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ABSTRACT

Deep eutectic solvents have many advantages, making them a promising alternative in replacing
ionic liquids and organic solvents. Besides, DESs has received much prominence due to its
diverse applications: Electrodeposition of metals, organic synthesis, gas adsorption, and
biodiesel production. Therefore, this work analyzed the effect of the temperature increase (298
K to 353 K) on the behavior of the Co?* ions in three eutectic solvents through electrochemical
techniques and computational simulations. From the electrochemical analysis carried out, the
increase in temperature caused a reduction in specific mass and an increase in the diffusion
coefficient. Besides, the activation energy values were of 15.3, 29.9, and 55.2 kJ mol ™! for
1ChCI:2EG, 1ChCl:2U, and 1ChCI:2G, respectively. The computational simulations indicate
that the increased temperature effect caused the replacement of DLH molecules by anions
chloride around Co?* ions for the SDW1 and SDWS3 systems between the temperatures of 298
K to 353 K, except for the SDW2 system that the replaced occurred in the interval of 313 K to
353 K. Besides, the increase of temperature occasioned the increase of strength for Co-Cl
interaction and weakened the interactions between the Co?* ions with the oxygen of DLH

molecules.

Keywords: deep eutectic solvents; cobalt; electrochemical techniques; computational

simulations.



RESUMO

Solventes eutéticos profundos possuem varias vantagens, tornando uma alternativa promissora
para a substitui¢do dos liquidos i6nicos e solventes organicos. Além disso, esses solventes tem
recebido muito destaque devido as suas diversas aplicacOes: eletrodeposi¢do de metais, sintese
organica, adsorcdo de gases e producao de biodiesel. Portanto, esse trabalho analisou o efeito
do aumento da temperatura (298 K a 353 K) no comportamento dos ions Co?* em trés solventes
eutéticos através de técnicas eletroquimicas e simulacdes computacionais. A partir da analise
eletroquimica realizada, 0 aumento da temperatura ocasionou na reducgdo da massa especifica e
um aumento no coeficiente de difusdo. Além disso, os valores da energia de ativacéo foram de
15.3, 29.9 e 55.2 kJ mol? para 1ChCI:2EG, 1ChCl:2U e 1ChCI:2G, respectivamente. As
simulacdes computacionais indicam que o aumento da temperatura ocasionou a substituicdo
das moléculas de DLH por &nions cloreto em torno dos ions Co?* para os sistemas SDW1 e
SDWS3 entre as temperaturas de 298 K e 353 K, exceto para o sistema SDW?2 que a substituicdo
ocorreu no intervalo de 313 K a 353 K. Além disso, 0 aumento da temperatura ocasionou o
aumento na forca da interacio Co-Cl e enfraqueceu as interagdes entre os ions Co?* com 0s

oxigénios das moléculas de DLH.

Palavras-chave: solvente eutético profundo; cobalto; técnicas eletroquimicas; simulacGes

computacionais.
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1 INTRODUCTION

The Deep eutectic solvents (DESs) are known as a new class of ionic liquid (ILs)
analogs due to their similar physical properties, among them: Low vapor pressure, relatively
wide liquid range, and nonflammability (SMITH; ABBOTT; RYDER, 2014). Besides, the
DESs have several advantages concerning traditional ILs such as easy preparation, low cost
(ZHANG et al., 2012), high purity, and biodegradable. DESs are usually obtained through the
complexation of a quaternary ammonium salt with a metal salt or hydrogen donor bond (HBD)
(SMITH; ABBOTT; RYDER, 2014). The main property observed in the DESs is the decrease
of the melting point of the mixture concerning the isolated components pure.

The interest in DESs has been increasing in recent years due to the vantages cited
above, consequently, this solvent has been applied in several areas, such as biodiesel production
(ZHAO; BAKER, 2013), chemistry synthesis (SMITH; ABBOTT; RYDER, 2014), adsorption
and capture CO2 (GARCIA et al., 2015), polymers synthesis (CARRIAZO et al., 2012),
enzyme catalysis (GORKE; SRIENC; KAZLAUSKAS, 2008), and electrochemical (SMITH;
ABBOTT; RYDER, 2014).

The electrodeposition of metals and metal alloys is a main electrochemical field
that has been employed the use of DESs due to the high solubility of metal salts, and the high
conductivity. Besides, most DESs have a wide electrochemical window concerning the water.
Therefore, the use DESs is favored in the electrodeposition of metals (BARRADO et al., 2018).
Several articles were published utilized the DESs in the electrodeposition of Co-Cr
(SARAVANAN; MOHAN, 2012), Sn (ABBOTT et al., 2007), In (ALCANFOR et al., 2017),
Ni (ABBOTT et al., 2015), and Cu (ABBOTT et al., 2009; SEBASTIAN; VALLES; GOMEZ,
2014).

One of the most recent articles utilizing the DESs in the electrodeposition of metals
was published by Bezerra-Neto et al (BEZERRA-NETO et al., 2020). This article analyzed the
effect of water on the behavior of Ag* ions in DESs based on urea and choline chloride.
According to Bezerra-Neto et al (BEZERRA-NETO et al., 2020), the increase in the percentual
of water occasioned the replacement of a few urea molecules by water molecules around the
Ag" ions. Besides, another article too published by Bezerra-Neto et al (BEZERRA-NETO et
al., 2018) analyzed the effect of water on the behavior of Cu?* ions in DESs based on ethylene
glycol and chloride choline. The results indicated that the increase of percentual of water

occasioned in replacing ethylene glycol molecules by water molecules around Cu?* ions.
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In both articles cited above were utilized two complementary approaches. The first
approach was used electrochemical techniques through Cyclic Voltammetry (CVs) to obtain
the operating electrochemical potential range in the DESs. The computational simulations by
Molecular Dynamics (MD) were used as the second approach to understanding the behavior at
the molecular level of Ag™ ions in the urea-chloride choline (BEZERRA-NETO et al., 2020)
and Cu?* ions in ethylene glycol-chloride choline (BEZERRA-NETO et al., 2018).

