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This paper is focused on the study of a kinematic
wavepacket model for jet noise based on two-point
statistics. The model contains physical parameters that
define its structure in terms of wavenumber, envelope
shape and coherence decay. These parameters, which
are necessary to estimate the sound pressure levels
radiated by the source, were educed from a large-
eddy simulation database of a Mach 0.4, fully
turbulent jet. The sound pressure levels predicted
by the model were compared with acoustic data
and the results show that when the parameters
are carefully educed from the data, the sound
pressure levels generated are in good agreement with
experimentally measured values for low Strouhal
numbers and polar angles. Furthermore, here we
show that a correct representation of both coherence
decay and wavepacket envelope shape are key aspects
to an accurate sound prediction. A Spectral Proper
Orthogonal Decomposition (SPOD) of the model
source was also performed motivated by the search
for a low-rank model capable of capturing the acoustic
efficiency of the full source. It is shown that only a
few SPOD modes are necessary to recover acoustically
important wavepacket traits.

1. Introduction
Jet noise is a challenging and compelling problem in fluid
mechanics, because of its environmental and societal
relevance but also because of disagreements that exist
in the aeroacoustics community regarding its theoretical
basis. Despite nearly 70 years of research, there persists
a lack of consensus regarding the flow structures
responsible for sound generation. The first mathematical
treatment for the jet noise problem was given by Lighthill
[1] by means of his acoustic analogy. The main idea of the

2019 The Author(s) Published by the Royal Society. All rights reserved.
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acoustic analogy is to rearrange the equations of motion as an inhomogeneous wave equation
that separates the linear propagation of acoustic waves from a nonlinear inhomogeneous term
composed of turbulent fluctuations that drive the sound field. In this framework, the turbulent
field is replaced by an equivalent distribution of quadrupole sources whose statistical properties
are related to those of the flow. Other acoustic analogies have since been proposed, for example,
by Lilley [2] and Goldstein [3], that involve different source-propagator splits to deal with the
effects of flow-acoustic interactions, but with the same central idea.

Because Lighthill’s acoustic analogy is an exact rearrangement of the Navier–Stokes equation,
it is possible to compute the sound field accurately if a sufficiently good description of the
flow field is known. This has been strictly demonstrated for low Mach number flows and low
frequencies by Crow [4]. For higher Mach number flows, it has been demonstrated by means
of direct numerical simulations by Freund [5] and Colonius & Freund [6] that accurate sound
predictions are also possible if the source term is calculated in the close vicinity of the jet, so
as to converge the convolution between source and Green’s function. However, understanding
and modelling the flow entities responsible for sound generation is a daunting task, as a
correct description of the source terms in acoustic analogies depends on two-point, fourth-order
statistics, finely described in a volume sufficient to cover all of the source region. Given this
challenge, a considerable body of work has been undertaken to characterize flow parameters
important for sound radiation and to build statistical source models. The structure of the cross-
correlation tensor, which is at the core of the models, has frequently been analysed by hot-wire
measurements, for example, by Davies et al. [7], Bradshaw et al. [8], Davies [9], Chu [10], who
focused mainly on the characterisation of length and timescales; Harper-Bourne [11,12] went
further, determining the frequency-dependence of coherence and integral lengthscales at selected
points in the mixing layer with a pair of hot-wires; and Morris & Zaman [13] performed a
similar analysis for positions both in the mixing layer and at the centreline of the jet. Two-point
measurements have also been performed using LDV by Jordan & Gervais [14] and Kerhervé
et al. [15] for limited regions in the jet, and the frequency-dependent character of turbulence
statistics has also been explored. Other studies have used PIV to probe the structure of the
cross-correlation tensor in x − r and r − θ planes, as done for example by Ukeiley et al. [16],
who evaluated the structure of linear and quadratic source components separately. Similar
measurements, using PIV, have been performed by Seiner et al. [17] and Bridges & Wernet [18].
Jaunet et al. [19] performed time-resolved, stereo PIV in two synchronized crossflow planes with
a view to studying two-point coherence of wavepackets and comparing them to those of the
energy-containing, turbulent eddies. Different components of the cross-correlation tensor have
also been analysed by Karabasov et al. [20] using a large-eddy simulation (LES) database.

The measurements of Harper-Bourne [11,12] have been important in guiding noise-source
modelling and in supporting acoustic predictions, as, for example, in the works of Self [21],
Goldstein & Kharavan [22], Goldstein & Leib [23], Karabasov et al. [20] and Leib & Goldstein [24].
In these studies, model calculations are compared with acoustic data, and reasonable agreement
is obtained for given frequency and polar-angle ranges.

While different source models are based on different descriptions of the two-point cross-
correlation function, one thing they all have in common is that they require knowledge of the
variation of this function with position and frequency. In previous studies the cross-correlation
function was generally obtained at a small selection of positions; given this constraint, simplifying
assumptions are required. For example, length and timescales are assumed to vary linearly with
the ratio of kinetic energy by dissipation [22]; or the turbulence autocovariance tensor is assumed
to be constant throughout the jet, with expansion coefficients assuming ad-hoc values. Moreover,
again due to the lack of data, accurate sound prediction usually relies on the calibration of a
number of empirical constants [21–26].

The modelling studies cited above consider sound sources based on a superposition of
statistically independent, uncorrelated eddies, a view aligned with the interpretation of the
acoustic analogy given by Lighthill. The parameters used in these models, such as convection
velocity and length and timescales, are those of the energy-containing eddies and are obtained
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from the integral length and timescales of turbulence. An alternative interpretation for the
flow motions associated with sound generation came with the observation of wavepackets in
turbulent jets by the experiments performed, for instance, by Mollo-Christensen [27,28] and Crow
& Champagne [29]. Wavepackets are organized, low-energy structures correlated over distances
that far exceed the integral length scales of turbulence. The discovery of this underlying order
and its connection with sound radiation motivated researchers to explore wavepacket-like source
models. We can make a distinction between two kinds of wavepacket models: dynamic and
kinematic [30]. Kinematic models are built based on experimental observations or statistical
properties of a flow and are usually coupled with an acoustic analogy; they are inherently
empirical and mask the details of the nonlinear fluid motions by which they are underpinned.
A dynamic model based on the equations of motion is necessary to obtain the underlying
flow motions. Hydrodynamic stability theory has been used as a theoretical framework that
would provide a dynamic law governing the evolution of wavepackets in turbulent flows. Early
examples of these modelling efforts can be found in the works of Michalke [31,32], Crow &
Champagne [29] and Crighton & Gaster [33]. Jordan & Colonius [34] made an extensive review
of studies that have successfully used stability analysis, experiments and simulations (or a
combination of these) to provide evidence for the existence of wavepackets in both the turbulent
field [35–37] and the near-irrotational field [38–41]. It has also been demonstrated that the low-
frequency, far-field sound is consistent with an axially extended wavepacket [31,42–44] and that
it can be decomposed, almost entirely, into only three azimuthal Fourier modes [43–46].

