity

of X as a factor of either F or G. Let us prove the second part of the proposition. Since

F is a β-quasihomogeneous polynomial of degree d,

F (tX, tβY ) = tdF (X, Y )

= tdXeF̃ (X, Y ).

On the other hand, since the multiplicity of X as a factor of F is equal to e,

F (tX, tβY ) = (tX)eF̃ (tX, tβY )

= teXeF̃ (tX, tβY ).

Hence,

teXeF̃ (tX, tβY ) = tdXeF̃ (X, Y ).

Therefore,

F̃ (tX, tβY ) = td−eF̃ (X, Y ).

Obviously, the deduction above with F replaced by G yields the other equation.

�

Corollary 4.9. Let F,G ∈ R[X, Y ] be β-quasihomogeneous polynomials of degree d. If

the height functions of F and G can be arranged in pairs of Lipschitz equivalent functions,

then either both F and G are of the form cXd or none of them is of this form.

Proof. Denote by eF the multiplicity of X as a factor of F , and by eG the multiplicity of

X as a factor of G. By Proposition 4.18, F is of the form cXd if and only if eF = d, and

G is of the form cXd if and only if eG = d. Suppose that the height functions of F and

G can be arranged in pairs of Lipschitz equivalent functions. Then, by Proposition 4.19,



82

eF = eG, so that eF = d if and only if eG = d, and therefore F is of the form cXd if and

only if G is of the form cXd. �

The next proposition shows how to determine whether any two polynomials of

the form cXd, with c 6= 0 and d ≥ 1, are R-semialgebraically Lipschitz equivalent.

Proposition 4.20. Let F (X, Y ) = aXd and G(X, Y ) = bXd, where a, b ∈ R \ {0} and

d ≥ 1.

i. If d is even, then F and G are R-semialgebraically Lipschitz equivalent if and only

if a and b have the same sign.

ii. If d is odd, then F and G are R-semialgebraically Lipschitz equivalent.

Proof. (i) Suppose that d is even. If there exists a germ of semialgebraic bi-Lipschitz

homeomorphism Φ: (R2, 0) → (R2, 0) such that G ◦ Φ = F then b · Φ1(x, y)d = axd in

a neighborhood of the origin, which implies that a and b have the same sign, since d

is even. Now, assuming that a and b have the same sign, we have G ◦ Φ = F , where

Φ(x, y) =
((

a
b

) 1
d · x, y

)
.

(ii) If d is odd, then G ◦ Φ = F , where Φ(x, y) =
((

a
b

) 1
d · x, y

)
. �

Now, we turn our attention to the case where none of the polynomials F and

G is of the form cXd.

Lemma 4.7. Let F,G ∈ R[X, Y ] be β-quasihomogeneous polynomials of degree d, none

of which being of the form cXd. Suppose that the height functions f+, f− of F and the

height functions g+, g− of G can be arranged in pairs of Lipschitz equivalent functions,

so that (g+, g−) ◦ (λ, φ) = (f+, f−), where (λ, φ) = ((λ1, λ2), (φ1, φ2)) is a proto-transition.

We have:

|λ1|
dβ
d−e · lim

|t|→+∞

∣∣∣∣φ1(t)

t

∣∣∣∣ = |λ2|
dβ
d−e · lim

|t|→+∞

∣∣∣∣φ2(t)

t

∣∣∣∣ . (51)

Proof. We begin with some preliminary remarks. By hypothesis, the height functions of

F and G can be arranged in pairs of Lipschitz equivalent functions so, by Proposition

4.19, the multiplicity of X as a factor of F is equal to the multiplicity of X as a factor

of G. Let e be the multiplicity of X as a factor of F , and also as a factor of G, so

that F (X, Y ) = Xe · F̃ (X, Y ) and G(X, Y ) = Xe · G̃(X, Y ), where X - F̃ (X, Y ) and

X - G̃(X, Y ). By Proposition 4.18, we have e ≤ d, with equality if and only if F and G

are of the form cXd. Since, by hypothesis, F and G are not of this form, we have e < d.

Now, we proceed to the proof of (51). Throughout the rest of the proof, we

assume that t > 0. We begin with the case where λ > 0. In this case, we have

|λ1|d · g+ ◦ φ1 = f+ and |λ2|d · g− ◦ φ2 = f−.



83

Note that

|λ1|d · g+(φ1(t)) = f+(t)⇒ |λ1|d ·G(1, φ1(t)) = F (1, t)

⇒ |λ1|d · G̃(1, φ1(t)) = F̃ (1, t)

⇒ |λ1|d · G̃
(
t−

1
β ,
φ1(t)

t

)
= F̃

(
t−

1
β , 1
)
.

In the last implication, we used the fact that F̃ and G̃ are β-quasihomogeneous of the same

degree: by the second part of Proposition 4.19, both F̃ and G̃ are β-quasihomogeneous

of degree d− e. Letting t→ +∞, we obtain:

|λ1|d · G̃
(

0, lim
|t|→+∞

φ1(t)

t

)
= F̃ (0, 1)

Since, G̃ is β-quasihomogeneous of degree d− e, it follows that

G̃

(
0, |λ1|

dβ
d−e · lim

|t|→+∞

φ1(t)

t

)
= F̃ (0, 1). (52)

Similarly,

|λ2|d · g−(φ2(t)) = f−(t)⇒ |λ2|d ·G(−1, φ2(t)) = F (−1, t)

⇒ |λ2|d · G̃(−1, φ2(t)) = F̃ (−1, t)

⇒ |λ2|d · G̃
(
−t−

1
β ,
φ2(t)

t

)
= F̃

(
−t−

1
β , 1
)
.

