
Composite Structures 107 (2014) 288–297
Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct
A hybrid shared/distributed memory parallel genetic algorithm for
optimization of laminate composites
0263-8223/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compstruct.2013.07.049

⇑ Corresponding author. Tel.: +55 85 3366 9198.
E-mail addresses: iuribarcelos@yahoo.com.br (I.B.C.M. Rocha), evandro@ufc.br

(E. Parente Jr.), macario@ufc.br (A.M.C. Melo).
I.B.C.M. Rocha, E. Parente Jr. ⇑, A.M.C. Melo
Laboratório de Mecânica Computacional e Visualização (LMCV), Universidade Federal do Ceará, Campus do Pici, Bloco 728, 60455-760 Fortaleza, Ceará, Brazil
a r t i c l e i n f o

Article history:
Available online 12 August 2013

Keywords:
Composite materials
Genetic algorithms
Parallel computing
FEM
a b s t r a c t

This work presents a genetic algorithm combining two types of computational parallelization methods,
resulting in a hybrid shared/distributed memory algorithm based on the island model using both Open-
MP and MPI libraries. In order to take further advantage of the island configuration, different genetic
parameters are used in each one, allowing the consideration of multiple evolution environments concur-
rently. To specifically treat composite structures, a three-chromosome variable encoding and special lam-
inate operators are used. The resulting gains in execution time due to the parallel implementation allow
the use of high fidelity analysis procedures based on the Finite Element Method in the optimization of
composite laminate plates and shells. Two numerical examples are presented in order to assess the per-
formance and reliability of the proposed algorithm.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The use of laminated composite structures has been growing in
the last few years. In such materials, composite laminas (plies) are
stacked, offering high tailorability, since the number, orientation,
thickness and sequence of plies can be optimized to give the exact
desired structural behavior. Each lamina consists of unidirectional
fibers embedded in a polymeric matrix. However, due to the large
number of design variables, including number of layers, thickness,
fiber orientation and material of each layer, the traditional trial-
and-error procedure can be arduous in the design of laminated
structures, thus requiring the use of optimization techniques [1].

In the optimization of laminated structures, the design variables
can be discrete [2] or continuous [3]. To solve the optimization
problem, evolutionary algorithms have seen extensive use, partic-
ularly Genetic Algorithms (GAs) [4–6]. Such algorithms readily
deal with discrete variables and do not tend to get trapped in local
minima.

In order to evaluate the performance of a given design in an
optimization procedure, the mechanical response of the structure
has to be evaluated through an analysis procedure. The level of
fidelity of such analysis, defined as how well the real structure is
represented by the idealized mechanical model, is an important
factor in the quality of the obtained designs. As many optimization
tools, particularly GAs, are computationally expensive, the struc-
tural analysis is usually carried out using analytical solutions. Such
methods, albeit fast, can only be applied for simple geometries,
support conditions and load configurations, thus begin unable to
accurately represent real structures. Yet, most of the current work
regarding laminate structure optimization rely on such solutions,
resulting in limited applicability.

In this regard, numerical methods such as the Finite Element
Method (FEM) are used to analyze complex structures. However,
even within FEM, multiple levels of fidelity can be chosen, concern-
ing not only the mesh size but also the element type, its cinematic
assumptions and whether or not non-linearities are taken into ac-
count. Unfortunately, such increases in fidelity also lead to higher
computational costs, which may render the analysis procedure
infeasible to use with optimization techniques such as GAs. Thus,
parallelization techniques [7] are used to make the optimization
algorithms faster. Some recent works have been successfully
applying such methods in laminate composite optimization [8,9].

Many different parallelization techniques can be applied to GAs.
In this work, two of them will be combined, one suitable for shared
memory architectures and the other suitable for distributed mem-
ory ones. The result is a hybrid parallel GA which can be executed
in personal computers and high-performance cluster computers
alike. This is achieved by combining the simplicity of OpenMP
[10] for shared memory architectures with the flexibility of MPI
[11] for distributed memory architectures. The resultant algorithm
uses an island model, working with many subpopulations evolving
concurrently. Also, seeking to further improve convergence, each
island evolves with a distinct set of genetic parameters, effectively
introducing different evolution environments.

In Section 2, the parallel genetic algorithm is formulated and its
implementation is briefly discussed. In Section 3, two numerical

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2013.07.049&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2013.07.049
mailto:iuribarcelos@yahoo.com.br
mailto:evandro@ufc.br
mailto:macario@ufc.br
http://dx.doi.org/10.1016/j.compstruct.2013.07.049
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct

I.B.C.M. Rocha et al. / Composite Structures 107 (2014) 288–297 289
examples are presented to assess the performance and reliability of
the algorithm and the conclusions are given in Section 4.

2. Genetic algorithm

In nature, individuals must have useful genetic features in order
to survive. Such individuals are the fittest and thus have more
chances of passing their characteristics to future generations, while
those less fit succumb along the evolution process.

GAs present many advantages that have led to a rise in their
use, particularly with the rise in the processing power of comput-
ers. As they work with a set of potential solutions, GAs do not eas-
ily get trapped in local minima. Furthermore, since no gradient
information is needed, GAs can deal with discontinuous design
spaces and problems with discrete variables and non-differentiable
functions.

One of the main drawbacks of working with GAs is their high
computational cost. Particularly when the optimization problem
involves complex implicitly defined objective function and con-
straints or a high number of design variables, it may take hours
to run a single optimization process.

Thus, techniques of parallel computing are very appealing in or-
der to reduce the total computational cost of GAs. In this regard, it
is important to develop parallel implementations not only for high-
cost cluster computers but also for low-cost personal computers
with multi-core architectures. The proposed algorithm is pre-
sented in the following.

2.1. Encoding

Each trial laminate is an individual represented by three chro-
mosomes, each being a line in a matrix whose columns represent
the laminate layers. The thickness chromosome stores information
about thickness, the orientation chromosome stores data about the
fiber orientation angles and the material chromosome stores mate-
rial properties, allowing the design of hybrid laminates.

