
Article

Assessing Landsat Images Availability and Its Effects on
Phenological Metrics

Jean-François Mas 1,* and Francisca Soares de Araújo 2

����������
�������

Citation: Mas, J.-F.; Soares de Araújo,

F. Assessing Landsat Images

Availability and Its Effects on

Phenological Metrics. Forests 2021, 12,

574. https://doi.org/10.3390/

f12050574

Academic Editor: Georgios Mallinis

Received: 3 January 2021

Accepted: 18 February 2021

Published: 3 May 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratorio de análisis espacial, Centro de Investigaciones en Geografía Ambiental, Universidad Nacional
Autónoma de México (UNAM), Morelia, 58090 Michoacán, Mexico

2 Centro de Ciências, Departamento de Biologia, Universidade Federal do Ceará, Fortaleza 60440-900, Brazil;
tchesca@ufc.br

* Correspondence: jfmas@ciga.unam.mx; Tel.: +52-443-322-38-35

Abstract: Landsat imagery offers the most extended continuous land surface observation at 30 m spa-
tial resolution and is widely used in land change studies. On the other hand, the recent developments
on big data, such as cloud computing, give new opportunities for carrying out satellite-based con-
tinuous land cover monitoring including land use/cover change and more subtle changes as forest
degradation, agriculture intensification and vegetation phenological patterns alterations. However,
in the range 0–10◦ south latitude, especially in the summer and autumn, there is a high rainfall and
high clouds presence. We hypothesise that it will be challenging to characterise vegetation phenology
in regions where the number of valid (cloud-free) remotely-sensed observation is low or when the
observations are unevenly distributed over the year. This paper aims to evaluate whether there is
sufficient availability of Landsat 7 and 8 images over Brazil to support the analysis of phenodynamics
of vegetation. We used Google Earth Engine to assess Landsat data availability during the last
decades over the Brazilian territory. The valid observations (excluding clouds and shadow areas)
from Landsat 4/5/7/8 during the period 1984–2017 were determined at pixel level. The results show
a lower intensity of Landsat observations in the northern and northeastern parts of Brazil compared
to the southern region, mainly due to clouds’ presence. Taking advantage of the overlapping areas
between satellite paths where the number of observations is larger, we modelled the loss of informa-
tion caused by a lower number of valid (cloud free) observations. We showed that, in the deciduous
woody formations of the Caatinga dominium, the scarcity of valid observations has an adverse effect
on indices’ performance aimed at describing vegetation phenology. However, the combination of
Landsat data with satellite constellation such as Sentinel will likely permit to overcome many of
these limitations.
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1. Introduction

In the context of global change, information on the magnitude and spatio-temporal
patterns of land changes is needed to assess the relationships between changes, their causes
and consequences. Remote sensing is a cheap and efficient tool to obtain consistent in-
formation about the spatio-temporal land cover dynamics. Change detection techniques
were usually based on the comparison between images acquired in different years to de-
pict land cover changes as deforestation [1–3]. With the advent of Sentinel-2 and Landsat
constellations, dense optical satellite image time series, with a high spatial resolution, are
available nowadays. Time series of remotely sensed data, particularly vegetation indices,
are valuable data sets in many Earth science fields. Atzberger et al. [4] reported nine essen-
tial applications based on time series of vegetation indices including vegetation dynamics,
environmental monitoring and climate change, mapping, biodiversity, yield production
estimates, drought monitoring, land change detection and vegetation’s biophysical vari-
ables retrieval. Recently, studies that analyze dynamic phenomena such as vegetation
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phenology use a large number of intra-annual observations [5–7]. The seasonal pattern
of the variation in reflectance of vegetated land surfaces observed from remote sensing is
called land surface phenology and reflects vegetation’s response to changes in the climate
and hydrologic cycle [8,9]. For instance, the seasonal variation in vegetation greenness
described by vegetation indices’ temporal dynamics proved to be useful for vegetation
types and tree species mapping [10–13]. Moreover, the greenness curve analysis allows
computing phenological metrics that describe annual dynamics of the vegetation and
can be related to plants productivity and aboveground carbon stored in vegetation [14].
Phenology is also essential for understanding ecosystems’ responses and feedback to the
climate system and is a reliable bioindicator of climate change [15–17].