Letting t→ +∞, we obtain:

|λ2|d · G̃
(

0, lim
|t|→+∞

φ2(t)

t

)
= F̃ (0, 1)

Since G̃ is β-quasihomogeneous of degree d− e, it follows that

G̃

(
0, |λ2|

dβ
d−e · lim

|t|→+∞

φ2(t)

t

)
= F̃ (0, 1). (53)

From (52) and (53), we obtain:

G̃

(
0, |λ1|

dβ
d−e · lim

|t|→+∞

φ1(t)

t

)
= G̃

(
0, |λ2|

dβ
d−e · lim

|t|→+∞

φ2(t)

t

)
.
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Since16 G̃(X, Y ) =
∑n

k=0 bkX
r(n−k)Y sk, with bn 6= 0, it follows that

bn ·
(
|λ1|

dβ
d−e · lim

|t|→+∞

φ1(t)

t

)sn
= bn ·

(
|λ2|

dβ
d−e · lim

|t|→+∞

φ2(t)

t

)sn
.

Hence,

|λ1|
dβ
d−e · lim

|t|→+∞

∣∣∣∣φ1(t)

t

∣∣∣∣ = |λ2|
dβ
d−e · lim

|t|→+∞

∣∣∣∣φ2(t)

t

∣∣∣∣ .
Now, we consider the case where λ < 0. In this case, we have

|λ1|d · g− ◦ φ1 = f+ and |λ2|d · g+ ◦ φ2 = f−.

Note that

|λ1|d · g−(φ1(t)) = f+(t)⇒ |λ1|d ·G(−1, φ1(t)) = F (1, t)

⇒ |λ1|d · (−1)e · G̃(−1, φ1(t)) = F̃ (1, t)

⇒ |λ+|d · (−1)e · G̃
(
−t−

1
β ,
φ1(t)

t

)
= F̃

(
t−

1
β , 1
)
.

Letting t→ +∞, we obtain:

|λ1|d · (−1)e · G̃
(

0, lim
|t|→+∞

φ1(t)

t

)
= F̃ (0, 1)

Since G̃ is β-quasihomogeneous of degree d− e, it follows that

G̃

(
0, |λ1|

dβ
d−e · lim

|t|→+∞

φ1(t)

t

)
= (−1)e · F̃ (0, 1). (54)

Similarly,

|λ2|d · g+(φ2(t)) = f−(t)⇒ |λ2|d ·G(1, φ2(t)) = F (−1, t)

⇒ |λ2|d · G̃(1, φ2(t)) = (−1)e · F̃ (−1, t)

⇒ |λ2|d · G̃
(
t−

1
β ,
φ2(t)

t

)
= (−1)e · F̃

(
−t−

1
β , 1
)
.

Letting t→ +∞, we obtain:

|λ2|d · G̃
(

0, lim
|t|→+∞

φ2(t)

t

)
= (−1)e · F̃ (0, 1)

16As we have seen in the proof of Proposition 4.19, d− e = rn.
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Since G̃ is β-quasihomogeneous of degree d− e, it follows that

G̃

(
0, |λ2|

dβ
d−e · lim

|t|→+∞

φ2(t)

t

)
= (−1)e · F̃ (0, 1). (55)

From (54) and (55), we obtain:

G̃

(
0, |λ1|

dβ
d−e · lim

|t|→+∞

φ1(t)

t

)
= G̃

(
0, |λ2|

dβ
d−e · lim

|t|→+∞

φ2(t)

t

)
.

Then, it follows that

|λ1|
dβ
d−e · lim

|t|→+∞

∣∣∣∣φ1(t)

t

∣∣∣∣ = |λ2|
dβ
d−e · lim

|t|→+∞

∣∣∣∣φ2(t)

t

∣∣∣∣ .
�

Proposition 4.21. Let F,G ∈ R[X, Y ] be β-quasihomogeneous polynomials of degree d,

none of which being of the form cXd, and let f+, f− be the height functions of F and

g+, g− the height functions of G. Suppose that (g+, g−)◦ (λ, φ) = (f+, f−) for some proto-

transition (λ, φ). Then (λ, φ) is a β-transition if and only if the following conditions hold:

i. φ1 and φ2 are coherent17

ii. None of the polynomials F,G has X as a factor, or λ1 = λ2.

Proof. First, suppose that (λ, φ) is a β-transition. Then, we have

|λ1|β · lim
|t|→+∞

φ1(t)

t
= |λ2|β · lim

|t|→+∞

φ2(t)

t
. (56)

Since |λ1| > 0 and |λ2| > 0, it follows that lim|t|→+∞ φ1(t)/t and lim|t|→+∞ φ2(t)/t have

the same sign. And since φ1 and φ2 are monotone, this implies that they are coherent.

Hence, condition (i) is satisfied.