Each laminate has a genotypical and phenotypical representa-
tion. On the genotype, chromosomes have integer values in each
gene, corresponding to list positions which store discrete values
of the design variables. Thus, the algorithm used in this work fea-
tures integer coding. The phenotype representation is used to store
the actual values of the design variables.

The number of columns in the genotype matrix depends on the
laminate type. If a general laminate is considered, the number of
columns is fixed at the maximum number of layers. If, however,
a symmetric laminate is used, the number of columns will be half
the maximum number of layers. Finally, if a symmetric and bal-
anced laminate is used, the number of columns will be only one
quarter of the maximum number of layers.

Genetic operators are applied to the individuals in their geno-
type representation, which in turn has to be decoded in order to
evaluate the objective function and constraints. This process is
shown in Fig. 1.

When layers are deleted, their thickness value will be set to zero
and they will be ignored in the decoding process. Consequently,
the number of columns in the phenotype representation will de-
pend on the number of deleted layers.

2.2. Fitness function and selection

For the purpose of selection to the mating pool and subsequent
selection for crossover, individuals need be assigned a positive
numerical value that represents its fitness in the current popula-
tion. Such value dictates how an individual is better or worse than
others.
Here, as only minimization problems are treated, the fitness
function is defined by mapping the penalized objective function
in order to ensure that the selection probabilities are positive
and that the best individuals have the highest fitness values [4].
The penalized objective function is evaluated using the adaptive
penalty method developed by Barbosa and Lemonge [12], using
no user-defined parameters. The values are then mapped by:

Fiti ¼ maxðjfpðminÞj; jfpðmaxÞjÞ � fpi ð1Þ

where fp(min) and fp(max) are the minimum and maximum penalized
objective function values in the current population, respectively.

In the present work, the classic Roulette selection method is
used [1] with a Fitness Proportional Selection (FPS) strategy. Thus,
the probability of selection (p) is directly proportional to the fitness
value:

p ¼ FitiPNind
i Fiti

ð2Þ
2.3. Crossover

Crossover is a key genetic operator for GA convergence. It is ap-
plied on two individuals, called parents, and originates two new
individuals called sons, which contain the combined traits of the
parents. Parents are taken from the mating pool, which is filled
with individuals of the original population, using the selection pro-
cess introduced in Section 2.2. The number of parents selected for
crossover is dictated by the crossover rate (rc).

Generally, the crossover operator in laminate structures optimi-
zation with integer variables consists in the definition of one or
two crossover points and the recombination of the resultant por-
tions of the laminate of each parent to form the sons [2,13,14]. In
this work, a new method based on the crossover used in real-coded
GAs is proposed for the case of integer variables. It seems to the
authors that this method provides higher individual variability
and less tendency for premature convergence.

The method consists of a linear combination of the parents
genes in order to form the sons. The process is done layer by layer,
with a random r number between 0 and 1 been chosen. Such ran-
dom number is then used to calculate a weighted mean of the par-
ents genes, rounded to the closest integer. Fig. 2 shows an example
of the process.

2.4. Mutation

Even though genetic algorithms have less chance of getting
trapped in local minima, sometimes a premature convergence
can occur. To prevent it, genetic variability has to be maintained.
The mutation operator is one of the strategies used to ensure var-
iability within the population and design space exploration. Muta-
tion is applied in the offspring generated by the crossover with a
mutation probability pm to which low values are usually assigned.
For each layer of the chromosome, a random number between 0
and 1 (r) is generated. If such number is lower than the mutation
probability, a feasible random integer replaces the original gene va-
lue. Fig. 3 shows mutation applied on two genes.

2.5. Laminate operators

The gene-swap, or layer-swap operator changes the mechanical
properties of the laminate by exchanging the position of two layers
(Fig. 4). As with the mutation operator, the layer-swap generally
has a low probability of occurrence, called swap probability (ps).
The choice of plies to be exchanged is also randomized. It is impor-
tant to note that the layer-swap operator changes the bending

Code Thickness Values

0 0.0mm
1 0.1mm
2 0.2mm
3 0.3mm
4 0.4mm

Code Angle Values

1 -45°
2 -25°
3 -5°
4 +25°
5 +45°

Code Materials

1 Material 1
2 Material 2
3 Material 3
4 Material 4
5 Material 5

4 1 4 2 1
1 2 5 1 1
2 3 3 5 4

Thickness
Orientation
Material

0.4 0.1 0.4 0.2 0.1
-45° -25° 45° -45° -45°

Mat 2 Mat 3 Mat 3 Mat 5 Mat 4

Decoding

Genotype Phenotype

Fig. 1. Genotype to phenotype decoding example.

T1 T2
A1 A2
M1 M2

T4 T5
A4 A5
M4 M5

r1 r2

Parent 1

Parent 2

Random
Vector

Son 1

Son 2

r1 x T1 + (1 – r1) x T4 r2 x T2 + (1 – r2) x T5
r1 x A1 + (1 – r1) x A4 r2 x A2 + (1 – r2) x A5
r1 x M1 + (1 – r1) x M4 r2 x M2 + (1 – r2) x M5

r1 x T4 + (1 – r1) x T1 r2 x T5 + (1 – r2) x T2
r1 x A4 + (1 – r1) x A1 r2 x A5 + (1 – r2) x A2
r1 x M4 + (1 – r1) x M1 r2 x M5 + (1 – r2) x M2

Fig. 2. Crossover operator applied on two 2-layer laminates.

4 1 4 2
1 2 5 1
2 3 3 5

2 1 4 2
1 2 5 1
2 3 1 5

Muta�on

Fig. 3. Mutation operator applied on two genes of a 4-layer chromosome.

4 1 4 2
1 2 5 1
2 3 3 5

2 1 4 4
1 2 5 1
5 3 3 2

Gene Swap

Fig. 4. Example of the layer-swap operator.

4 0 4 2
1 2 5 1
2 3 3 5

4 3 4 2
1 2 5 1
2 3 3 5

Addi�on

4 1 4 2
1 2 5 1
2 3 3 5

0 1 4 2
1 2 5 1
2 3 3 5

Dele�on

Fig. 5. Layer addition and deletion.