Modelling wavepackets using linear stability theory makes it possible to capture the evolution
of their power-spectral density (PSD) up to the streamwise position at which they become
neutrally stable [35]. However, further downstream there is a considerable discrepancy between
experiment and linear theory. For low Strouhal numbers (St < 0.3), the agreement is also poor.
Furthermore, linear dynamic models describe harmonic solutions, so they cannot describe the
two-point statistics of a turbulent flow and this may explain the lack of success of these models in
predicting correct pressure levels in the far-field. Acoustic extrapolation of wavepacket solutions
of the Linearized Euler Equations (LEE) leads to a 30 dB discrepancy in the far field [47]. In this
spirit, a series of other papers have evoked the importance of coherence decay [41,47–50] for
acoustic efficiency. It is the statistical signature of the spatial desynchronization of wavepackets
due to turbulent forcing, a phenomenon that has been referred to as ‘jitter’ by Cavalieri et al.
[51] and also modelled by Ffwocs-Williams and Kempton [52]. Cavalieri & Agarwal [48] showed
that agreement in average phases and convection velocities obtained using linear models is not
a sufficient condition to match the far pressure field of a sound source. A sufficient condition
involves matching, in addition to amplitude and phase velocity, the two-point coherence of the
source.

Kinematic models, as opposed to dynamic models based on stability theory, are useful in
so far as they provide a framework that allows the salient sound-producing flow traits to be
understood. Based on experiments, kinematic wavepacket source models have been proposed
and their radiated sound field assessed, for example, by Crow [42], Crighton [53], Michalke
[31] and Crighton & Huerre [54]. These studies proposed wavepacket models with similar
shapes based on single-point measurements and therefore did not consider coherence decay.
More recently, using Crow’s model [42], Cavalieri et al. [44] inferred the single-point wavepacket
structure from the single-point statistics of the sound field and found a superdirective wavepacket
consistent with the polar structure of the sound field for azimuthal Fourier modes m = 0, 1 and
2 and 0.2 ≤ St ≤ 0.8. The length of the wavepacket envelope was estimated between 6 and 8
jet diameters and a non-dimensional envelope length of khL = 6 was found, where kh is the
hydrodynamic wavenumber. The phase speed was taken from a local stability analysis. This
model has since been widely used to study both free and installed jet noise [55–58]. Given that
the importance of modelling two-point statistics was recognized early by Harper-Bourne [11,12]
and by Michalke [59], it is somewhat surprising that no wavepacket models featuring coherence
decay were proposed earlier. It is only since the works of Reba et al. [60–63] and Cavalieri and
Agarwal [48] that wavepacket models featuring coherence decay have been proposed.
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Now that it has become clear that the two-point coherence formulation comprises essential
wavepacket source characteristics, the following question arises: to what extent are the source
model characteristics identified by Cavalieri et al. [44] representative of actual wavepackets in the
turbulent jet? As with all inverse-like source-identification approaches, which are ill-posed, one
can always find a set of parameters that produces the correct sound field, but which may not be
compatible with the real source structure.

In light of this, the objective and novelty of the work reported here is to use the two-point
model of Cavalieri & Agarwal [48] combined with data from an LES simulation performed
using the compressible flow solver ‘Charles’ [64] to identify and understand the key wavepacket
parameters and to evaluate the acoustic radiation of the model, in terms of both directivity and
acoustic efficiency. Whereas Cavalieri et al. [44] worked from the outside in, i.e. inferring the
source structure from the sound field, we here work from the inside out, building the source with
information from the computed velocity field, the goal being to effect a quantitative calculation
of the sound field using the two-point kinematic model whose parameters are this time extracted
directly from the turbulent field. This approach follows the earlier ones by Harper-Bourne [11,12],
Goldstein & Kharavan [22], Goldstein & Leib [23], Karabasov et al. [20] and Leib & Goldstein
[24], except that here we work with a wavepacket model source characterized by a small number
of parameters, and we inform this using full-field flow data. The single and two-point acoustic
predictions are compared with experiments conducted at the Bruit et Vent anechoic facility located
in Poitiers, France. We focus the analysis on acoustic results at low polar angles to the jet axis
for a single azimuthal mode, m = 0, and we show that this approach considerably simplifies
the modelling task; furthermore, the acoustic predictions of the model were found to agree with
the data to within approximately 2 dB up to St = 0.5. Our methodology also builds on previous
work by Kopiev & Chernyshev [65] and Kopiev & Chernyshev [66], who performed an azimuthal
decomposition of the sound field and explored sound source generation mechanisms of different
azimuthal modes using the two-stage correlation model developed by Kopiev & Chernyshev [67].
Wavepacket models featuring coherence decay have also been used by Reba et al. [60,63] to make
acoustic predictions, although with a different methodology than ours; the authors used data from
a near-field microphone array and performed an acoustic extrapolation of the near-field data to
the acoustic field by solving the homogeneous wave equation. While their model worked well for
supersonic jet conditions, for subsonic Mach numbers, they underpredicted the data by roughly
10 dB at low polar angles.

The kinematic modelling we propose is related to the dynamic models as follows. The
shortcomings of linear dynamic models can be overcome by including an inhomogeneous,
forcing term, associated with nonlinear interactions understood as the effect of turbulence
forcing on wavepackets. A series of studies have explored forced, inhomogeneous models for
the Navier–Stokes equations [68–72], addressing the problem in terms of an ‘input–output’
analysis, where the input corresponds to the forcing and the output to the response modes
of the flow, these being connected by the resolvent of the linearized Navier–Stokes equations.
More recently, Semeraro et al. [73], Towne et al. [74] and Towne et al. [75] explored the link
between resolvent modes and Spectral Proper Orthogonal Decomposition (SPOD) (a frequency
domain form of Proper Orthogonal Decomposition) modes in turbulent jets. They show,
consistent with the work of Farell & Ioannou [68], that when the linear system is forced with
a spatiotemporally white stochastic field, the response modes of the resolvent operator are
identical to the SPOD modes of the flow. This is not the case if the forcing is coloured and
the difference between SPOD and resolvent modes may help shed light on the nature of the
forcing.

This issue prompted us to perform SPOD of the kinematic source model with a view to
searching for the acoustically important degrees of freedom of wavepackets that might be used
to construct a low-rank representation of the flow. We are interested in finding a reduced-rank
description that suffices to provide an accurate description of the two-point structure that is
relevant for sound radiation and that the dynamic models need to model correctly if they are
to make accurate predictions of sound pressure levels.
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Similarly to what was found by Breakey et al. [41] and Suzuki [76] in the near pressure field,
we show here that a one-mode representation of the Cross-Spectral Density (CSD) of the source
is not sufficient to capture all of the acoustically important features and that higher modes are
important for sound radiation. But only a small number of modes was necessary to recover the
correct wavepacket parameters and sound pressure levels.

The remainder of the paper is organized as follows: In §2, we present the two-point kinematic
source model. This is followed, in §3, with the provision of information regarding the LES and
acoustic databases. In §4, we describe the procedure used to educe the wavepacket parameters
from the LES data. In §5, we compare the acoustic results of the model to experimental data and
discuss the discrepancies and the role of the wavepacket parameters. In §6, we present the SPOD
analysis and we discuss the possibilities of low-rank models for the description of the acoustically
important wavepacket characteristics. Finally, conclusions and hypotheses are discussed in §7.

2. Kinematic model

(a) Basic equations
A generalized expression for an acoustic analogy can be written as

L(p) = q(x, t), (2.1)

where L is a linear operator that depends on the acoustic analogy, p is the pressure and q(x, t) is
the source distribution.

The solution for the pressure, p, is given as

p(x, t) = −
∫∞

−∞

∫
V

q(y, τ )G(x, y, t − τ ) dy dτ , (2.2)

where G(x, y, t − τ ) is the Green’s function for the linear operator L. x is the observer’s coordinates
and y the source’s coordinates.