Now, since (g+, g−) ◦ (λ, φ) = (f+, f−), where (λ, φ) is a proto-transition, the

multiplicity of X as a factor of F is equal to the multiplicity of X as a factor of G (see the

first part of Proposition 4.19). Let us denote by e the multiplicity of X both as a factor

of F and as a factor of G. By Proposition 4.18, we have e ≤ d, with equality if and only

if F and G are of the form cXd. Since, by hypothesis, F and G are not of this form, we

have e < d. So, by Lemma 4.7,

|λ1|
dβ
d−e lim
|t|→+∞

∣∣∣∣φ1(t)

t

∣∣∣∣ = |λ2|
dβ
d−e lim
|t|→+∞

∣∣∣∣φ2(t)

t

∣∣∣∣ . (57)

17For the sake of convenience, we say that two monotone functions φ1, φ2 : R→ R are coherent if they
are either both increasing or both decreasing.
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Since the limits lim|t|→+∞ φ1(t)/t and lim|t|→+∞ φ2(t)/t have the same sign, it follows that

|λ1|
dβ
d−e lim
|t|→+∞

φ1(t)

t
= |λ2|

dβ
d−e lim
|t|→+∞

φ2(t)

t
. (58)

Since the limits lim|t|→+∞ φ1(t)/t and lim|t|→+∞ φ2(t)/t are both nonzero (be-

cause φ1 and φ2 are bi-Lipschitz), it follows from equations (56) and (58) that

|λ1|
dβ
d−e

|λ1|β
=
|λ2|

dβ
d−e

|λ2|β
. (59)

Equivalently,

|λ1|
eβ
d−e = |λ2|

eβ
d−e . (60)

Furthermore, this equality holds if and only if e = 0 or |λ1| = |λ2|. And since λ1 and λ2

have the same sign, this is equivalent to condition (ii). Since (60) actually holds, condition

(ii) is satisfied.

Now, in order to prove the converse, suppose that conditions (i) and (ii) hold.

Since (g+, g−)◦(λ, φ) = (f+, f−), where (λ, φ) is a proto-transition, (57) still holds for this

part of the argument. Thus, condition (i) implies (58). On the other hand, as we have

just proved, condition (ii) is equivalent to (59). Since we are assuming that condition

(ii) is satisfied, (59) holds. From (58) and (59), we obtain (56). Therefore, (λ, φ) is a

β-transition. �

Corollary 4.10. Let F,G ∈ R[X, Y ] be β-quasihomogeneous polynomials of degree d,

none of which being of the form cXd, and let f+, f− be the height functions of F and

g+, g− the height functions of G. Also, let β = r/s, where r > s > 0 and gcd(r, s) = 1.

Suppose that (g+, g−) ◦ (λ, φ) = (f+, f−) for some proto-transition (λ, φ). Then, we have:

(a) If r is even or s is odd, then there exists a β-transition (λ̃, φ̃) such that (g+, g−) ◦
(λ̃, φ̃) = (f+, f−).

(b) If s is even, then there exists φ̃ = (φ̃1, φ̃2), with φ̃1 and φ̃2 coherent, such that

(g+, g−) ◦ (λ, φ̃) = (f+, f−).

Proof. Let F (X, Y ) =
∑n

k=0 akX
d−rkY sk and G(X, Y ) =

∑n
k=0 bkX

d−rkY sk, with an, bn 6=
0, n ≥ 1. (In the proof of Proposition 4.19, we showed that the upper limit of summation n

is the same for F and G, provided that the height functions of F and G can be arranged in

pairs of Lipschitz equivalent functions — which is the case, since (g+, g−)◦(λ, φ) = (f+, f−)

for some proto-transition (λ, φ). Also, we have n ≥ 1 because none of the polynomials

F,G is of the form cXd.) Let us proceed to the proof of parts (a) and (b).

(a) Case 1. r is even
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In this case, we have f−(t) = (−1)d · f+(t) and g−(t) = (−1)d · g+(t). In fact,

f−(t) =
n∑
k=0

ak · (−1)d−rk · tsk = (−1)d ·
n∑
k=0

akt
sk = (−1)d · f+(t).

The same reasoning, with f replaced by g, gives the other equation.

By hypothesis, there exists a proto-transition (λ, φ) such that (g+, g−) ◦ (λ, φ) =

(f+, f−). We claim that (g+, g−) ◦ (λ̃, φ̃) = (f+, f−), where λ̃ = (λ1, λ1) and φ̃ =

(φ1, φ1). In fact, if λ > 0 then |λ1|d · g+ ◦ φ1 = f+ and hence

|λ1|d · g−(φ1(t)) = (−1)d · |λ1|d · g+(φ1(t)) = (−1)d · f+(t) = f−(t),

so we also have |λ1|d · g− ◦ φ1 = f−. If λ < 0 then |λ1|d · g− ◦ φ1 = f+ and hence

|λ1|d · g+(φ1(t)) = (−1)d · |λ1|d · g−(φ1(t)) = (−1)d · f+(t) = f−(t),

so we also have |λ1|d · g+ ◦ φ1 = f−. By Proposition 4.21, (λ̃, φ̃) is a β-transform.

Case 2. r and s are both odd

In this case, we have f−(t) = (−1)d · f+(−t) and g−(t) = (−1)d · g+(−t). In fact,

f−(t) =
n∑
k=0

(−1)d−rk · ak · tsk = (−1)d ·
n∑
k=0

(−1)kakt
sk = (−1)d · f+(−t).