290 I.B.C.M. Rocha et al. / Composite Structures 107 (2014) 288–297
stiffness of the laminate without changing its membrane stiffness,
which can be useful in structural applications involving bending
and buckling [15].

The ply deletion operator is similar to a mutation. For each
layer, a random number between 0 and 1 is generated. If it is smal-
ler than the deletion probability (pd), the thickness of such layer is
set as 0, thus effectively eliminating the layer. Similarly, the ply
addition is applied in all genes which were previously deleted. If
the random number is smaller than the addition probability (pa), a
random thickness and orientation angle are inserted, effectively
adding a layer. Fig. 5 shows examples of ply deletion and addition.

2.6. Hybrid parallelization

As previously noted, GAs tend to get increasingly time consum-
ing as the individual evaluation procedure is refined. When using
FEA or other computationally expensive analysis method, the indi-
vidual evaluation becomes the most time-consuming part of the
algorithm. However, the evaluation of a given individual depends
only on its own variables and can be readily implemented in par-
allel [7,16].

Many different parallelization techniques can be used in
GAs [7]. In this work, two distinct techniques, Global Paralleliza-
tion and Coarse-Grain, will be combined to form a hybrid
algorithm.

The Global Parallelization scheme is the most simple technique.
It is also the one that most resembles a sequential GA. It maintains
the concept of a single population in which every individual can
mate and compete with all others [7] in a panmictic approach
[16]. In its simplest form, only the individual evaluations are exe-
cuted in parallel. In this work, in addition to the evaluations, other
routines such as the genetic operators, constraint handling and fit-
ness function evaluation are also parallelized. Fig. 6 shows the ba-
sic idea of the Global Parallelization technique.

This level of shared memory parallelization (Fig. 6) is handled in
this work using the OpenMP library [10]. In distributed memory
configurations, a master thread has to be explicitly chosen to re-
ceive results of tasks distributed to slave threads. When using
OpenMP, such tasks are automatically handled, which greatly re-
duces the implementation effort. This is also the most suitable ap-
proach for computers with multi-core processors. Even though this

Single
Popula�on

OpenMP

CPU 1 CPU 2 CPU 3 CPU n

ind 1 ind 2 ind 3 ind n

Memory

CPU

CPU

CPU CPU

(a) Layout

(b) System Architecture

Fig. 6. Global Parallelization.

MPI

MPI

MPI

MPI

MPI

MPI

Node
(pop/6)

Node
(pop/6)

Node
(pop/6)

Node
(pop/6)

Node
(pop/6)

Node
(pop/6)

(a) Layout

MemoryCPU MemoryCPU

MemoryCPU MemoryCPU

MemoryCPU MemoryCPU

Network

(b) System Architecture

Fig. 7. Coarse-grain parallelization.

I.B.C.M. Rocha et al. / Composite Structures 107 (2014) 288–297 291
type of architecture is common nowadays, few developers take
advantage of the potential gains of parallelization.

In a coarse-grain approach, also called Island Model, the original
population is divided in a series of subpopulations called islands or
demes [7]. Such demes evolve in parallel but mostly isolated from
each other. Interaction between demes is done by the operator
known as migration.

In natural evolution, the Theory of Punctuated Equilibria states
that most of the time a population will not exhibit significant ge-
netic changes and maintain a state of equilibrium or stasis, but
sudden environment changes can lead to a rapid evolution [7].
This is especially valid in small populations because these benefi-
cial evolutionary changes are not diluted by a large population
size. In GAs, a multi-deme configuration with little communica-
tion tends to lead to a similar behavior, with the sudden insertion
of migrated individuals leading to changes in the evolution envi-
ronment. This link with natural evolution, while endorsing the
use of coarse-grain configurations in GA implementations, was
not their original motivation. Such algorithms were first intended
to minimize communication costs in parallel implementations
[7].

Performance and reliability of coarse-grain GAs are directly af-
fected by three main factors: The migration interval, which repre-
sents the frequency of migrations, the topology, governing the
directions to which migrated individuals move, and the migration
rate, which represents the number of individuals that migrate.
Fig. 7 shows a coarse-grain GA arrangement with 6 demes in a ring
topology.

Coarse-grain GAs were created with distributed memory con-
figurations in mind and seek a suitable migration process to make
its reliability match or surpass that of a panmictic GA with a single
large population while minimizing the communication overhead.
Here, such distributed memory communications (Fig. 7) were done
using the MPI (Message Passing Interface) library [11].
The proposed algorithm is a combination of the two above
strategies in a hybrid parallelization approach. In the node of a
multi-core cluster or in a conventional multi-core personal com-
puter, each subpopulation evolves using a Global Parallelization
scheme. When multiple nodes are used, multiple subpopulations
are executed in parallel in a coarse-grain scheme with a fully con-
nected topology. Thus, the resulting GA, an example of which is
shown in Fig. 8 for a 4-node cluster, mixes the best features of both
OpenMP and MPI and can be executed in all modern multi-core
architectures.

Taking advantage of the use of multiple subpopulations, ranges
are used instead of fixed rates and probabilities for all operators,
inspired by what have been done in [17]. That way, each deme
has a random rate or probability value for each genetic operator,
which is generated inside the specified ranges. This is done in order
to avoid the need of tune such parameters for each optimization
problem and to consider different evolution environments concur-
rently, which can lead to better performance.

2.7. Load balancing

In the use of the described parallel genetic algorithm, some
care has to be taken in order to avoid load balancing problems,
i.e. in order to make all processing cores work at their maximum
capacity during the whole optimization process. Here, the load is

Node
(pop/4)

Node
(pop/4)

Node
(pop/4)

Node
(pop/4)

OpenMP OpenMP

OpenMP OpenMP

MPI MPI

MPI

MPI

(a) Layout

Memory
CPU

CPU

CPU

CPU

Memory
CPU

CPU

CPU

CPU

Memory
CPU

CPU

CPU

CPU

Memory
CPU

CPU

CPU

CPU

Network

(b) System Architecture

Fig. 8. Hybrid parallelization.

