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This paper presents an investigation of five methods, which use constant matrices for solving the power
flow problem. There are two new methods and they are based on the Newton-Raphson method with con-
stant matrices of conductance and susceptance. The two aforesaid proposed methods are based on a
decoupling principle, and the voltage angles and voltage magnitudes are calculated in decoupled forms.

The other methods used, are XB, BX and primal. The results are compared on the basis of the convergence
characteristics, number of iterations, memory requirements and the CPU times. This paper gives details of
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the present method’s performance in a series of practical problems on normal r/x ratio systems and also
on high r/x ratio systems. The number of iterations and convergence characteristics of the two proposed
methods, present a better performance than the decoupled versions XB, BX and primal.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Many methods have been proposed to solve the problem of
power flow in power systems, since the first formulation made in
the 1950s. Among these methods, the decoupled methods with
constant matrices are widely used. These methods are derived
from the Newton-Raphson power flow method, which has become
a reference point for calculating power flow due to a fast present
and efficient convergence [1].

The fast decoupled power flow developed by Sttot and Alsag
(1974), has become very popular [2]. And, despite advantages such
as the use of constant matrices, the method has difficulties in con-
vergence on systems with ratios r/x high.

In 1989, Amerongen published a paper with the BX method.
This paper shows that it is preferable that the resistances are ig-
nored in the B” matrix instead of the B’ matrix. For normal test sys-
tems, there is hardly any difference in the number of iterations,
however, the new algorithm iterates faster if one or more problem-
atic r/x ratios are present [3].

In 1990, Monticelli et al. presented a theory that explained the
performance of the decoupled versions BX and XB for the calcula-
tion of power flow. They showed that the uncoupling of the Jaco-
bian matrix cannot be carried out by simplifications of the
expressions that represent the circuit elements. The equations
must be solved with decouplings and without approximations.
Therefore, this allowed to unify the study of all approaches that fo-
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cus on the convergence characteristics of decoupled methods. The
primal version of the decoupled method is presented in this paper
[4].

Currently, several other methods are still being proposed: In
2003, two useful load flow algorithms are proposed. They are ob-
tained from of the full Newton-Raphson load flow method by suc-
cessively diminishing effects of the off-diagonal submatrices in the
Jacobian [5]. In 2010, Moura and De Moura present a new load flow
based on Newton-Raphson method. The matrices used in the
method are the constants matrices of conductance and suscep-
tance [6]. In 2011, Mallick et al. presents a new iterative solution
technique for power flow analysis to reduce the computation com-
plexity, hence time of the conventional solution techniques [7].
Several other studies in the area have recently been presented as
Refs. [8-17].

As it is shown, many methods used for calculating power flow,
were developed and among these methods, the decoupled meth-
ods with constant matrices are widely used. The main contribution
of this paper is to make a comparative study of methods with con-
stant matrices, including two new power flow methods. The pro-
posed methods are based on the Newton-Raphson power flow
with decoupling, between the voltage magnitudes and the voltage
angles with two constant matrices of conductance [G] and suscep-
tance [B]. In the iterative schemes used, the update voltage angles
are used for the calculations of voltage magnitudes and the update
voltage magnitudes are used to calculate voltage angles. These
schemes differ from the traditional Newton-Raphson power flow.
The results show that the two new methods have an overall perfor-
mance on the number of iterations to convergence better than the
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decoupled versions XB, BX and primal. This comparative study also
shows that the two proposed methods presented herewith, can be
applied on normal r/x ratio systems and also on high r/x ratio
systems.

This paper is organized in the following manner: Firstly, the fol-
lowing methods of decoupled power flow is the summarized: stan-
dard (XB), modified (BX) and primal. Secondly, these proposed
methods are presented in a comparative study of the decoupled
methods, made with numerical results on normal r/x ratio systems
and also on high r/x ratio systems. Final conclusions and references
are contained in this paper as well.