The same reasoning, with f replaced by g, gives the other equation.

By hypothesis, there exists a proto-transition (λ, φ) such that (g+, g−) ◦ (λ, φ) =

(f+, f−). We claim that (g+, g−) ◦ (λ̃, φ̃) = (f+, f−), where λ̃ = (λ1, λ1) and φ̃(t) =

(φ1(t),−φ1(−t)). In fact, if λ > 0 then |λ1|d · g+ ◦ φ1 = f+ and hence

|λ1|d · g−(−φ1(−t)) = (−1)d · |λ1|d · g+(φ1(−t)) = (−1)d · f+(−t) = f−(t),

so we also have |λ1|d · g−(−φ1(−t)) = f−(t). If λ < 0 then |λ1|d · g− ◦ φ1 = f+ and

hence

|λ1|d · g+(−φ1(−t)) = (−1)d · |λ1|d · g−(φ1(−t)) = (−1)d · f+(−t) = f−(t),

so we also have |λ1|d · g+(−φ1(−t)) = f−(t). By Proposition 4.21, (λ̃, φ̃) is a β-

transform.

(b) Suppose that s is even. Then, we have g+(−t) = g+(t) and g−(−t) = g−(t). In fact,

g+(−t) =
n∑
k=0

bk · (−t)sk =
n∑
k=0

bkt
sk = g+(t)
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and

g−(−t) =
n∑
k=0

(−1)d−rk · bk · (−t)sk =
n∑
k=0

(−1)d−rk · bktsk = g−(t).

By hypothesis, there exists a proto-transition (λ, φ) such that (g+, g−) ◦ (λ, φ) =

(f+, f−). We claim that (g+, g−) ◦ (λ, φ) = (f+, f−), where φ = (φ1,−φ2). In fact,

if λ > 0 then |λ2|d · g− ◦ φ2 = f− and hence |λ2|d · g− ◦ (−φ2) = f−. If λ < 0 then

|λ2|d · g+ ◦ φ2 = f− and hence |λ2|d · g+ ◦ (−φ2) = f−. Finally, notice that φ1 is

coherent with either φ2 or −φ2. If φ1 and φ2 are coherent, we take φ̃ = φ. If φ1 and

−φ2 are coherent, we take φ̃ = φ.

�

Theorem 4.2. Let F,G ∈ R[X, Y ] be β-quasihomogeneous polynomials of degree d, none

of which being of the form cXd, and let f+, f− be the height functions of F and g+, g− the

height functions of G. Also, let β = r/s, where r > s > 0 and gcd(r, s) = 1. Suppose that

(g+, g−) ◦ (λ, φ) = (f+, f−) for some proto-transition (λ, φ) = ((λ1, λ2), (φ1, φ2)). If any

of the following conditions is satisfied then F and G are R-semialgebraically Lipschitz

equivalent:

(a) r is even or s is odd.

(b) λ1 = λ2

(c) None of the polynomials F,G has X as a factor.

Proof. If r is even or s is odd then, by Corollary 4.10, there exists a β-transition (λ̃, φ̃) such

that (g+, g−)◦(λ̃, φ̃) = (f+, f−). Hence, by Corollary 4.8, F and G areR-semialgebraically

Lipschitz equivalent.

Now, assume that either (b) or (c) holds. If s is odd, then condition (a) is

satisfied, and therefore F and G are R-semialgebraically Lipschitz equivalent, as we have

just proved. If s is even then, by Corollary 4.10, there exists φ̃ = (φ̃1, φ̃2), with φ̃1 and

φ̃2 coherent, such that (g+, g−) ◦ (λ, φ̃) = (f+, f−). Since we are assuming that either (b)

or (c) holds, Proposition 4.21 guarantees that (λ, φ̃) is a β-transition. Then, by Corollary

4.8, it follows that F and G are R-semialgebraically Lipschitz equivalent. �

Corollary 4.11. Let F,G ∈ R[X, Y ] be β-quasihomogeneous polynomials of degree d,

none of which being of the form cXd. Suppose that the height functions f+, f− of F

and the height functions g+, g− of G can be arranged in pairs of Lipschitz equivalent

functions. If one of the height functions f+, f−, g+, g− has no critical points, then F and

G are R-semialgebraically Lipschitz equivalent.

Proof. By Corollary 4.4, since the height functions of F and G can be arranged in pairs of

Lipschitz equivalent functions, there exists a proto-transition (λ, φ) = ((λ1, λ2), (φ1, φ2))
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such that (g+, g−) ◦ (λ, φ) = (f+, f−). We prove that there exists a proto-transition

(λ̃, φ̃) = ((λ̃1, λ̃2), (φ̃1, φ̃2)), with λ̃1 = λ̃2, such that (g+, g−) ◦ (λ̃, φ̃) = (f+, f−). From

this, by Theorem 4.2, it follows that F and G areR-semialgebraically Lipschitz equivalent.

Let us consider the case where λ > 0. In this case, we have

|λ1|d g+ ◦ φ1 = f+ and |λ2|d g− ◦ φ2 = f− .