Application of equation (2.2) involves the integration of flow fluctuations, which are stationary
random functions and hence are not square-integrable functions. A solution to overcome this
issue is to work with the auto and cross-correlations, which are supposed to decay to zero for
large separation distances and time delays [77]. The pressure autocorrelation is defined by

p2(x, τ ) = lim
T→∞

1
2T

∫T

−T
p(x, t)p(x, t + τ ) dt, (2.3)

and that can be expressed, using equation (2.2), as

p2(x, τ ) = 1
2T

∫T

−T

∫∞

−∞

∫∞

−∞

∫
V

∫
V

G(x, y1, t − τ1)G(x, y2, t + τ − τ2)

q(y1, τ1)q(y2, τ2) dy1dy2dτ1dτ2dt. (2.4)

In the following, we follow the development of Goldstein & Leib [23]. We make three
changes of variables η = y2 − y1, τ3 = τ2 − τ1 and t1 = t − τ1 and define R(y1, η, τ3), a two-point
time-delayed cross-correlation of the source based on flow quantities,

R(y1, η, τ3) = 1
2T

∫T

−T
q(y1, τ1)q(y1 + η, τ1 + τ3) dτ1. (2.5)

The expression for the pressure autocorrelation then becomes:

p2(x, τ ) =
∫∞

−∞

∫∞

−∞

∫
V

∫
V

G(x, y1, t − τ1)G(x, y1 + η, t + τ − τ2)R(y1, η, τ3) dy1dηdτ3dt. (2.6)

We also define a modified Green’s function, G′(x, y1, η, τ − τ3), given by:

G′(x, y1, η, τ − τ3) =
∫∞

−∞
G(x, y1, t1)G(x, y1 + η, t1 + τ − τ3) dt1. (2.7)
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Inserting equation (2.7) into equation (2.6), we have

p2(x, τ ) =
∫∞

−∞

∫
V

∫
V

G′(x, y1, η, τ − τ3)R(y1, η, τ3) dy1dηdτ3. (2.8)

This equation can be equivalently expressed as:

p2(x, t) =
∫∞

−∞

∫
V

∫
V

G′(x, y, η, t − τ )R(y, η, τ ) dydηdτ . (2.9)

Equation (2.9) gives an expression for the pressure autocorrelation as a function of a Green’s
function and of the cross-correlation of the source, R. The latter is a function of coordinate vector,
y, separation distance, η and time delay, τ . Modelling this quantity is not a straightforward
task, and this has obliged authors in the past to add free parameters to calibrate their models.
The reason is that the modelling requires knowledge of the cross-correlation structure in all of
the volume V where the source is defined; the information about how it varies with all of the
components of y, η and τ is usually not entirely available from experiments or is limited to certain
regions of the jet. This difficulty is true to all acoustic analogies. Here we wish to show that the
modelling task is simplified by working in the frequency domain and concentrating on a single
azimuthal mode and low polar angles to the jet axis. This is made possible by the homogeneity of
the flow in the time and azimuthal directions.

The sound source model we consider is based on the Lighthill’s acoustic analogy,

1
c0

∂2p
∂t2 − ∇2p = qij, (2.10)

where x denotes spatial coordinates, t is time, p is the pressure, c0 is the ambient speed of sound
and q is Lighthill’s tensor, given by [31],

qij = ∂2

∂xi∂xj
[ρuiuj − νij] + 1

c2
0

∂2

∂t2 [p − c2
0ρ], (2.11)

where ρ is the density of the fluid, u is the velocity and νij is the viscous term. Here we focus
only on the q11 term, which has been shown in previous studies to constitute an appropriate
simplification for calculation of sound radiation to low polar angles [44,53,55]. Moreover, we also
use the conclusions of the studies of Freund [5], Bodony & Lele [78] and Colonius & Freund
[6] to further simplify the source description. Freund [5] and Bodony & Lele [78] showed, by
means of DNS and LES simulations, respectively, that at low Strouhal numbers (St < 0.5) and
polar angles, noise generation is dominated by the linear part of Lighthill’s tensor in a Mach
0.9 jet; furthermore, they showed that over the same Strouhal number and polar-angle range,
the momentum term, ρuiuj, is dominant over the entropic term, [p − c2

0ρ]. As for the viscous
term, Colonius & Freund [6] found it to be negligible to the sound field of a jet with a Reynolds
number as low as 2000. In light of these results, we choose to drop the viscous and entropic terms
and to only model the linearized part of the stress tensor. This compromises the performance
of the model at higher Strouhal numbers and polar angles. However, our main objective here
is to explore a simplified model with a view to providing insight into sound generation by
wavepackets, hence the main message of this study is not affected by these simplifications. The
Lighthill stress tensor then reduces to

q11 = ∂2

∂x2 [2ρū1u′
1], (2.12)

where ū1 and u′
1 are the streamwise mean and fluctuation velocities, respectively.

The solution to Lighthill’s acoustic analogy for the m-th azimuthal pressure component in the
frequency domain for an observer in the far field was given by Michalke [31],

pm(R, θ , ω) = ime−ikaRk2
a cos2 θ

2R

∫∫
Qm(x, r, ω)eikax cos θ Jm(kar sin θ )r drdx, (2.13)
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Table 1. Values of J0(2πStMr/D sin θ ).

St = 0.3 St = 0.5 St = 0.7

θ = 20◦ θ = 90◦ θ = 20◦ θ = 90◦ θ = 20◦ θ = 90◦

r/D= 0.2 0.99 0.99 0.99 0.98 0.99 0.97
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r/D= 1 0.98 0.86 0.95 0.64 0.91 0.36
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r/D= 2 0.94 0.51 0.82 −0.06 0.67 −0.38
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where the observer is in polar coordinates and the source in cylindrical coordinates. ka is the
acoustic wavenumber, Jm is the Bessel function of the first kind and order m. Q is the Fourier
transform of the argument of the differential operator of q11 and the double derivative was passed
to the Green’s function using the divergence theorem, as demonstrated by Goldstein [79].

The power spectral density of the pressure, which is the Fourier transform of the pressure
autocorrelation defined in equation (2.9), is then given by

〈pm(R, θ , ω)p∗
m(R, θ , ω)〉 = (−1)mi2m k4

a cos4 θ

4R2∫∫∫∫
〈Qm(x1, r1, ω)Q∗

m(x2, r2, ω)〉eika cos θ(x1−x2)Jm(kar1 sin θ )Jm(kar2 sin θ )r1r2 dr1dr2dx1dx2, (2.14)

where the symbols 〈.〉 denote expected value. The quantity 〈Qm(x1, r1, ω)Q∗
m(x2, r2, ω)〉 is the

cross-spectral density of the source and is equivalent to the Fourier transform of the cross-
correlation, R.

In this work, we are interested in the m = 0 axisymmetric mode. For small values of the
argument of the Bessel function, kar sin θ = 2πStMr/D sin θ � 1, J0 is approximately 1, and the
Bessel function term can be neglected. Table 1 shows values of the argument of the Bessel function
for the range of Strouhal numbers, radial positions and polar angles we consider in this work. We
can see that the accuracy of the results at high angles, which is already limited by the linearization
of the source, is clearly affected by neglecting the Bessel function. For St = 0.5 and higher, this
simplification begins to affect also low polar angles. More considerations about the limits to this
simplification and how it affects the present modelling strategy are made in §5.

The expression for the axisymmetric component of the PSD then becomes:

〈p0(R, θ , ω)p∗
0(R, θ , ω)〉 = k4

a cos4 θ

4R2∫∫∫∫
〈Q0(x1, r1, ω)Q∗

0(x2, r2, ω)〉eika cos θ(x1−x2)r1r2 dr1dr2dx1dx2. (2.15)

Our approach then consists in using a line-source function, S(x1, x2, ω), to model the radially
integrated source, ∫∫

〈Q(x1, r1, ω)Q∗(x2, r2, ω)〉r1r2 dr1dr2 ≈ S(x1, x2, ω). (2.16)

The subscripts referring to azimuthal mode have been dropped for convenience, but hereafter,
all of the flow and acoustic information discussed refers to the axisymmetric mode.