292 I.B.C.M. Rocha et al. / Composite Structures 107 (2014) 288–297
statically balanced. The first aspect concerns the population size.
For a personal computer with n computing cores or a cluster with
n cores per node, the population of each deme has to be a multi-
ple of n. If, for instance, a computer has 8 cores and a subpopula-
tion of 9 individuals is used, 7 cores will be idle while the last
individual is being evaluated, effectively doubling the optimiza-
tion time.

Another load balancing aspect concerns the crossover rate. As
the number of individuals generated by the crossover operation di-
rectly influences the number of individual evaluations, using dif-
ferent crossover rates across multiple demes can severely impact
the optimization time. Since the MPI parallelization used here is
synchronous, all demes have to be at the same generation for the
migration process to begin. Thus, it is important to maintain the
crossover rate constant across demes.

It is important to note, however, that changing rates for other
genetic operators, such as mutation or gene-swap, does not change
the number of individual evaluations. Thus, they are assumed not
to have a significant impact on load balancing.

2.8. Computational implementation

The proposed algorithm was implemented using the C++ pro-
gramming language and using the Object Oriented Programming
(OOP) paradigm. The class structure includes an Algorithm class,
which controls the optimization process, creating and manipulat-
ing populations, a Population class, which creates and manages
individuals and an Individual class, which contains the relevant
genetic operators. Lastly, the Problem class handles the objective
function and constraint evaluations.

The OpenMP directives were used in loops through individuals
inside each deme, such as the objective function evaluation and the
genetic operators. Because of the simplicity of OpenMP, a #pragma
directive is added before the loops and the work is automatically
assigned and balanced between processors. However, care was ta-
ken to avoid making two individuals write on the same memory
simultaneously.

For the MPI parallelization, the operators Send and Receive were
implemented in the Individual class. The former broadcasts the
individual to all other demes, while the latter receives an
individual from another deme and overwrites itself. The migration
operation is then controlled by the Algorithm class, where the best
individuals are sent and the worst are substituted.

3. Results and discussion

Two examples of design optimization of laminated structures
using the discussed algorithm coupled with finite element analysis
are presented. In both examples, a quadrilateral Shallow Shell ele-
ment based in the Reissner–Mindlin theory with 8 nodes and 5 de-
grees of freedom per node is used.

In order to represent the composite material, the Classical Lam-
ination Theory is used [15]. The shell section is thus pre-integrated
in order to transform the laminate into a single equivalent ply
(Equivalent Single Layer Theory). After the FEM analysis, the gener-
alized stresses are then used to find the stresses and strains in the
local coordinate system of each layer, which are in turn used to
evaluate the failure index kf of each layer using the Tsai–Wu failure
criterium [18]. Additionally, the calculated stiffness matrix can be
used together with the geometric stiffness matrix in a linearized
stability formulation to obtain the buckling load factor kb.

An SGI cluster with 5 compute nodes was used to run the opti-
mizations. The nodes are fully connected through a Gigabit net-
work interface and each features two AMD Opteron (TM) 6234
Processors with 2.4 MHz frequency and 12 cores. A Head Node
with the same configuration is also present, but is dedicated only
to operating system tasks. Each node features 64 gigabytes of
RAM and 3 terabytes of scratch HDD. The system runs Red Hat ver-
sion 4.4.5-6. A personal desktop computer was also used to obtain
speedup measures. It was equipped with a third-generation Core-
i7 processor with 4 physical cores (up to 8 cores can be used
through hyper-threading), 8 gigabytes of RAM and 1 terabyte of
HDD running Ubuntu version 12.04.2 LTS.
3.1. Square plate under transverse load

The first example was taken from [2] and consists of the simul-
taneous weight and central deflection minimization of a square
plate subjected to a uniform transverse load. The geometry, load
and boundary conditions of the plate are shown in Fig. 9. It was
discretized using 400 quadratic elements with reduced integration,
with a total of 6405 degrees of freedom.

In this example, the concept of reliability will be used. It is de-
fined as the number of optimizations in which at least one global
optimum was found (No) divided by the total number of optimiza-
tions (N) [2]:

Rð%Þ ¼ 100 � No

N
ð3Þ

In order to compare the obtained results, the plate was considered
thin and thus all transverse shear stresses were neglected in the
evaluation of the failure index kf. Likewise, the material properties

1.0 m

1.
0

m

q = 0.1 MPaFr
ee

Fr
ee

Clamped

Clamped

Fig. 9. Plate geometry and boundary conditions.

I.B.C.M. Rocha et al. / Composite Structures 107 (2014) 288–297 293
of Graphite–Epoxy plies were simplified for those of a plane stress
state and are shown in Table 1.

Simultaneous weight and deflection minimization requires a
multiobjective formulation, as they are opposite objectives. In
[2], the Weighted Sum Method (WSM) is used to obtain the Pare-
to-optimal points. However, as this method cannot find points in
non-convex attainable sets [19], some of the points could not be
obtained. Here, the Weighted Compromise Programming Method
(WCP) was used [19]. Defining w as the weighting factor given to
the minimization of the plate weight, the objective function for
the problem can be written as:
fobj ¼ w � W �Wmin

Wmax �Wmin

� �m

þ ð1�wÞ � D� Dmin

Dmax � Dmin

� �m

ð4Þ

where W is the weight, D is the transversal displacement in the cen-
ter of the plate (positive downwards) and m is a power factor. The
normalization limits are obtained by setting w to 0 (obtaining Wmax

and Dmin) and to 1 (obtaining Wmin and Dmax). It is important to note
that if m = 1, the objective function is reduced to one obtained using
WSM.

As for the problem constraints, the maximum failure index kmax
f

is obtained by taking kf in every layer of every integration point in
the model. The failure constraint is thus defined as:

g1 ¼ kmax
f � 1 6 0 ð5Þ

The second constraint limits the maximum total thickness of con-
tiguous layers with the same fiber angle (ttmax) to 2 mm (ttlim). This
condition can be expressed as:

g2 ¼
ttmax � ttlim

ttlim
6 0 ð6Þ
3.1.1. Pareto-optimal Frontier
First, the proposed algorithm will be used to find as many Par-

eto-optimal points as possible by changing w in steps of 0.05. The
possible angle and thickness values were considered the same as in
[2] for the sake of comparison: h 2 {�45�,0�,45�,90�} and
t 2 {0.75,1.00,1.50,2.00} mm. The laminate is also restricted to
have 8 layers in a symmetric arrangement.
Table 1
Graphite–Epoxy properties.

