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The use of composite risers may offer important advantages over
the use of conventional steel risers in deepwater oil fields. How-
ever, the design of laminated composite risers is much more
complex than the design of steel risers, due to the large number of
parameters that need to be chosen to define the riser layup. This
work presents a methodology for optimum design of composite
catenary risers, where the objective is the minimization of cross-
sectional area of the riser and the design variables are the thick-
ness and fiber orientation of each layer of the composite tube.
Strength and stability constraints are included in the optimization
model and multiple load cases are considered. The methodology
can handle both continuous and discrete variables. Gradient-based
and genetic algorithms are used in the computer implementation.
The proposed methodology is applied to the optimization of
composite catenary risers with different water depths, liner ma-
terials, and failure criteria. The numerical examples show that the
proposed methodology is very robust.
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1. Introduction

The depletion of existing reserves and the increasing demand for oil and gas have led to the search
for deepwater fields and research in new technologies tomake the production feasible. Fiber reinforced
compositematerials present several advantages for offshore applications, such as high specific strength
and stiffness, high corrosion resistance, low thermal conductivity, excellent damping properties, and
high fatigue resistance.

These favorable properties have motivated the oil industry to use composite materials in different
offshore applications [30], including risers [22,29,32,34] and stress joints [21]. The reduced weight
obtained by the use of composite risers in replacement to steel risers can be substantial, leading to a
significant reduction of top tension requirements, which allows the use of simpler and smaller tension
mechanisms and smaller platforms [22,30,34].

This work addresses the use of Composite Catenary Risers (CCR) as an alternative to Steel Catenary
Risers (SCR) for deepwater fields. The design of laminate composite structures involves a large number
of parameters, including the number of layers and the material, thickness, and fiber orientation of each
layer. Thus, the use of the conventional trial-and-error strategy is not adequate and optimization
techniques have been widely used in the design of laminated composite structures [15].

The use of optimization techniques in the design of marine risers is recent, but the number of
applications has been steadily growing. Different optimization algorithms as Sequential Quadratic
Programming (SQP) [18], Simulating Annealing (SA) [35], Artificial Immune Systems (AIS) [37], and
Particle Swarm Optimization (PSO) [25] have been used for SCR design. Genetic Algorithms (GA) have
also been used in the design of SCRs in free hanging and lazy wave configurations [19,35,37,40], since
they are very robust, easily deal with discrete variables, non-continuous and non-differentiable
functions, and avoid getting trapped by local minima.

This work presents a methodology for optimum design of Composite Catenary Risers in free
hanging configuration. The design variables are the thickness and fiber orientation of each layer. The
objective is to minimize the cross-sectional area of the riser joint, considering strength and stability
constraints. It is important to note that to the best of the authors’ knowledge this is the first work
dealing with optimization of composite catenary risers.

This paper is organized as follows. Section 2 presents themain components of composite riser joints
and discusses the design of composite risers. Section 3 addresses the structural analysis of composite
catenary risers and Section 4 describes the optimization model, including the design variables,
objective function, and constraints. Section 5 presents the numerical examples. Finally, Section 6
presents the main conclusions.

2. Composite catenary risers

Composite risers are assembled using a series of joints connected to each other by appropriate
connections. Riser joints can have short lengths (10–25 m), intermediate lengths (100–300 m), or long
lengths (>300 m) [24]. Top tensioned composite risers for drilling and production generally use short
joints, but intermediate and long joints may be better suited for catenary risers. There is also potential
for the development of spoolable composite risers without intermediate joints, simplifying the
transportation and installation [28]. Composite riser joints are composed generally by three elements:
liner, composite tube, and terminations [2,23].

The linersare responsible forfluid containment, ensuring the tightnessof the riser andavoiding leaking
and loss of pressure. These elements are necessary since composite materials are porous and may have
micro-cracks. Most composite joints have an inner and an outer liner. Inner liners can be elastomeric,
thermoplastic or metallic. In the selection of the inner liner material, in addition to fluid tightness, other
aspects should be observed, as cost, adhesiveness to composite and metallic termination, abrasion and
corrosion resistance to the reservoir fluid, and impact resistance to mechanical tools inside drilling risers
[2,23,34]. The inner linercanalsobeusedasamandrelduring thecomposite tubemanufacturing. Theouter
liner is constituted generally of synthetic rubber or thermoplastics. In addition to sea-water containment,
the outer liner is responsible for protection against external impact and gouging [17,23]. An additional
external layer may be used as a mechanical protection from impacts during transportation and handling.
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The composite tube is the main structural element of the riser joint. It is constituted by various
layers of fibrous composite materials. Carbon and glass fibers are the most used in composite risers,
while thematrix is usually a polymeric resin (thermoset or thermoplastic). Thematerial, thickness, and
fiber orientation of each layer should be chosen in order to provide sufficient strength and stiffness to
the riser joint. A scheme of the riser wall is depicted in Fig. 1.

The joint terminations are metallic pieces composed of two parts: the metal-to-composite interface
(MCI) and the connections. The MCI transmits the stresses from the composite tube to the metallic
connectors, while the connections are responsible to join the composite joints, assembling the riser.
The design of terminations (MCI/connections) is not addressed here, since the major concern of this
work is the design of the composite tube.

3. Global–local analysis

Composite structures are generally analyzed by the finite element method (FEM) using solid or shell
elements, since these elements allow the consideration of the material, thickness, and orientation of
each ply. The use of shell or solid elements yields the stresses and strains in each ply, which are used to
verify the design safety using an appropriate failure criterion. However, the modeling of risers using
solid or shell elements leads to a prohibitively high computational cost for practical applications. Thus,
the analysis of composite risers is carried-out in two levels: global and local. This approach is generally
used for flexible risers [39] and has also been recommended for composite risers [12,17,23].

In this approach, the global analysis of the riser is generally carried-out using beamelements, allowing
the consideration of dynamic and nonlinear effects due to external loads, floater offset, currents, and
waves.Theglobal analysis yields thedisplacementsandstress resultants (axial force, bendingand torsional
moments) along the riser. However, the use of beam elements does not allow the direct computation of
stresses and strains at each ply of the composite tube. Therefore, the stress resultants calculated in global
analysis at critical joints are used as input data for local analysis. The local analysis should be carried-out
using analytical expressions or finite element (shell or solid) models, since these elements allow the
computation of stresses and strains at each ply, as required by the failure criteria of composite materials.

3.1. Global analysis

Since the main objectives are to study the influence of the riser parameters over the optimum
design and to assess the robustness and efficiency of the optimization procedure, in the current work
the global analysis is performed using an analytical catenary solver, which is much faster than the FEM
and provides representative results. Simplified analyses methods have also been used in other for-
mulations for optimum riser design, as catenary solvers [25,37], static finite element analysis [1,18,19],
and linearized frequency-domain analysis [35].

