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Abstract. The optimal material design in Functionally Graded (FG) structures can be defined by an optimization
procedure. This is often performed by the use of bio-inspired algorithms, even though they may require thousands
of function evaluations. Alternatively, a surrogate model can be used to provide a faster assessment of the structural
response. In this work, the Sequential Approximate Optimization (SAO) will be employed, where the approximate
surface will be iteratively improved by the addition of new points in regions of interest. When constraint func-
tions need to be approximated by a surrogate model, a feasibility function can be considered to account for the
uncertainty in determining the design’s feasibility. The SAO approach will be employed in the optimization of
Functionally Graded Plates considering expensive constraints, and different feasibility functions will be tried out.
The optimization will also be carried out using a bio-inspired algorithm, and these approaches will be compared in
terms of efficiency and accuracy.

Keywords: Sequential Approximate Optimization, Constraint-handling methods, Functionally Graded Materials,
Kriging.

1 Introduction

Functionally Graded Materials (FGMs) are a class of smart composite materials where, given a set gradation
between two or more materials, equivalent material properties smoothly change over a given direction [1]. This
feature allows for an efficient use of each constituent, while also avoiding disadvantages often seen in laminated
structures such as delamination and stress concentrations [2].

To define the optimal material gradation, one may employ an optimization procedure. In structural opti-
mization problems, it is usual to use bio-inspired algorithms, such as the Particle Swarm Optimization (PSO) [2].
However, bio-inspired methods often need to perform hundreds or even thousands of function evaluations, which
can become very costly when numerical methods are employed, e.g. Finite Element Method (FEM) or Isogeomet-
ric Analysis (IGA).

To deal with this issue, costly functions may be approximated by a surrogate model (e.g. Kriging [3]). In this
study, we will make use of the Sequential Approximate Optimization (SAO), which aims at iteratively improving
the model by the addition of new sampling points in regions of interest. These regions may be defined by the use
of an acquisition function, such as the Expected Improvement (EI) [4]. The acquisition function should consider
both the exploitation and the exploration of the design space. For constrained problems, the choice of new points
should also consider the constraints in some way.

For expensive constraint functions, these should also be approximated by a surrogate model. However, due to
model uncertainty, it is not easy to determine the feasibility of a given design based on the approximation itself [5].
Different researchers proposed feasibility functions which penalize unfeasible designs, taking model uncertainty
in consideration [5–7]. However, to this day, there is no silver bullet to handle constrained optimization in SAO
[8].

This study aims at performing a comparison between different constraint-handling methods for the Sequen-
tial Approximate Optimization of Functionally Graded Plates (FGP) with respect to accuracy and computational
efficiency. These are also compared to the optimization of FGP using bio-inspired algorithms, and the results for
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the Particle Swarm Optimization (PSO) are presented.
This paper is organized as follows. In Section 2 the Functionally Graded Plates (FGP) are described in more

detail. In Section 3 the operators and parameters of the PSO are introduced. In Section 4 the SAO approach is
explained, and the Kriging model building and constrained infill criteria are discussed. The results are presented
in Section 5, and the main conclusions are brought together in Section 6.

2 Functionally Graded Plates

This paper will deal with Functionally Graded Plates made of two materials, a ceramic c and a metalm, where
the material gradation varies through the structure thickness. Usually, the volume fraction variation is controlled
by different one-parameter functions, such as power-law and sigmoid functions [9]. To enhance design flexibility,
B-Splines are also employed to define the material gradation [10]:

Vc(ξ) =

ncp∑
i=1

Bi,p(ξ)Vc,i, Vm(ξ) = 1− Vc(ξ) ξ ε [0, 1] (1)

where ncp is the number of control points, Vc,i is the fraction of the ceramic volume of the i-th control point,
Bi,p(ξ) is the corresponding B-Spline base, p is the base degree and ξ is the parametric coordinate. The B-Spline
base is evaluated by the Cox-de Boor formula, given a node vector Ξ = [ξ1, ξ2, ..., ξn+p+1] [11].

The assessment of the effective properties at a given point of the structure are performed by the Mori-Tanaka
scheme [1], where the structure, formed by a material m, is assumed to be reinforced by spherical particles from
material c. Thus, the mechanical properties can be evaluated by:

K(z)−Km

Kc −Km
=

Vc(z)

1 +
3Vm(z) (Kc −Km)

3Km + 4Gm

,
G(z)−Gm

Gc −Gm
=

Vc(z)

1 +
Vm(z) (Gc −Gm)

Gm + fm

(2)

where:

fm =
Gm (9Km + 8Gm)

Gm + fm
(3)

Then, the Young’s modulus (E) and Poisson’s ratio (ν) are computed according to standard expressions [1].