2. Decoupled methods
2.1. XB version

The equations utilized in the fast decoupled power flow, are as
follows:

HEGL (1)
7] - sy @)

The matrices [B'] and [B”] are formed using elements of the imagi-
nary part of a bus admittance matrix. The resistances are ignored in
the formation of the matrix [B’]. Thus, this is the standard XB ver-
sion. In the iterative scheme of the XB version, which is tested after
the resolution of the voltage angles [AP] and then the solution of
the voltage magnitudes [AQ] is also tested [2].

2.2. BX version

In the decoupled BX version equations, it is the same as the fast
decoupled method. In the XB version, the shunts, the taps and the
resistance of the branches are neglected in [B]. In the BX version,
shunts and taps are neglected in [B']. The resistances are neglected
in [B”]. In the iterative scheme of this version after each sub-
solution, both [AP] and [AQ] are tested for convergence. If both
mismatches reach the convergence tolerance, the procedure ends.
According to the author of this iteration scheme, it avoids cyclical
behavior in the calculation of voltage angles and voltage magni-
tudes. This is BX version for the fast decoupled power flow [3].

2.3. Primal version

The following equations are used in decoupled primal power flow:

[AP] = [H][A] (€)

(AQ] = [Lko|[AV] “4)

where [Lgo] = [L] — [M][H] '[N]

The matrices [H], [L], [M] and [N], are the matrices used in the
Newton-Raphson power flow for flat start in order to keep the
same sparsity structure of the susceptance matrix, the fill-in ele-
ments are made equal to zero in the matrix [Lgo]. These said ele-
ments appear in the matrix [Lgo] due to release on [M][H] '[N].
Phase-shifts are not considered in the formation of this matrix.
The iteration scheme used, is the same BX version [4].

3. Decoupled Newton-Raphson power flow with constant
matrices

The development of the decoupled Newton-Raphson power
flow with constant matrices is very simple and produces good re-
sults on normal r/x ratio systems and also on high r/x ratio.

Initially, premultiplying the [AP] equations in (11) by [M][H]™!
and adding the resulting equations to the [AQ] equations, leads to
the following equation:

[AQ] — [M][H]"'[AP] = {[L] - [M][H] ' [N]}{AV} ()

This procedure results in the equation for calculating the voltage
magnitudes.

Through a similar procedure, the calculation of voltage angles is
obtained by the following equation:

[AP] — [NJ[L} " [AQ] = {[H] — N][L]""[M]{A¢6} (6)

In the appendix Egs. (13)-(20) the following is made: cos Ok, = 1
and sin 0y, =2 0 and, also, Vi and V,,, equals to 1.0 p.u in the PQ buses
type. The voltages magnitudes in the PV buses are kept in the duly
specified values. With these stated approaches, the sub matrices
[H], [M], [N] and [L] are formed exclusively with elements for the
matrix of conductance [G] and matrix of susceptance [B], multiplied
by voltage magnitudes of PV buses and reference bus, when the
items making up these buses are being formed.

Of course, the shunts of the matrix [B] corresponding to the
dimensions of the matrix [H], are not included in the calculations
for the formation of this matrix. The taps are being kept in the cal-
culations for the formation of all matrices. The matrices [B1], [B2],
[G1] and [G2] have the following dimensions: matrix [B1] has
dimensions of matrix [H], matrix [B2] has dimensions of matrix
[L], matrix [G1] has dimensions of matrix [N] and matrix [G2] has
dimensions of matrix [M]. Therefore, the equations of decoupled
Newton-Raphson method with constant matrices (DNRCMs), are
shown in the following equations:

[A0] = {[AP] - [G1](B2]"' [AQ]}'{[B1] — [G1][B2] '[G2]} (7)
[AV] = {[AQ] - [G2)[B1] "[AP]} '{[B2] - [G2][B1] '[G1]} (8)
[0%1] = [6] + [A0) 9)
V<] = VY] + [aV] (10)

The matrix [B2] can be formed with the exclusion of PV buses from
the matrix [B1], and the matrix [G2] can be constructed as the trans-
posed matrix [G1] with a opposite sign.