Until now, the electrodeposition of cobalt in the DESs was not analyzed together
by both approaches cited above. Then, the cobalt metal was chosen due to the applications as
electrocatalysis (XU, 2019), sensors (LI, 2019), biomedical applications (LIM; MAJETICH,
2013), and antibacterial activity (SYED KHADAR et al., 2019). The master's dissertation
presented is about the behavior of the Co?' ion in three eutectic solvents through an
electrochemical analysis by cyclic voltammetry and chronoamperometry techniques, followed
by computational simulations by molecular dynamics and QTAIM calculations. All these

systems were obtained and analyzed in the period from June 2019 to June 2021.
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Chapter 1

ELECTROCHEMICAL AND THEORETICAL INVESTIGATION ON THE
BEHAVIOR OF THE Co?" ION IN THREE EUTECTIC SOLVENTS
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Abstract: Deep eutectic solvents (DESs) have many advantages, making them a promising
alternative in replacing ionic liquids and organic solvents. Besides, DESs has received
much prominence due to its diverse applications: Electrodeposition of metals, organic
synthesis, gas adsorption, and biodiesel production. Therefore, this work analyzed the
effect of the temperature increase (298 K to 353 K) on the behavior of the Co 2+ ions
in three eutectic solvents through electrochemical techniques and computational
simulations. From the electrochemical analysis carried out, the increase in temperature
caused a reduction in specific mass and an increase in the diffusion coefficient.
Besides, the activation energy values were of 15.3, 29.9, and 55.2 kJ mol -1 for
1ChCI:2EG, 1ChCl:2U, and 1ChCI:2G, respectively. The computational simulations
indicate that the increased temperature effect caused the replacement of HBD
molecules by anions chloride around Co 2+ ions for the SDW1 and SDW3 systems
between the temperatures of 298 K to 353 K, except for the SDW2 system that the
replaced occurred in the interval of 313 K to 353 K. Besides, the increase of
temperature occasioned the increase of strength for Co-Cl interaction and weakened
'the interactions between the Co 2+ ions with the oxygen of HBD molecules.
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RESUMO
Solventes eutéticos profundos possuem varias vantagens, tornando uma alternativa promissora
para a substitui¢do dos liquidos i6nicos e solventes organicos. Além disso, esses solventes tem
recebido muito destaque devido as suas diversas aplicacdes: eletrodeposi¢cdo de metais, sintese
organica, adsorcao de gases e producao de biodiesel. Portanto, esse trabalho analisou o efeito
do aumento da temperatura (298 K a 353 K) no comportamento dos ions Co?* em trés solventes
eutéticos através de técnicas eletroquimicas e simulacdes computacionais. A partir da analise
eletroquimica realizada, o0 aumento da temperatura ocasionou na reducéo da massa especifica e
um aumento no coeficiente de difusdo. Além disso, os valores da energia de ativacao foram de
15.3, 29.9 e 55.2 kJ mol? para 1ChCI:2EG, 1ChCl:2U e 1ChCI:2G, respectivamente. As
simulacdes computacionais indicam que o aumento da temperatura ocasionou a substituicdo
das moléculas de DLH por anions cloreto em torno dos ions Co?* para os sistemas SDW1 e
SDWS3 entre as temperaturas de 298 K e 353 K, exceto para o sistema SDW?2 que a substituicdo
ocorreu no intervalo de 313 K a 353 K. Além disso, 0 aumento da temperatura ocasionou o
aumento na forca da interacio Co-Cl e enfraqueceu as interagdes entre os ions Co?* com 0s

oxigénios das moléculas de DLH.

Palavra-chave: Solvente eutético profundo; Cobalto; Técnicas eletroquimicas; Simulacdes

computacionais.
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ABSTRACT

Deep eutectic solvents (DESs) have many advantages, making them a promising alternative in
replacing ionic liquids and organic solvents. Besides, DESs has received much prominence due
to its diverse applications: Electrodeposition of metals, organic synthesis, gas adsorption, and
biodiesel production. Therefore, this work analyzed the effect of the temperature increase (298
K to 353 K) on the behavior of the Co?* ions in three eutectic solvents through electrochemical
techniques and computational simulations. From the electrochemical analysis carried out, the
increase in temperature caused a reduction in specific mass and an increase in the diffusion
coefficient. Besides, the activation energy values were of 15.3, 29.9, and 55.2 kJ mol ™! for
1ChCI:2EG, 1ChCl:2U, and 1ChCI:2G, respectively. The computational simulations indicate
that the increased temperature effect caused the replacement of HBD molecules by anions
chloride around Co?* ions for the SDW1 and SDWS3 systems between the temperatures of 298
K to 353 K, except for the SDW2 system that the replaced occurred in the interval of 313 K to
353 K. Besides, the increase of temperature occasioned the increase of strength for Co-Cl
interaction and weakened the interactions between the Co?" ions with the oxygen of HBD

molecules.

Keywords: Deep eutectic solvents; Cobalt; Electrochemical techniques; Computational

simulations
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1 Introduction

Deep eutectic solvents (DESs) are a mixture of organic salts that act as an acceptor of
the hydrogen bond (HBA) with a molecule that acts as a donor of the hydrogen bond (HBD).
The main property of DESs is the decrease in the melting point of the mixture concerning its
respective isolated components pure, the reduction occurs by the displacement of charge present
in the hydrogen bond between the halide ion with the compound that acts as HBD.!

Some physical and chemical properties of eutectic solvents are similar to ionic liquids
(ILs),! however, ILs have a high cost, and the vast majority have low biodegradability and
dangerous toxicity,” therefore, DESs is a promising alternative to replace ionic liquids. Besides,
eutectic solvents have several advantages over organic solvents, such as non-toxicity,
biodegradability, low vapor pressure, and high thermal stability.>

Furthermore, DESs are hygroscopic and the accumulation of water in these solvents can
cause a significant change in its chemical structure and physicochemical properties.* For
instance, our group>® showed that the addition of water (ranged from 0.1 up to 10%)
electrocatalyses the electrochemical reduction of Cu®* and Ag" species on the Pt surface from
choline chloride and ethylene glycol at a molar ratio 1:2 (1ChCI:2EG) and choline chloride and
urea at a molar ratio 1:2 (1ChCI:2U), respectively.

Due to these advantages concerning other solvents and liquids, the interest in DESs has
been increasing in recent years in several areas, such as electrodeposition, and molecular
modelling based on density functional theory (DFT) and molecular dynamics (MD) allow the
comprehension of the interactions between the ionic metallic species with the solvent
molecules. For instance, for Cu?* in ethaline®, MD simulations indicated that the water
molecules replace the ethylene glycol molecules that were coordinated with Cu?* ions, while
the interactions between Cu?* and CI- ions were not influenced by the presence of water. For
Ag" in reline®, the MD calculations suggested that water molecules do not interact strongly with
Ag** ions but induce a small reduction in the number of urea molecules around of the ion and
that the water molecules adjust to free spaces in the mixture.

Cobalt and cobalt-based alloys coatings are promising materials for applications

9

including sensors,” biomedical applications,®’ electrocatalysis,'” and antibacterial activity.!!

Co-based coatings can be prepared using high-vacuum techniques'? such as chemical vapour

deposition,'* pulsed laser deposition'* and sputtering,'

among others. However, all these
techniques require sophisticated equipment and/or high temperatures processes which increase

the cost of the final product, making production on an industrial scale difficult. Alternative low-
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cost techniques, such as hydrothermal methods!®!”

also have been used for the preparation of
these materials, but long periods of synthesis and further heat treatments are needed.