3 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) was first proposed by Kennedy and Eberhart [12]. Soon, different
versions were proposed, where researchers would suggest improvements to the initial formulation [13]. In this
work, the version presented in Barroso et al. [14] is employed.

The PSO is initialized by generating Np random particles. Each particle j is assigned a position x0
j and a

velocity v0
j . At each iteration, the particles move in the design space according to their velocity:

xi+1
j = xi

j + vi+1
j , where vi+1

j = w vi
j + c1 r1 (xi

p,j − xi
j) + c2 r2 (xi

g,j − xi
j) (4)

where w is the inertia, c1 is the cognitive factor, c2 is the social factor, xi
p,j is the best position the particle j

obtained during the optimization, and xi
g,j is the best position the particles on the neighborhood of particle j

obtained during the optimization. The parameters r1 and r2 are uniformly distributed random numbers between 0
and 1.

The definition of xi
g,j depends on the Swarm topology. In this work, the Global topology is employed, where

all particles are connected. Thus, xi
g,j is the best position found among all particles. To improve the exploration in

the design space, Barroso et al. [14] proposes the consideration of a mutation operator, where each variable has a
small probability (pmut) of mutating to a new random value inside the design space.

During the optimization process, a particle may violate a bound constraint leaving the design space. To avoid
this from happening, when a particle leaves the search space, the variable that had its bounds violated is set to the
bound, and its velocity is modified to the opposite direction [14]. On the other hand, implicit constraints can be
handled by a exterior penalty approach, such as the static [10] or the adaptive [15] penalties.

The PSO algorithm is carried out until a stopping criteria is met, usually related to a maximum number of
iterations Itmax or a maximum number of consecutive iterations with no considerable improvement Itstall.
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4 Sequential Approximate Optimization

While bio-inspired algorithms are very effective in finding the optimum for structural problems, they often
require the evaluation of hundreds or even thousands of design points [10]. To improve computational efficiency,
this study will employ the Sequential Approximate Optimization.

In SAO, an expensive function is replaced by an approximate response surface based on a small set of sam-
pling points. In this work, this response surface is given by the Kriging model [3]. Then, new sampling points will
be iteratively added in regions of interest, so that the model accuracy is improved [4]. The new points are chosen
by a given infill criterion.

At the start of the algorithm, since no information about the function behavior is known, a Design of Ex-
periments (DoE) technique can be employed to pick the initial sampling points. This work will use the Latin
Hypercube Sampling (LHS), a stratified random sampling technique commonly employed for Surrogate-Based
Optimization. To obtain a good initial sample, 20 different LHS samples will be generated, and the one where the
minimum distance between two points is maximized is selected to perform the model building [10].

The following sections further describe the building process of the Kriging model and the infill criteria con-
sidered, including the handling of approximate constraint functions.

4.1 Kriging

In its general form, the Kriging model [3] can be given by the sum of a global trend (g) and its autocorrelated
localized deviations (Z):

ŷ(x) = g(x) + Z(x) (5)
where Z(x) can be assumed as the realization of a stochastic process with mean zero and covariance given by:

cov(y,y) = σ2 Ψ (6)

where σ2 is the process variance and Ψ is a correlation matrix.
We may define the correlation between the responses by the Gaussian kernel:

cor [y(xi), y(xj)] = exp

(
−

m∑
k=1

θk |xi,k − xj,k|pk

)
(7)

which allows us to define a correlation matrix as:

Ψij = cor[y(xi), y(xj)] (8)

The computation of Ψ requires the definition of the hyper-parameters θk and pk. These can be defined using
the Maximum Likelihood Estimator (MLE). For a given data setD = {(xi, yi)}ni=1, the likelihood of a model with
mean µ and variance σ is given by:

L(y|µ, σ) =
1

(2π σ2)n/2 |Ψ|1/2
exp

[
− (y − 1µ)T Ψ−1 (y − 1µ)

2σ2

]
(9)

By differentiation, we obtain the MLE for µ and σ as:

µ̂ =
1TΨ−1y

1TΨ−11
σ̂2 =

(y − 1µ̂)TΨ−1(y − 1µ̂)

n
(10)

However, we are not able to define θk or pk in the same way. Instead, we need to use an optimization method to
define the optimum value for these parameters. For simplification purposes, in this work we consider pk = 2.0,
and perform the optimization solely over the parameter θk [3]. Substituting Eq. (10) in Eq. (9), taking the natural
logarithm and removing the constant terms, we end up with the concentrated ln-likelihood function:

lnL ≈ −n
2

ln(σ̂2)− 1

2
ln |Ψ| (11)

Thus, the definition of θk may be performed by solving the following optimization problem: minimize − lnL(θ)

where θL ≤ θ ≤ θU
(12)

Since the evaluation of the objective function is usually not costly, we may perform this procedure using a bio-
inspired optimization algorithm, such as the Particle Swarm Optimization.

