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The engine performance impact of soybean oil ethyl ester blending into diesel fuel was analyzed employing
heat release analysis, in-cylinder exergy balances and dynamometric tests. Blends with concentrations of
up to 30% of soybean oil ethyl ester in volume were used in steady-state experiments conducted in a high
speed turbocharged direct injection engine. Modifications in fuel heat value, fuel—air equivalence ratio and
combustion temperature were found to govern the impact resulting from the addition of biodiesel on

engine performance. For the analyzed fuels, the 20% biodiesel blend presented the best results of brake
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thermal efficiency, while the 10% biodiesel blend presented the best results of brake power and sfc (specific
fuel consumption). In relation to mineral diesel and in full load conditions, an average increase of 4.16% was
observed in brake thermal efficiency with B20 blend. In the same conditions, an average gain of 1.15% in
brake power and a reduction of 1.73% in sfc was observed with B10 blend.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The esters of biological oils, also known as biodiesel, have been
considered as promising renewable substitutes for mineral diesel
fuel [1—3]. Biodiesel research to date has involved mostly methyl
esters of vegetable oils in engines of different sizes and configu-
rations, which were also operated under wide-ranging conditions
of load and speed. Accordingly, the reported effects of biodiesel/
diesel fuel blends on engine performance, combustion character-
istics and emissions vary considerably.

Reductions in particulate matter, carbon monoxide and
unburned hydrocarbon emissions can be achieved through the use
of biodiesel. The substitution of diesel fuel by a B20 blend decreases
the emission of particulate matter on average by 25% for engines
meeting 2004 emissions standards [4] and by 10.1% for 1989 to
1994 model engines [5]. Engine characteristics have an even greater
influence on nitrogen oxide emissions, with changes for the B20
blend ranging from +8 to —6% depending on the engine’s tech-
nology, representing an average increase of 2% [5].
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With regard to the brake thermal efficiency outcomes of biodiesel
blending, reported data include slight elevations [6—15], inconclusive
variations [16—20] and a slight decrease [21,22]. These results have
been attributed to the following: reduction in friction power due to
biodiesel lubricity [7,10], oxygen present in biodiesel [9,13], increase in
combustion efficiency [6,7,12], improved combustion characteristics
[8,23] and alterations in fuel vaporization and ignition processes [11].

In order to explain the behavior of the sfc (specific fuel
consumption), some authors recognize a balance between the
increased thermal efficiency and the fuel’s reduced heating value
resulting from the biodiesel blend. For such authors, the combi-
nation of these trends which provide the minimum sfc is achieved
with B10 [6,10,11,14], B15 [12] or B20 [7,9,13] blends. Rakopoulos
et al. [18] reported minimum fuel consumption with the B10 blend
under moderate loads and with diesel fuel with the same engine
operating under high loads, demonstrating that the impact of
biodiesel blends on fuel consumption can also be regime-depen-
dent. The break sfc reportedly decreased with biodiesel blends in
studies which showed inconclusive variations or decreased thermal
efficiency [21,22]. A third group of authors did not consider the
effects on engine thermal efficiency, but investigated only alter-
ations in break sfc resulting from the addition of biodiesel. In these
works, dissimilar degrees of increase in sfc with biodiesel blending
were reported and attributed directly to the differences in the heat
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values of the fuels [24—27] or to the combined effect of biodiesel’s
higher viscosity and lower calorific value [28].

In the present work, the effects of soybean oil ethyl ester/diesel
blends on engine performance are studied through steady-state
experiments conducted with a high speed turbocharged direct
injection engine. Heat release analysis is applied in order to esti-
mate the effects of biodiesel blending on the combustion process.
Engine efficiency is accessed by means of two novel expressions
developed for the exergy efficiencies of the combustion and
expansion processes. These efficiencies are based on engine indi-
cating data, providing information about the impact of biodiesel
blends on the fractions of fuel exergy exchanged through work,
destroyed by irreversibilities and lost with heat and mass transfers.
The results obtained in the exergy analysis are employed to identify
the causes of brake thermal efficiency, brake sfc and brake torque
alterations measured in dynamometric bench tests.

