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Societal Impact Statement
Understanding of tropical forests has been revolutionized by monitoring in perma-
nent plots. Data from global plot networks have transformed our knowledge of for-
ests’ diversity, function, contribution to global biogeochemical cycles, and sensitivity 
to climate change. Monitoring has thus far been concentrated in rain forests. Despite 
increasing appreciation of their threatened status, biodiversity, and importance to the 
global carbon cycle, monitoring in tropical dry forests is still in its infancy. We provide 
a protocol for permanent monitoring plots in tropical dry forests. Expanding monitor-
ing into dry biomes is critical for overcoming the linked challenges of climate change, 
land use change, and the biodiversity crisis.

K E Y W O R D S

floristics, long term plots, tropical dry forests, vegetation dynamics, vegetation structure

1  | THE VALUE OF FOREST MONITORING

Long-term forest plots are sites where all trees above a specified 
diameter are numbered, identified, and measured, and where re-
peated censuses record growth, mortality, and recruitment. Such 
plots have become widespread in tropical rain forests, exempli-
fied by networks such as RAINFOR (Amazon Forest Inventory 
Network; Malhi et al., 2002), AfriTRON (African Tropical Rainforest 
Observation Network; Lewis et al., 2009), T-FORCES (Tropical 
Forests in the Changing Earth System; Qie et al., 2017), and CTFS-
forestGEO (Center for Tropical Forest Science-Forest Global Earth 
Observatory; Anderson-Teixeira et al., 2014). The RAINFOR, 

AfriTRON, and T-FORCES networks collectively comprise > 1,000 
1 ha plots across the tropics, where every tree with a stem diam-
eter ≥ 10 cm is measured. CTFS-forestGEO employs much larger 
(often 50 ha) plots where every stem ≥ 1 cm in diameter is measured, 
and this more intensive survey means that there are fewer (<100) of 
such plots across the tropics.

These long-term tropical rain forest plots have been extremely 
successful in achieving their primary aim of improving our knowl-
edge of tropical forest ecology, including, for example: the rela-
tionships of climate with biomass (Álvarez-Dávila et al., 2017) and 
forest structure (Feldpausch et al., 2012); the role of diversity in car-
bon storage and productivity (Coelho de Silva et al., 2019; Sullivan 
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et al., 2017); and drivers of monodominance in Amazonia (ter Steege 
et al., 2019). In addition, they have helped increase understanding 
of community floristic diversity and composition (Baker et al., 2016; 
Guevara et al., 2016; Levis et al., 2017), continental scale floristic 
patterns (Esquivel-Muelbert et al., 2017; ter Steege et al., 2006; ter 
Steege, Pitman, Sabatier, Baraloto, & Salomão, 2013), biome delim-
itation, and mapping (Silva-de-Miranda et al., 2018), and even facil-
itated the discovery of species new to science (reviewed by Baker 
et al., 2017). Repeated censuses of these plots have provided insight 
into the role of tropical forests in global cycles of carbon, energy, 
and water (Pan et al., 2011; Phillips et al., 1998), long-term trends in 
forest dynamics (Brienen et al., 2015), and the impacts of extreme 
climatic events (Feldpausch et al., 2016; Phillips et al., 2009). As 
such, these international standardized networks are a helpful mac-
roecological tool to study humanity's effect on the Earth system and 
the vital role that moist tropical forests play in carbon sequestration 
and therefore in mitigating the effects of increasing concentration 
of atmospheric CO2. Conversely, they have also demonstrated how 
tropical forest destruction and degradation account for an estimated 
1.3 Pg carbon emissions (Malhi, 2010) and that, following deforesta-
tion, the recovery of forest species composition can take centuries 
(Rozendaal et al., 2019). They may also have critical implications at 
national levels too - in Peru, for example, long-term permanent plots 
have been used to show that the country's intact rain forests have 
helped to remove 86% of the country's emissions from the combus-
tion of fossil fuels (Vicuña-Minaño et al., 2018).