The riser axial forces are estimated considering the riser as an inextensible cable subjected to a
vertical load distributed along its length [33]. The dry weight of the riser per unit length (wdry) is given
Fig. 1. Composite riser wall.
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by the sum of theweight per unit length of the terminations (wend), the internal and external liners (wil
and wel), and the composite tube (wc):

wdry ¼ dendwend þ ð1� dendÞðwc þwil þwelÞ
wend ¼ gendp

h
ðR0 þ hendÞ2 � R20

i
; wc ¼ gcp

h
R22 � R21

i
wil ¼ gilp

h
R21 � R20

i
; wel ¼ gelp

h
R23 � R22

i (1)

where dend is the ratio between the length of terminations and the length of the joint and gend, gc, gil,
and gel, are the specific weight of the materials employed in the terminations, composite tube, internal
and external liner, respectively. The radiuses of each concentric tube (inner liner, composite tube and
external liner) are depicted in Fig. 1.

The weight of the internal fluid per unit length (wfl) is added to the dry weight, while the weight of
the displaced water per unit length (wbuo) is subtracted to provide the effective or apparent weight
(wef) of the riser per unit length:

wef ¼ wdry þwfl �wbuo

wfl ¼ gflpR
2
0; wbuo ¼ gwatpR

2
3

(2)

where gfl and gwat are the specific weight of the internal fluid and sea water.
The riser geometry and effective axial force (Nef) are computed by the catenary solver from the

effectiveweight (wef), top angle with the vertical (a), and sea depth for the mean configuration. At near
and far configurations the floater offset (D) is applied to the mean configuration, as depicted in Fig. 2.

3.2. Local analysis

In the present work, the classical lamination theory (CLT) is used to perform the local analysis of
critical sections of the riser. The internal liner and the composite tube are considered to be perfectly
bonded and are analyzed as a single structural system. The external liner is neglected in the local
analysis.

The model used in the local analysis is shown in Fig. 3 and consists of a cylindrical structure
composed of N layers. The first layer represents the internal metallic liner and the remainder Nc layers
constitute the composite tube. The structure is subjected to axial force Nef (obtained from the global
analysis), internal pressure pi and external pressure pe. The thickness of the kth layer is denoted by hk.
Fig. 2. Catenary riser.
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The structure is referenced in a global coordinate system (x, y, z) with origin at the shell middle surface
where x is the longitudinal, y is the circumferential, and z is the radial direction. The fiber orientation of
the kth layer (qk) defines a local coordinate system (x1, x2, x3) where x1 is parallel to the fibers, x2 is
perpendicular to the fibers, and x3 is perpendicular to the lamina. The in-plane (membrane) forces in
the riser wall are calculated using the theory of thin-walled tubes:

Nx ¼ Ntw

2pR
¼

gF

�
bNef þ pipR20 � pepR22

�
2pR

Ny ¼ gFðpiR0 � peR2Þ
Nxy ¼ 0

(3)

In this expression, Ntw is the true wall force [33], R is the mean radius of the structural system formed
by internal liner and composite tube, b is an amplification factor used to account for the environment
loads as well as bending, torsion and dynamic effects, and gF is the load factor used to compute the
design forces [11,12]. It is important to note that Nxy ¼ 0, since torsion is not considered by the catenary
solver.

Using the CLT [10,16,27], the generalized stress–strain relationship to laminated composites can be
written as:�

N
M

�
¼
�
A B
B D

��
εm
k

�
(4)

where A is the membrane (or extension) stiffness matrix, D is the bending stiffness matrix, and B is the
bending-extension coupling stiffnessmatrix, εm is the vector of membrane strains, and k is the vector of
curvatures of the laminate. The resultant forces andmoments are symbolized byN ¼ fNx Ny Nxygt and
M ¼ fMx My Mxygt, respectively.

In the present work, the riser is subjected only to axisymmetric loads (M¼ 0). Furthermore, there is
no extension-bending coupling (B ¼ 0) due to the axisymmetric characteristic of the riser cross-
section. Thus, the stresses at the kth layer in the material coordinate system sk

1 ¼ fsk1 sk2 sk12gt are
computed from:

sk
1 ¼ Q kTkA�1N (5)

where Qk is known as the reduced stiffness matrix [16]and Tk is the transformation matrix computed
from the director cosines of the local axes with respect to the global axes [9].
Fig. 3. Composite tube, laminate and material coordinate systems.
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3.3. Failure criteria

In the present work, the vonMises failure criterion is employed to verify the strength of themetallic
liner, while the strength of the composite layers are checked using the maximum stress or Tsai-Wu
failure criteria. The safety factor of the internal liner (SFil) is computed as

SFil ¼ fy
svm

svm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
silx

2 � silxs

il
y þ

	
sily

2 þ 3

	
silyx

2q (6)

where fy is the yielding stress of the metallic material employed in the liner, svm is the vonMises stress,
and silx , s

il
y and silxy are the stresses in the liner, referenced at the global coordinate system.

Using the maximum stress criterion, the safety factor of the kth composite layer (SFk) is given by

SFk ¼ MIN
�
SFXk ; SF

Y
k ; SF

S
k

�

SFXk ¼

8>>>>><
>>>>>:

Xt��sk1��; if sk1 � 0

Xc��sk1��; if sk1 � 0

SFYk ¼

8>>>>><
>>>>>:

Yt��sk2��; if sk2 � 0

Yc��sk2��; if sk2 � 0

SFSk ¼ S12��sk12��

(7)

where Xt, Xc, Yt and Yc are the tensile and compressive strength of the material parallel and perpen-
dicular to the fiber orientation, while S12 is the in-plane shear strength of the material.