2. Materials and methods
2.1. Tested fuels

Soybean oil ethyl ester is analyzed as a partial substitute for diesel
fuel in concentrations of up to 30% by volume. The baseline fuel
utilized here is a low sulphur (0.05%) diesel. Table 1 lists the relevant
chemical, thermodynamic and physical properties of the test-fuels.
Due to the presence of oxygen in its composition and a lower C/H
ratio, biodiesel reduces the stoichiometric air—fuel mass ratio (as)
and the chemical exergy of the fuel. The B20 blend, for instance,
shows 10% higher fuel viscosity, 3.6% lower fuel exergy content and
2.6% lower amount of air necessary for stoichiometric combustion
than diesel fuel. The viscosities of the diesel/biodiesel blends studied
here were lower than would be predicted from a linear model,
meeting the ASTM D-975 specification of a maximum of 4.1 m?s~! at
40 °C. A minor density increase also occurred with the addition of
biodiesel, which was only 0.6% in the B20 blend.

2.2. Dynamometric bench tests

The experiments of this study were conducted at the Applied
Thermodynamics Laboratory of the Pontifical Catholic University of
Parana. The tested engine was a direct injection, turbocharged, high
speed diesel MWM 6.07T GMT-400, whose specifications are pre-
sented in Table 2. A ZOLLNER ALFA-160 dynamometer and an AVL
Puma 5 automated test bed system were used to control the
engine’s operation and identify its relevant parameters. Fuel
consumption was determined with an AVL gravimetric fuel balance.
The engine intake was connected to a surge tank, and the intake air
volumetric flow rate was determined through a positive displace-
ment-measuring device. The engine coolant and fuel temperatures
were controlled with water-fed heat exchangers.

The engine brake sfc (specific fuel consumption) is given by
measurements of brake power (Pp) and fuel mass flow rate (my):
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Table 2
Engine specifications.

Configuration 4 Stroke, direct injection

Turbocharger control Waste gate valve

Number of cylinders 6

Displacement [dm?] 4.2

Bore [m] 0.093

Stroke [m] 0.103

Compression ratio 17.8:1

Valves per cylinder (intake/exhaust) 2/1

Intake valves close [deg after BDC] 32

Exhaust valve opens [deg before BDC] 55

Fuel injection pump Bosch VE rotary distributor
pump

Fuel injectors 5 Holes

Fuel injectors opening pressure 220/300

(1st/2nd stage) [bar]
Piston crown shape Re-entrant

m
sfc:—f

. )

The engine brake thermal efficiency (n) constitutes a more
fundamental parameter for comparisons of different fuels, taking
into account the differences in the exergy values of these fuels:

_ b
o T'hf@Xf

(2)

n

where exy is the specific flow exergy of the fuel studied here (see
Section 2.5). Brake and indicated thermal efficiencies are utilized
here to characterize the impact of the addition of biodiesel on
engine efficiency. By combining Equations (1) and (2), it is possible
to express the specific volumetric fuel consumption in terms of the
fuel exergy and of the brake thermal efficiency:

1
npgeXs

sfc (3)
where pris the fuel density. The overall engine fuel—air equivalence
ratio is considered through

(4)

my
¢0verall = aStm_a
Brake thermal efficiency data and performance maps obtained
over the entire range of engine loads and speeds with baseline fuel
and biodiesel blends are presented in contour graphs, which
contain the brake mean effective pressure and the mean piston
speed in the axes. The torque, in-cylinder pressure and fuel mass
flow rate data utilized here were measured after 1 min of engine
steady-state operation, with 200 rpm and 1/6 of maximum inter-
vals of brake mean effective pressure between measurements.
Overall fuel—air equivalence ratio, heat release and in-cylinder
exergy analysis data are presented for full load conditions only. The
accuracy of measurements and the uncertainty of calculated vari-
ables utilized here are shown in Table 3.