E1 (GPa) E2 (GPa) G12 (GPa) m12 q (kN/m3)

181.0 10.3 7.17 0.28 15.7
For each w, the optimization was executed 100 times with iso-
lated subpopulations and then 20 times using 5 subpopulations
with migration, also accounting for 100 subpopulations. Thus,
apart from the communication time due to migration, the compu-
tational effort was the same for the two optimization sets. This ar-
range permits the observation of changes in the reliability (R) and
required time per subpopulation (T) due to migration.

Each subpopulation has 120 individuals and is executed for 50
generations. For both sets, rc = 0.80. For the isolated set, pm = 0.10
and ps = 0.05, while in the set with migration, pm 2 [0.05, . . . , 0.20]
and ps 2 [0.01, . . . , 0.10]. As the laminate is fixed at 8 layers, pa and
pd are both set as zero. The results are shown in Table 2 and the
Pareto frontier is shown in Fig. 10. As one of the objectives of this
example is to compare the results with those obtained in [2], espe-
cially the algorithm reliability, the power factor m was kept at 1 for
all points except those marked with an asterisk (⁄), which were ob-
tained by setting m = 2. It is important to note that all Pareto-opti-
mal points were obtained using the WCP method, even those in the
non-convex part of the frontier.

The algorithm was able to obtain global optima for every value
of w. However, the reliability drops below 100% in some cases of
the isolated set. For instance, for w = 0.55, R = 74% for the isolated
set, whereas in the set with migration, R = 100% for all values of
w. It is important to note that even when the reliability drops be-
low 100%, the algorithm always finds a feasible near-optimum
solution. Observing the optimization times, each subpopulation
with migration takes only about 0.90% more time to run than an
isolated one. This shows that the results can be improved using
migration and randomized genetic operator rates with a very small
impact on the total run time.

Comparing the results with those shown in [2], a lighter design
was obtained for w = 1.0, with a reduction of 0.25 mm in the outer
90� layer. This can be attributed to differences in the finite element
and Tsai–Wu formulations used, since kf is very close to 1. How-
ever, when the failure constraint is not active, the present algo-
rithm obtained the same weights as those in [2]. Comparing the
plate center deflection, differences tend to appear as the plate
grows thicker, with a difference of 0.50% for w = 1.0 and 15.6%
for w = 0. These may also be due to differences in the used finite
element formulations. Regarding the reliability, the values were
generally higher even for the isolated set, with fewer points having
less than 100% reliability.

3.1.2. Effects of migration
In the next set of optimizations, the effect of migration on the

performance and reliability of the algorithm will be studied. To this
end, the variable ranges were widened to augment the design
space and make the solution harder, otherwise the differences in
reliability would not be noticed. The lower and upper bounds of
both variables were kept, but more intermediate values were
added: h 2 [�45�, �44�, . . . , 89�, 90�] and t 2 [0.75, 1.00, . . . ,
1.75, 2.00] mm. Additionally, in order to analyze only the effect
of migration, the genetic operator rates were fixed (rc = 0.80,
pm = 0.10, ps = 0.05). To find the mean behavior of each situation,
200 subpopulations of 24 individuals were executed (40 runs with
migration or 200 runs without migration), running for 300
generations.

First, the influence of the migration rate will be analyzed.
Migration intervals of 1, 5, 10, 50 and 100 generations were used,
XT (MPa) XC (MPa) YT (MPa) YC (MPa) S6 (MPa)

1500 1500 40 246 68

Table 2
Results for multiple values of w.

w Optimal design W (N) D (mm) kf Isolated Migration

R(%) T (s) R (%) T (s)

1.00 [900.75/901.0/00.75/450.75]s 102.05 68.8 0.985 100 40.91 100 41.10
0.95 [901.0/900.75/450.75/900.75]s 102.05 66.5 0.992 100 40.96 100 41.10
0.90 [900.75/901.0/450.75/900.75]s 102.05 66.5 0.992 100 40.92 100 41.17
0.85 [900.75/901.0/450.75/900.75]s 102.05 66.5 0.992 100 40.95 100 41.12
0.80 [900.75/901.0/450.75/900.75]s 102.05 66.5 0.992 100 40.97 100 41.17
0.75 [901.0/901.0/450.75/900.75]s 109.90 52.7 0.836 99 40.93 100 41.08
0.70 [901.0/901.0/450.75/900.75]s 109.90 52.7 0.836 100 40.92 100 41.18
0.65 [901.0/901.0/450.75/901.0]s 117.75 43.4 0.740 96 40.94 100 41.13
0.60 [901.0/901.0/451.0/901.0]s 125.60 36.3 0.672 100 40.95 100 41.11
0.55 [902.0/450.75/900.75/450.75]s 133.45 30.3 0.596 74 40.87 100 41.15
0.50 [902.0/450.75/901.0/450.75]s 141.30 25.7 0.536 96 40.95 100 41.11
0.45 [902.0/�450.75/901.0/�451.0]s 149.10 22.1 0.488 99 40.98 100 41.09
0.40 [902.0/450.75/901.5/450.75]s 157.00 18.9 0.440 100 40.96 100 41.16
0.35 [902.0/�450.75/901.5/�451.0]s 164.80 16.5 0.403 100 40.95 100 41.13
0.30 [902.0/450.75/902.0/450.75]s 172.70 14.3 0.336 99 40.92 100 41.11
0.25 [902.0/450.75/902.0/451.0]s 180.50 12.6 0.337 100 41.03 100 41.20
0.20 [902.0/451.0/902.0/451.0]s 188.40 11.4 0.323 100 40.96 100 41.14
0.15 [902.0/452.0/902.0/451.0]s 219.80 7.86 0.291 100 40.99 100 41.08
0.10 [902.0/452.0/902.0/451.0]s 219.80 7.86 0.291 100 40.91 100 41.09
⁄0.10 [902.0/451.5/902.0/450.75] 196.25 10.5 0.322 100 40.88 100 41.20
⁄0.06 [902.0/451.5/902.0/451.0]s 204.1 9.41 0.306 100 41.00 100 41.18
0.05 [902.0/452.0/902.0/451.0]s 219.80 7.86 0.291 100 40.84 100 41.21
⁄0.05 [902.0/452.0/902.0/450.75]s 211.95 8.71 0.306 100 40.85 100 41.19
0.00 [902.0/452.0/902.0/451.0]s 219.80 7.86 0.291 100 40.97 100 41.20

Fig. 10. Pareto-optimal frontier.