Alternatively, the safety factor of the kth layer of the composite tube (SFk) can be computed using
the Tsai-Wu criterion:

SFk ¼ �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4a

p
2a

(8)

where

a ¼ F11
�
sk1

�2 þ F22
�
sk2

�2 þ 2F12sk1s
k
2 þ F66

�
sk12

�2
b ¼ F1sk1 þ F2sk2

F1 ¼ 1
Xt

� 1
Xc

; F2 ¼ 1
Yt

� 1
Yc
; F11 ¼ 1

XtXc

F22 ¼ 1
YtYc

; F12 ¼ �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F11F22

p
; F66 ¼ 1

S212

(9)

The safety factor of the composite tube can be computed using the first-ply failure (FPF) approach,
which states that the laminate fails when a single layer fails. In this case, the safety factor of the
composite (SFc) corresponds to the minimum safety factor of all layers:
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SFc ¼ MINNc
k¼1ðSFkÞ (10)
The matrix cracking can be an accepted failure mode in composite risers, since the liners ensure fluid
tightness. Thus, a more complex approach based on a progressive failure analysis could be used to
evaluate the riser safety factor [12]. However, in order to obtain a conservative design with a small
computational cost, the simpler FPF approach was adopted in this work.
3.4. Stability

Thin-walled structures subjected to compressive stresses may collapse due to loss of stability at load
levels well below the material strength. Hoop buckling is the local buckling of the tube wall (shell
buckling) caused by the compressive stresses generated by external pressure. Hoop buckling is a major
concern for deepwater risers and pipelines due to the high hydrostatic pressure, especially when the
riser is empty and there is no internal pressure.

The critical pressure of long orthotropic cylindrical shells [12,38] can be computed from:

pcr ¼ 3
R3

 
D22 �

B222
A22

!
(11)

where A22, B22, and D22 are elements of the A, B, and Dmatrices, Eq. (4), in the hoop direction. It should
be noted that B22 ¼ 0 for symmetric laminates. Finite element analyses of perfect and imperfect cy-
lindrical shells with different lengths and composite layups subjected to external pressure showed that
Eq. (11) yields good results for long shells, such as composite riser joints [36]. Furthermore, the
buckling pressure of short cylinders is higher than the values given by Eq. (11).

It is well known that unavoidable geometric imperfections reduce the load carrying capacity of
compressed shells due to the geometric nonlinear effects. Therefore, the collapse pressure (pcol) is
obtained by the following expression:

pcol ¼ kppcr (12)

where kp is a reduction factor to account for the effects of the geometric imperfections. A knockdown
factor kp ¼ 0.75 is recommended for design purposes [12,38].

The safety factor for hoop buckling is computed by comparing the collapse pressure pcol with the
differential pressure (pe � pi) acting on the riser wall. In order to obtain a conservative design, the riser
is considered to be empty (pi ¼ 0) and the contribution of the internal liner to the buckling pressure
(pcr) is neglected. Thus, the safety factor for buckling is computed from:

SFbck ¼ pcol
gFpe

(13)

4. Optimization model

This section presents the proposed optimization model for laminated composite risers. The input
data of the problem includes the loads, material properties, number of layers (Nc) of the composite
tube, inner radius (R0), thickness of internal and external liners (hil, hel), amplification factor (b), force
coefficient (gF), and required safety factors. The objective is to find the best (i.e. lowest cost) laminate
that meets the strength and stability requirements of the composite riser.
4.1. Design variables

The thicknesses (hk) and the fiber orientation angles (qk) of each ply of the composite tube (Fig. 4)
are adopted as design variables. Since only symmetric layups are allowed, the design variables are
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x ¼ �
h1 h2 . hNc=2 q1 q2 . qNc=2

t (14)
The riser weight is unaffected by the fiber orientations of each layer and is function of both
thickness and material of each layer. The same occurs with the catenary geometry and forces, since
they depend on the riser weight.

The layup is constant along the riser, since considering different properties along the riser length
would increase the design space and the computational cost. Furthermore, the use of riser joints with
different layups could increase the manufacture costs.

Most works dealing with optimization of laminated structures consider that design variables can
only assume discrete values [13,26], but continuous variables have also been used [7]. Since the choice
between continuous and discrete variables is driven mainly by manufacturing issues, both options are
considered here, originating two models: continuous and discrete. In the continuous model, the design
variables are limited by lower and upper bounds:

qmin � qk � qmax
hmin � hk � hmax

�
k ¼ 1;.;

Nc

2
(15)

On the other hand, the design variables of the discrete model can only assume a set of predefined
values (qp and hp):

qp ¼ fqmin; qmin þ Dq; qmin þ 2Dq;.; qmaxgt
hp ¼ fhmin; hmin þ Dh;hmin þ 2Dh;.;hmaxgt

(16)

where Dq and Dh are user supplied increments.
4.2. Objective function

Different objective functions have been used in the optimization of composite structures. In
minimization problems, weight, deflection, and cost of composite panels [5], thickness of composite
plates [4], and the sensitivity of buckling loads due to variations in ply angles[3] have been used
as objective functions. Maximization of natural frequencies and buckling loads has also been consid-
ered [1].

In the present work, the cost of the riser joint is considered proportional to the volume of composite
material. Thus, the objective is to minimize the cross-sectional area of the composite tube. In order to
Fig. 4. Composite layup.
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improve the convergence of the optimization algorithm, a normalized cross-sectional area of the
composite tube is used as objective function f(x):

f
	
x

 ¼ AðxÞ � Amin

Amax � Amin
(17)

where A(x), Amin and Amax are the current, minimum and maximum cross-sectional area of the com-
posite tube, respectively. The minimum area is obtained considering all layers of the composite tube
with hk ¼ hmin and the maximum with hk ¼ hmax.
4.3. Constraints

Strength and stability constraints are considered in order to ensure the structural integrity of
the riser. Based on previous catenary riser analyses, two critical load cases were chosen. Load Case
A corresponds to the riser filled with internal fluid at far configuration, leading to high tension at
the top riser joint. On the other hand, Load Case B corresponds to the riser without internal fluid at
the near configuration, leading to high external pressure and true wall compression in the touch-
down point (TDP) of the riser. In this case, a conservative design is adopted in which the small
effective force at TDP and the internal pressure are neglected (Nbot

ef ¼ 0, pi ¼ 0) in the local
analysis.

In Load Case A, the local analysis is executed applying the effective top tension ðNtop
ef Þ obtained in the

global analysis and the internal pressure of the fluid (pi). The stresses computed from the local analysis
are used to calculate the internal liner safety factor ðSFtopil Þ and the composite safety factor ðSFtopc Þ at the
top end. Thus, the constraints related to the liner and composite safety factors are defined as:

gtopil ¼ 1� SFtopil

SFreqil

� 0

gtopc ¼ 1� SFtopc

SFreqil

� 0

(18)

where SFreqil and SFreqc are the required safety factor of the liner and the composite, respectively.
In the Load Case B, the stresses computed from the local analysis with the riser subjected only to

external pressure allow the calculation of the liner and composite safety factor and the buckling safety
factor at the bottom of the riser ðSFbotil ; SFbotc ; SFbckÞ corresponding to the TDP joint. The constraints
related to the liner and composite safety factors are defined as:

gbotil ¼ 1� SFbotil

SFreqil

� 0

gbotc ¼ 1� SFbotc
SFreqc

� 0

(19)