Landsat and Copernicus (Sentinel) are two critical remote sensing programs because
they freely provide multi-spectral images with a relatively high spatial resolution (10 to
60 m). The Landsat program started in 1972 and allowed the acquisition of millions of
images. The data acquired from the Landsat 4 satellite (1982) have improved spatial
resolution (30 m) and a 16-day temporal resolution. Landsat imagery has been widely
used in land change assessment [18,19]. Currently, two satellites, Landsat 7 and 8, are
in operation. The Sentinel-2 mission consists of a constellation of two identical satellites
(Sentinel-2A and Sentinel-2B) launched, respectively, in 2015 and 2017 [20].

Although the temporal resolution from Landsat 4 onwards is sixteen days and Sentinel-
2 constellation is five days at the equator, the spatio-temporal availability of these images
is not homogeneous due to acquisition policies and atmospheric conditions (presence of
clouds). It is worth noting that in the range 0◦–10◦ south latitude, especially in the summer
and autumn, there is a high rainfall and high clouds presence [21]. In a previous study, we
assessed the availability of Landsat images during the period 1984–2019 and found that
the number of valid data was low in some Brazilian biomes such Amazonia (tropical rain
forests) and Caatinga (mosaic deciduous woody formations) due to clouds presence [22].

This study aims to evaluate the availability of Landsat 7 and 8 images over the
Brazilian territory, seeking to verify whether there is sufficient availability to support
studies of the analysis of phenodynamics of vegetation. We hypothesise that it will be
challenging to characterise vegetation phenology in regions where the number of valid
(cloud-free) remotely-sensed observation is low or when the observations are unevenly
distributed over the year.

This paper is organised as follows. Section 2 describes the materials and the methods
to map Landsat imagery availability and the modelling of the effect of valid observations
scarcity on phenological metrics estimation. Section 3 presents (i) the Spatio-temporal
patterns of image availability at the national level and for an area of the Brazilian Northeast
semi-arid and, (ii) the uncertainty of phenological metrics related with the different patterns
of availability in the semi-arid area. We discuss the impacts of remotely-sensed observation
scarcity on land studies in Section 4. Finally, Section 5 presents our conclusions.

2. Materials and Methods

A survey of available Landsat 7 and 8 surface reflectance data for Brazil was carried
out using the cloud computing platform Google Earth Engine (GEE) because it possesses a
public data archive including all available Landsat and Sentinel imagery and allows parallel
processing [23–26]. GEE has been used successfully used to carry out remote sensing-based
studies over huge areas at the global level [19,27] and national level [28–30].

Landsat Collection Level 1 data are organized into three tier categories (Real-Time,
Tier 1, and Tier 2) based on data quality and processing level. This assessment was limited to
the Tier 1 collection, which contains the highest radiometric and geometric quality images.
These data are intercalibrated between Landsat sensors and recommended by the United
States Geological Survey (USGS) for time series analysis. The number of valid observations,
at pixel level, was computed using the cloud mask information. The availability of valid
observations (without clouds) by biome and the spatial and temporal distribution of valid
observations were evaluated. Heat maps were elaborated to show the distribution of valid
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observations throughout the year in the different biomes. The heat maps were combined
with a hierarchical cluster to show the similarity of temporal distribution pattern between
biomes (see upper part of Figure 1).