Since f+ ∼= g+ and f− ∼= g−, we see that f+ and g+ have the same number of critical

points, and also that f− and g− have the same number of critical points. Thus, we only

need to consider the following possibilities: (A) Both f+ and g+ have no critical points.

(B) Both f− and g− have no critical points.

Suppose that both f+ and g+ have no critical points. The proof of Theorem

3.1a shows that if f, g : R→ R are Lipschitz equivalent polynomial functions of degree d ≥
1 with no critical points, then there exists a bi-Lipschitz homeomorphism φ : R→ R such

that g◦φ = f . Note that, by Lemma 3.3, φ is actually a bi-Lipschitz Nash diffeomorphism.

Applying this to f+ and |λ2|d g+, we obtain a bi-Lipschitz Nash diffeomorphism φ̃1 : R→ R
such that |λ2|d g+ ◦ φ̃1 = f+. Thus, we have (g+, g−)◦ (λ̃, φ̃) = (f+, f−), where λ̃ = (λ2, λ2)

and φ̃ = (φ̃1, φ2).

Similarly, if both f− and g− have no critical points then we can obtain a bi-

Lipschitz Nash diffeomorphism φ̃2 : R→ R such that |λ1|d g− ◦ φ̃2 = f−, so that (g+, g−) ◦
(λ̃, φ̃) = (f+, f−), where λ̃ = (λ1, λ1) and φ̃ = (φ1, φ̃2). �

Proposition 4.22. Let F,G ∈ R[X, Y ] be β-quasihomogeneous polynomials of degree d,

none of which being of the form cXd, and let f+, f− be the height functions of F and g+, g−

the height functions of G. Also, let β = r/s, where r > s > 0 and gcd(r, s) = 1. Suppose

that (g+, g−) ◦ (λ, φ) = (f+, f−) for some proto-transition (λ, φ) = ((λ1, λ2), (φ1, φ2)). If r

is odd and s is even, then:

i. Either both of the polynomials F,G has Y as a factor, or none of them has Y as a

factor.

ii. If none of the polynomials F,G has Y as a factor then λ1 = λ2.

iii. If Y is a factor of both F and G, and one of the height functions f+, f−, g+, g− has

only one critical point, then there exists a proto-transition (λ̃, φ̃) = ((λ̃1, λ̃2), (φ̃1, φ̃2)),

with λ̃1 = λ̃2, such that (g+, g−) ◦ (λ̃, φ̃) = (f+, f−).

Proof. Let F (X, Y ) =
∑n

k=0 akX
d−rkY sk and G(X, Y ) =

∑n
k=0 bkX

d−rkY sk, with an, bn 6=
0, n ≥ 1. (In the proof of Proposition 4.19, we showed that the upper limit of the

summation n is the same for F and G, provided that the height functions of F and G can

be arranged in pairs of Lipschitz equivalent functions. Also, we have n ≥ 1 because none

of the polynomials F,G is of the form cXd.)
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Suppose that r is odd and s is even. Then, we have:

f+(t) =
n∑
k=0

akt
sk , f−(t) = (−1)d

n∑
k=0

(−1)kakt
sk (61)

g+(t) =
n∑
k=0

bkt
sk , g−(t) = (−1)d

n∑
k=0

(−1)kbkt
sk (62)

We show that

|λ1|d b0 = a0 and |λ2|d b0 = a0. (63)

First, note that since s is even, equations (61) and (62) show that f+, f−, g+, g−

are all even functions. Thus, for each of these height functions, 0 is a critical point and

the number of negative critical points is equal to the number of positive critical points

(more precisely, the map t 7→ −t establishes a 1-1 correspondence between the positive

critical points and the negative critical points). Also, note that each of the functions

f+, f−, g+, g− has only a finite number of critical points, since they are all nonconstant

polynomial functions (each of them has degree 2n because an, bn 6= 0, and n ≥ 1).

Now, suppose that λ > 0. Then,

|λ1|d g+ ◦ φ1 = f+ and |λ2|d g− ◦ φ2 = f− .

Let −tp < · · · < −t1 < 0 < t1 < · · · < tp be the critical points of f+, and let −sp < · · · <
−s1 < 0 < s1 < · · · < sp be the critical points of g+ (f+ and g+ have the same number of

critical points because they are Lipschitz equivalent). Since φ1 is monotone, injective, and

takes critical points of f+ to critical points of g+, it follows that φ1(0) = 0. Consequently,

since |λ1|d g+ ◦ φ1 = f+, we have |λ1|d g+(0) = f+(0). Equivalently, since f+(0) = a0 and

g+(0) = b0, we have |λ1|d b0 = a0. Similarly, we can show that φ2(0) = 0, and then we can

use this along with the equation |λ2|d g− ◦ φ2 = f− to conclude that |λ2|d b0 = a0. This

shows that (63) holds for λ > 0. The proof for λ < 0 is analogous.

Now, we proceed to the proof of the proposition itself. From (63), we see that

either a0 = b0 = 0, or a0 6= 0 and b0 6= 0. Clearly, Y is a factor of F if and only if a0 = 0,

and Y is a factor of G if and only if b0 = 0. Hence, either both F and G have Y as a

factor or none of them has Y as a factor. This proves the first part of the proposition.