The stability constraint is implemented in the normalized form:

gbck ¼ 1� SFbck
SFreqbck

� 0 (20)

where SFreqbck is the required Safety Factor to avoid hoop buckling as defined in Section 3.4.
Finally, the complete optimization model for composite catenary risers is given by:
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Find x ¼
n
h1 h2 . h Nc=2

q1 q2 . qNc=2

ot
That minimizes f

	
x

 ¼ AðxÞ � Amin

Amax � Amin

Subjected to :

gtopil ¼ 1� SFtopil

SFreqil

� 0

gtopc ¼ 1� SFtopc
SFreqc

� 0

gbotil ¼ 1� SFbotil

SFreqil

� 0

gbotc ¼ 1� SFbotc
SFreqc

� 0

gbck ¼ 1� SFbck
SFreqbck

� 0

If design variables have continuous values :

qmin � qk � qmax

hmin � hk � hmax

If design va riables have discrete values :

qk˛fqmin; qmin þ Dq; qmin þ 2Dq;.; qmaxg
hk˛fhmin;hmin þ Dh;hmin þ 2Dh;.;hmaxg

(21)

Fatigue caused by environmental conditions and vortex induced vibrations (VIV) is an important issue
in the design of catenary risers. However, evaluation of fatigue life requires the use of complex and
costly finite element analysis in time or frequency domains. These procedures were not included in the
model to keep the computational cost low, in order to allow the use of the model in personal com-
puters. As a consequence, the solution of this optimization problem should be seen as preliminary
designs to be used as input for more advanced analysis procedures.

4.4. Computer implementation

The optimization model described previously was implemented in MATLAB and three different
optimization methods can be used to find a solution. The first method uses the gradient-based
sequential quadratic programming (SQP) algorithm via the fmincon routine of the MATLAB Optimi-
zation Toolbox [20]. This method can be applied to nonlinear constrained problems with continuous
variables.

The second method uses the penalty function (PF) approach presented by [31] to solve discrete
optimization problems using gradient-based methods. In this approach, the problem is initially solved
considering that design variables are continuous. After that, the variables with non-discrete values are
penalized replacing the original objective function f(x) by the modified objective function F(x):

FðxÞ ¼ f ðxÞ þ s
XNd

i¼1

fi
d
	
x



(22)

where s is the penalty parameter, Nd is the number of discrete variables, and fi
dðxiÞ is the penalty

function for non-discrete values of the ith discrete design variable, which is given by
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fi
dðxiÞ ¼ 1

2

 
sin

2p
�
xi � 0:25

	
dijþ1 þ 3dij


�
dijþ1 � dij

þ 1

!
(23)

where dij is the jth discrete value that the ith design variable can assume. The problem should be solved
repeatedly for increasing values of the penalty parameter [31]. This strategy was combined with the
gradient-based SQP algorithm. The gradients were evaluated using finite differences.

One of the main drawbacks of gradient-based optimization methods is their susceptibility to be
attracted by local minima. To overcome this problem, the Multistart method [6] was adopted for both
continuous and discrete problems. In this procedure, Nrun initial designs satisfying the bound con-
straints in qk and hk are randomly generated and used as starting points for Nrun independent opti-
mizations. In the computer implementation, the optimizations are carried-out sequentially and if the
new solution has a smaller objective function value than the current best design, then the best design is
updated. If a sufficiently high number of different starting points are used, then the best designwill be
close to the global optimum.

The third solution method is a genetic algorithm (GA) implemented using well-known GA libraries
[8] and integer encoding. Genetic algorithms apply concepts of genetics combined with Darwin’s
theory of evolution [14] and can be used to obtain optimum solutions of continuous and discrete
problems. Since GAs are zero-order methods, they do not require the computation of the gradients of
objective and constraint functions. Furthermore, the use of a set (population) of designs and the
random character of GA operators (e.g. selection, crossover, and mutation) help the method to avoid
being trapped by local minima and find the global minimum. On the other hand, the GA is more time
consuming than the SQP method. The implemented GA for discrete problems is described below.

First, an initial population is randomly generated containing Nind individuals or candidate solutions.
Each individual is represented by an integer array (chromosome) of the design variables and has its
objective function and constraints evaluated. In order to consider constraints violation, a static penalty
method is used and the penalized objective function is obtained for each design, according to:

FðxÞ ¼ f ðxÞ þ kp
XNg

i¼1

maxðgiðxÞ;0Þ (24)

where kp is the penalty factor and gi is the ith constraint. Then, the individuals are sorted in decreasing
order of their penalized objective function and a fitness score based on the rank position is assigned to
each individual. Individuals with the smaller penalized objective functions have greater fitness scores
and more chances to survive and transmit their characteristics to next generation (iteration).

The stochastic uniform selection [8] is applied on the whole population and a group of Nsel ¼ CrNind
individuals (parents), where Cr is known as crossover rate, is selected to perform the crossover.
Crossover is a key genetic operator for GA convergence. This operator is sequentially applied to pairs of
parents and produces two new individuals, called sons, which combine traits of both parents.

The mask crossover, depicted in Fig. 5, is employed in this work. The mask is obtained by randomly
generating a number (1 or 2) for each variable. If the mask value is 1, the son A inherits the design
variable from parent A. Otherwise, the value comes from parent B. The opposite is applied to son B.
Since two sons are created from two parents, the total number of sons is equal to the number of
parents.

Even though GAs have lower probability to be trapped in local minima than gradient-based
methods, premature convergence to local minima can occur. To prevent it, genetic variability has to
be maintained. The mutation operator is one of the strategies used to ensure variability within the
population, and it is applied in the sons generated by the crossover process. It has a low probability of
occurring, symbolized by Pm. For each gene of the chromosome, a random number between 0 and 1 is
generated. If such number is smaller than Pm, a random integer satisfying Eq. (16) replaces the original
gene value (Fig. 6).

Finally, a new population is formed by replacing the lesser fit parents with the sons. In this way, the
best 1 � Cr individuals of the old population are preserved (elitism selection). The process is repeated
until a certain number of generations are reached (Ngen).



Fig. 5. Crossover operator.
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5. Numerical examples

This section presents numerical examples in order to study the behavior of the optimization model
presented in Section 4. The optimum designs are achieved considering continuous and discrete design
variables. The continuous problem is solved using the SQP method, while the discrete problem is
solved by both PF and GA approaches described in Section 4.4. The crossover rate (Cr) and mutation
probability (Pm) of the GA are set at 0.90 and 0.05, respectively. Data related to all examples are showed
in Tables 1 and 2.