Google Earth Engine (Entire Brazil)

Landsat 7 and 8
Tier 1 collection

Computing of the
number of valid
observations

Heat maps
by biome

Spatio-temporal
availability

R (Northeast semi-arid area)

Number of valid
monthly observations

Availability
patterns

K-means

clustering

Modelling of NDVI
Time series

Phenological metrics
uncertainty

Figure 1. Flowchart showing Landsat imagery processing in GEE for entire Brazil (upper part) and
availability patterns and phenological metrics assessment for the Northeast area in R (lower part).

In the next step, the study focused on an area encompassing a large portion of the
State of Ceará (Red rectangle in Figure 2) that belongs to the Brazilian Northeast semi-arid,
known as the Caatingas Dominium [31]. This ecoregion of deserts and xeric shrublands [32],
belongs to the Köppen–Geiger Bsh climate dominium semi-arid with summer and autumn
rainfalls and dry winter [33]. A stack of twelve maps representing the number of valid
monthly observations was classified using the K-means algorithm. K-means is one of the
most common clustering algorithms, is simple to implement, guarantees convergence and
scales to large data sets. It carries out clustering, making the intra-cluster observations sim-
ilar while keeping the clusters as different as possible. In this study, each resulting cluster
represents a different temporal pattern of data availability. The average and the variance of
the number of monthly available valid observations were computed for each cluster.

As the following step, we modelled the effect of the lack of valid observations on
phenological metrics estimation. For that, a curve fitting method proposed by Kloster-
man et al. [34] was applied to a high temporal resolution Sentinel Normalized Difference
Vegetation Index (NDVI) dataset obtained from an overlapping area between two paths of
the Sentinel satellites. We chose the Klosterman method because Zhou [35] identified it as
the most robust among four models to determine the phenological metrics for vegetation,
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presenting a single growth season. This enables us to obtain NDVI curves for dry tropical
forest plots that we used as references.

Figure 2. Brazilian biomes.

Incomplete data were generated from the reference curves following the different
availability patterns observed in the Northeast semi-arid area. For this, likely acquisition
dates were modelled for each pattern of image availability (cluster) by computing the
expected number of valid monthly observations in a given availability pattern generat-
ing random numbers from a Gaussian distribution based on the average and standard
deviation previously calculated. Then, time series of NDVI values were generated using
the reference curve equation and adding random noise to consider the degradation of
received radiance at the sensor due to atmospheric effects and instrumental (sensor) noises.
A curve was fitted to these incomplete NDVI data, and phenological metrics were extracted
according to Klosterman et al. [34]. The curvature rate was calculated and inflection points
were evaluated on its derivative, which enabled the identification of greenup, maturity,
senescence and dormancy dates. The uncertainty of phenological metrics was evaluated
according to the bootstrap approach proposed by Filippa et al. [36] and implemented in
the phenopix R package [36]. Fitting was applied recursively to randomly-noised original
data, providing an ensemble of fitted curves and derived metrics, allowing an uncertainty
estimate of both fitting parameters and phenological metrics. The uncertainty measure was
the width of the interval, which contains 95% of the metric values. Two hundred NDVI
time series were modelled for each availability pattern, and the uncertainty values were
averaged (see lower part of Figure 1).

Image search and processing in the Google Earth database was performed through
the Earth Engine Code Editor (https://code.earthengine.google.com/; accessed on 16
February 2021) [23]. Statistical analyzes, graphs and maps elaboration were made using
the R software [37]. The R packages raster [38], RStoolbox [39] and phenopix [36] were
particularly useful.

3. Results

Figure 3 shows the total number of valid observations (pixel without clouds) by
trimester for the period 2014–2019 (Landsat 7 and 8) over the Brazilian territory, that is,
how many times each pixel was presented in an image without cloud interference. It can
be observed that data availability varies significantly in space and time. In the Amazon, it
is worth noting the lack of valid observations during a large part of the year (November to
May). To a lesser extent, Caatinga and Mata Altântica biomes also present a similar pattern
(Figure 4).
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Another interesting aspect observed in Figure 3 is the presence of north–south oriented
strips in which there are approximately twice as many valid observations. These areas
correspond to the overlap between two satellite paths and are narrower at the equator
(approximately 20 km wide) and wider at high latitudes (60 km in the south of Brazil).