In the present work, it is reported the effect of the temperature on the transport and
electrochemical properties of Co?* ions dissolved in three DESs (1ChCI:2EG, 1ChCl:2U and
1ChCI:2G). Furthermore, theoretical computational methodologies include classical mechanics
by MD® and quantum mechanics by Bader’s Quantum Theory of Atoms in Molecules
(QTAIM)**2° were applied to understand the interaction between the Co?* species with others

chemical species present in the electrolytes.

2 Materials
2.1 Experimental methods

The reagents used were: choline chloride (ChCl, HOC>H4N(CH3);Cl, Sigma-Aldrich,
98%), ethylene Glycol (EG, HOCH>CH>OH, Sigma-Aldrich, 99%), urea (U, (NH2).CO,
Sigma-Aldrich, 99%), and glycerol (G, C3Hs(OH)3, J.T Baker, 99%). All reagents were used as
received without further purification. Eutectic mixtures were prepared following the
methodology described by Abbott et al.?! The reagents were mixed in a 1:2 molar ratio
(1ChCI:2EG, 1ChCI1:2U and 1ChCI:2G) and heated to 353 K until a homogeneous, colourless
liquid formed.

The amount of water in DES mixtures was monitored over 7 (seven) days in ambient
conditions by Karl-Fischer Titration (Metrohm-Eco Chemie), and the results showed that after
this interval of time the water content did not exceed 25 ppm, as can be seen in Fig. S1 (in
TESI), which corresponds to 0.0025%. After obtaining the eutectic mixtures, CoCl> was added
to obtain an electroplating solution containing 0.1 mol L™! CoCl, (CoCl,.6H,0, Sigma-Aldrich,
98%).

All electrochemical experiments were performed in a three-electrode electrochemical
cell under air at 298 K, 313 K, 333 K, and 353 K. The electrochemical data were obtained from
a potentiostat/galvanostat (AUTOLAB PGSTAT30, Metrohm-Eco Chemise) controlled by
NOVA 2.1 software. The pseudo-reference was Ag/AgCl immersed in the corresponding DESs.
A Pt plate (1 cm?) was used as the counter-electrode, and a Cu disc, with a diameter of 0.18 cm
was used as the working electrode. Before each electrochemical experiment, the working
electrode was sanded with emery paper from 400 up to 1200 mesh. Furthermore, the cleaning
procedure was applied to all Cu electrodes before the coating depositions: degreasing in 10 %
NaOH solution, rinsing in Milli-Q water, quickly immersed in 10 % HCI solution, rinsed again

in Milli-Q water and, finally air-dried.
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The cyclic voltammograms (CVs) were recorded for each investigated temperature
between -0.7 V and -1.2 V at 10 mV s™'. The diffusion coefficients (D) of the Co?* specie in the
three DESs were determined by the chronoamperometry technique, applying a potential step
from a region where there was no faradaic process, to a region of diffusional control of the

reduction of the Co*" species. The current transients were adjusted with the Cottrell equation,

Equation 1:
1
AD?C
I(t) === (1)
(mt)2

where 1 is the current (A), n is the number of electrons involved in the process, F is the
Faraday constant (96 485 C mol™), A is the electrode geometric area (cm?), D is the diffusion
coefficient (cm? s1), C is the concentration of the species in solution (mol L) and t is the time
(s).

The viscosity and specific mass measurements of the eutectic electroplating solutions
containing 0.1 mol L™! CoCl,.6H,0, were performed on an Anton Paar Stabinger viscometer,
model SVM 3000, at the following working temperatures, 298 K, 313 K, 333 K, and 353 K.

2.2 Simulation methods

The Density Functional Theory (DFT) 22 was utilized in the optimize in the gas phase
of HBD molecules (ethylene glycol, urea, and glycerol) and choline ion, through of hybrid
functional B3LYP 23 and the base set 6-311G+(d,p),?* from the GAUSSIAN 09 package.? After
optimization, the Multiwfn software 2 was used to obtain partial charges through CHELPG
method 2’ for some components of the system (ethylene glycol, urea, glycerol, and choline).
Fig. 1 showed the structures used in the MD simulations and the nomenclature of main atoms
studied
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J Hydrogen ‘ Cobalt O Chloride

Fig. 1 Structures used in the MD simulations and nomenclature of main atoms. (a) ethylene

glycol, (b) urea, (c) glycerol, (d) choline, (e) cobalt, and (f) chloride.

All MD simulations were realized by using Gromacs 2020.4 package.”® 800 HBD
molecules, 400 choline ions, 418 chloride ions, 9 cobalt ions, and 54 water molecules were
added in the cubic box of simulation with dimensions of 8 nm X 8 nm X 8 nm for simulate in
the temperatures of 298 K, 313 K, 333 K, and 353 K. Table 1 shows the number and the

components present in each system.

Table 1 Number of molecules and ions present in each system used in MD simulations

Systems
SDW1 SDW2 SDW3
Ethylene glycol (800) Urea (800) Glycerol (800)
Choline (400) Choline (400) Choline (400)
Chloride (418) Chloride (418) Chloride (418)
Cobalt (9) Cobalt (9) Cobalt (9)
Water (54) Water (54) Water (54)

The force field chosen to describe the systems was OPLSS-AA.? The parameters used
to describe cobalt were obtained by L. Zhao et al.*® The geometry of systems was optimized
through the steepest descent algorithm 3 for 100.000 steps with an energy tolerance of 10 kJ

mol™* nm™and step size of 10 nm. Subsequently, 10 ns equilibrium dynamics with NVT and
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NPT ensembles were realized. The first one was performed using the V-rescale method 2 in
temperatures of 298 K, 313 K, 333 K, and 353 K for each system. For the NPT ensemble, the
system pressure was controlled using a Parrinelo-Rahman barostat 23 in the value of 1.0 bar.
Finally, 200 ns production MD was performed through of Leap-Frog algorithm 34 with a time
step of 2.0 fs. The protocol and an example of the input file of production MD are available (in
TESI).

The QTAIM was employed to obtain deeper insight into the interactions between Co?*
ions with each system investigated.®? The equilibrium structures from 200 ns MD simulations
were chosen as a starting point for the QTAIM calculations. Only components within a 5.0 A
radius from the cobalt ion were considered for the calculations. Thereafter, single-point
calculations were performed at B3LYP hybrid functional.?®> The LanL2DZ * and SDD %
effective core potentials (ECP) along with their valence basis set were used for cobalt ion, and
6-31+G(d,p) basis set for the C, CI', H, N, and O atoms by using GAUSSIAN 09 package
including the electron density which was further used for QTAIM calculations. All topological
information and Electron Localization Function (ELF)3’ analysis were calculated by Multiwfn

software.28

3 Results
3.1 Experimental results

Cyclic voltammetry was used to obtain the working electrochemical potential range of
the investigated eutectic mixtures at different temperatures. The CVs obtained for all the
investigated solvents, without Co addition, are shown in Fig. S2 (in TESI). No electrochemical
process was observed in the CVs obtained from 1ChCl:2EG and 1ChClL:2G. However, an
electrochemical process at about —1.2 V vs Ag/AgCl, attributed to the electrochemical reduction
of water % is observed in the CVs obtained from 1ChCI:2U.