2  | DRY FORESTS:  A GLOBAL RESOURCE

Long-term monitoring started in tropical rain forests and has been 
concentrated there since. This reflects the importance of such 
forests as the largest above-ground terrestrial carbon stock (Pan 
et al., 2011) and their unparalleled levels of local (alpha) diversity of 
plants and animals (e.g. Bass et al., 2010). However, half of the global 

tropics are too seasonally dry to support such forests and instead 
are home to tropical dry forests (Figure 1) and savannas (Pennington, 
Lehmann, & Rowland, 2018). An estimated one-third of the global 
population inhabits the seasonally dry tropics (GLP, 2005), and, as 
a consequence, these systems have been commonly and severely 
altered (e.g., Fajardo et al., 2005; Janzen, 1988; Linares-Palomino, 
Kvist, Aguirre-Mendoza, & Gonzales-Inca, 2010; Portillo-Quintero & 
Sánchez-Azofeifa, 2010). Because they can be erroneously viewed 
as semi-natural, and because of their smaller stature and lower local 
diversity than rain forests, tropical dry forests have been under-ap-
preciated by science and conservation. However, new information 
suggests that their floristic diversity at continental scale (gamma 
diversity) may approach that of rain forests (Flora do Brasil, 2020; 
DRYFLOR, 2016), and that they play an essential role in controlling 
the interannual variability in the global carbon cycle (Poulter, Frank, 
Ciais, Myneni, & Andela, 2014). It is clear that science and society 
cannot continue to largely ignore these tropical dry biomes.

3  | PUT TING DRY FORESTS IN THE 
SPOTLIGHT

Even thirty years ago tropical dry forests were already considered 
the most threatened tropical biome on the planet (Janzen, 1988), 
and less than 10% of their original extent remains in many Latin 
American countries, which house the largest remaining areas of this 
vegetation (Miles et al., 2006; Pennington et al., 2018; Pennington, 
Prado, & Pentry, 2000). This high level of loss is not only due to re-
cent conversion but also is a reflection of a long history of defor-
estation and use by early civilizations inhabiting dry forest areas, 
especially in Latin America (Murphy & Lugo, 1986).

Landscape modification in tropical dry forest areas has been 
exacerbated by their frequently fertile soils, and this also makes 
them a continuing focus for agricultural expansion. Although at 
local scales plant species richness in tropical dry forests does 

F I G U R E  1   Dry forest in El Coto de 
Caza El Angolo, Piura, Peru in the dry 
season showing Ceiba trichistandra (A. 
Gray) Bakh. Photograph taken by P.W. 
Moonlight
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not match that of tropical rain forest, in the Neotropics, at least, 
high floristic turnover amongst areas means that at continental 
scale their species diversity rivals that of rain forest. For example, 
DRYFLOR (Latin American Seasonally Dry Tropical Forest Floristic 
Network; 2016) recorded 6,958 woody species from just 1,602 
surveys, whereas a current estimate of the number of tree spe-
cies in the moist forests of the Amazon Basin is 6,727 (Cardoso 
et al., 2017).

Despite this diversity, tropical dry forests are woefully un-
der-protected. For example, only 1.2% of remaining Brazilian 
Caatinga dry forest and 1.4% of Colombian inter-Andean dry 
forest are protected (García, Corzo, Isaacs, & Etter, 2014; MMA, 
2016), falling massively short of the 17% target set by Aichi bio-
diversity target 11 (CBD, 2011). An integral part of improving the 
conservation outlook for tropical dry forests, and of gaining vital 
information relevant to their restoration, will come from long-term 
ecological monitoring. Such monitoring will be essential to under-
stand how their species grow, reproduce, and recruit, and the 
mechanisms behind their mortality, especially in times of climatic 
and environmental changes.