For the second part, suppose that none of the polynomials F,G has Y as a

factor, so that a0 6= 0 and b0 6= 0. Then, from (63), it follows that |λ1| = |λ2|. Since λ1

and λ2 have the same sign, we actually have λ1 = λ2.
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Now, we prove the third part. Suppose that Y is a factor of both F and G, and

that one of the height functions f+, f−, g+, g− has only one critical point. Let us consider

the case where λ > 0. In this case, we have:

|λ1|d g+ ◦ φ1 = f+ and |λ2|d g− ◦ φ2 = f− .

Since f+ ∼= g+ and f− ∼= g−, we see that f+ and g+ have the same number of critical

points, and also that f− and g− have the same number of critical points. Thus, we only

need to consider the following possibilities: (A) Both f+ and g+ have only one critical

point. (B) Both f− and g− have only one critical point.

Suppose that both f+ and g+ have only one critical point. We have already

seen that 0 is a critical point of both f+ and g+. Hence, 0 is the only critical point

of f+, and also the only critical point of g+. Recall that f+(0) = a0 and g+(0) = b0.

Since, by hypothesis, Y is a factor of both F and G, we have a0 = b0 = 0. Therefore,

f+(0) = g+(0) = 0. From the proof of Theorem 3.1b, it is clear that if f, g : R → R
are Lipschitz equivalent polynomial functions of degree ≥ 1 such that f has only one

critical point t0 and g has only one critical point s0, then given a constant c > 0 such

that g+(s0) = cf+(t0), there exists a bi-Lipschitz homeomorphism φ : R → R such that

g ◦ φ = cf . In particular, if g(s0) = f(t0) = 0, then for any constant c > 0, there exists a

bi-Lipschitz homeomorphism φ : R→ R such that g ◦ φ = cf . Note that, by Lemma 3.3,

φ is actually a bi-Lipschitz Nash diffeomorphism. Applying this to f+ and g+, we obtain

a bi-Lipschitz Nash diffeomorphism φ̃1 : R → R such that |λ2|d g+ ◦ φ̃1 = f+. Thus, we

have (g+, g−) ◦ (λ̃, φ̃) = (f+, f−), where λ̃ = (λ2, λ2) and φ̃ = (φ̃1, φ2).

Similarly, if both f− and g− have only one critical point then we can obtain

a bi-Lipschitz Nash diffeomorphism φ̃2 : R → R such that |λ1|d g− ◦ φ̃2 = f−, whence

(g+, g−) ◦ (λ̃, φ̃) = (f+, f−), where λ̃ = (λ1, λ1) and φ̃ = (φ1, φ̃2). This proves the third

part of the proposition for λ > 0. The proof for λ < 0 is analogous. �

Corollary 4.12. Let F,G ∈ R[X, Y ] be β-quasihomogeneous polynomials of degree d,

none of which being of the form cXd. Suppose that the height functions f+, f− of F and the

height functions g+, g− of G can be arranged in pairs of Lipschitz equivalent functions. If

any of the following conditions is satisfied then F and G are R-semialgebraically Lipschitz

equivalent:

(a) None of the polynomials F,G has Y as a factor.

(b) One of the height functions f+, f−, g+, g− has only one critical point.

Proof. Let β = r/s, where r > s > 0 and gcd(r, s) = 1. By hypothesis, the height

functions of F and G can be arranged in pairs of Lipschitz equivalent functions. So,

by Corollary 4.4, there exists a proto-transition (λ, φ) = ((λ1, λ2), (φ1, φ2)) such that

(g+, g−) ◦ (λ, φ) = (f+, f−). Suppose that none of the polynomials F,G has Y as a factor.
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If r is odd and s is even, then λ1 = λ2 (by Proposition 4.22), otherwise r is even or s is

odd. In any case, by Theorem 4.2, F and G are R-semialgebraically Lipschitz equivalent.

This proves part (a) of the corollary. Let us prove part (b).

Suppose that one of the height functions f+, f−, g+, g− has only one critical

point. By Theorem 4.2(a), if r is even or s is odd, then F and G are R-semialgebraically

Lipschitz equivalent. So, let us assume that r is odd and s is even. By the (already

proved) part (a) of this corollary, if none of the polynomials F,G has Y as a factor, then

F and G are R-semialgebraically Lipschitz equivalent. So, let us add to our assumptions

that Y is a factor of both F and G. (Since we are assuming that r is odd and s is

even, Proposition 4.22(i) ensures that either both F and G have Y as a factor, or none

of them has Y as a factor.) Then, by Proposition 4.22(iii), there exists a proto-transition

(λ̃, φ̃) = ((λ̃1, λ̃2), (φ̃1, φ̃2)), with λ̃1 = λ̃2, such that (g+, g−) ◦ (λ̃, φ̃) = (f+, f−) and, by

Theorem 4.2(b), F and G are R-semialgebraically Lipschitz equivalent. �

4.5 Henry and Parusiński’s example revisited

In HENRY and PARUSIŃSKI (2004), the authors constructed an invariant

of the bi-Lipschitz equivalence of analytic function germs (Rn, 0) → (R, 0) that varies

continuously in many analytic families, thereby showing that the bi-Lipschitz equivalence

of analytic function germs admits continuous moduli. As an example, they show that the

one-parameter family of germs ft(x, y) : (R2, 0)→ (R, 0), given by

ft(x, y) = x3 − 3txy4 + y6, t ∈ R (64)

satisfies the following properties:

i. Given t, t′ > 0, if t 6= t′ then there exists no germ of bi-Lipschitz homeomorphism

h : (R2, 0)→ (R2, 0) such that ft ◦ h = ft′ .

ii. Given t, t′ < 0, there exists a germ of bi-Lipschitz homeomorphism h : (R2, 0) →
(R2, 0) such that ft ◦ h = ft′ .