We can see the modelling advantage of only taking into account the m = 0 azimuthal mode
and concentrating at low polar angles and Strouhal numbers: instead of having to model the full
cross-spectral density (or the cross-correlation, its counterpart in time domain) and how it varies
with source position and separation distance (equation (2.9)), here we are left with the much
simpler task of modelling the two-point statistics for a pair of points (x1, x2) in the streamwise
direction. It is worth emphasizing that this approach is only possible due to the significant amount
of information provided by the LES, which contains the radial structure of the source and thus
allows the radial integration of equation (2.16).
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The present modelling methodology is different from past studies that used a wavepacket line-
source approach [44,51,58,80] to the extent that we do not choose a specific radial position from
which to extract flow information and build the model; instead, we model the radially integrated
Lighthill stress tensor, so that equation (2.16) uses all the information available from the numerical
database and yields a line-source model that contains information about the radial structure of
the source.

(b) Wavepacket source model
Here we use modified versions of the model of Cavalieri & Agarwal [48] for the source,
which comprises a line-source wavepacket of CSD, S(x1, x2, ω), with modulated amplitude and
coherence. The coherence and amplitude envelopes were modified so as to better represent the
flow of information extracted from the simulation. For the coherence envelope (last term on the
right-hand side of equation (2.17)), we used a model proposed by Jordan et al. [81] and O’Hara
et al. [82], which consists in the convolution of Gaussian and exponential functions, as opposed of
the Gaussian used by Cavalieri & Agarwal [48]. The reason for this, as discussed in §4, is that the
convolution allows an accurate description of coherence at small separation distances. Moreover,
two envelope functions have been used: a standard Gaussian used in past studies [44,48,53,54]
and a modified Gaussian that has an asymmetric decay rate. Asymmetric wavepacket models
have also been explored by Papamouschou [83] and Koenig et al. [84]. The expression for the CSD
with a Gaussian envelope is given as

S(x1, x2, ω) = A(ω) exp[ikh(ω)(x1 − x2)] exp

[
− (x1 − x0(ω))2

L(ω)2 − (x2 − x0(ω))2

L(ω)2

]
γ 2(x1, x2, ω) (2.17)

where kh(ω) is the hydrodynamic wavenumber, L(ω) is the characteristic wavepacket length, and
γ 2(x1, x2, ω) is the coherence function. A(ω) is a term that sets the amplitude of the source. It is
taken as the maximum amplitude of the integrated source tensor, which occurs at the streamwise
position corresponding to the centre of the wavepacket, x0(ω), which is itself a function of
frequency.

The coherence function, γ 2(x1, x2, ω), is given as

γ 2(x1, x2, ω) = 1
2Lc1

∫∞

−∞
e−(|x1−x2−η|/Lc1 )e−((x1−x2)2/Lc2

2) dη, (2.18)

where Lc1 and Lc2 are the lengthscales associated with the exponential and Gaussian functions,
respectively and are function of ω.

A Gaussian function provides a good approximation for the amplification part of the
amplitude shapes (this is shown in §4, figure 4). However, the decaying part is asymmetric and
a Gaussian is not able to accurately represent the wavepacket envelope. Thus, an asymmetric
Gaussian envelope has also been used to fit the envelopes, given by the function

f (x) = 1
Las

ex2/L2
as erfc

[
αx√
2Las

]
, (2.19)

where Las is a characteristic length of the asymmetric envelope, α is a parameter controlling
the decay part of the function and erfc is the complementary error function. The CSD with the
asymmetric envelope becomes

S(x1, x2, ω) = A(ω)
1

Las(ω)2 exp[ikh(ω)(x1 − x2)] exp

[
− (x1 − x0(ω))2

Las(ω)2 − (x2 − x0(ω))2

Las(ω)2

]

× erfc
[

α(ω)(x1 − x0(ω))√
2Las(ω)

]
erfc

[
α(ω)(x2 − x0(ω))√

2Las(ω)

]
γ 2(x1, x2, ω). (2.20)

Both models are based on two-point statistics of the flow since these take into account
coherence decay. By making Lc1,2 → ∞, one eliminates the two-point dependence and obtains a
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model based on single-point statistics. The parameters highlighted in equations (2.17) and (2.20)
in red may then be educed from the simulation database after performing the integrals in the
radial direction.

Therefore, using equations (2.17) or (2.20) once the parameters have been educed, one can
evaluate the far-field radiation of the model source through the following equation:

〈p(R, θ , ω)p∗(R, θ , ω)〉 = k4
a cos4 θ

4R2

∫∫
S(x1, x2, ω)eika cos θ(x1−x2) dx1dx2. (2.21)

It is worth emphasizing that this model is contained in the more general source description
given by equation (2.9), and explored, for example, by Kharavan et al. [26], Tam & Auriault
[25], Self [21], Goldstein & Kharavan [22], Goldstein and Leib [23] and Leib and Goldstein [24],
Kopiev and Chernyshev [65]. Wavepackets, like the source models proposed in those studies, are
also of quadrupolar nature but are characterized by longer space scales. By focusing on these
specific flow entities, given their now demonstrated importance for sound radiation, we obtain a
simplified line-source description that requires a relatively small number of parameters.

3. Databases
A large-eddy simulation of an isothermal Ma = 0.4 turbulent jet has been performed using the
compressible solver ‘Charles’ [85]. The nozzle geometry and flow parameters reproduce the
experimental setup of the Bruit et Vent noise facility of the PPRIME institute, located in Poitiers,
France, and studied in previous studies [19,35,44]. The Reynolds number based on the jet diameter
is 4.6 × 105, and synthetic turbulence is used in the simulation to mimic the effect of the boundary
layer trip present in the experiment at a streamwise distance of x/D = 2.5 upstream of the jet exit.
The simulation has been run for a total time of 2000 acoustic time units, where the acoustic time
is defined as tc0/D. The unstructured grid was interpolated to a cylindrical grid that covers a
volume extending from 0 ≤ x/D ≤ 30, 0 ≤ r/D ≤ 6, 0 ≤ Φ ≤ 2π . Schmidt et al. [85] used this same
database to perform spectral proper orthogonal decomposition and resolvent analysis with a view
to study the low-rank behaviour of turbulent jets. More details about the numerical method and
meshing strategy can be found in Brès et al. [46].

The acoustic measurements were performed with an azimuthal ring array of diameter 14.3D
that contained 18 microphones. It is the same array previously used by Piantanida et al. [56]. The
ring was displaced in the axial position in the range 0D ≤ x ≤ 39D so as to vary the polar angle,
covering a cylindrical surface. This configuration allowed the decomposition of the pressure
signal into Fourier modes up to m = 9. A schematic of the acoustic experiment is shown in figure 1.
Both flow and acoustic data have been Fourier transformed in the azimuthal direction in order to
extract the m = 0, axisymmetric mode.