The rapid growth of long-term forest monitoring in tropical 
rain forests partly reflects internationally agreed, standard proto-
cols for plot establishment. Conversely, the slow adoption of mon-
itoring in dry biomes is a consequence, among other factors, of the 
lack of agreed protocols. Such lack of consensus in part reflects 
the wide physiognomic spectrum of tropical savannas and dry for-
ests. For dry forests, the focus of this paper, this can vary from tall, 
closed forest with a 25–30 m canopy, to more open, low, thorny, 
and cactus scrub (Pennington et al., 2000). Protocols designed for 
1 ha plots in the moist tropics (e.g. Phillips, 2018) fail to capture 
the majority of growth, mortality, or recruitment dynamics in these 
systems, primarily because mature individuals of many species do 
not reach a minimum diameter at breast height (DBH) of 10 cm. 
These smaller trees play an important role when describing struc-
ture and functioning of dry forest vegetation (Torello-Raventos 
et al., 2013). We urgently need a standard for systematizing the 
way with which the large number of researchers now working in 
dry forests can measure and monitor these ecosystems. Only with 
such a standard protocol in place can we lay the foundations for 
generating a rich legacy of scientific and practical advancement in 
ecology across the tropics.

In response to this urgent need we here present an approach in 
measuring and monitoring tropical ecosystems, specifically adapted 
to meet the challenges of long term monitoring in dry forests. 
Our protocol, the DRYFLOR Field Manual for Plot Establishment and 
Remeasurement (“DRYFLOR Plot Protocol”; please see the Supporting 
Information for English, Portuguese and Spanish versions of the 
protocol), is based on wide tropical experience and has received rig-
orous field testing in the dry forests, semi-deciduous forests, and 
related dry biomes of Peru, southeast, and northeast Brazil. The pro-
tocol design is modified and expanded from that used by RAINFOR 
(The Amazon Forest Inventory Network; Phillips, Baker, Feldpausch, 
& Brienen, 2018) across the Americas and beyond with a particular 

emphasis on the Amazon Basin. The new DRYFLOR Plot Protocol cap-
tures most dry forest structure and dynamics and is specifically de-
signed to enable a full and detailed comparison with data captured 
by humid forest protocols (Phillips et al., 2018) and by savanna and 
dry forest protocols (e.g. by measuring stems ≥ 5 cm diameter and at 
130 and 30 cm, rather than ≥10 cm diameter at only 130 cm; in its 
provisions for multi stemmed individuals). Physiognomic and dynam-
ics data from the protocol are fully compatible with the ForestPlots 
database (Lopez-Gonzalez, Lewis, Burkitt, & Phillips, 2011) and flo-
ristic data with the DRYFLOR database (www.dryfl or.info). We be-
lieve it reaches a reasonable compromise between practical field 
constraints in terms of time and data captured for the purpose of 
estimating species abundances and biomass data, but it also pro-
vides optional modules that can be implemented if a more complete 
picture of dry forest dynamics is desired.

4  | CONCLUSIONS AND CHALLENGES 
AHE AD

The DRYFLOR Plot Protocol is a product of a large, collaborative net-
work of researchers working across Latin American dry forests and 
related dry biomes. It is intended to permit the rapid and efficient 
collection of inventory data in the dry tropics and facilitate stud-
ies on the structure and function of forests. The development of 
this protocol is indebted to both the RAINFOR and the DRYFLOR 
networks and three projects funded from 2011 to 2019 by the UK 
Research Councils and the Brazilian Research Foundations FAPESP 
and FAPERJ. The uptake of the protocol in new geographic areas and 
beyond these networks will be a continuing challenge, but provides 
the considerable benefit of standardised data capture. This will en-
able further collaborative research at wider spatial scales that is vital 
for addressing questions about the current and future ecology of 
tropical forests in a rapidly changing world. The societal relevance 
of this research will ultimately depend not simply on the application 
of a universal dry forest protocol, but also on the development of 
lasting, meaningful relationships with local and regional stakehold-
ers and policymakers.
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