CVs for the electrochemical reduction of Co on Cu are shown in Fig. 2. During the
forward scan, a single peak, related to the electrochemical reduction of Co**/Co, appears in all
the CVs. It is especially well-defined for 1ChCl:2U, since for both 1ChCI:2EG and 1ChCI:2G,
Co electrodeposition occurs simultaneously with the electrochemical reduction of both
solvents, but for 1ChCl:2U, Co electrodeposition takes place in a potential region that is free
from the electrochemical reduction of the solvent. The electrochemical reductions of the three
eutectic solvents are attributed to the reduction of choline ions (Ch"), as well as hydroxyl groups
(EG and G), and traces of water.>>** Furthermore, an increase in the bath temperature leads to

an increase in the peak current, which is related to the decrease of the electrolyte viscosity
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(Table S1, in TESI) with temperature and the corresponding increase in the diffusion coefficient
of Co?" (Table S2, in TESI). Thus, these CVs (Fig. 2) suggest that Co electrodeposition is more
efficient in 1ChCI:2U than in the others two electrolytes. Furthermore, these CVs also show
current loops between the forward and reverse scans (except for the CVs obtained from
1ChCI:2G solutions at 298 K and 313 K), which indicate that nucleation plays an important

role in Co electrodeposition on Cu.
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Fig. 2 Cyclic voltammograms obtained on Cu electrode in (a) 1ChCIl:2EG, (b) 1ChCl:2G, and

(c) 1ChCI1:2U containing 0.1 mol L' CoCl,.6H>O at several temperatures. Scan rate of 10 mV

s L,

The diffusion coefficients (D) of the Co*" species were calculated by the well-known
Cottrell method. The experimental current-time curves are shown in Figs. S3-S5 (in TESI) were
fitted by the Cottrell equation (Equation 1). The values of the diffusion coefficients obtained
for Co*" species in DESs by this method are listed in Table S2 (in $ESI). These results are an
average of three experiments, and the mean value for each diffusion coefficient is shown with
its standard deviation. Comparing the Co*" diffusion coefficients obtained from the three

studied DESs, at the same temperature, it is clear that the Co?" diffusion coefficient is



27

significantly higher for 1ChCI:2EG, which also has the lowest viscosity values (Table S1, in
TESI). Moreover, all diffusion coefficients increased as the bath temperature increased, which
also suggests an improvement in the mass transport as the electrolyte viscosity decreases with
temperature. Table S1 (in TESI) shows the values dynamic viscosity (n) of the three
electroplating solutions at different temperatures. The increase in the bath temperature from
298 K up to 353 K promoted a decrease in viscosity, as expected for regular liquids (Table S1,
in TESI).

The temperature dependence of the Co>" species diffusion coefficients was well fitted

by a equation similar to that of Arrhenius (Equation 2).

InD = InD, — ’;:—ZT )

In equation 2, Dy is a constant, kg is the Boltzmann constant, 7 is the absolute
temperature and Ep is the apparent activation energies for the diffusion of the Co?" species.
From the fitted gradient, Ep values of 15.3,29.9, and 55.2 kJ mol ! for 1ChCI:2EG, 1ChCl:2U,
and 1ChCIl:2G, respectively, were calculated. The higher activation energy values presented by
1ChCl:2G indicate that the mass transport in this solvent encounters a higher energy barrier
(and also requires a higher consumption of electric energy) in comparison to the 1ChCL:2EG

and 1ChCl:2U electrolytes.
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Fig. 3 Arrhenius plots of diffusion coefficient of Co?" species in (a) 1ChCIl:2EG, (b) 1ChCI:2G,

and (c) 1ChCl:2U.

The Stokes—FEinstein equation (Equation 3) describes the diffusion of spherical particles

through a liquid of low Reynolds number:

= o ©

- 6mna

where ks is the is the Boltzmann constant, 7 is the absolute temperature and a is the
solvodynamic radius. It has been applied to other non-aqueous electrochemical systems. For

4 ysed it to describe the behaviour of cobaltocenium

example, Rogers and co-workers
hexafluorophosphate and ferrocene in several room temperature ionic liquids (RTILs), while
Huang et al.** studied how well it applies to the diffusion of small molecules such as H»S and
SO, in RTILs.

It was assessed whether Equation 3 describes the relationship between the Co?"
diffusion coefficient and the DESs viscosity by plotting D against 7/4 and the found
relationships are shown in Fig. 4. As seen from Fig. 4, all plots display the linear relatioship

between D and 7/, enabling us to calculate effective values of @ of 0.95, 1.06, and 0.70 nm for
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1ChCIL:2EG, 1ChCl:2U, and 1ChCI:2G, respectively. All three DESs yielded physically
reasonable values close to 1 nm. However, such values are high in comparison with effective
ionic radius of Co?" in crystalline structure (0.058 - 0.09 nm),** suggesting that dissolved Co*"

ions in the eutectic mixtures could be coordinated with complexing agents.
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Fig. 4 Stokes-Einstein plots obtained from (a) 1ChCIl:2EG, (b) 1ChCI:2G, and (c) 1ChCI:2U.

3.2 Computational results
3.2.1 Validation of MD simulations

To validate the systems simulated through of OPLS-AA force field and CHELPG
method is necessary to correlate the data of specific mass (Fig. 5) and diffusion coefficient (Fig.
6) obtain by experimental and theoretical methods. Fig. 5 showed the values of specific mass
in function of temperature for the SDW1 (Fig. 5a), SDW2 (Fig. 5b), and SDW3 (Fig. 5¢)
systems. Analyzing the increasing temperature effect, occurred the reduction of specific mass
in the three systems simulated (Fig. 5a, 5b, and 5c) for two methods (experimental and
theoretical) analyzed. The diffusion coefficient values are present in Fig. 6 for the same systems
analyzed previously (Fig. 6a, 6b, and 6c). Analyzing the increasing temperature effect, was
observed the increase of values for the diffusion of coefficient. Therefore, OPLS-AA force field

and CHELPG method may be used to describe the interactions presents in the systems.
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3.2.2 Co?" ions in the SDW1 system