5.1. Example 1

In this first example, the sea depth is considered as 2500m, the top angle is 20�, and the yield stress
of the steel liner is fy ¼ 448.2 MPa (API X65). The problem is firstly solved adopting the Tsai-Wu failure
criterion for the composite layers. The optimum designs obtained are presented in Table 3. Only one
global optimum solution was found for the continuous problem. The active constraints are related to
the material failure of the composite in Load Case A and the buckling constraint in Load Case B. It is
important to note that this problem has multiple optimal solutions with the same cost.

The behavior of the objective function and the maximum constraint violation in the optimization
process are shown for SQP solution in Fig. 7 and for GA solution in Fig 8. From Fig. 7 it can be noted that
the starting point is an unfeasible design. Initially the objective function increases while the maximum
constraint violation decreases to near zero values. Then, the objective function starts to decrease.

The riser effectiveweight per unit length (wef) and the forces on the top of the riser are presented in
Table 4 for the optimum discrete solutions. The forces and weights corresponding to the continuous
solutions are not presented, since they are very close to the discrete solution.

The behavior of the GA depends on the chosen parameters. The reliability (R) is the ratio of number
of successful runs (Nopt) to the total number of optimizations (Nrun). The effect of population size (Nind)
and number of generations (Ngen) on the GA reliability is showed in Table 5. Clearly, the effect of the
increment on population size is more significant than the number of generations. Maximum reliability
is almost obtained with Nind ¼ 200 and Ngen ¼ 50 (R ¼ 0.96) whereas only 76% of reliability is reached
with Nind ¼ 50 and Ngen ¼ 200, both with the same number of objective function evaluations. Fig. 8
depicts GA run for a population size of 100, which shows that an optimum design can be reached
with fewer generations.
Fig. 6. Mutation operator.



Table 1
Numerical data used in the examples.

Design parameters Internal radius [Ri] (m) 0.125
Number of layers of the composite tube [Nc] 10
Thickness of the inner (steel) liner [hil] (m) 0.006
Internal pressure [pi] (MPa) 25.0
Floater offset [Dos] 7.5% of water depth
Amplification factor [b] 1.5
Force coefficient [gF] 1.1
Thickness of the external liner [hel](m) 0.04
Specific weight – internal fluid [gif] (kN/m3) 7.0
Specific weight – sea water [gwat] (kN/m3) 10.05
Specific weight –external liner [gel] (kN/m3) 9.0
Fraction of the termination [dend] 0.15

Continuous variables Minimum and maximum ply thicknesses (mm) 1 � tk � 10
Minimum and maximum fiber orientation angles �90� � qk � 90�

Discrete variables Allowable ply thicknesses (mm) {1, 2, ., 9, 10}
Allowable fiber orientation angles {0, �5� , �10� , ., 90�}

Constraints Required buckling safety factor ½SFreqbck� 3.0
Required metallic inner liner safety factor ½SFreqil � 1.5
Required composite tube safety factor ½SFreqc � 3.0
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The reliability and computational costs for the three optimization methods are compared in Table 6.
The computational cost is measured by the average number of objective function evaluations for Nrun
optimizations:

Nfev ¼
PNrun

i¼1 N
i
fev

Nrun
(25)

where Ni
fev is the number of objective function evaluations of the ith optimization. The number of

function evaluations for the SQP method is different for each optimization, since it depends on the
starting point. The number of function evaluations of the GA method is constant:

Nfev ¼ Ni
fev ¼ Nind þ NindCrNgen; i ¼ 1;2;.;Nrun (26)

As expected, the SQP has the smallest Nfev. The GA gives the greatest computational cost, but has an
excellent reliability. Though the PF presents a small computational cost (Nfev ¼ 1857), its reliability is
Table 2
Material properties [16,27,30].

Composite E1 (GPa) 137.0
E2 (GPa) 9.0
G12 (GPa) 7.1
y12 0.3
F1t (MPa) 1517
F1c (MPa) 1034
F2t (MPa) 34.48
F2c (MPa) 151.7
F6 (MPa) 68.90
Specific weight (kN/m3) 15.70

Steel E (GPa) 210
y 0.3
Specific weight (kN/m3) 76.52



Table 3
Global optimum solutions for Example 1 – Tsai-Wu.

Model Design variables h(mm), q(degree) Safety factors ht (mm)

Load Case A Load Case B

SFtopil SFtopc SFbotil SFbotc SFbck

Continuous
variables (SQP)

h [6.510/1.000/1.001/1.021/1.112]s 1.519 3.000 1.553 13.48 3.000 21.29
q [90.000/0.000/0.000/0.000/0.000]s

Discrete
variables (PF)

h [4/1/1/2/3]s 1.594 3.238 1.524 12.77 3.172 22
q [90/90/90/0/0]s
h [5/1/1/1/3]s 1.536 3.037 1.548 13.06 3.205 22
q [90/90/0/�50/0]s
h [5/1/1/1/3]s 1.531 3.0188 1.554 13.26 3.215 22
q [90/90/0/�55/0]s
h [2/4/1/3/1]s 1.535 3.0166 1.563 13.21 3.243 22
q [90/90/�55/5/5]s

Discrete
variables (GA)

h [1/1/4/1/4]s 1.534 3.021 1.532 12.50 3.027 22
q [80/65/90/65/�5]s
h [3/2/1/3/2]s 1.592 3.233 1.514 12.44 3.119 22
q [90/80/�80/5/�5]s
h [2/4/1/1/3]s 1.58 3.190 1.527 12.80 3.153 22
q [�85/90/15/�5/5]s
h [1/5/2/1/2]s 1.53 3.073 1.519 12.66 3.175 22
q [90/90/15/0/0]s
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small, showing that meta-heuristics algorithms, as GAs, are better suited to discrete optimization
problems.

This example was also solved using the maximum stress criterion for the composite layers. The
optimum designs are showed in Table 7. It can be noted that the composite tubes are thicker than the
solution obtained for Tsai-Wu. In addition, multiple continuous solutions were found, all of themwith
cross-ply layups. Steel liner failure becomes active in Load Case B and buckling constraint is active only
in one solution. The riser thicknesses obtained by Tsai-Wu and maximum stress have close values, but
the composite safety factor in Load Case B was reduced almost by the half when the maximum stress
was used as failure criterion, showing its conservative character.

It can be observed that there are not strictly active constraints in all optimum designs with discrete
variables. However, the safety factors regarding to composite failure in Load Case A are very close to the
minimum required values.
Fig. 7. Optimization history (SQP).



Fig. 8. Optimization history (GA).

Table 4
Optimum riser designs: weight and forces.