After the model is built, we can assess the model prediction using the Kriging estimator, given by [3]:

ŷ(x) = µ̂+ψT Ψ−1 (y − 1 µ̂) (13)
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4.2 Infill criteria

After the model is built, it can be used to guide the further selection of new points in regions of interest.
Ideally, the infill criterion should consider the model uncertainty in regions far from the sampling points. Due to
the theory behind Gaussian Processes (GPs), we may evaluate the Kriging model posterior variance by [3]:

ŝ2(x) = σ2
(
1−ψTΨ−1ψ

)
(14)

which can be understood as an estimate of how certain the model is about its own prediction. Figure 1 shows the
confidence interval (ŷ± ŝ) for the Kriging prediction for a given one-dimensional function. Note that the variance
is zero at the sampling points, but it increases as x gets farther from them.

Figure 1. Kriging confidence interval for a one-dimensional function.

The infill criterion is often given by the optimization of a given acquisition function, which can be based both
on the model prediction ŷ(x) and variance ŝ(x). For example, on the Efficient Global Optimization (EGO) algo-
rithm, the model is iteratively improved by the addition of the point which maximizes the Expected Improvement
(EI), given by:

E[I(x)] = (ymin − ŷ(x)) Φ

(
ymin − ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
ymin − ŷ(x)

ŝ(x)

)
(15)

where Φ is the Cumulative Distribution Function (CDF) and φ is the Probability Density Function (PDF), both
for the Normal distribution. This criterion is able to balance the exploitation (related to the first term) and the
exploration (related to the second term). For constrained optimization, the constraint function should be taken into
account, as only feasible individuals can improve upon the optimum. A feasibility function Fj(x) based on the
constraint function can be considered penalizing the EI by:

CE[I(x)] =
∏

Fj(x)E[I(x)] (16)

If constraint functions are cheap to evaluate, the feasibility function can be given by a simple step function as:

Fj(x) =

{
0 , if gj(x) > 0

1 , otherwise
(17)

For expensive constraint functions, these should be approximated by a surrogate model ĝj(x). In a similar
manner, a direct approach is to simply consider that, if ĝj(x) > 0, the EI is set to zero [16]. However, for
approximate constraint functions, it might be wise to consider the model uncertainty in some way for Surrogate-
Based Optimization (SBO). Schonlau et al. [5] proposed the use of the Probability of Feasibility (PF), where:

F (x) = Φ[gj(x)] =
1

2
+

1

2
erf
[
gj(x)

]
, where gj(x) = − ĝj(x)

ŝj(x)
(18)

Recently, Tutum et al. [6] and Bagheri et al. [7] also proposed different feasibility functions, denominated here as
FFT and FFB, respectively. These change how the uncertainty is considered:

FFTj(x) =

{
2− erf

(
gj(x)

)
, if 0 < erf

(
gj(x)

)
≤ 1

0 , otherwise
FFBj(x) = min

(
2 Φ
(
gj(x)

)
, 1
)

(19)
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Figure 2 shows how F (x) behaves for these different approaches. In this work, these will be compared in
the constrained optimization of FGP. It should be noted that, for cases where only the constraints are expensive to
evaluate, the EI can be replaced by the actual improvement [17]:

I(x) = max(ymin − y(x), 0), and CI(x) =
∏

Fj(x) I(x) (20)

(a) Direct approach (b) Other methods

Figure 2. Different feasibility functions.

5 Numerical example

In this section, the mass minimization of a circular plate of Al/Al2O3 will be performed. Two constraints will
be considered, related to the plate fundamental frequency and to the ceramic volume fraction. The material grada-
tion is defined by a symmetric B-Spline with 9 control points, and the design variables are the plate thickness and
the volume fraction for each control point. Due to symmetry, there are only six design variables. The optimization
problem may be stated as:

minimize π R2
∫ h/2

−h/2
ρ(z) dz

subjected to g1(x) = ω(x)− ωmax ≤ 0 and g2(x) =
1

h

∫ h/2

−h/2
Vc dz − V c,max ≤ 0

where hmin ≤ x1 ≤ hmax ≤ 0 and 0 ≤ xi ≤ 1 for i = 2, 3, . . . 6

(21)

where the maximum fundamental frequency is ωmax = 1000 Hz and the maximum ceramic volume fraction is
V c,max = 35%. Table 1 presents the properties of each constituent, and effective properties are defined via the
Mori-Tanaka model. Isogeometric Analysis is performed using a 256-element NURBS mesh, shown in Figure 3,
along with the optimum design for this problem.