According to the scheme of iterations, the method DNRCM has
two versions. In the first version, the angles of voltages are calcu-
lated before the voltage magnitudes and in the second version
the voltage magnitudes are calculated before the voltage angles.

The basic flowchart is the method DNRCM version 1
(DNRCMV1), shown in Fig. 1. The basic flowchart for version 2
(DNRCMV?2) is similar, however, the voltage magnitude calculation
is made first.

As shown in Fig. 1, the scheme of iterations is different from the
original method of Newton-Raphson. In the original classic scheme
of the Newton-Raphson power flow, voltage magnitudes and volt-
age angles of the current iteration, are always calculated using the
values of previous iteration.

In the proposed methods with the forms of iterations shown in
Fig. 1, voltage magnitudes and voltage angles are calculated using
the updated values of each considered measure, i.e. for the calcula-
tion of the voltage magnitudes, the updated values of voltage an-
gles are used, and to calculate the voltage angles, the updated
values of voltage magnitudes are used. Thus, the number of itera-
tions P may be different from the number of iterations Q, as in
decoupled methods XB, BX and primal.
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Fig. 1. Basic flowchart of method DNRCMV1.

4. Numerical results

In this section several results are presented, in order to show
the performance of the Newton-Raphson decoupled power flow
with constant matrices, compared with decoupled XB, BX and pri-
mal methods.

For the purpose of allowing researchers to have access to the
information systems used in this study and research, the reproduc-
tion of all the results shown herewith, were used with classical
IEEE test systems of 14 buses, 30 buses, 57 buses and 118 buses.
The computer used in these simulations, is a Semp Toshiba com-
puter with Intel Core 2 Duo CPU T5550 1.83 GHz, Memory (RAM)
2 GB and 32-bit OS.

Initially, an attempt to reproduce the results presented in [4]
was made. This was not entirely due to the possible usage of differ-
ent computers, however, the conclusions obtained in [4] were
properly confirmed. This is the primal method, which performs
better than the XB version in case of systems of 30 buses and
118 buses of the IEEE.

4.1. Iteration requirements

The power flow programs based on the above specified methods
written in matlab code, were duly tested on systems described
above.

Table 1
Iteration requirements for solutions converged from decoupled methods in trans-
mission systems, are with the scale factor R.

Test Scale factor DNRCMV1 DNRCMV2 XB BX Primal
system R P-Q P-Q P-Q P-Q P-Q
IEEE14 1.0 6-5 5-6 8-7 9-8 8-7
20 6-5 5-6 11-10 10-9 9-8
3.0 9-8 8-8 21-20 11-10 9-8
IEEE30 1.0 5-5 5-6 6-6 7-6 8-7
20 6-6 6-6 11-9 8-7 9-8
3.0 10-9 10-10 24-19 8-7 15-15
IEEE57 1.0 8-8 7-8 9-9 7-7 14-14
20 8-8 8-8 12-11 12-12 nc
3.0 12-11 12-12 19-18 19-18 nc
IEEE 118 1.0 6-5 7-7 7-6 6-6 6-6
2.0 6-6 7-7 14-11 8-7 7-7
3.0 8-8 8-9 26-23 9-8 8-8

nc - The method does not converge in 60 iterations or diverge.

The first test was designed to verify the number of iterations for
convergence of the methods used in this paper, when the values of
the resistances of the branches are increased (scale factors R) in
transmission systems. This can be done by multiplying all the
resistance branches of transmission systems by the factors of 1-
3. The results are presented on Table 1. Comparisons between re-
sults of the methods DNRCMV1 and DNRCMV2 respectively, were
made with the results of the methods XB, BX and primal. The tol-
erance for convergence was specified at 0.001 MW/Mvar to IEEE
power systems. The base power being 100 MVA.