Fig. 7 shows the radial distribution function (RDF) that performs a structural analysis
of the system through probability density of the components around the Co?’ ions at
temperatures 298 K, 313 K, 333 K, and 353 K (Figs. 7a, 7b, 7¢c, and 7d, respectively). The RDF
results shown in Fig. 7 indicated that the main interaction is between Co?" ions and the anions
chloride around 3.50 A independent of temperature; the high value of g(r) for Co-Cl interaction
is explained due a strong attraction electrostatic between these ions. The second and third
strongest interactions were Co-Ow and Co-(01,02), respectively. Both interactions showed a
distance with Co?" ions in the values around 3.10 A independent of temperature. Due to the
lowest g(r) value for Co-O7, the interaction of Co®" ions with choline oxygen (O7) was
disregarded. Analyzing the increasing temperature effect, the probability of Co*" ions interact
with anion chloride becomes bigger due to the increase in the value of g(r) for the temperatures
of 333 K and 353 K (Fig.7c and 7d, respectively). On the other hand, there are a decrease
significative in the g(r) values for Co-Ow and Co-(01,02) interactions for the temperatures of

333 K and 353 K (Fig.7c and 7d, respectively).
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Fig. 7 Radial distribution functions (RDF) of Co?* ions with atoms present in the SDW1 system,
at temperatures (a) 298 K, (b) 313 K, (c) 333 K, and (d) 353 K.

Fig. 8 shows the cumulative number (CN) between Co** ions with anion chloride (Fig.

8a), ethylene glycol (Fig. 8b), and water (Fig. 8c) molecules in the function of distance.
Analyzing the temperatures of 298 K and 353 K [which are extreme values of the graph for Co-
Cl and Co-(01,02) interactions in the Figs 8a and 8b, respectively], the value of CN increase
of 3.8 for 5.3 to Co-Cl interaction (Fig. 8a), while that for Co-(O1,02) interaction (Fig. 8b)

occurred the reduction of CN (3.4 for 1.1) for the respective temperatures. The Co-Ow
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interaction (Fig. 8c) shows values of CN similar for the four temperatures (298 K, 313 K, 333
K, and 353 K). Analyzing the increasing temperature effect, the results indicate that the
replacement of ethylene glycol molecules by anion chloride around Co?" ions in the temperature

range from 298 K to 353 K.
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Fig. 8 Cumulative number (CN) of (a) Co-Cl, (b) Co-(01, 02), and (c) Co-Ow interactions.
The spatial distribution function (SDF) present in Fig. 9 shows how the components of

the system are distributed around Co?* ions in the temperature of 298 K (Fig. 9a) and 353 K
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(Fig. 9b); these interval temperatures that occurred the replaced of ethylene glycol molecules
by anions chloride around Co?* ions (Fig. 8a and 8b). In the temperature of 298 K (Fig. 9a) and
353 K (Fig. 9b), anion chloride (green) showed a strong predominance around Co?* ions (red),
following ethylene glycol (blue) and water (yellow) molecules. Analyzing increasing
temperature effect, occurred the increase of density for anion chloride (green) around Co?* ions,
while ethylene glycol molecules dispersed and distanced. The density of the water remains

almost constant around Co?* ions.

*\ - . 5

Fig. 9 Spatial distribution function (SDF) bet\‘Neen Co?* ions with components present in the
SDW1 system, at temperatures (a) 298 K and (b) 353 K. Co?* (red); chloride (green, isovalue
= 0.0013); ethylene glycol (blue, isovalue = 0.0105); water (yellow, isovalue = 0.0004).
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Table 2 Topological data for Co?* interactions with SDW1 system, at temperatures of 298 K
and 353 K. Electron density, p(r), Laplacian of electron density, V2p(r), ELF value, #(r), at bond

critical points (BCP) of selected Co-Cl and Co-(01,02) interactions.

Interaction BCP p(r) V2p(r) n(r) Temperature

1 4.4178E-03 | 5.6272E-03 | 3.5801E-02
Co-Cl 2 | 4.8021E-03 | 5.4073E-03 | 4.2747E-02
3 5.3218E-03 | 5.9067E-03 | 5.1373E-02
4 2.7309E-03 | 6.7171E-03 | 8.4408E-03

5 4.1283E-03 | 1.0764E-02 | 1.3462E-02 208 K
6 7.4588E-03 | 1.7342E-02 | 3.0535E-02
Co-(01,02) 7 8.8611E-03 | 3.5664E-02 | 2.2609E-02
8 7.0132E-03 | 2.8131E-02 | 1.7752E-02
9 5.5279E-03 | 1.0170E-02 | 2.5343E-02
1 6.4179E-03 | 9.5046E-03 | 5.3092E-02
2 9.0937E-03 | 1.7924E-02 | 6.6055E-02
Co-Cl 3 | 5.7288E-03 | 7.9153E-03 | 4.7295E-02
4 3.9595E-03 | 5.4928E-03 | 2.7936E-02

5 8.1720E-03 | 2.7091E-02 | 2.3503E-02 33K
6 5.0484E-03 | 1.0710E-02 | 1.8471E-02
Co-(01,02) 7 4.4691E-03 | 1.5122E-02 | 1.2072E-02
8 5.71817E-03 | 1.4260E-02 | 2.0113E-02

Table 2 contains values of the electronic density, p(r), the Laplacian of the electronic
density, V2p(r), and the electron localization function (ELF), #(r), for Bond Critical Points
(BCPs) of Co?* with the SDW1 system. The sum of all p(r) values for Co-Cl interaction in the
temperatures of 298 K and 353K were of Zp(r) = 1.4542E-02 and Zp(r) = 2.5200E-02,
respectively. As well as the sum of #(r) values for the above interaction and in the same
temperatures were of Zz(r) = 1.2992E-01 and Zx(r) = 1.9438E-01, respectively. On the other
hand, the Co-(01,02) interaction registered in the temperatures of 298 K and 353 K the sum of
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all p(r) values were of p(r) = 3.5720E-02 and Xp(r) = 2.3408E-02, respectively. While that the
sum of 5(r) values were of Xxn(r) = 1.1814E-01 and Xz(r) = 7.4159E-02, in the same
temperatures above, respectively. Therefore, the increasing temperature occasioned an increase
in the strength of Co-Cl interaction, while that the Co-(01,02) interaction became weaker.
Moreover, the positive values of V2p(r) indicate that the electronic density is locally depleted
characterizing intra or intermolecular interactions. * The molecular graphs with bond paths and
the interactions [Co-Cl and Co-(01,02)] are illustrated in Figs. 10a and 10b in the temperatures
of 298 K and 353 K, respectively.

Fig. 10 Molecular graphs with intramolecular interactions and BCP of the Co?* ion with the
SDW!1 system, at temperatures of (a) 298 K and (b) 353 K.