Example Forces on the top of the riser (kN) wef (kN/m)

Horizontal Vertical Tension

1. Tsai-Wu 550.63 1105.64 1235.17 0.2738
1. Max. stress 561.01 1126.49 1258.46 0.2790
2 725.06 1455.88 1626.44 0.3005
3 805.62 1268.93 1503.06 0.2790
4 550.63 1105.64 1235.17 0.2738
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5.2. Example 2

This example uses the same data of Example 1 (Section 5.1) with the Tsai-Wu criterion for the
laminate, but the sea depth was increased to 3000 m. From now on, Nrun ¼ 50 for all optimization
methods and Nind ¼ Ngen ¼ 150 for the GA. The obtained results are presented in Table 8. There are
Table 5
GA reliability dependence on Nind and Ngen (Nrun ¼ 50).

Nind Ngen

50 100 150 200

50 0.28 0.48 0.58 0.76
100 0.70 0.86 0.96 1.00
150 0.82 0.98 1.00 1.00
200 0.96 1.00 0.98 1.00

Table 6
Comparison between optimization methods (Nrun ¼ 50).

Parameter Models

SQP (cont.) PF (disc.) GA (Nind � Ngen)

50 � 50 100 � 100 150 � 150

R 0.6 0.08 0.28 0.86 1.00
Nfev 1438 1857.5 2300 9100 20,400



Table 7
Global optimum solutions for Example 1 – maximum stress.

Model Design variables h(mm), q(degree) Safety factors ht

Load Case A Load Case B

SFtopil SFtopc SFbotil SFbotc SFbck

Continuous
variables (SQP)

h [3.154/1.812/1.238/1.271/3.958]s 1.651 3.000 1.500 5.684 3.000 22.87
q [90.00/0.000/90.00/90.00/0.000]s
h [5.663/1.002/1.003/1.024/2.740]s 1.651 3.000 1.500 5.694 3.404 22.87
q [90.00/0.009/�0.007/0.002/�0.000]s

Discrete
variables (PF)

h [1/5/1/1/4]s 1.686 3.076 1.530 5.830 3.101 24
q [0/90/0/90/0]s
h [4/2/2/2/2]s 1.69 3.073 1.520 5.785 3.281 24
q [-85/0/0/80/0]s
h [5/2/1/2/2]s 1.687 3.057 1.530 5.830 3.746 24
q [90/0/90/0/0]s
h [1/5/3/1/2]s 1.686 3.057 1.530 5.830 3.903 24
q [90/90/0/0/0]s

Discrete
variables (GA)

h [1/1/5/4/1]s 1.689 3.065 1.517 5.742 3.009 24
q [5/70/90/�5/0]s
h [4/2/2/2/2]s 1.673 3.002 1.522 5.777 3.172 24
q [80/10/�5/90/�20]s
h [5/3/1/2/1]s 1.673 3.017 1.537 5.864 3.688 24
q [90/5/�85/10/�15]s
h [1/5/1/4/1]s 1.678 3.030 1.514 5.888 3.855 24
q [85/85/15/�5/0]s

Table 8
Global optimum solutions for Example 2.

Model Design variables h(mm), q(degree) Safety factors ht

Load Case A Load Case B

SFtopil SFtopc SFbotil SFbotc SFbck

Continuous
variables (SQP)

h [1.008/1.000/1.464/3.639/8.585]s 1.587 3.000 1.500 13.55 3.031 31.39
q [0.000/0.000/90.00/0.000/90.00]s
h [2.924/3.643/1.004/7.124/1.000]s 1.587 3.000 1.500 13.55 4.781 31.39
q [90.00/0.000/�0.003/90.00/�0.005]s
h [1.055/7.891/1.013/4.593/1.145]s 1.587 3.000 1.500 13.55 5.947 31.39
q [0.000/90.00/90.00/0.000/90.00]s
h [7.869/1.068/3.476/2.172/1.112]s 1.587 3.000 1.500 13.55 7.069 31.39
q [90.00/90.00/0.000/0.000/90.00]s

Discrete
variables (PF)

h [1/4/1/1/9]s 1.624 3.084 1.505 13.51 3.186 32
q [90/0/0/0/90]s
h [1/1/10/3/1]s 1.616 3.063 1.506 13.84 5.447 32
q [-10/0/90/5/0]s
h [1/1/8/5/1]s 1.624 3.084 1.505 13.51 6.321 32
q [0/90/90/0/90]s
h [7/2/1/3/3]s 1.624 3.084 1.505 13.51 7.985 32
q [90/0/0/90/0]s

Discrete
variables (GA)

h [7/1/4/1/3]s 1.596 3.010 1.507 13.53 6.770 32
q [90/25/�5/�5/85]s
h [9/1/1/1/4]s 1.617 3.064 1.504 13.48 7.508 32
q [90/10/�5/75/�5]s
h [9/1/1/4/1]s 1.593 3.001 1.509 13.58 7.567 32
q [90/10/�80/�5/25]s
h [1/7/1/1/6]s 1.602 3.039 1.501 13.45 7.623 32
q [�85/90/90/90/5]s
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multiple global optimum solutions for all approaches. As expected, the risers are thicker than in
previous example, due to the increase in axial force in Load Case A (see Table 4) and external pressure
in Load Case B.

Comparing solutions in Example 1 and Example 2, there is an increase in the safety factors of the
internal liner in Load Case A and of the composite in Load Case B. Once again, for the continuous
problem, the active constraints are related to the composite failure in Load Case A and liner failure in
Load Case B. Only one design presents active buckling constraint, a continuous one. Continuous and PF
solutions have cross-ply layups.

Analyzing the fiber angles of discrete optimum solutions, it is observed that the PF approach reaches
many cross-ply layups, similar to continuous solutions, while the use of GA leads to designs with
greater diversity.

Though the global optimum designs have similar values for their liner and composite safety factors
(SFil and SFc), their buckling safety factors (SFbck) vary greatly for each optimization algorithm. For the
SQP, for example, the buckling safety factors range from 3.031 to 7.069. Intervals of the buckling safety
factor to PF and AG are respectively [3.186, 7.985] and [6.77, 7.623]. In these cases, the solutionwith the
highest buckling safety factor could be considered as the best.

5.3. Example 3

This example uses the same data of Example 1 (Section 5.1) with Tsai-Wu criterion, but the top
angle was increased to 25�. Some global optimum designs are presented in Table 9. Compared to
Example 1, the solutions obtained here present higher values for riser thickness, since the top tension
increases with the catenary top angle (see Table 4). The large top tension makes the composite failure
constraint active for Load Case A. The liner constraint is active in both load cases for all continuous
Table 9
Global optimum solutions for Example 3.