Fig. 11. Best individual plot with varying migration rates.

Table 3
Analysis of the migration rate effect.

Migration interval Number of migrations Reliability (R) (%) Time (s)

Isolated 0 36.3 65.36
100 2 82.5 65.36
50 5 90.4 65.86
10 29 87.5 67.44
5 59 85.0 68.73
1 299 90.0 69.23
Panmictic 0 79.3 240.87

294 I.B.C.M. Rocha et al. / Composite Structures 107 (2014) 288–297
with the number of migrated individuals fixed to 1. Additionally, a
set of isolated subpopulations was executed, as well as a panmictic
set with populations of 120 individuals. The objective is to find a
suitable migration rate in order to make the algorithm have the
same or better efficiency of a panmictic configuration, which is
much slower in a cluster with distributed memory [7].

Fig. 11 shows the best individual in each generation averaged
over the 200 subpopulation runs. The graph shows the two bound-
ary cases consisting of isolated 24-individual and 120-individual
populations and also three different migration rates. The first
important observation is that regardless of the migration rate,
the reliability is not just equivalent to that of the panmictic popu-
lation, but better. This is indicated by the average best objective
function at the last generation (Fig. 11), which has a direct relation
with the reliability. Those are also shown in Table 3 for all migra-
tion rates. Such behavior shows the advantage of a coarse-grain
parallelization strategy, in which the optimization not only runs
faster but also gives better results than large panmictic
populations.
It is also interesting to observe that in the generations in which
migrations occur, there is an abrupt drop in the objective function
of the best individual in all subpopulations. This effectively accel-
erates the convergence, making it even faster than the panmictic
case for high migration rates and confirms the relation of coarse-
grain GAs and the Theory of Punctuated Equilibria [7].

Regarding the required time, as expected, the optimization time
per subpopulation increases as the migration becomes more fre-
quent, i.e. there is an increase in the communication time (Table 3).
However, even with the maximum migration frequency (every
generation), the total time is only about 5.9% higher than the fully
isolated case. This indicates that the communication time between

Fig. 12. Speedup measures.

I.B.C.M. Rocha et al. / Composite Structures 107 (2014) 288–297 295
demes is always very small even when using a Gigabit network, as
very little data is transmitted. However, as the reliability remains
almost the same for all frequencies, it seems better to choose small
migration rates (100–10 generations), which keeps the overhead at
a minimum.

Next, the influence of the number of migrated individuals will
be considered. From the aforementioned observations, a low
migration rate of 100 generations was chosen, but now the number
of migrated individuals was increased. The results in terms of reli-
ability and time per subpopulation are shown in Table 4. The re-
sults suggest that both reliability and time show no sensibility to
increases in the number of migrated individuals. However, as more
individuals migrate, the population becomes increasingly uniform,
which may bring premature convergence problems. Thus, it seems
better to choose a small number of migrated individuals.

3.1.3. Speedup measures
The speedup was measured separately for each parallelization

strategy. By definition, the speedup is the relation between the
execution time of the sequential (non-parallelized) version of an
algorithm and the execution time of a parallelized version with
m processors:

Sm ¼
T1

Tm
ð7Þ

The speedup is said to be sublinear if Sm < m, linear if Sm = m and
super linear if Sm > m. It is important to take the speedup as an aver-
age of multiple runs, as there are time fluctuations and exogenous
factors that also influence execution time. In order to measure the
OpenMP speedup, a single population was executed both in a clus-
ter node and in the personal computer. Each speedup value was an
average of 5 executions. The results can be seen in Fig. 12a.

Both computers showed satisfactory speedups. It is important
to note that even though 8 cores can be used in the personal com-
puter, the performance is closer to the one with only 4 cores. This is
to be expected since only 4 physical cores are present. Even though
both speedups were sublinear due to the non-parallelized portions
of the code, the speed gain was substantial.

Another important aspect is that a single personal computer
core is about two times faster than a cluster core. However, when
parallelized, the execution time clearly shows the advantage of
using the cluster, as the program is executed almost two times fas-
ter. This shows the importance of parallelization in harnessing pro-
cessing power, particularly with processors with many cores such
as the cluster node. Such aspect is even more important in aca-
demic software, in which usually no attention is paid to
parallelization.

Fig. 12b shows the speedup measures related to the MPI imple-
mentation with 5 migrations per run and an increasing number of
demes. As each deme is added, the subpopulation size decreases
and the algorithm runs faster. The speedup is then measured with
T1 being the time to run a single panmictic population. The ob-
tained speedup is also very good, reaching 4.36 when 5 demes
are used. Also, it shows an almost linear behavior, although it falls
short of the theoretical value of 5 due to routines whose run times
do not scale with the population size, such as input and output
operations using data files.
Table 4
Analysis of the effect of the number of migrated individuals.

Individuals per migration Reliability (R) (%) Time (s)

1 82.5 65.36
2 87.5 65.36
3 84.0 65.36
4 84.5 65.36
3.2. Curved panel with circular cutout

In this example, the proposed algorithm will be used to obtain
optimum designs of a curved panel with a central circular cutout.
Such structures are of common use, particularly in aerospace appli-
cations, featuring complex geometry, load and support conditions
that cannot be analyzed using simple analytical solutions. Thus,
the use of high-fidelity numerical methods such as the FEM be-
comes a necessity. The geometry and finite element mesh is shown
in Fig. 13. A total of 384 shallow shell elements were used in order
to obtain a satisfactory discretization level around the cutout, with
a total of 6240 degrees of freedom.