Figure 2 compares the LES with experimental data for the same jet: flow statistics are compared
with PIV data from Jaunet et al. [19] and sound pressure levels of the full sound field as a function
of polar angle are compared with measurements made using the experimental set-up described
above. The sound field is computed from the LES by means of a permeable formulation of the
Ffowcs Williams & Hawking equation in the frequency domain [46,64]. Mean flow and rms
profiles are in good agreement with the PIV data. The experimental data seem to underpredict the
rms levels of the LES near the nozzle, which can be explained by the low level of the magnification
factor of the PIV at this position, as discussed by Jaunet et al. [19]. Directivities computed from
the simulation are also in good agreement with experimental data.

4. Parameter eduction
In what follows we describe the procedure adopted in order to educe the parameters necessary
to build the CSD models given by equations (2.17) and (2.20) from the LES data. The optimal
parameters were selected using the MATLAB� fminsearch routine, a nonlinear least-squares
algorithm in which the error between data and model was minimized using the Nelder–Mead
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Figure 1. Schematic of microphone array.
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Figure 2. (a) Mean flow (i) and rms (ii) radial profiles obtained from PIV (points) and LES (lines). Profiles at three streamwise
stations are shown: x/D= 2.5 (solid line and squares); x/D= 4.5 (dashed-line and circles); x/D= 8 (dashed-dotted-line
and triangles). (b) Directivity plots for three Strouhal numbers with an observer in the cylindrical surface delimited by the
microphone array (figure 1). Circles: experimental data; solid line: LES far-field prediction computed using the FfowcsWilliams&
Hawkings equation.

simplex method. The data consist of the full source CSD, 〈Q(x1, r1, ω)Q∗(x2, r2, ω)〉, dependent
on two axial coordinates, two radial coordinates and frequency. Prior to the eduction, the data
are radially integrated twice and the model is created based on the line-source that results from
this operation, given by equation (2.16). Thus, all of the parameters have been educed for the
integrated source, and the information regarding the radial structure of the source is, so to speak,
contained in these and in the amplitude term. Since all the radial structure of the source available
is taken into account, it is not necessary to pick a specific radial position at which to educe the
parameters, unlike other studies that use a line-source approach [44,51,58,80].
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Figure 3. Radially integrated CSD issued from the LES for different Strouhal numbers. Reference point is at x0(ω). Levels have
been normalized by the maximum value at each Strouhal number.

Figure 3 shows the real part of the radially integrated CSD, S(x1, x2, ω), issued from the LES for
0.3 ≤ St ≤ 0.7 with the reference point at the peak of the wavepacket, x0. The wave-like character
of the source term of Lighthill’s acoustic analogy is evident, which motivates the modelling efforts
of the present study.

(a) Wavepacket characteristic length, L
The wavepacket characteristic length, L, was extracted by fitting the PSD of the velocity
fluctuation signal with an envelope function. Two envelopes were used: one with a Gaussian
form, which corresponds to the model of Cavalieri & Agarwal [48] and a second one with an
asymmetric Gaussian form, which accounts for different growth and decay rates. The Gaussian
envelope may be obtained by making x2 = x1 in equation (2.17).

Ssym(x1, ω) = A(ω) exp

[
−2(x1 − x0(ω))2

L(ω)2

]
, (4.1)

where the amplitude term is the direct result of the double radial integration performed with
equation (2.16). This function provides a reasonable fit of radially integrated power spectral
densities for the growth part of the wavepacket; however, downstream of the peak the agreement
becomes poorer, and the Gaussian fit does not represent the data correctly. Hence, here we
propose a modified Gaussian function that takes into account the asymmetry of the wavepacket.
This function can be obtained by setting x2 = x1 in equation (2.20),

Sasym(x1, ω) = A(ω)
1

Las(ω)2 exp

[
−2(x1 − x0(ω))2

Las(ω)2

]
erfc2

[
α(x1 − x0(ω))√

2Las(ω)

]
. (4.2)

One can observe, in figure 4, that the asymmetric envelope provides a better match for the data
in the decaying part on the envelope, where the Gaussian envelope significantly underpredicts
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Figure 4. PSD of the source and fitted Gaussian and asymmetric envelopes. (Online version in colour.)

the data. The acoustic radiation of the wavepacket model using both envelopes will be discussed
in §5.

(b) Hydrodynamic wavenumber, kh
The hydrodynamic wavenumber and the phase speed are related through

Uc(x1, ω) = ω

kh
= ω

(
∂φ

∂x2

)−1
, (4.3)

where φ(x1, x2) is the phase shift, obtained as the argument of the CSD. This expression gives the
phase speed for reference point x1 as a function of the rate of change of φ with the separation
distance from two points. We found this rate of change to be approximately constant in the LES
data so that the phase speed was educed from the simulation database by fitting the phase with
a linear regression. Figure 5 shows the space-frequency variation of the phase speed. One can
observe that the phase speed increases with increasing streamwise position and converges to a
value of approximately Uc/Uj = 0.77. Harper-Bourne [12] and Morris & Zaman [13] have used a
power-law of the form Uc/Uj = a ln St + b to model the variation of the phase speed with Strouhal
number. Here we use the same function to take into account the variation of phase speed with
reference position, x1. The fit can also be seen in figure 5.

(c) Coherence lengths, Lc1 ,Lc2
The magnitude-squared coherence of the radially integrated source term S(x1, x2, ω), is given as,

γ 2(x1, x2, ω) = |〈S(x1, x2, ω)〉|2〈
|S(x1, ω)|2

〉 〈
|S(x2, ω)|2

〉 , (4.4)

where S(x1, ω) and S(x2, ω) are the PSDs at points x1 and x2, respectively.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 N

ov
em

be
r 

20
21

 



13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190199

...........................................................

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

St = 0.3

U
c/

U
j

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

U
c/

U
j

x1/D

1 2 3 4 5 6 7 8 9 10
x1/D

1 2 3 4 5 6 7 8 9 10
x1/D

1 2 3 4 5 6 7 8 9 10
x1/D

1 2 3 4 5 6 7 8 9 10
x1/D

St = 0.4 St = 0.5

St = 0.6 St = 0.7

LES
fit

(a) (b) (c)

(d) (e)

Figure 5. Phase velocity as a function of streamwise reference point, x1, for different Strouhal numbers and power-law fit.

Jaunet et al. [19] used an exponential function to fit coherence decay for a Ma = 0.4 jet; however,
this function does not provide a correct description of coherence for values of separation distance
�x → 0. Jordan et al. [81] and O’Hara et al. [82] have proposed, for the two-point correlation,
a function given by the convolution of an exponential and a Gaussian. This function has the
interesting property of keeping the decay rate of an exponential while providing a zero slope
at �x = 0. In this work, we use the function of Jordan et al. [81], given by equation (2.18), to fit
the coherence of the LES data and obtain the two parameters that control the decay rate of the
curve, Lc1 and Lc2 . Figure 6 shows the magnitude-squared coherence as a function of streamwise
separation distance for various Strouhal numbers and the fitted function. The reference position
was set at the wavepacket peak, x0. The zero slope at �x = 0 can clearly be observed in the data,
whence the use of the convolution function. Tam & Auriault [25] and Kopiev & Chernyshev [86]
have shown that a sharp behaviour of the correlation function near �x = 0 is important for a
correct modelling of the broad-band spectra typical of high polar angles. Since this feature is not
present in the T11 term of Lighthill’s tensor, here we argue that it is somewhat less important for
sound radiation at low polar angles to the jet axis.

The decay rate of coherence has been found to vary considerably with reference position,
x1. Figure 7 shows the variation of Lc1 , the parameter that controls the global decay rate of
coherence, as a function of x1. This spatial dependence has been taken into account by fitting the
coherence length with high-order polynomials. Lc2 , which corrects the slope of coherence at small
separation distances, has been found to be less sensitive to streamwise coordinate. The search for
a general scaling for coherence lengths and an expression for their space-frequency dependence
is something that will be considered in future work.