3.2.2 Co?" ions in the SDW?2 system

The RDF plot present in Fig. 11 showed that the main interaction was between the Co?*
ions with anion chloride around 3.50 A independent of temperature; this high value of g(r) is
explained by the strong attraction electrostatic between these ions. The second and third
strongest interactions were between the Co?* ions with the urea oxygen (O3) and water oxygen
(Ow), respectively; both interactions present in the same distance of 3.10 A independent of
temperature. The others interactions [Co-(N1,N2) and Co-O7] will not be discussed due to their
low g(r) value. Analyzing the increasing temperature effect, the probability of Co-Cl and Co-
O3 interactions did not show changes significative due to the value of g(r) remain almost
constant (Figs. 11a, 11b, 11c, and 11d). On the other hand, the probability for Co-Ow
interaction increased due to the increase of g(r) in the temperature of 313 K and 333 K (Figs.

11b and 11c, respectively).
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Fig. 11 Radial distribution functions (RDF) of Co?* ions with atoms present in the SDW2
system, at temperatures (a) 298 K, (b) 313 K, (c) 333 K, and (d) 353 K.

Analyzing the values of CNs (Fig. 12) in the temperature of 313 K to 353 K (that are
extremes values of the plots for Co-Cl and Co-O3 interactions), Co-Cl interaction (Fig. 12a)
showed an increase from 3.45 to 4.10, while that the Co-O3 interaction (Fig. 12b) showed a
reduction from 3.87 to 2.90. The Co-Ow interaction (Fig. 12c) remains similar values of CN in
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the four temperatures (298 K, 313 K, 333 K, and 353 K). Analyzing the increasing temperature
effect in the interval of 313 K to 353 K, the replaced occurred of urea molecules by anion

chloride around Co?" ions.
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Fig. 12 Cumulative number (CN) of (a) Co-Cl, (b) Co-03, and (c) Co-Ow interactions.

Analyzing the SDFs in the temperatures of 313 K (Fig. 13a) and 353 K (Fig. 13b), the
density of chloride (green) is mainly distributed around of Co?* ions than that urea (blue) and
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water (yellow) molecules. The temperatures of 313 K and 353 K were chosen due to the
replacement of urea molecules by anions chloride around the Co?* ions occurring in these
intervals of temperature (Figs. 12a and 12b). Analyzing the increasing temperature effect, the
density of anion chloride increased around Co?" ions while the density of urea molecules
decreased. On the other hand, the density of water molecules did not show changes significant
with the increasing temperature effect.

(a) _
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Fig. 13 Spatial distribution function (SDF) between Co?* ions with components present in the
SDW?2 system, at temperatures (a) 313 K and (b) 353 K. Co?* (red); chloride (green, isovalue
= 0.0038); urea (blue, isovalue = 0.0127); water (yellow, isovalue = 0.0007).
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Table 3

Topological data for Co?* interactions with SDW2 system, at temperatures of 313 K and 353
K. Electron density, p(r), Laplacian of electron density, V2p(r), ELF value, 5(r), at bond critical
points (BCP) of selected Co-Cl and Co-O3 interactions.

Interaction BCP p(r) V2p(r) n(r) Temperature
1 7.1075E-03 | 9.3280E-03 | 6.3513E-02
Co-Cl 2 4.6003E-03 6.9248E-03 3.3827E-02
3 7.3932E-03 2.4596E-02 2.2047E-02
4 7.7985E-03 2.7305E-02 2.3869E-02
5 5.0633E-03 1.0495E-02 1.8503E-02 313 K
Co-03 6 6.5064E-03 2.1060E-02 2.0054E-02
7 6.0316E-03 1.2461E-02 2.4420E-02
8 7.3798E-03 1.9579E-02 2.4314E-02
9 2.6162E-03 7.1097E-03 6.5241E-03
1 5.7570E-03 | 1.0509E-02 | 3.9428E-02
2 6.2899E-03 9.9886E-03 | 4.8826E-02
Co-Cl 3 6.9508E-03 1.3194E-02 | 4.8486E-02
4 5.7448E-03 7.8832E-03 | 4.5789E-02 353 K
5 6.9977E-03 | 1.8893E-02 | 2.4500E-02
Co-03 6 | 8.1299E-03 | 2.2050E-02 | 2.7215E-02
7 5.2635E-03 1.5281E-02 1.5865E-02

The topological data referring to the BCP of interactions between Co?* ions and the
SDW?2 system are present in Table 3. Analyzing the temperatures of 313 K and 353 K for Co-
Cl interaction, the sum of the values of p(r) were of £p(r) = 1.1708E-02 and Xp(r) = 2.4743E-
02, for the respective temperatures, as well as the sum of all n(r) were of Xn(r) = 9.7340E-02
and Xn(r) = 1.8253E-01, for the respective temperatures. Performing the same analysis in the
same temperature ranges for the Co-O3 interaction, the sum of the values p(r) were of Zp(r) =
4.2789E-02 and Xp(r) = 2.0391E-02, as well as the sum of the values of n(r) were of Xn(r) =
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1.3973E-01 and Zn(r) = 6.7580E-02, for the respective temperatures. Therefore, the increasing
temperature occasioned in the increase of strength for Co-Cl interaction, in comparison that the
Co-03 interaction became weaker. Moreover, positive values of V?p(r) indicate that intra or
intermolecular interactions are present because the electronic density is locally depleted.** The
molecular graphs with bond paths and BCP at temperatures 313 K and 353 K are shown in Figs.
14a and 14b, for Co-Cl and Co-O3 interactions, respectively.

Fig. 14 Molecular graphs with intramolecular interactions and BCP of the Co?* ion with the
SDW?2 system, at temperatures of (a) 313 K and (b) 353 K.

Co?* ion in the SDW3 system

Fig. 15 shows a strong interaction between the Co?* ions and the anion chloride around
3.50 A independent of temperature; the high value of g(r) for this interaction is explained due
to the strong attraction electrostatic between these ions. The second and third strongest
interactions were Co-Ow and Co-(04,05,06), respectively; both interactions are localized
around 3.10 A independent of temperature. The Co-O7 interaction will not be discussed due to
the low value of g(r) showed. Analyzing the increasing temperature effect, the probability of
Co-Cl interaction (Figs. 15a, 15b, 15¢, and 15d) showed a slight increase while that for Co-
(04,05,06) and Co-Ow interactions (Figs. 15a, 15b, 15¢, and 15d) showed a small reduction.
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Fig. 15 Radial distribution functions (RDF) of Co?* with atoms present in the SDW3 system,
at temperatures (a) 298 K, (b) 313 K, (c) 333 K, and (d) 353 K.