(a) NURBS mesh employed.

0 0.2 0.4 0.6 0.8 1
-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

(b) Optimum design distribution.

Figure 3. Circular plate optimization problem.

Results will be compared in terms of the average Normalized Root Mean Squared Error (NRMSE), the total
number of evaluations nev , and the average Wall-Clock Time (WCT) spent for each optimization. In all cases, 10
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Table 1. Material properties.

Material E (GPa) ν ρ (kg/m3)

Al 70 0.3000 2707
Al2O3 380 0.3262 3800

optimizations will be performed. All numerical computations were performed on a computer with a core i7-5500U
CPU of 2.40 GHz clock speed and 16 GB of RAM. No parallelization procedure was used.

The problem was first solved using the PSO algorithm, considering a population Np = 50 particles, and the
stopping criteria are given by Itmax = 150 and Itstall = 20. The optimum is found for x = [0.0197, 1.00, 1.00,
0.39, 0.00, 0.00], which presented a mass of 47.87 kg. Both constraints are active for the optimum design.

Then, the Sequential Approximate Optimization was performed. The initial model was built using 30 initial
sampling points. The maximum number of sampling points is 100, but the algorithm may also stop earlier after
a maximum number of consecutive iterations with no improvement Itstall = 20. The approximate response
surface was created using a Kriging model. In this problem, only the assessment of the fundamental frequency is
expensive. Thus, the model is built only for the constraint function related to the fundamental frequency.

Table 2 shows the results found for the feasibility functions tried out in this paper. Here, SAO algorithms
are also compared to the PSO. The PSO presents a lower error when an adaptive penalty is employed. However,
the bio-inspired algorithm requires thousands of high-fidelity evaluations, which results in a very high Wall-Clock
Time. Meanwhile, the SAO algorithms requires, in all cases, less than 60 evaluations. This allows for a gain in
efficiency, where SAO algorithms are almost 10 times faster than the PSO in terms of the WCT.

Table 2. Results found for the mass minimization of the circular FGP

Algorithm NRMSE nev WCT (s)

SAO-Direct 2.58% 52 511
SAO-PF 0.59% 57 653
SAO-FFT 4.00% 50 473
SAO-FFB 0.47% 58 676

PSO-Static 0.13% 4630 6544
PSO-Adaptive 0.08% 5545 7834

In terms of the NRMSE, the best performing constraint-handling approaches were the Probability of Feasibil-
ity (PF) and the feasibility function proposed by Bagheri et al. [7], denominated here as FFB. These presented the
lowest NRMSE, comparable to the one presented by the PSO. On the other hand, the feasibility function proposed
by Tutum et al. [6] presented a NRMSE higher than the direct approach.

Finally, Figure 4 presents the boxplots of the NRMSE. The FFT approach is clearly the worst one, as some
cases presented an NRMSE > 10%. Taking a closer look to the PF and the FFB, we can see that, in some cases,
these approaches are able to find designs even better than the those found by the PSO.

N
R

M
SE

 (%
)

0

2.5

5

7.5

10

12.5

15

SAO-Direct SAO-PF SAO-FFT SAO-FFB PSO-Stat. PSO-Adap.

(a) All approaches.
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(b) Closer look to the best-performing methods.

Figure 4. NRMSE boxplots for the mass minimization problem.
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6 Conclusion

In this paper, the Sequential Approximate Optimization of a Functionally Graded Plate was performed, based
on a Kriging surrogate. A comparison between different constraint-handling methods was presented, to understand
which is able to provide the best results for cases where the constraint functions are expensive to evaluate, which
is common in engineering design. All results were compared to the PSO, a bio-inspired algorithm commonly
employed in the optimization of FGP, in terms of accuracy and efficiency.

It was shown that the SAO can provide a major gain in efficiency for the optimization when numerical analysis
methods are employed, speeding up the process about 10 times. However, some constraint-handling approaches
were not able to provide good results, on average. The best approaches were found to be the Probability of
Feasibility (PF), proposed by Schonlau et al. [5], and the feasibility function proposed by Bagheri et al. [7]. These
presented a low NRMSE, comparable to the PSO, and, in some cases, these were able to find designs even better
than the best design found by the conventional bio-inspired method.
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