Note that property (i) shows, in particular, that the bi-Lipschitz classification of real

analytic function germs admits continuous moduli.

Now, we analyze this example in the context of R-semialgebraic Lipschitz

equivalence, using only results obtained in this thesis. But before we do that, we need to

make a small adjustment. For each t ∈ R, we have

ft(λx, λ
1/2y) = λ3ft(x, y), for all λ > 0,

so that ft is β-quasihomogeneous of degree 3, with β = 1/2. This is a problem, if we want

to apply our results, because we have developed the whole theory of R-semialgebraic
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Lipschitz equivalence for β-quasihomogeneous polynomials in two variables under the

assumption that β > 1. Fortunately, we can fix this simply by interchanging the variables

x and y, so we consider the family

Fλ(X, Y ) = X6 − 3λX4Y + Y 3, λ ∈ R (65)

which is a family of β-quasihomogeneous polynomials of degree 6, with β = 2. We show

that this family satisfies the following properties:18

i’. Given λ, µ > 0, if λ 6= µ then there exists no germ of semialgebraic bi-Lipschitz

homeomorphism Φ: (R2, 0)→ (R2, 0) such that Fµ ◦ Φ = Fλ.

ii’. Given λ, µ < 0, there exists a germ of semialgebraic bi-Lipschitz homeomorphism

Φ: (R2, 0)→ (R2, 0) such that Fµ ◦ Φ = Fλ.

First, note that the height functions of Fλ are given by

(fλ)+(t) = 1− 3λt+ t3 and (fλ)−(t) = 1− 3λt+ t3 .

So, we drop the subscript sign and write simply

fλ(t) = t3 − 3λt+ 1 .

Now, to prove (i’), fix any two real numbers λ, µ > 0; we show that if Fλ and Fµ

are R-semialgebraically Lipschitz equivalent then λ = µ. We proceed in two steps. First,

we show that if Fλ and Fµ are R-semialgebraically Lipschitz equivalent then fλ ∼= fµ.

Second, we show that if fλ ∼= fµ then λ = µ.

Since fλ has at least one real zero t0, we have

Fλ(1, t0) = fλ(t0) = 0 and Fλ(−1, t0) = fλ(t0) = 0 .

Thus,

F−1λ (0) ∩ {x > 0} 6= ∅ and F−1λ (0) ∩ {x < 0} 6= ∅ .

Hence, by Theorem 4.1, if Fλ and Fµ are R-semialgebraically Lipschitz equivalent then

fλ ∼= fµ.

For the second step, note that fλ has exactly two distinct critical points t1 =

−λ1/2 and t2 = λ1/2 and its multiplicity symbol is ((1 + 2λ3/2, 1 − 2λ3/2), (2, 2)). Also,

fµ has exactly two distinct critical points s1 = −µ1/2 and s2 = µ1/2 and its multiplicity

symbol is ((1 + 2µ3/2, 1 − 2µ3/2), (2, 2)). Now, suppose that fλ ∼= fµ. By Theorem 3.1c,

the multiplicity symbols of fλ and fµ are similar. Since 1 + 2λ3/2 > 1 − 2λ3/2 and

18Since the map R2 → R2 given by (X,Y ) 7→ (Y,X) is a semialgebraic bi-Lipschitz homeomorphism,
these properties are also satisfied by the family (64).
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1 + 2µ3/2 > 1− 2µ3/2, it follows that, actually, the multiplicity symbols of fλ and fµ are

directly similar, and hence ∣∣∣∣∣ 1 + 2λ3/2 1− 2λ3/2

1 + 2µ3/2 1− 2µ3/2

∣∣∣∣∣ = 0 .

Since this equality holds if and only if λ = µ, we conclude that if fλ ∼= fµ then λ = µ.

To prove (ii’), fix any two real numbers λ, µ < 0. In this case, both fλ and

fµ have no critical points. Hence, by Corollary 4.11, Fλ and Fµ are R-semialgebraically

Lipschitz equivalent.

Finally, we note that property (i’) shows, in particular, that theR-semialgebraic

Lipschitz equivalence of real β-quasihomogeneous polynomials in two variables admits

continuous moduli.
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5 CONCLUSION

In this thesis, we generalize the methods from BIRBRAIR, FERNANDES,

and PANAZZOLO (2009) to address the following two main problems:

1. Lipschitz equivalence problem for nonconstant real polynomial functions

of a single variable. Given two nonconstant polynomial functions f, g : R → R,

determine whether f and g are Lipschitz equivalent.

2. R-semialgebraic Lipschitz equivalence problem for nonzero real β-qua-

sihomogeneous polynomials in two variables. Given two nonzero real β-

quasihomogeneous polynomials F (X, Y ) and G(X, Y ), determine whether F and

G are R-semialgebraically Lipschitz equivalent.