(d) Comparison of educed parameters with previous wavepacket models
Cavalieri et al. [44] used a Gaussian wavepacket source model based on single-point statistics of
the sound field; coherence decay was thus not accounted for. As mentioned in the introduction,
because of the ill-posed nature of this inverse problem, one may find more than one set of
parameters that produce a source consistent with sound radiation from experimental results.
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Figure 6. Magnitude-squared coherence of the LES data and fitted curves.
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Table 2. Wavepacket parameters at St = 0.2, educed at the wavepacket peak, x0.

present study Cavalieri et al. [44]

khL L/D Uc/Uj Lc1/D khL L/D Uc/Uj Lc1/D

8.97 4.52 0.68 2.49 6.50 3.10 0.6, 0.97 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

These source parameters may not correspond to those of the jet however; the fact that the single-
point model lacks coherence decay means that its effect is, so to speak, ‘hidden’ in the set of
parameters found such that the correct sound field is obtained. Indeed, the value found by
Cavalieri et al. [44] for the source characteristic length L/D is underestimated with respect to the
values educed from the LES data, as shown in table 2; since that work did not consider coherence
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Figure 8. Comparison between sound radiated by single- and two-point wavepacket models and experimental data. The
models have a Gaussian amplitude envelope. (Online version in colour.)

decay in the source, it is possible that the lower value of L/D in Cavalieri et al. [44] compensates
for the effect of the coherence lengthscale in an effective length (such as the modified length Lm in
Cavalieri and Agarwal [48]). Also, the phase speeds identified in the LES data are significantly
lower than that found from the stability analysis in that work, which was based on a mean
velocity profile in the near-nozzle region, where, as can be seen in figure 5, the phase speeds
are considerably lower than those observed in most regions of the jet. In table 2, we compare the
single-point ‘inverse’ model of Cavalieri et al. [44] with the ‘direct’ two-point model considered
in this work at St = 0.2.

5. Acoustic radiation of single- and two-point source models
Here we compare the acoustic fields generated by single and two-point wavepacket models
through equation (2.21), where the single-point model is computed by setting Lc1,2 = ∞ in
equation (2.17), considering the model with a Gaussian envelope. Figure 8 shows the SPL in dB/St
generated by both models, using Gaussian amplitude envelopes, compared with experimental
data for the m = 0 azimuthal mode at Strouhal numbers St = 0.3 − 0.7. Despite the implications
of only modelling the linear part of the Lighthill tensor at high polar angles, as evoked in
§2, we show the results up to 80◦. It is clear that, if coherence decay is neglected, as is the
case for the single-point model, the SPL generated significantly underpredicts the experimental
data. Other studies based on dynamic wavepacket modelling have come to a similar conclusion
[41,47,49,50]. This further illustrates that the effect of coherence decay was somewhat hidden in,
or compensated for by, the single-point parameters estimated from the acoustic field by Cavalieri
et al. [44]. It must be emphasized that the acoustic data are measured with the observer on the
cylindrical surface delimited by the microphone array. This does not correspond to a true polar
reference frame, since the distance between source and observer decreases with increasing polar
angle; for this reason, the SPL decay rate with polar angle is smaller than that observed by [44].
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Figure9. Fourier transformof CSD inwavenumber space at St = 0.3. (a): sourcewithunit coherence; (b): sourcewith coherence
modulation. Levels are in dB scale. (a) Lc1,2 = ∞, (b) Lc1,2 = Lc1,2,num . (Online version in colour.)

In order to understand the effect of coherence on the source structure and sound radiation
efficiency, it is interesting to look at the CSD in wavenumber space. Figure 9 shows a comparison
of the spatial Fourier transform of the CSD of a source with unit coherence and another with
coherence decay at St = 0.3. kx1 and kx2 are wavenumbers corresponding to the x1 and x2
directions, respectively. From equation (2.21), which can be recognized as a double spatial Fourier
transform, we realize that only the wavenumbers that are in the range |kx1 | ≤ ka and |kx2 | ≤ ka

contribute to sound radiation. From the relation of wavenumber and phase speed given by
equation (4.3), we have,

Uc1 > c (5.1)

and
Uc2 > c, (5.2)

where c is the sound speed and Uc1 and Uc2 are the phase speeds associated with wavenumbers
kx1 and kx2 , respectively. This shows that only wavenumbers with supersonic associated phase
speeds contribute to far-field radiation.

These conditions can also be written as

|kx1 |
kh

< Mc (5.3)

and |kx2 |
kh

< Mc, (5.4)

as shown by Cavalieri & Agarwal [48]. The wavenumbers respecting this inequality have been
referred to as ‘acoustically matched’ [34,53]. The radiating region of the spectrum is illustrated
in figure 9 by the square delimited by the acoustic wavenumber. One can observe that, for the
source with no coherence decay, all of the significant energy of the source is contained outside
of the radiating region (figure 9a). We thus understand the significant difference in the acoustic
efficiency. The effect of coherence decay is to stretch the source in wavenumber space, such that a
more significant part of its energy is contained in the radiating part of the spectrum (figure 9b).

Although the two-point model with Gaussian amplitude envelope produces acoustic results
that are much closer to the data, there are some discrepancies in SPL and directivity with respect
to the experimental data, specially at low St. In what follows, we explore the differences between
sound radiation of the Gaussian and asymmetric wavepackets. Figure 10 compares the SPL
generated by both models with the acoustic data.

We also show the sound radiation obtained by directly applying equation (2.15) on the
linearized q11 term directly computed from the LES data. These results (the black solid lines in
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Figure 10. Sound radiation by sources with Gaussian an asymmetric amplitude envelopes. The error bars are centred at the
mode of the sample values computed in the Monte Carlo simulation. (Online version in colour.)

figure 10) can be thought of as the best ones that may be attained by the model using the current
approach, because they correspond to the fully computed CSD matrix, without any modelling.
We can see the agreement between the sound radiation computed with this method and the
acoustic data is quite good up to St = 0.5. Beyond that St, overpredictions of approximately
5 dB are observed. This breakdown at higher St can be explained by the simplification made in
equation (2.15), in neglecting the radial structure of J0(kar sin θ ). This term, named ‘jet thickness’
by Michalke [31] accounts for radial interferences of the sources within the jet, and its neglect
yields an increase in sound radiation. As shown in table 1, neglecting the structure of the Bessel
function starts to be problematic at low polar angles for St > 0.5; for instance, taking r/D = 2 as the
integration limit of equation (2.14) leads to an overestimation of approximately 20% in J0(kar sin θ )
for low θ . The results of the LES sound radiation depicted in figure 10 suggest that St = 0.5 is
indeed the upper limit of the methodology we consider here.

It may also be observed that the asymmetric wavepacket model provides better matches with
the data, specially at lower St, both in terms of amplitude and directivity. The sound radiation of
the model is within 2 dB of the data up to θ = 50◦. This reveals that a correct representation of the
envelope is also a key aspect to be considered in order to make accurate acoustic predictions.
As St is increased the difference between the two types of envelope become less marked, as
seen in figure 4, and the results of the two models become closer. At high polar angles, the
agreement breaks down due to the simplifications made in the derivation of the model but also
due to the lack of the other terms of the Lighthill stress tensor. As a matter of fact, one should
expect the importance of the q11 term to be reduced with increasing polar angle due to the cos4 θ

directivity factor in equation (2.21). Modelling of these terms, which is beyond the scope of the
work presented, is something to be considered for future work.