The CNs (Fig.16) were analyzed in the temperatures of 298 K and 353 K due to were
extremes values of the plots for Co-Cl and Co-(04,05,06) interactions (Figs 16a and 16b,
respectively). The Co-Cl interaction showed an increase of 4.25 to 5.20 while the Co-
(04,05,06) interaction presented a reduction of 3.0 to 1.5, in the respective temperatures (298K
and 353 K). On the other hand, g(r) values for Co-Ow interaction (Fig. 16c) showed were



43

similar independent of temperature. Analyzing the increasing temperature effect, occurred a

replacement of glycerol molecules by anions chloride around of Co?" ions.
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Fig. 16 Cumulative number (CN) of (a) Co-Cl, (b) Co-(04,05,06), and (c) Co-Ow

interactions.

The SDFs in the temperatures of 298 K (Fig. 17a) and 353 K (Fig. 17b) showed a high
distribution of density of anion chloride (green) around Co?* ions, following glycerol (blue) and

water (yellow) molecules. These temperatures were chosen due to the replacement of glycerol



44

molecules by anion chloride (Fig. 16a and 16b) occur in this interval (298K to 353K).
Analyzing the increasing temperature effect, the density of anion chloride becomes more
pronounced around Co?* ions while that the density of urea molecules spread in the system. On

the other hand, the density of the water remains almost constant around Co?* ions.

(@) -

..”

= T . ~ /

Fig. 17 Spatial distribution function (SDF) between Co?* ions with components present in the
SDW3 system, at temperatures (a) 298 K and (b) 353 K. Co?* (red); chloride (green, isovalue
=0.0047); glycerol (blue, isovalue = 0.0122); water (yellow, isovalue = 0.0027).
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Table 4
Topological data for Co?* interactions with SDW3 system, at temperatures of 298 K and 353
K. Electron density, p(r), Laplacian of electron density, V2p(r), ELF value, 5(r), at bond critical

points (BCP) of selected Co-Cl and Co-(04,05,06) interactions.

Interaction BCP p(r) V2p(r) n(r) Temperature

1 1.0766E-03 | 6.1057E-03 | 1.0380E-03

Co-Cl 2 8.8393E-03 | 1.6326E-02 | 6.7860E-02
3 4.6079E-03 | 5.1647E-03 | 4.1799E-02
4 3.8872E-03 | 1.0373E-02 | 1.2066E-02 298 K
5 6.1783E-03 | 1.8120E-02 | 2.0318E-02

Co-(04,05,06)

6 6.5377E-03 | 1.7995E-02 | 2.3707E-02
7 6.3158E-03 | 1.5833E-02 | 2.1769E-02
1 6.0489E-03 | 9.1343E-03 | 4.8536E-02
2 6.2926E-03 | 8.6926E-03 | 5.4145E-02

Co-Cl 353 K
3 7.6925E-03 | 1.2531E-02 | 6.4176E-02
4 7.8102E-03 | 1.3716E-02 | 6.0627E-02

Table 4 shows the topological data of Co?* interaction with the SDW3 system, the sum
of all p(r) values for Co-Cl interaction were of Xp(r) = 1.4524E-02 and Xp(r) = 2.7844E-02, in
the temperatures of 298 K and 353K, respectively. As well as the sum of all #(r) for the same
interaction above were of Xx(r) = 1.1070E-01 and Xx(r) = 2.2748E-01, for the same
temperatures analyzed. On the other hand, the Co-(04,05,06) interaction showed p(r) and 7(r)
values only in the temperature of 298 K that were Zp(r) = 2.2919E-02 and Z#(r) = 7.7860E-02,
while that in the temperature of 353 K the SDW3 system did not present BCP with Co?* ions.
Therefore, the increasing temperature occasioned in the increase of strength for Co-Cl
interaction, while that the Co-(04,05,06) interaction presents a reduction in the number of
BCP. V?p(r) values positive were registered indicate that intra or intermolecular interactions are
present in this system,* indicate that the electronic charges are depleted along the interatomic
path, being a characteristic of closed-shell interactions.* Fig. 18a and 18b show the molecular
graphs with bond paths and BCP of Co-Cl and Co-(04,05,06) interactions, at temperatures of
298 K and 353 K, respectively.
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Fig. 18 Molecular graphs with intramolecular interactions and BCP of the Co?* ion with the
SDW3 system, at temperatures of (a) 298 K and (b) 353 K.

4 Conclusions

For all three electrolytes, the increase in the diffusion coefficient and decrease in the
viscosity with increasing temperature was clearly apparent. The relationship could be quantified
via the Cottrell and Arrhenius equations. Calculated values of the activation energies showed
that energy barriers for the diffusion of Co?* ions followed the following sequence: 1ChCI:2EG
< 1ChCl:2U < 1ChCI:2G.

The simulations by molecular dynamics (MD) showed a strong interaction of anion
chloride with Co?* ions independent of temperature in the three systems analyzed. Besides, in
the interval of temperature between 298 K and 353 K occurred the replaced of HBD molecules
by anion chloride around Co?* ions for SDW1 and SDW3 systems, while for SDW2 system this
replaced occurred between 313 K and 353 K. The CN between Co?* ions with water molecules
did not showed changes significative with the increase temperature effect in the three systems
analyzed. The simulations realized by QTAIM indicated that the Co-Cl interaction became
stronger due to the increase of temperature in the three systems (SDW1, SDW2, and SDW3)
analyzed. In contrast, the increase in temperature weakened the interaction between Co?* ions

with the oxygen of HBD molecules.
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Supplementary Material
Table S1. Effect of temperature on the viscosity of 1ChCIl:2EG, 1ChClI:2U, and 1ChCI:2G
containing 0.1 mol L™! CoCl..6H:0.

System Temperature / K nl mPas? a/nm
298 40.1
312 23.0
1ChCI:2EG 333 12.6 0.95
353 7.75
298 574.4
312 176.7
1ChClI:2U 333 56.1 1.06
353 24.6
298 265.4
312 113.4
1ChCI:2G 333 46.0 0.70
353 22.8

81 Pas=10gcm?s?
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Table S2. The values of diffusion coefficients for Co?* species calculated by the Cottrell

method.
System D/cm?s™t x 107 Temperature / K
CoClz in 1ChCI:2EG 1.95+0.54 298
CoClz2in 1ChCI:2EG 2.24 +0.07 313
CoClz in 1ChCI:2EG 3.87 £ 0.07 333
CoCl2in 1ChCI:2EG 4.75 +0.50 353
CoClz in 1ChCl:2U 0.18 +0.04 298
CoClz in 1ChCl:2U 0.49 £ 0.05 313
CoClz in 1ChClI:2U 0.72 £ 0.06 333
CoClzin 1ChCl:2U 1.23£0.22 353
CoCl2 in 1ChCI:2G 0.13+0.03 298
CoClz in 1ChCI:2G 0.18 £ 0.09 313
CoClzin 1ChCl:2G 1.36 + 0.06 333
CoClz in 1ChCI:2G 153 +0.22 353
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Fig S3. Current-time transients for the reduction of Co?*/Co on Cu substrate obtained from DES
1ChCI:2EG (a) 298 K, (b) 313 K, (c) 333 K, and (d) 353 K containing 0.1 mol L™ CoCl,.6H0.
Insets: Cottrell’s plots are showed as insert.
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3 CONCLUSIONS

For all three electrolytes, the increase in the diffusion coefficient and decrease in
the viscosity with increasing temperature was clearly apparent. The relationship could be
quantified via the Cottrell and Arrhenius equations. Calculated values of the activation energies
showed that energy barriers for the diffusion of Co?* ions followed the following sequence:
1ChCI:2EG < 1ChCI:2U < 1ChCI:2G.