Figure 3. Number of valid observations by trimester during the period 2014–2019.

Figure 4. Average number of valid monthly observations by Brazilian biome (2014–2019).
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Figure 5 shows the image classified using the number of valid monthly observations.
The clusters 3, 4, 8 and 10 correspond to overlapping areas between Landsat scenes and
have a larger number of data during the period 2014–2019.

Figure 5. Map of clusters based on monthly availability of valid observations (left), heatmap showing
the average availability pattern for each cluster (right). Each cluster represents a different pattern of
valid observations availability over the year.

In order to employ a realistic phenological curve to model the effect of the lack of valid
information on metrics, we constructed a reference curve from a dry tropical forest plot
located on the overlapping of two Sentinel paths. The reference curve was obtained fitting
the Sentinel derived NDVI values using the generalized sigmoid formula proposed by
Klosterman et al. [34], and equation parameters were determined (Figure 6). The variability
of Landsat NDVI values around the reference curve enables us to evaluate the noise related
to data acquisition (standard deviation of the residuals). Then acquisition dates were
modelled for each pattern of image availability (cluster), and time series of NDVI values
were generated using the equation of the reference curve and adding the random noise.

Figure 6. NDVI curve fitted from Sentinel observations (black circles) and four phenological metrics
used in this study (1 November 2018–30 October 2019).

Phenological metrics, along with their uncertainty, were computed from the NDVIs.
Table 1 shows the confidence interval of metrics for each pattern of image availability.
It can be observed that the unique pattern of observation availability which enables the
method to estimate the four metrics with confidence is pattern 3 which corresponds to the
“exceptional” case of overlapping between two satellite paths with frequent observations.
The dates of senescence and dormancy, which correspond to the dry season and a larger
number of observations, are determined without uncertainty. At the opposite, greenup and
maturity dates based on a lower number of observations (rainy season) and the steeper
part of the curve present a considerable uncertainty.
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Table 1. Uncertainty of phenological metrics (width of the confidence intervals including 95% of the
estimated values expressed as a number of days).

Cluster Greenup Maturity Senescence Dormancy

1 58.5 50.4 0 0
2 84.9 54.8 0 0
3 13.4 22.7 0.1 4.1
4 20.4 34.6 0 0.1
5 44.8 46.9 0 0
6 28.1 55.2 0 0
7 42.4 46.5 0 0
8 47.8 55.5 0 0
9 38.8 55.8 0 0
10 32.2 55.8 0 0

4. Discussion

Phenological data obtained from remote sensing present a large and growing resource
for monitoring global change and vegetation interaction. However, in tropical regions, the
presence of clouds often limits the availability of remotely sensed observations during a
part of the year. This study assessed the effect of the lack of available observations taking
into account different temporal pattern of images availability over a semi-arid region
in northeast Brazil. Our preliminary results indicate that the lack of valid observations
has an adverse impact on the phenological metrics’ certainty. The availability of Landsat
data (two satellites with a 16 days revisiting period), in the climatic conditions of the
Caatinga biome limits the accurate estimate of these metrics strongly. It is worth noting that
the uncertainty of a remote sensing product accumulates and propagates over and over
through the processing flow and ultimately affects the final results’ reliability [40,41]. The
Sentinel constellation, which has a better temporal resolution, can be useful in improving
these estimates. Moreover, the combination of different sensors such as the Harmonized
Landsat Sentinel-2 Surface Reflectance Product [42] will permit to overcome many of
these limitations [43,44]. Another option can be using MODIS data, which permits a high
temporal resolution but at the expense of spatial resolution [11,45,46]. However, MODIS
and Sentinel 2 provided data from 1999 and 2015, respectively, (2002 and 2017 as two
satellites based constellations). Therefore, studies aiming at monitoring vegetation over
more extended periods to reveal long term land surface dynamics at a relatively high
spatial resolution should use Landsat data.