In the x–y plane, the shell is a square with 1 m length and the
cutout radius measures 0.1 m. In the z � y plane, R = 5 m and
h = 0.1 rad. An uniformly distributed axial load is applied in one
of the sides. Thus, not only its failure due to excessive axial stress
but also its buckling failure have to be taken into account.

The possible design variable values were: h 2 {�45�,0�,45�,90�}
and t 2 {0.75,1.00,1.25,1.50,1.75,2.00} mm and the number of
plies was fixed at 8. Additionally, two different materials are con-
sidered and thus the material also becomes a design variable,
resulting in a total of 5,308,416 possible designs. The mechanical
properties of both materials are shown in Table 5. The mechanical
properties of Graphite–Epoxy (ge) are clearly superior to those of
Kevlar–Epoxy (ke), but it is 3 times more expensive. Consequently,

(a) Geometric Model

(b) Finite Element Mesh

Fig. 13. Curved panel example.

Table 6
Influence of subpopulation size and number of generations.

24 ind 48 ind 72 ind 96 ind

50 gen 31 (0.02) 43 (0.04) 46 (0.05) 72 (0.07)
100 gen 60 (0.03) 70 (0.07) 86 (0.11) 87 (0.14)
150 gen 70 (0.05) 82 (0.11) 83 (0.16) 90 (0.22)
200 gen 80 (0.07) 95 (0.14) 94 (0.21) 98 (0.29)

296 I.B.C.M. Rocha et al. / Composite Structures 107 (2014) 288–297
the algorithm has to balance the cost and structural performance of
the laminate.

The objective is to minimize material cost (Ct), which is calcu-
lated using the total weight of each material in the laminate:

Ct ¼Wke � Cke þWge � Cge ð8Þ

where W is the weight for each material and C is the material rela-
tive cost per unit weight showed in Table 5. The stress failure and
contiguous ply thickness constraints used in the previous example
are applied here, and a buckling constraint, represented by the fac-
tor kb, is also used. Such factor represents the critical buckling load
relative to the applied load. The constraint expressions are given by:

g1 ¼ kmax
f � 1 6 0

g2 ¼
ttmax � ttlim

ttlim
6 0

g3 ¼ 1� kb 6 0

ð9Þ
Table 5
Material properties [2].

Kevlar–Epoxy Graphite–Epoxy

E1 (GPa) 87 181
E2 = E3 (GPa) 5.5 10.3
m12 0.34 0.28
m13 0.30 0.30
m23 0.49 0.49
G12 = G13 (GPa) 2.2 7.17
G23 (GPa) 1.47 4.80
Xt (MPa) 1280 1500
Xc (MPa) 335 1500
Yt = Zt (MPa) 30 40
Yc = Zc (MPa) 158 246
S6 = S5 = S4 (MPa) 49 68
Cost (units/N) 1.0 3.0
Five demes were used and migration was maintained fixed at one
individual every 10 generations. The genetic parameters were
rc = 0.80, pm 2 [0.05, . . . , 0.20], ps 2 [0.01, . . . , 0.05], pa -
2 [0.01, . . . , 0.05] and pd 2 [0.01, . . . , 0.05]. First, the applied load
was fixed at 400 kN/m and the effect of the subpopulation size
and generation number in the reliability (R) was studied. For each
case, 200 subpopulations were executed and the average reliability
was obtained. Also, the number of objective function evaluations
was tracked and expressed as a percentage of the total design space
(%DS). This can be understood as another measure of the algorithm
performance and also an indirect measure of the total optimization
time. Four subpopulation sizes and four values for the number of
generations were combined and the results are shown in Table 6,
where the first number is the reliability R (%) and the number inside
the parenthesis is the explored percentage of the design space %DS.
Even though low reliability values were obtained in some cases, all
final designs were feasible, albeit not a global optimum.

The chosen combination is expressed in boldface in Table 6,
which presented a high reliability with a relatively low number
of individual evaluations. Both the number of generations and
the subpopulation size affect the algorithm reliability but in this
particular problem the number of generations seems to have a big-
ger impact in improving reliability than the subpopulation size.
Also, due to the random behavior of the GA, coupled with the
use of random operator rates, the reliability appears to get worse
when using 72 individuals and 100 and 150 generations.

Next, the applied load was varied in order to investigate the
choice of materials. The load ranged from 50 kN/m to 450 kN/m
and the results are shown in Table 7. As expected, the total lam-
inate cost increases as the load becomes higher, partly because
of the higher total thickness, but also because of a gradual
change of materials. For lower loads, the Kevlar–Epoxy is used
in all layers due to its lower price. However, as the load
increases, there is an increasing material shift in the outer layers.
This occurs due to the bending dominated nature of the prob-
lem, which is evidenced by the active buckling constraint. In
such problems, the inner layers, being closer to the middle sur-
face, have a small impact on the structural response. This is also
evidenced by the inactive failure constraint, which is linked to
the laminate membrane behavior.
Table 7
Results for multiple load values.

Load
(kN/m)

Optimum design %KE %GE Cost kf kb t(mm)

50 00:75
ke =450:75

ke =� 451:0
ke =01:0

ke

h i
s 100 0 91.53 0.128 1.003 7.0

100 450:75
ke =� 451:25

ke =02:0
ke =900:75

ke

h i
s 100 0 124.22 0.171 1.006 9.5

200 �451:75
ke =452:0

ke =902:0
ke =01:0

ke

h i
s 100 0 176.52 0.368 1.008 13.5

300 �452:0
ke =452:0

ge =02:0
ke =451:0

ke

h i
s 71.4 28.6 313.24 0.464 1.016 14.0

400 �451:75
ge =452:0

ge =02:0
ke =901:0

ke

h i
s 44.4 55.6 420.61 0.453 1.005 13.5

450 �451:75
ge =452:0

ge =02:0
ge =901:0

ke =
h i

s 14.8 85.2 550.78 0.172 1.008 13.5

I.B.C.M. Rocha et al. / Composite Structures 107 (2014) 288–297 297
4. Conclusion

This paper presented a hybrid shared/distributed memory par-
allel genetic algorithm formulation to deal with laminated com-
posite structural optimization. The algorithm was then used in
conjunction with a shallow shell finite element to find optimal
solutions of a plate with simple boundary conditions and a curved
panel with a circular cutout.