Table 1

Properties of diesel fuel, soybean ethyl ester (biodiesel) and its blends.
Fuel % Biodiesel Empirical ase [mgmar]se Density Viscosity Ch. Exergy

(Volume) Formula [kg/m?3] [m?/s at 40 °C] [MJ/kg]

Diesel 0% C10.80H18.7000.00 14.60 850.0 2.60 x 1076 4498 + 0.15
BO5 5% C11.03H19.1600.05 14.51 851.3 2.66 x 1076 44.65 + 0.15
B10 10% C1127H10.6400.11 14.41 852.6 2.72 x 1076 4433 +0.15
B15 15% Ci1.53H201500.16 1433 853.9 2.79 x 106 44,00 + 0.14
B20 20% C11.80H20.690022 14.22 855.2 2.86 x 1076 43.35 £ 0.14
B30 30% C1238H21.860035 14.04 857.8 3.09 x 106 4302 +0.14
Biodiesel 100% C19.75H36.5002.00 12.77 876.0 457 x 1076 38.48 + 0.12
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Table 3
Accuracy of measurements and uncertainty of calculated variables.

Measurement Full Scale Measurement
Accuracy

Brake power +0.32 kW

Fuel consumption (mass flow rate) +192 g/h

Air consumption (volumetric flow rate) +6 m’/h

Indicated pressure +0.67 bar

Calculated Variable Calculated Variable

Uncertainty
Fuel chemical exergy +0.31%
Overall fuel—air equivalence ratio +0.0107
Brake thermal efficiency +0.0039
Specific volumetric fuel consumption +1.84 ml/kWh
Gross indicated thermal efficiency (4Exw) +0.0048

2.3. Engine indicating experimental setup

A miniature piezoelectric pressure transducer AVL GM 12 D
mounted flush above the piston bowl was used to measure the
cylinder pressure. Thermal strain effects were prevented by
adopting the test methods proposed by Randolph [29]. The trans-
ducer output was connected to a current to voltage converter,
which provides in-cylinder pressure derivative signals. The differ-
ential pressure signal was averaged between 56 consecutive engine
cycles and sampled with 0.5° crank angle resolution, using an AVL
Indiset 317 indicating data acquisition system. Indicated pressure
diagrams were obtained by numerical integration of the pressure
derivative experimental data. The angular position of the top dead
centre was determined dynamically by means of a capacitive
sensor. The uncertainty shown in Table 3 for the indicated thermal
efficiency 4Exw was calculated considering the combined accuracy
of the system composed of the pressure transducer and the indi-
cating data acquisition equipment [30].

2.4. Combustion diagnosis model

The processes taking place within the control volume shown in
Fig. 1 were modeled according to the single-zone combustion model
proposed by Krieger and Borman [31]. The injected fuel is considered
to burn instantaneously as it enters the cylinder, and the working fluid
is represented as a homogeneous mixture of combustion products
passing through a sequence of equilibrium states. In-cylinder
temperature (T) and instantaneous fuel—air equivalence ratio (¢) with
the crank angle (#) were determined from the following equations:

Fig. 1. Exergy and heat release analysis control volume.

lav (1 _10R\dP (10R 1 \d¢
ar vas \p Rop)dd \Rop " ax+9)db )
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ROT ' T
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u
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where u is the specific internal energy of the working fluid, R is the
gas constant of the working fluid, V is the cylinder volume, P is
the cylinder pressure and hyis the enthalpy of the fuel entering the
combustion chamber. The thermodynamic properties of the
working fluid and its partial derivatives related to T, P and ¢ were
determined from a modified version of the PER and EQMD routines
proposed by Olikara and Borman [32]. The modifications introduced
into these routines allowed the working fluid entropy to be calcu-
lated and the composition of the air defined as the reference envi-
ronment used in the exergy analysis to be taken into account. The
heat transfer rate, dQ/df, was estimated using the correlation
proposed by Annand and Ma [33], and the heat transfer correlation
adjusting parameters were set to obtain unitary combustion effi-
ciencies. The combustion reaction extent is evaluated from:

dm, pv d¢
d (Rw +_ast>>@ ®)

where dmp/df is the apparent fuel mass burning rate. The crank
angle periods required to a combustion reaction progress of 90% are
computed in full load conditions, and averaged with 200 -rpm
intervals of engine speed.