The Lipschitz equivalence problem for nonconstant real polynomial functions

of a single variable is completely solved by the main results of Chapter 3, namely, Theorem

3.1a, Theorem 3.1b, and Theorem 3.1c. These results allow us to determine whether any

two given polynomial functions f, g : R → R, of the same degree d ≥ 1, having the same

number of critical points, are Lipschitz equivalent.19 Theorem 3.1a deals with the case

where f and g have no critical points, Theorem 3.1b deals with the case where f and g

have only one critical point, and Theorem 3.1c deals with the case where f and g have at

least two critical points.

Then, in Chapter 4, we try to reduce the second problem to the first one by

addressing the following questions:

2.1. Suppose that two given β-quasihomogeneous polynomials F,G ∈ R[X, Y ] of degree

d ≥ 1 are R-semialgebraically Lipschitz equivalent. Is it possible to arrange their

height functions in pairs of Lipschitz equivalent functions (i.e. either f+ ∼= g+ and

f− ∼= g−, or f+ ∼= g− and f− ∼= g+)?

2.2. Suppose that the height functions of two given β-quasihomogeneous polynomials

F,G ∈ R[X, Y ] of degree d ≥ 1 can be arranged in pairs of Lipschitz equivalent

functions. Are F and G R-semialgebraically Lipschitz equivalent?

This reduction is accomplished for wide classes of β-quasihomogeneous polynomials. We

show that if the zero sets of the polynomials F and G have points both on the right

half-plane and on the left half-plane then the answer to the first question is yes (see

Corollary 4.3 and Remark 4.7). Also, we obtain some fairly general conditions under which

the answer to the second question is affirmative (see Theorem 4.2, Corollary 4.11, and

Corollary 4.12). These are our main results onR-semialgebraic Lipschitz equivalence of β-

quasihomogeneous polynomials. These results, along with those on Lipschitz equivalence

of polynomial functions of a single variable enable us to determine, under fairly general

19This solves the problem because Lipschitz equivalent polynomial functions have the same degree and
the same number of critical points.
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conditions, whether two given β-quasihomogeneous polynomials are R-semialgebraically

Lipschitz equivalent.

Chapter 4 ends with an application of our results. In Section 4.5, we revisit

an example given in HENRY and PARUSIŃSKI (2004) showing that the bi-Lipschitz

classification of real analytic function germs admits continuous moduli. We analyze this

example in the context of R-semialgebraic Lipschitz equivalence, using only results ob-

tained in this thesis. As a byproduct of this analysis, we find that the R-semialgebraic

Lipschitz equivalence of real β-quasihomogeneous polynomials in two variables admits

continuous moduli.

Finally, as suggestions for future research, we list some interesting questions

on the subject of this thesis that still remain unanswered.

1. Are there β-quasihomogeneous polynomials F (X, Y ) and G(X, Y ), of the same β-

quasihomogeneous degree d ≥ 1, which areR-semialgebraically Lipschitz equivalent,

whose height functions cannot be arranged in pairs of Lipschitz equivalent functions?

If such an example of β-quasihomogeneous polynomials F (X, Y ) and G(X, Y ) does

exist then, by Corollary 4.3, the set F−1(0) is contained in one of the closed half-

planes {x ≤ 0} or {x ≥ 0} (and, by symmetry, the same holds for the set G−1(0)).

2. Are there β-quasihomogeneous polynomials F (X, Y ) and G(X, Y ), of the same β-

quasihomogeneous degree d ≥ 1, which are not R-semialgebraically Lipschitz equiv-

alent, whose height functions can be arranged in pairs of Lipschitz equivalent func-

tions? Let β = r/s, where r > s > 0 and gcd(r, s) = 1. If such an example of

β-quasihomogeneous polynomials F (X, Y ) and G(X, Y ) does exist then, by Theo-

rem 4.2, Corollary 4.11, and Corollary 4.12, r is odd, s is even, both F and G are

multiples of XY , and each of the height functions f+, f−, g+, g− has at least two

critical points.

3. Let F (X, Y ) and G(X, Y ) be β-quasihomogeneous polynomials of degree d ≥ 1.

Suppose that F and G are R-semialgebraically Lipschitz equivalent, so that there is

a germ of semialgebraic bi-Lipschitz map Φ: (R2, 0)→ (R2, 0) such that G◦Φ = F .

What is the level of regularity of Φ? Under what conditions is it true that Φ ∈ C1?

4. Show how to find sets of normal forms for the Lipschitz equivalence of real polyno-

mial functions of a single variable of fixed degree d ≥ 1. In Section 3.2, we solved

this problem for d = 1, 2, 3.

5. Show how to find sets of normal forms for the R-semialgebraic Lipschitz equivalence

of β-quasihomogeneous polynomials in two variables of fixed β-quasihomogeneous

degree d ≥ 1.

6. Show how to determine, for any two given any two polynomials F (X, Y ) and

G(X, Y ) (not necessarily β-quasihomogeneous), with real coefficients, whether there
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exists a germ of semialgebraic bi-Lipschitz map Φ: (R2, 0) → (R2, 0) such that

G ◦ Φ = F .

7. Show how to determine, for any two given polynomial maps P,Q : R2 → R2, whether

there exists a germ of semialgebraic bi-Lipschitz map Φ: (R2, 0)→ (R2, 0) such that

Q ◦ Φ = P .
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