In order to assess the robustness of the model regarding its parameters, a Monte Carlo
simulation was carried out for the model with the asymmetric envelope. We assumed that the
parameters could vary at the same time by ±10% about the values educed from the LES and
that they followed a normal probability distribution; then the sound field was computed for 1000
random combinations of the parameters. The results of the Monte Carlo simulation can also be
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seen in figure 10, which shows the error bars centred around the most frequent value found
in the simulation. It can be seen that the results of the asymmetric model are well within the
range delimited by the error bars and are close to the most frequent value of the sample values
computed. The maximum error found was approximately 3 dB up to θ = 50◦, and it increases in
the polar range at which the model is no longer suitable for making acoustic predictions. These
results reveal a certain robustness and the capacity of making accurate acoustic predictions even
if numerical errors were to introduce errors in the eduction of the parameters.

The results of the kinematic models identify the parameters that dynamic models should be
crafted to correctly predict. The phase speed is theoretically available from linear stability models.
But the decay rate of the amplitude envelope, the coherence decay and the global amplitude
are not readily available from such calculations. These parameters can only be determined by
including an inhomogeneous term in the linearized equations, in which nonlinear forcing will fix
amplitude and determine the decay rate and coherence decay. In this framework, the resolvent
of the linear operator is a key element, that determines how nonlinear interactions force the
linear waves. Studies [73,74] have shown that there exists a close link between the optimal
forcing and response modes of the resolvent operator and SPOD modes of wavepacket CSD.
We keep this in mind in the following section where we perform SPOD of the source CSD with
the asymmetric envelope (the one that gives more accurate acoustic predictions) with a view to
exploring the possibility of low-rank modelling of the key source parameters highlighted by the
results presented up to this point. Hereafter we shall concentrate our analysis up to St = 0.5, in
the range where our methodology has been shown to provide accurate sound predictions.

6. Spectral proper orthogonal decomposition

(a) Equations
The Proper Orthogonal Decomposition seeks a set of linear independent functions constituting a
basis that best represents a given dataset in terms of fluctuation energy [87,88]. For a turbulent
flow, the POD functions are found through the maximization of the mean-square projection on the
velocity field, which is performed via the integral Fredholm equation, as shown by Lumley [87]

∫
Sûû(x1, x2)uω(x2)dx2 = σuω(x1). (6.1)

In the case of SPOD, the kernel Sûû is the cross-spectral density matrix of the field of interest,
which is Hermitian by construction. The Fredholm equation can then be recast as an equivalent
eigenvalue decomposition:

Sûû = UΣU−1. (6.2)

Since Sûû is Hermitian, U is a unitary matrix, so that UHU = I and UH = U−1. The eigenmode
decomposition may then be rewritten as,

Sûû = UΣUH, (6.3)

which corresponds to the singular value decomposition of Sûû.
Since the eigenvectors are orthogonal to each other, it is possible to construct a rank-N

representation of the CSD as

S̃ûû =
N∑

k=1

ukσkuH
k , (6.4)

where σk are the eigenvalues and uk the eigenvectors of Sûû.
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Figure 11. Structure of first four SPODmodes. Solid line represents the modes of the model CSD and dashed lines the modes of
the CSD issued from the LES. The amplitudes are arbitrary and are in linear scale. (Online version in colour.)

The elements of the rank-N representation of the CSD are given as,

[̃
Sûû

]
x1,x2

=
N∑

k=1

uk(x1)σkuH
k (x2). (6.5)

The rank-N representation of the coherence function is given as the rank-N CSD normalized
by the rank-N PSD’s at each of the points

γ̃ 2(x1, x2) =

∣∣∣∑N
k=1 uk(x1)σkuH

k (x2)
∣∣∣2[∑N

k=1 uk(x1)σkuH
k (x1)

] [∑N
k=1 uk(x2)σkuH

k (x2)
] . (6.6)

We can obtain the rank-1 coherence as,

γ̃ 2(x1, x2) =
∣∣u1(x1)σ1uH

1 (x2)
∣∣2[

u1(x1)σ1uH
1 (x1)

] [
u1(x2)σ1uH

1 (x2)
] = |u1(x1)|2 σ 2

1 |u1(x2)|2
|u1(x1)|2 σ 2

1 |u1(x2)|2 = 1, (6.7)

showing that any single-mode representation of the CSD leads to unit coherence. In order to
obtain two-point coherences lower than one, a superposition of N > 1 modes is necessary.

The far-field radiation of a rank-N CSD may be assessed via equation (2.21) by substituting the
source term with the low-order representation,

〈p̃(R, θ , ω)p̃∗(R, θ , ω)〉 = k4
a cos4 θ

4R2

∫∫ [̃
Sûû

]
x1,x2

eika cos θ(x1−x2) dx1dx2. (6.8)

(b) Envelopes and phases
SPOD was performed on the CSD issuing from both the LES data and the model. For the sake of
compactness, throughout the remainder of the paper, we shall concentrate on results of the SPOD
carried out at St = 0.3 and St = 0.5. However, results for St = 0.4 have similar behaviour for all the
plots in this and in the subsequent sections. Figure 11 shows the amplitude envelopes of the first
four modes. The amplitudes have been normalized in order to allow qualitative comparisons
between the modes of the two CSD’s. The first mode is a typical wavepacket with a nearly
Gaussian envelope and subsequent modes have envelopes with a successively larger number of
lobes; for instance, kth mode has k lobes and k − 1 minima points; this reflects the orthogonality
of the basis that is formed by the modes. The spatial structure of the modes of the model CSD is in
good agreement with those of the CSD issuing from the LES, especially for the first three modes.
As the order of the model is increased, the tendency is that the agreement deteriorates, because a
higher spatial resolution is required for the modes to be statistically converged [89].

The phases of the modes are shown in figure 12. The phase of the first mode displays a
typical convective behaviour characterized by a straight line. The higher-order modes have π
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Figure 12. Phase of first four SPOD modes. Solid line represents the phases of the model CSD and dashed lines the phases of
the CSD issued from LES data. (Online version in colour.)

phase jumps at axial positions corresponding to the minima positions of the envelopes; these
characteristics stem from the orthogonality of the basis formed by the eigenfunctions. While they
cannot be directly related to any specific flow structures, one can interpret the higher-order SPOD
modes and their features as directions necessary to describe flow structures with more complex,
jittery behaviour; therefore, they play a role in coherence decay by introducing a phase ‘blur’
between different axial stations. The phases of the modes of LES data also contain similar phase
jumps.

Furthermore, we can see from figure 11 that there is a certain characteristic lengthscale that can
be associated with each mode by taking the distance between successive lobes; this lengthscale
decreases with increasing mode number, suggesting that higher-order modes are associated with
smaller scale activity.

As discussed in the introduction, the link between SPOD modes and resolvent modes has
been explored by other studies [73–75], and the results indicate high correlations between
leading SPOD and resolvent modes, suggesting that coherence decay is underpinned by a rather
disorganized, uncorrelated background turbulence forcing the linearized equations of motion and
that the SPOD modes are structures that arise in response to this forcing and whose organization
is imposed by the linear operator. The envelopes and phases of the modes shown in figures 11 and
12 suggest that background forcing leads to the multi-lobed structure and phase jumps manifest
in the SPOD modes, which describe acoustically important degrees of wavepacket freedom and
that cannot be captured using a standard linear stability analysis that neglects the forcing due to
nonlinearities. We now address the question of the rank necessary to describe these acoustically
important dynamics, by computing sound fields using truncated CSD source models, and by
evaluating the effect of truncation both on the radiated sound and the source parameters that
underpin this.