Model Design variables h(mm), q(degree) Safety factors ht (mm)

Load Case A Load Case B

SFtopil SFtopc SFbotil SFbotc SFbck

Continuous
variables (SQP)

h [3.674/1.553/1.000/1.000/3.997]s 1.500 3.001 1.500 12.28 3.000 22.45
q [90.00/�0.101/90.00/90.00/0.053]s
h [3.101/1.0239/2.573/3.491/1.036]s 1.500 3.001 1.500 12.28 3.019 22.45
q [89.99/�0.0.61/90.00/0.010/0.009]s
h [1.573/2.619/1.627/1.482/3.924]s 1.500 3.001 1.500 12.28 3.069 22.45
q [90.00/�89.994/�0.038/89.972/0.010]s
h [1.393/1.838/2.443/3.561/1.989]s 1.500 3.001 1.500 12.28 3.262 22.45
q [�89.72/90.00/89.97/0.130/�0.131]s

Discrete
variables (PF)

h [4/1/1/5/1]s 1.551 3.116 1.518 12.29 3.502 24
q [90/0/90/0/75]s
h [4/1/1/5/1]s 1.550 3.107 1.530 12.53 3.603 24
q [90/90/0/0/90]s
h [5/2/1/2/2]s 1.550 3.107 1.530 12.53 3.746 24
q [90/0/90/0/0]s
h [1/2/2/1/6]s 1.550 3.107 1.530 12.53 3.904 24
q [90/90/90/90/0]s

Discrete
variables (GA)

h [1/2/4/1/4]s 1.545 3.105 1.507 11.79 3.009 24
q [15/�75/90/�10/0]s
h [2/1/3/5/1]s 1.524 3.071 1.537 12.46 3.181 24
q [80/20/90/�10/90]s
h [5/1/3/2/1]s 1.532 3.037 1.527 12.29 3.562 24
q [85/�15/10/�10/90]s
h [2/4/1/1/4]s 1.529 3.032 1.538 12.50 3.794 24
q [�80/85/�10/30/�5]s



Table 10
Global optimum solutions for Example 4.

Model Design variables h(mm), q(degree) Safety factors ht (mm)

Load Case A Load Case B

SFtopil SFtopc SFbotil SFbotc SFbck

Continuous
variables (SQP)

h [6.5102/1.052/1.020 1.023/1.039]s 1.869 3.000 1.911 13.48 3.000 21.29
q [90/�0.025/0.0148/0.006/0.004]s

Discrete
variables (PF)

h [1/4/1/3/2]s 1.9611 3.238 1.876 12.77 3.172 22
q [90/90/90/0/0]s
h [5/1/1/1/3]s 1.9149 3.088 1.904 13.12 3.190 22
q [90/90/5/�40/5]s
h [4/1/1/1/4]s 1.8836 3.004 1.921 13.36 3.220 22
q [90/90/�60/�80/5]s
h [5/1/1/3/1]s 1.8789 3.003 1.919 13.38 3.229 22
q [90/60/90/0/0]s

Discrete
variables (GA)

h [5/2/1/1/2]s 1.8948 3.017 1.88 12.50 3.004 22
q [�85/40/�40/15/�15]s
h [2/3/1/2/3]s 1.925 3.110 1.887 12.73 3.090 22
q [�85/80/85/�25/5]s
h [2/3/1/2/3]s 1.9274 3.138 1.884 12.77 3.096 22
q [�80/90/90/20/0]s
h [6/1/1/2/1]s 1.9326 3.162 1.881 12.82 3.176 22
q [90/20/�5/0/10]s
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designs. Again it is noted the tendency for the PF approach to lead to cross-ply layups, which does not
occur for the GA approach.

5.4. Example 4

This example uses the same data from Example 1 (Section 5.1) with Tsai-Wu criterion, but the yield
stress of the steel liner was increased to fy¼ 551.6 MPa (API X80). The obtained results are presented in
Table 10. In comparisonwith Example 1 the single continuous solution presents the same layup and the
use of high strength steel only increased the liner safety factors, since the solution is governed by
composite failure (Load Case A) and buckling (Load Case B) constraints. Multiple solutions with
different layups were found by the discrete approaches (PF and GA). It is interesting to note that the use
of a high strength steel (API X80) did not lead to a lighter riser, since the optimum design has the same
riser thickness obtained in Example 1 (API X65).

6. Conclusion

This paper addressed the use of composite catenary risers as an alternative to deepwater applica-
tions and presented a methodology for optimum design of these risers. The results showed that the
proposed model and its computer implementation are very robust, since optimum solutions were
found for all numerical examples. The SQP for continuous variables is themost efficient, while GA is the
most time consuming. However, GA solutions have greater diversity, presenting more choices to the
designer.

The riser thicknesses for discrete designs are larger than the thickness obtained for continuous
solutions, but the difference is generally small. In fact, most of discrete solutions have a continuous
counterpart with slightly small cost. Furthermore, the majority of numerical examples have multiple
global solutions, for both continuous and discrete problems, offering different options to the designer.
As an example, in most of the problems the stress safety factors of different designs are very close to
each other, but the buckling pressure presents large variation. In this case the designer can choose the
laminate with the largest buckling pressure.
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It was observed that the required composite thickness, and so the riser cost, increases with water
depth and top angle. On the other hand, the use of high strength steel for inner liner does not reduce
the laminate thickness since the composite tube is designed to be the load bearing element of the
composite riser, enabling the use of thermoplastic or elastomeric liners. Finally, the use of Tsai-Wu
resulted in less conservative designs than the use of maximum stress criterion.

The optimization model presented here was based on the use of a simple and efficient analysis
procedure, where the dynamic effects were considered using an amplification factor that can be chosen
to obtain a conservative design. Therefore, the obtained solutions should be seen as preliminary de-
signs since environment loads, bending, torsion, VIV and fatigue are not included. These preliminary
designs could be used as input for a more detailed analysis.

Acknowledgments

The financial support by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico),
CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and ANP (Agência Nacional do
Petróleo, Gás Natural e Biocombustíveis) is gratefully acknowledged.

References

[1] Abouhamze M, Shakeri M. Multi-objective stacking sequence optimization of laminted cylindrical panels using a genetic
algorithm and neural networks. Composite Structures 2007;81:253–63.

[2] ABS. Guide for building and classing subsea riser systems. American Bureau of Shipping; 2006.
[3] Adali S, Verijenko VE, Richter A. Minimum sensitivity design of laminated shells under axial load and external pressure.