To speed up the algorithm, two different parallelization strate-
gies were mixed, the Global Parallelization and the Coarse-Grain
techniques. The resultant hybrid parallel GA makes use of the best
features of both OpenMP and MPI and can run in personal comput-
ers and high-performance cluster computers alike. Also, as a multi-
deme configuration was used, different genetic parameters were
applied in each deme in order to consider multiple evolution envi-
ronments concurrently and avoid the need of tuning them for each
optimization problem.

In the first example, the effects of migration in both the execu-
tion time and the algorithm reliability were studied. It was found
that an island-model GA not only makes the algorithm run faster,
but also improves the quality of the results when comparing a sin-
gle population with a set of demes of the same total number of
individuals. Also, good speedups were obtained in both paralleliza-
tion levels. In the second example, a curved panel with a central
circular cutout was considered. It was shown that the proposed
algorithm is able to deal with complex FEM analysis procedures
while maintaining relatively low execution times due to
parallelization.

The proposed algorithm performed well in both examples, with
high reliability and low execution times. The speed gains due to
parallelization are particularly important as they permit the use
of complex analysis procedures and a higher number of design
variables, allowing the use of GAs in the solution of practical lam-
inate design problems.

Acknowledgements

The financial support by CNPq (Conselho Nacional de Desen-
volvimento Científico e Tecnológico) and CAPES (Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior) is gratefully
acknowledged.
References

[1] Gurdal Z, Haftka RT, Hajela P. Design and optimization of laminated composite
materials. John Wiley & Sons; 1999.

[2] Almeida FS, Awruch AM. Design optimization of composite laminated
structures using genetic algorithms and finite element analysis. Compos
Struct 2009;88:443–54.

[3] Park JH, Hwang JH, Lee CS, Hwang W. Stacking sequence design of composite
laminates for maximumstrength using genetic algorithms. Compos Struct
2001;52:217–31.

[4] Goldberg DE. Genetic algorithms in search, optimization and machine
learning. Addison-Wesley; 1989.

[5] Lima BSLP, Jacob BP, Ebecken NFF. A hybrid fuzzy/genetic algorithm for the
design of offshore oil production risers. Int J Numer Methods Eng
2005;64:1459–82.

[6] Yang H, Jiang R, Li H. Optimization design of deepwater steel catenary risers
using genetic algorithm. Comput Struct Eng 2009:901–8.

[7] Cantu-Paz E. A survey of parallel genetic algorithms. Tech. rep.; 1997.
[8] Punch III WF, Averill RC, Goodman ED, Lin S-C, Ding Y, Yip YC. Optimal design

of laminated composite structures using coarse-grain parallel genetic
algorithms. Comput Syst Eng 1994;5:415–23.

[9] Omkar SN, Venkatesh A, Mudigere M. Mpi-based parallel synchronous vector
evaluated particle swarm optimization for multi-objective design optimization
of composite structures. Eng Appl Artif Intell 2012;25:1611–27.

[10] OpenMP Architecture Review Board. OpenMP application program interface
version 3.1; 2011.

[11] Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, et al. Open
MPI: goals, concept, and design of a next generation MPI implementation. In:
Proceedings, 11th European PVM/MPI Users’ Group Meeting. Budapest,
Hungary; 2004. p. 97–104.

[12] Barbosa HJC, Lemonge ACC. An adaptive penalty scheme for genetic algorithms
in structural optimization. Int J Numer Methods Eng 2004;59:703–36.

[13] Henderson JL. Laminated plate design using genetic algorithms and parallel
processing. Comput Syst Eng 1994;5:441–53.

[14] Rahul, Chakraborty D, Dutta A. Optimization of FRP composites against impact
induced failure using island model parallel genetic algorithm. Compos Sci
Technol 2005;65:2003–13.

[15] Reddy JN. Mechanics of laminated composite plates and shells: theory and
analysis. 2nd ed. CRC Press; 2004.

[16] Alba E, Troya JM. A survey of parallel distributed genetic algorithms.
Complexity 1999;4:31–52.

[17] Tanese R. Parallel genetic algorithms for a hypercube. In: Proceedings of the
second international conference on genetic algorithms on genetic algorithms
and their application. Hillsdale, NJ, USA: L. Erlbaum Associates Inc.; 1987. p.
177–83.

[18] Daniel IM, Ishai O. Engineering mechanics of composite materials. 2nd
ed. Oxford University Press; 2006.

[19] Athan TW, Papalambros PY. A note on weighted criteria methods for
compromise solutions in multi-objective optimization. Eng Optim
1996;27:155–76.

http://refhub.elsevier.com/S0263-8223(13)00387-5/h0005
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0005
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0010
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0010
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0010
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0015
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0015
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0015
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0020
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0020
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0025
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0025
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0025
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0030
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0030
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0035
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0035
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0035
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0040
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0040
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0040
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0045
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0045
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0050
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0050
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0055
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0055
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0055
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0060
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0060
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0065
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0065
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0070
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0070
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0070
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0070
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0075
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0075
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0080
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0080
http://refhub.elsevier.com/S0263-8223(13)00387-5/h0080

	A hybrid shared/distributed memory parallel genetic algorithm for optimization of laminate composites
	1 Introduction
	2 Genetic algorithm
	2.1 Encoding
	2.2 Fitness function and selection
	2.3 Crossover
	2.4 Mutation
	2.5 Laminate operators
	2.6 Hybrid parallelization
	2.7 Load balancing
	2.8 Computational implementation

	3 Results and discussion
	3.1 Square plate under transverse load
	3.1.1 Pareto-optimal Frontier
	3.1.2 Effects of migration
	3.1.3 Speedup measures

	3.2 Curved panel with circular cutout

	4 Conclusion
	Acknowledgements
	References