A similar impact of observation scarcity will likely be observed on land change
detection techniques based on time series of vegetation indices such as, for example, BFAST.
This algorithm decomposes the time series into seasonal, trend and remainder components
to detect abrupt changes [47]. In further researches, a similar modelling approach will be
used to assess this impact.

Klosterman et al. [34] found that the choice of analysis method affects the error, the
magnitude of bias, and in some cases, the direction of the bias of the estimate of the metrics.
Zhou [35] realised growth curve fitting using different methods and found that double
logistic method, as Klosterman’, is adapted to model the vegetation growing process with
a single growth peak. The spline method presents a good performance for fitting growth
curves of vegetation with multiple growth seasons. In this sense, in further researches,
other fitting methods and metrics should be explored in the case of Caatinga vegetation.
For instance, as it can be noted in Figure 6, that the fitted curve does not follow the rapid
steep greenup at the beginning of the rainy season.

This article assessed the impact of observations’ scarcity on vegetation phenology
metrics obtained using a NDVI Landsat time series and a specific fitting method. How-
ever, there are additional sources of errors. Helman [9] discussed the principal limitations
that could lead to the misinterpretation of the remotely sensed data. First, the different
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vegetation indexes have distinct responses to greenness dynamics and changes in wet-
ness conditions and surface brightness. For instance, the enhanced vegetation index (EVI)
presents little response to soil exposure and less saturation over dense vegetation than
the NDVI. This author suggests using different vegetation indexes for different biomes.
Remotely sensed imagery provides information at aggregated spatial resolutions. There-
fore, signals may contain information plant species with different phenologies or even
from vegetated and non-vegetated covers. The signal can also be affected by changes
in multi-canopy layers and by the sun-sensor-target geometry. Furthermore, there are
many smoothing and curve-fitting methods, resulting in significantly different estimates of
metrics’ values [48].

Finally, in the present study, we do not treat a critical dimension of land surface phe-
nology which is the relationship of the metrics with ground-based observations, ecological
processes such as carbon uptake, photosynthesis, gross primary production or sap flow
density [49–51] and anthropic actions as fire and land use management [52].

5. Conclusions

The recent developments on big data allow carrying out satellite-based continuous
land cover monitoring over huge areas using high temporal resolution data. Such mon-
itoring systems can give insights into the study of forest deforestation and degradation,
agriculture intensification and vegetation alterations in response to climatic change. Due
to the tremendous amount of information, monitoring systems are increasingly based on
automatized algorithms and indices computing. Therefore, particular attention has to be
played concerning the accuracy of the obtained products and the propagation of error.

In this study, we show that the availability of intra-annual satellite observations varies
significantly over space and that the scarcity of valid observations during a part of the year
has an adverse effect on the certainty of the estimate of indices such as phenological metrics.
However, the minimum number of valid observations needed to adequately capture the
phenological curve is not absolute and depends on the timing (temporal pattern) of the
cloud-free observations and the type of vegetation. Therefore, the modelling approach pro-
posed in this paper enables the evaluation of the uncertainty of each availability temporal
pattern. Further research has to be done in order to determine the most robust methods
and metrics using this modelling approach.

Additionally, the combination of Landsat data with satellite constellations such as
Gaofen, PlanetScope and Sentinel will improve the frequency of the observations and
permit to overcome many of these limitations.

Phenological metrics derived from remotely sensed data must be interpreted with
caution, in particular when the number of observations is limited. The use of situ sensors
and phenocams and the knowledge of the plant species’ phenological behaviour obtained
from field and laboratory studies can be critical to carry out this task. The evaluation
procedure proposed in this study can provide guidance for further evaluation of the
certainty of any metrics using data sets from other sensors.
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