While the results presented on Table 1 shows that for the sys-
tems 14, 30 and 118 buses, performs with a decoupled XB method
is worst, with the largest number of iterations for convergence.
Performance of the primal method is worst for the system of 57
buses. Hence, only a comparison between the decoupled methods
BX, DNRCMV1 and DNRCMV2 can be summarized as follows:

- For test systems with the following cases: system of 30 buses
(scale factor R = 3), system of 57 buses (scale factor R=1) and
system of 118 buses (scale factor R = 1), there is a small differ-
ence in the number of iterations for convergence between the
methods DNRCMV1, DNRCMV2 and BX.

For all the other nine cases the methods DNRCMV1 and
DNRCMV2 converge in a number of iterations, less than the
method BX.

The second test was designed to rigorously test the number of
iterations for the convergence of power flows used in this paper,
decreasing the reactance (scale factor X). The results are shown
on Table 2.

According to Table 2, the methods DNRCMV1 and DNRCMV2
perform better than all other methods tested, including converging
where other methods do not converge. The cases on Table 2, where
the methods DNRCMV1 and DNRCMV2 are not converged, the
aforesaid methods also do not converge using the classical
Newton-Raphson power flow coupled, according to Eq. (11).

4.2. CPU time requirements

The CPU time and the input time requirements for the five
methods recorded on the Semp Toshiba computer, are shown on
Tables 3-5

The CPU time shown on Table 4, gives the CPU time taken for
the iteration process only. The input time includes the time taken
for the formation of the admittance matrix, Jacobian matrices and
its inverse.

Table 2
Iteration requirements for solutions converged from decoupled methods in trans-
mission systems, are with the scale factor X.

Test Scale DNRCMV1  DNRCMV2  XB BX Primal
system factor X P-Q P-Q P-Q P-Q P-Q
IEEE 14 0.083 7-7 7-7 nc nc 29-28
0.056 16-15 16-16 nc nc nc
0.050 47-46 47-47 nc nc nc
IEEE 30 0.071 13-12 13-13 nc 22-21 nc
0.063 20-19 20-20 nc nc nc
0.056 nc nc nc nc nc
IEEE 57 0.083 12-12 12-12 nc nc nc
0.071 20-19 20-20 nc nc nc
0.063 nc nc nc nc nc
IEEE 118  0.100 12-11 12-12 nc 15-15 14-14
0.083 32-31 32-32 nc 37-37 35-35
0.071 nc nc nc nc nc

nc — The method does not converge in 60 iterations or diverge.
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Table 3
Input time, s, requirements.
Test Scale factor Input time (s)
system R
DNRCMV1 DNRCMV2 XB BX Primal
IEEE 14 1.0 0.002 0.002 0.002 0.002 0.002
IEEE 30 1.0 0.006 0.006 0.003 0.004 0.005
IEEE 57 1.0 0.016 0.016 0.007 0.011 0.013
IEEE 118 1.0 0.055 0.055 0.023 0.041 0.042
Table 4
CPU time, s, requirements excluding input.
Test Scale factor CPU time (s)
system R
DNRCMV1 DNRCMV2 XB BX Primal
IEEE 14 1.0 0.004 0.004 0.004 0.006 0.008
IEEE 30 1.0 0.011 0.012 0.007 0.012 0.017
IEEE 57 1.0 0.050 0.040 0.026 0.033 0.088
IEEE 118 1.0 0.156 0.166 0.075 0.121 0.148
Table 5
CPU time, s, per iteration (P + Q).
Test Scale CPU time per iteration (s)
system factor R
DNRCMV1 DNRCMV2 XB BX Primal
IEEE 14 1.0 0.0004 0.0004 0.0003 0.0004 0.0005
IEEE 30 1.0 0.0011 0.0011 0.0006 0.0009 0.0011
IEEE 57 1.0 0.0031 0.0026 0.0014 0.0024 0.0031
IEEE 118 1.0 0.014 0.012 0.0058 0.010 0.012
Table 6
Total execution time, s.
Test Scale factor CPU time (s)
system R
DNRCMV1 DNRCMV2 XB BX Primal
IEEE 14 1.0 0.006 0.006 0.006 0.008 0.010
IEEE 30 1.0 0.017 0.018 0.010 0.016 0.022
IEEE 57 1.0 0.066 0.056 0.033 0.044 0.101
IEEE 118 1.0 0.211 0.221 0.098 0.162 0.190
Table 7
Memory requirements.
DNRCMV1 and XB BX PRIMAL
DNRCMV2
B1 - (NB-1) x (NB-1) B’ - (NB- B’ - (NB- H - (NB-1) x (NB-1)
1) x (NB-1) 1) x (NB-1)
G1 - (NB-1) x (NPQ) B" - B’ - M - (NPQ) x (NB-1)
(NPQ) x (NPQ) ~ (NPQ) x (NPQ)
B2 - (NPQ) x (NPQ) N - (NB-1) x (NPQ)
G2 - (NPQ) x (NB-1) L - (NPQ) x (NPQ)
Heq - (NB-1) x (NB- Leq -
1) (NPQ) x (NPQ)