(c) Energy convergence
The convergence of the SPOD regarding the energy of the modes may be evaluated through∑k

i=1 σi∑N
i=1 σi

, (6.9)

where the sum of the energy captured by the first k eigenvalues is normalized by the sum of
the total energy. Figure 13 shows the energy convergence for the model CSD for 0.3 ≤ St ≤ 0.5.
Between 10 and 20 modes are required to recover the energy of the full CSD, and it can be
observed that the number of modes required to capture all of the energy contained in the CSD
decreases as the Strouhal number is increased. This might lead to the conclusion that a low-rank
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maximum value of the full source. (Online version in colour.)

behaviour only becomes pronounced with increasing Strouhal number. However, as can be seen
in figure 9, most of the energy of the source lies outside the radiating region in wavenumber
space, so that the number of modes required to recover the energy is not necessarily the same
to capture the important acoustic features of the CSD. Thus, in the next section, we analyse the
low-rank behaviour of the model regarding its acoustic radiation.

(d) Low-rank models
We assess the convergence of low-rank approximations of the CSD of the kinematic source
model with respect to acoustic radiation, and to two sound source parameters considered earlier:
amplitude envelope and coherence decay, which are not correctly captured by linear stability
models.

Figure 14 shows the convergence of the envelopes of low-rank models with increasing
numbers of modes with respect to the full CSD. We see that a one-mode representation
underestimates the peak amplitude by approximately 20%; nevertheless, we note that the low-
rank models quickly converge to the amplitude envelope of the full CSD. Only 7–10 modes in the
reduced-order model suffice to capture the envelope length and amplitude.

As shown in equation (6.7), a low-rank representation of the CSD with only one mode results
in unit coherence and so a higher-rank model is essential for this aspect of the wavepacket source
behaviour. This is illustrated in figure 15, which shows the coherence envelopes of low-rank
approximations with up to 10 modes, with reference point at the centre of the wavepacket, x0.
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Figure 16. Effect of cumulative SPOD modes on far-field radiation by the wavepacket source. (Online version in colour.)

By successively adding more modes, the coherence decays more sharply and approaches the
envelope of the full CSD.

The SPL of a low-rank approximation can be computed using equation (6.8). We note that
the number of modes needed to recover the acoustic radiation of the full CSD increases with
increasing Strouhal number. Nevertheless, for the Strouhal numbers considered, a low-rank
representation of the source with 10 modes was sufficient to recover the acoustic efficiency of
the full source model at low polar angles, as seen in figure 16. Due to its unit coherence, a low-
rank model with only one mode has a very low acoustic efficiency, similar to the single-point
wavepacket, as one can see by comparing figures 8 and 16.

Ten modes is less than the number of modes necessary to recover all of the energy contained in
the CSD (figure 13) at lower Strouhal numbers (St ≤ 0.3). This suggests that, at these Strouhal
numbers, part of the energy is redundant from an acoustic point of view, and the correct
representation of the wavepacket parameters is more relevant to sound radiation. These results
reveal that this model source, which has been shown to produce the correct sound field at
low polar angles, is relatively low-rank; wavepacket traits relevant to sound radiation, namely,
coherence decay and envelope characteristic lengths, can be recovered with only a few SPOD
modes.

7. Conclusion
The kinematic-sound source model proposed by Cavalieri & Agarwal [48] based on two-point
statistics has been studied in order to get further insight into wavepacket parameters important
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to sound radiation. Data from a large-eddy simulation performed using the flow solver ‘Charles’
[85] were used to educe the physical parameters necessary to compute the sound radiation by the
model source, namely: the wavepacket characteristic lengthscales, L and Las, the position where
the envelope reaches its maximum, x0, the envelope decay rate parameter, α, the hydrodynamic
wavenumber, kh and the coherence length scales, Lc1,2 .

Unlike past studies based on a line-source approach [44,51,58,80], we choose to take account of
the radial structure of the source. And unlike Cavalieri et al. [44], we educe the source parameters
directly from the two-point velocity measurements instead of estimating single-point parameters
from the sound field, following the approach of previous studies [11,12,21–24]. The single-point
model does not account for coherence decay, and thus the single-point parameters inferred from
the acoustic field do not correspond to those educed from flow data, as shown in table 2. Due to
the lack of coherence modulation in the single-point formulation, the correct source parameters
can be considered to have been hidden in, or compensated for by, those inferred from the sound
field; this highlights the caution that is necessary when using inverse approaches, as different
source fields can lead to quite similar acoustic radiation. Using the parameters educed from LES
data to animate the model, it was possible to compute the acoustic field through equation (2.21).

The results reveal the key importance of both coherence decay and envelope shape for
wavepacket sound radiation. They show that, if coherence decay is neglected, most of the energy
of the model source lies outside of the region of the spectrum corresponding to acoustically
matched wavenumbers, and thus the single-point wavepacket has a very low acoustic efficiency.
These results highlight the importance of coherence decay, the frequency domain manifestation
of jitter, for jet noise modelling, which has been evoked in previous studies [41,47,51,52].

Furthermore, it has been shown that the asymmetry of the wavepacket envelope is also of key
importance for an accurate sound prediction. An asymmetric envelope, which better represents
flow data, produces sound levels closer to experimental results at low polar angles, especially
at low Strouhal numbers. For St > 0.5 the model overpredicts the data due to the acoustic
compactness assumption, which amounts to neglecting the radial structure of the Bessel function,
J0(kar sin θ ), in the far-field radiation equation.

We have used full-field data to characterize the three-dimensional structure of the CSD matrix,
which is at the core of Lighthill’s acoustic analogy. These data can be obtained for instance,
through a high-fidelity simulation with converged two-point statistics, as the one we use; or
alternatively, it can be obtained from an experiment involving simultaneous measurements in
two-different flow planes, as the one carried out by Jaunet et al. [19]. In the absence of full-field
data, simplifying assumptions about the structure of the CSD matrix have to be done, which
can lead to the use of empirical constants to calibrate the source, as done in many studies in the
past. However, the results have shown that a simplified wavepacket model relying on a relatively
small number of parameters provides a fairly accurate sound prediction of the axisymmetric
pressure mode at low polar angles. These observations give insight regarding perspectives for
dynamic wavepacket models to predict jet noise without the need for such an extensive database:
although the standard, unforced linear models successfully capture the phase speed and the
amplitude envelope up to the point where the Kelvin–Helmholtz mode becomes stable [35,40,41],
they underpredict the amplitude further downstream and do not contain information regarding
coherence decay, making an accurate noise prediction impossible; on the other hand, other studies
have shown that these issues may be overcome by using a forcing term in the linearized equations
[90]. This and the fact that forced linear stability models can determine the amplitude of the
fluctuations make them more suitable to describe sound generation mechanisms.

A Spectral Proper Orthogonal Decomposition of the model CSD was performed with a view
to exploring the possibility of constructing a reduced-rank source model capable of capturing the
acoustically important parameters. This is further motivated by the recently demonstrated link
between SPOD modes and optimal resolvent response modes that arise when the linear stability
models are considered in the presence of stochastic forcing [75].

An analysis of eigenvalue convergence reveals that approximately 10 to 20 modes are
necessary to capture the total energy of the CSD, the number of modes decreasing with increasing
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Strouhal number. On the other hand, only 10 modes are necessary to recover the most important
traits for sound radiation, namely the envelope shape and coherence envelopes. This reveals that
the acoustically important features can be reproduced with a low-rank model.
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