Composite Structures 2001;54:139–42.
[4] Akbulut M, Sonmes FO. Optimum design of composite laminates for minimum thickness. Computers and Structures 2008;

86:1974–82.
[5] Almeida FS, Awruch AM. Design optimization of composite laminated structures using genetic algorithms and finite

element analysis. Composite Structures 2009;88:443–54.
[6] Arora J. In: Introduction to optimum design. 2nd ed. Elsevier; 2004.
[7] Blom AW, Stickler PB, Gurdal Z. Optimization of composite cylinder under bending by tailoring properties in circunfer-

ential direction. Composites: Part B 2010;41:157–65.
[8] Chipperfield AJ, Fleming PJ, Pohlheim H, Fonseca CM. Genetic algorithm toolbox user’s guide. University of Sheffield; 1994.
[9] Cook RD, Malkus DS, Plesha ME, de Witt RJ. In: Concepts and applications of finite element analysis. 4th ed. John Wiley &

Sons; 2002.
[10] Daniel IM, Ishai O. In: Engineering mechanics of composite materials. 2nd ed. Oxford University Press; 2006.
[11] DNV. DNV-OS-F201 – dynamic risers – offshore standard. Det Norske Veritas; 2010.
[12] DNV. DNV-RP-F202 – composite risers – recommended practice. Det Norske Veritas; 2010.
[13] Erdal O, Sonmez FO. Optimum design of composite laminates for maximum buckling load capacity using simulated

annealing. Composite Structures 2005;71:45–52.
[14] Goldberg DE. Genetic algorithms in search, optimization and machine leaning. Addison-Wesley; 1989.
[15] Gurdal Z, Haftka RT, Hajela P. Design and optimization of laminated composite materials. Wiley-Interscience; 1999.
[16] Jones RM. In: Mechanics of composite materials. 2nd ed. Taylor & Francis; 1999.
[17] Kim WK. Composite production riser assessment. PhD dissertation. USA: Texas A&M University; 2007.
[18] Larsen CM, Hanson T. Optimization of catenary risers. Journal of Offshore Mechanics and Arctic Engineering 1999;121:

90–4.
[19] Lima BSLP, Jacob BP, Ebecken NFF. A hybrid fuzzy/genetic algorithm for the design of offshore oil production risers. In-

ternational Journal for Numerical Methods in Engineering 2005;64:1459–82.
[20] MATLAB optimization toolbox� user’s guide. MathWorks, Inc.; 2010.
[21] Meniconi LCM, Reid SR, Soden PD. Preliminary design of composite riser stress joints. Composites Part A: Applied Sciences

and Manufacture 2001;32:597–605.
[22] Ochoa OO, Salama MM. Offshore composites: transition barriers to an enabling technology. Composites Science and

Technology 2005;65(15, 16):2588–96.
[23] Ochoa OO. Composite riser: experience and design practice, final project report. Offshore Technology Research Center

(OTRC), Texas A&M University; 2006.
[24] Odru P, Poirette Y, Stassen Y, Saint-Marcoux JF, Abergel L. Technical and economical evaluation of composite riser systems.

in Offshore technology conference, OTC 14017, Houston, TX; May 6–9, 2002.
[25] Pina AA, Albrecht CH, Lima BSLP, Jacob BP. Tailoring the particle swarm optimization algorithm for the design of offshore

oil production risers. Optimization and Engineering 2010;12(1, 2):215–35.
[26] Rao ARM, Shyju PP. A meta-heuristic algorithm for multi-objective optimal design of hybrid laminate composite struc-

tures. Computer-Aided Civil and Infrastructure Engineering 2010;25:149–70.
[27] Reddy JN. In: Mechanics of laminated composite plates and shells: theory and analysis. 2nd ed. CRC Press; 2004.
[28] Rodriguez DE, Ochoa OO. Flexural response of spoolable composite tubulars: an integrated experimental and computa-

tional assessment. Composites Science and Technology 2004;64:2075–88.
[29] Salama MM, Stjern G, Storhaug T, Spencer B, Echtermeyer A. The first offshore field installation for a composite riser joint.

In: Offshore technology conference, OTC 14018, Houston, TX; May 6–9, 2002.



R.F.da Silva et al. / Marine Structures 33 (2013) 1–2020
[30] Salama MM. Some challenges and innovations for deepwater developments. In: Offshore technology conference, OTC
8455, Houston, TX; May 5–8, 1997.

[31] Shin DK, Gurdal Z, Griffin Jr OH. A penalty approach for nonlinear optimization with discrete design variables. Engineering
Optimization 1990;16:29–42.

[32] Smith KL, Leveque ME. Ultra-deepwater production systems final report, Houston, TX; August 2005.
[33] Sparks CP. Fundamentals of marine riser mechanics: basic principles and simplified analysis. PennWell Books; 2007.
[34] Tamarelle PJC, Sparks CP. High-performance composite tubes for offshore applications. In: Offshore technology conference,

OTC 5384, Houston, TX; April 27–30, 1987.
[35] Tanaka RL, Martins CA. Parallel dynamic optimization of steel risers. Journal of Offshore Mechanics and Arctic Engineering

2011;133(1). 9 pp.
[36] Teófilo FAF, Parente Jr E, Melo AMC, Holanda AS. Buckling of laminated tubes under external pressure. In: Iberian Latin

American congress on computational methods in engineering. Rio de Janeiro: Armação de Búzios; 2009. p. 1–15.
[37] Vieira IN, Lima BSLP, Jacob BP. Optimization of steel catenary risers for offshore oil production using artificial immune

system. In: Bentley Peter J, Lee Doheon, Jung Sungwon, editors. ICARIS 2008, lecture notes in computer science 5132 2008.
p. 254–65.

[38] Weingarten VI, Seide P, Peterson JP. Buckling of thin-walled circular cylinders, NASA SP-8007, space vehicle design criteria
(structures); 1968.

[39] Witz JA. A case study in the cross-section analysis of flexible risers. Marine Structures 1996;9(9):885–904.
[40] Yang H, Jiang R, Li H. Optimization design of deepwater steel catenary risers using genetic algorithm. In: Yuan Yong,

Cui Junzhi, Mang Herbert A, editors. Computational structural engineering. Springer; 2009. p. 901–8.


	Optimization of composite catenary risers
	1. Introduction
	2. Composite catenary risers
	3. Global–local analysis
	3.1. Global analysis
	3.2. Local analysis
	3.3. Failure criteria
	3.4. Stability

	4. Optimization model
	4.1. Design variables
	4.2. Objective function
	4.3. Constraints
	4.4. Computer implementation

	5. Numerical examples
	5.1. Example 1
	5.2. Example 2
	5.3. Example 3
	5.4. Example 4

	6. Conclusion
	Acknowledgments
	References