Leq - (NPQ) x (NPQ)

NB - total number of buses in the system.

This is recorded collectively and shown on Table 3. The input
time is relatively small compared to the CPU time and its time in-
creases with an increasing system size. The DNRCMV1 and
DNRCMV2 methods, take the longest input/output time compared
to the XB, BX and primal methods, since the equations for the for-
mation of the Jacobian matrix is not as straightforward as the XB

and BX methods. Comparing the input time of the five said meth-
ods, the XB methods give the shortest time.

Using the CPU time on Table 4 and the number of iterations for
each method from Table 1, the CPU time per iteration is computed
as shown on Table 5. The DNRCMV1, DNRCMV2 and the primal
methods result in an almost similar CPU time per iteration. This
is much longer than the XB method. The BX method presents
CPU time per iteration, being slightly longer than the XB method.

The total time taken for the execution of the five methods stated
above, i.e. the CPU time plus the input time, is shown on Table 6.

From the results of the total execution time in Table 6, the
DNRCMV1 and DNRCMV2 methods present execution times larger
than the other methods.

4.3. Memory requirements

Memory requirements are compared in terms of the size of the
Jacobian matrices of the five above mentioned methods, as shown
on Table 7.

A numerical example to illustrate this particular item is shown
as follows: We will take as example, the IEEE 14 system, The ma-
trix dimensions are: DCNRCMV1 and DCNRCMV2 - B1 (13 x 13),
G1 (13 x9), B2 (9 x9), G2 (9 x 13), Heq (13 x 13), Leq (9 x 9);
BX and XB - B’ (13 x 13), B” (9 x9); Primal - H (13 x 13), M
(9% 13),N(13x9),L(9x9),Leq (9 x9).

It can be observed that the XB and BX methods require the least
memory, followed by the primal, DNRCMV1 and DNRCMV2
methods.

4.4. Convergence characteristics

The convergence characteristics of the duly specified five meth-
ods, are described by plotting the p.u. mismatch tolerance against
the iterations PQ of DNRCMV1, XB, BX and primal methods, as well
as iterations QP of the DNRCMV2 method.

The graphs in Figs. 2-6, illustrate the active and reactive power
mismatches from a particular bus of a power system of the IEEE.
The graphics are designed to show the path convergence followed
by the methods of the solution DNRCMV1, DNRCMV2, XB, BX and
primal.

The graph in Fig. 2, show the active power mismatches from bus
5 of the IEEE 14 bus system with the scale factor R = 1.0.

According to the figure shown above, the methods DNRCMV1
and DNRCMV2, have iterations that follow a shorter path to con-
vergence compared to decoupled methods XB, BX and primal.

The graph in Fig. 3 shows the reactive power mismatch on bus 7
of the IEEE 14 buses system with the scale factor R =1.0.

The graph in Fig. 3 shows that the second iteration of DNRCMV1
and DNRCMV2 methods, is a little further from a solution than the
other methods. However, the solution path followed by the
DNRCMV1 and DNRCMV?2, is shorter than the methods XB, BX
and primal.