The simulations by molecular dynamics (MD) showed a strong interaction of anion
chloride with Co?* ions independent of temperature in the three systems analyzed. Besides, in
the interval of temperature between 298 K and 353 K occurred the replaced of HBD molecules
by anion chloride around Co?* ions for SDW1 and SDW3 systems, while for SDW2 system this
replaced occurred between 313 K and 353 K. The CN between Co?* ions with water molecules
did not showed changes significative with the increase temperature effect in the three systems
analyzed. The simulations realized by QTAIM indicated that the Co-Cl interaction became
stronger due to the increase of temperature in the three systems (SDW1, SDW2, and SDW3)
analyzed. In contrast, the increase in temperature weakened the interaction between Co?* ions
with the oxygen of HBD molecules.

From a future perspective, we will analyze the behavior of Co?" ions with the
increase of percentage water in the three systems (SDW1, SDW2, and SDW3) studied, due that
the RDF results in the three systems indicated a high probability of interaction between the Co?*

ions with oxygen water (Ow) molecules.
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Abstract

The water influence on electrochemical behaviour of Ag™ ions in urea and choline chloride mixture was investigated by cyclic
voltammetry technique, while the molecular insights about the investigated systems were obtained from molecular dynamic
(MD) simulation. The water content was variated from 0 up to 10% (v/v). Cyclic voltammetry technique showed that the peak
potential for Ag*/Ag redox couples shifted in direction to more positive potentials with the gradual increase of water content in
solution, indicating that the addition of water electrocatalyses the kinetics of the reduction of Ag” ions. The MD simulations
demonstrated that water molecules do not interact strongly with Ag* ions but induce a small reduction in the number of urea
molecules around of the ion and that the water molecules adjust to free spaces in the mixture.

Keywords Deep eutectic solvents - Reline - Molecular dynamic - Cyclic voltammetry - Ag* ions

Introduction

Silver electrodeposited coating has high corrosion resistance:
it presents good electric conductivity and it is bright [1, 2].
These properties allow its use as cover coating in electronic
devices to protect the metals against corrosion and, further-
more, it improves the final appearance of the industrial prod-
uct. In electroplating industries, silver coating is traditionally
obtained from aqueous plating solution containing cyanide as
complexing agent, which is one of the top toxic chemicals.
The necessity of this chemical, or other non-environmentally
friendly chemicals, is the main disadvantage related to the
silver industrial plating process since a non-environmental
safety industrial wastewater need to be discharged [3].
Therefore, it is relevant to investigate alternative
electroplating formulations that come to allow the silver

electrodeposition, and the electrodeposition of others noble
metals, from plating solutions formulated with environmen-
tally friendly chemicals. In this direction, it is increasing the
use of the named deep eutectic solvents (DESs) to electrode-
posit metal and alloys, since they have interesting chemical
and physical properties, such as good ionic conductivity, high
thermal stability, the metal salts are soluble in them, they are
non-toxic and biodegradable, their production is of low cost
and, finally, they present electrochemical stability in a large
potential range [4-7]. These mixtures are prepared mixing a
quaternary ammonium halide salt with a hydrogen-bond do-
nor (HBD) molecule.

Due to the importance of this metal and the advantages
offered by the eutectic solvents, the silver electrodeposition
in DESs has been studied. Abbott et al. [8] described that the
wear resistance of silver coatings can be achieved from the
electrolytic deposition of silver from a solution of AgCl in an
ethylene glycol/choline chloride mixture. The electrodeposi-
tion of silver in a eutectic mixture of 1 choline chloride:2 urea
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Abstract: Deep eutectic solvents (DESs) have many advantages, making them a promising
alternative in replacing ionic liquids and organic solvents. Besides, DESs has received
much prominence due to its diverse applications: Electrodeposition of metals, organic
synthesis, gas adsorption, and biodiesel production. Therefore, this work analyzed the
effect of the temperature increase (298 K to 353 K) on the behavior of the Co 2+ ions
in three eutectic solvents through electrochemical techniques and computational
simulations. From the electrochemical analysis carried out, the increase in temperature
caused a reduction in specific mass and an increase in the diffusion coefficient.
Besides, the activation energy values were of 15.3, 29.9, and 55.2 kJ mol -1 for
1ChCI:2EG, 1ChCl:2U, and 1ChCI:2G, respectively. The computational simulations
indicate that the increased temperature effect caused the replacement of HBD
molecules by anions chloride around Co 2+ ions for the SDW1 and SDW3 systems
between the temperatures of 298 K to 353 K, except for the SDW2 system that the
replaced occurred in the interval of 313 K to 353 K. Besides, the increase of
temperature occasioned the increase of strength for Co-Cl interaction and weakened
the interactions between the Co 2+ ions with the oxygen of HBD molecules.
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Abstract: In an attempt to replace conventional organic solvents and ionic liquids, the Deep
Eutectic Solvents (DES) emerged, the class of compounds with essential properties in
the industry. These solvents have numerous advantages regarding ionic liquids, such
as low price, biodegradability, and low toxicity. Furthermore, the DES has many
applications in science, for example, organic synthesis, electrodeposition of metals,
catalytic process. In this work, Sn 2+ and In 3+ ions behavior was analyzed in the
solvents 1ChCI:2EG (chloride choline and ethylene glycol, DES) and water through
computational simulations by molecular dynamics (MD) and quantum calculations of
QTAIM. The results showed that the Sn 2+ and In 3+ ions strongly interact with the
chloride anion in DES. In contrast, the most likely interaction is between cations and
oxygen from water in a water solvent. The analysis of critical binding points (BCPs)
showed that the strength of these interactions follows the following sequence: Sn-Ow >
Sn-Cl and In-Ow > In-Cl. The behavior of both ions in the metallic mixture was invariant
in DES when compared to the same isolated ions. However, for the aqueous system,
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