The graph in Fig. 4 shows the power active mismatch on bus 8
of the IEEE 57 buses system with the scale factor R = 2.0.

The large difference between the methods based on Newton-
Raphson with constant matrices and primal method is shown in
Figs. 4 and 5. In Fig. 4 the residues of active power at bus 8 oscillate
and the primal method cannot achieve convergence.

The graph in Fig. 5 shows the reactive power mismatch on bus
14 of the IEEE 57 buses system with the scale factor R = 2.0.

According to Fig. 5, the oscillations of the reactive power mis-
match in the primal method are quite high, while in the methods
DNRCMV1 and DNRCMV2, there are no oscillations.

The graph in Fig. 6, shows active power mismatch of the bar 2 in
IEEE 14 buses. The scaling factor is X =0.083. Furthermore, this
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graphic is designed to emphasize the difference in convergence be-
tween the methods DNRCMV1 and DNRCMV2 with the BX method.

In the above stated graph, the BX method has a great oscillation,
while the methods DNRCMV1 and DNRCMV2 converge smoothly.

5. Conclusions

This paper presented a comprehensive and comparative study
between power flow methods with constant matrices. Among
these methods, two new methods were presented, based on
Newton-Raphson with constant matrices. Test results are analyzed
regarding the number of iterations, memory requirements, CPU
times and convergence characteristics. These tests have revealed
the respective advantages and disadvantages of the five methods
duly presented in the study.

It may be summarized that the XB and BX methods are both
reliable and rapid in convergence, whereas the XB method is faster
and may even fail to converge under severe ill-conditioning. The
primal method was the method that obtained the worst results
for convergence. DNRCMV1 and DNRCMV2 methods, present exe-
cution times larger than the other methods. Memory requirements
of two new methods are larger than the other decoupled methods
tested. In general, the DNRCMV2 and DNRMCV1 methods, have a

performance in number of iterations for convergence better than
the decoupled XB, BX and primal versions, on normal 7/x ratio sys-
tems, as well as on high r/x ratio systems.

Appendix A. Newton-Raphson power flow

Details of the algorithm of Newton-Raphson method for com-
puting power flow are widely found in the literature, and readers
interested in more details may consult [18].

The method is based on the solution of the Jacobian matrix:

0] A0 [AP
AV|  |AQ
where J is the jacobian matrix; A0 is the vector of voltage angle cor-
rections; AV is the vector of voltage magnitude corrections; V is the
voltage magnitudes vector; AP is the vector of real power mis-
matches; AQ is the vector of reactive power mismatches.
The Jacobian matrix can be represented as:
H N
U=
M L

where H is the matrix of dimensions (NPQ + NPV) x (NPQ + NPV); N
is the matrix of dimensions (NPQ + NPV) x (NPQ); M is the matrix of

(11)

(12)
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dimensions (NPQ) x (NPQ+ NPV); L is the matrix of dimensions
(NPQ) x (NPQ); NPQ is the number of buses type PQ; NPV is the
number of buses type PV.

The elements of sub matrices [H], [N], [M] and [L] are given by

n
Hkk = —VﬁBkk - szvm(ckm sin gkm - Bkm cos gkm) (13)
m=1
Hkm = VkV,,.(Gk,,, sin 0km _Bkm Cos Hkm) (]4)
Nkm = Vk(ka Ccos Okm +Bkm sin Bkm) (]5)
n
Nt = ViGite + > _Vim(Gim €OS O + Bim SIn Ojem) (16)
m=1
Mim = —VkVin(Gim €0S Opm + Bim SIN Oy (17)
n
My = =ViGue + Vi > _Vin(Gim €OS Opm + B Sin O4m) (18)
m=1
Lim = Vi(Gim Sin Ogm — Bim €OS Ot (19)
n
Lix = — VB + va(ckm Sin Ogm — Bm €OS Okm) (20)
m=1

The Jacobian matrix has few non-zero and Eq. (13) can be solved
using bifatorization or LU factorization.
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