The numerical integration of Equations (5)—(8) provided the
working fluid properties necessary for the exergy analysis dis-
cussed in the next section and the heat release analysis results
presented in Fig. 3. These equations were solved during the closed
valves period of the engine cycle, employing cylinder pressure and
cylinder pressure derivative data obtained through the experi-
mental procedures described in Section 2.3.

2.5. In-cylinder exergy balance and exergy efficiencies

The exergy balance for the control volume shown in Fig. 1 can be
expressed in differential form as

dEx™ dEx"  dExq dExy  dEx; dI

@ tTa T @ @ T @ (9)
1 2 3 4 5 6
where

dE d

dgf:e"f%

dExq _ [ T°\dQ

o T ) do

dEXWi 0 dV

= (P-P)g

The left-hand terms of the above equation represent the exergy
variation rate of the system. These exergy components have
opposite effects on the engine thermal efficiency. The thermo-
mechanical exergy of the cylinder combustion gases can be
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Fig. 2. Fuel consumption and fuel—air equivalence ratio under full load conditions.
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Fig. 4. Thermal efficiency maps for diesel fuel/biodiesel blends.

transferred through heat and work interactions occurring in the
cylinder as well as in the exhaust system, while the chemical
exergy of these gases cannot be converted into thermomechanical
exergy or transferred through heat or work interactions inside the
engine [34]. Consequently, it can be stated that the chemical
exergy contained in the end-combustion gases represents a loss of
exergy. The exergy transfers through the system boundaries
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Fig. 6. In-cylinder exergy balance terms obtained for full load engine operation.

It is convenient to represent the terms of the exergy balance in
the integral form, and normalized in relation to the exergy content
of the injected fuel Ex :

AEX™ 4 AExh — AExq + AExy + Al = 1 (10)

The first and the second terms of this equation represent the
equivalent amounts of injected fuel exergy which remain in the
form of thermomechanical (4Ex:y;) and chemical (4Excy) exergies
from combustion gases at the end of the closed part of the engine
cycle. The term Al indicates the fraction of injected fuel exergy
destroyed during combustion, while the terms—4Exq and 4Exy
represent the fractions that have been transferred through heat and
indicated work. Hence, as can be seen, the term 4Exyy, represents
thermal efficiency derived from the gross indicated work. This term
will, therefore, be used as a gross indicated thermal efficiency
measure in Section 3.3. The exergy exchanged through heat transfer
is considered a loss of exergy in this study, given that only a small
part of it can be recovered through working fluid heating during
admission and early compression, while most of it is destroyed by
external irreversibilities.

The flow exergy of the fuels (exy) was evaluated through the
following expression:

0

€Xf :hf,TOSf,% (11)

In this equation ,u? is the equivalent chemical potential of the
fuel in ambient conditions, hr is the specific fuel enthalpy, My is
the fuel molecular weight and sy is the specific entropy of the fuel.
The enthalpies of formation of the diesel fuel and of the biodiesel
were determined in function of experimentally obtained heats of
combustion. The entropies of the fuels were estimated using an
empirical expression [35], while the chemical potentials of the fuels

were calculated in function of the chemical potentials of its
combustion products:

He, 1,0, = MhCo, + g#gm - (" + % - %) 1o, (12)
The reference environment adopted here corresponds to the air
employed by Van Gerpen and Shapiro [36]. Further details
regarding the working fluid model can be found in Ref. [14].
The normalized in-cylinder exergy balance can be re-written in
the following form:

AExw = NpNem (13)
where
Ny = 1— Al — AEx“ (14)
AEx'™ — AExq
1 15
M 1— Al — AExch (15)

evidencing that the gross indicated thermal efficiency is composed of
two other exergy efficiencies: a combustion exergy efficiency () that
corresponds to the fraction of the fuel exergy that is converted into
thermomechanical exergy of the working fluid through the
combustion process; and a thermomechanical exergy transfer effi-
ciency (m) which is equivalent to the fraction of the thermo-
mechanical exergy released by the combustion that is transferred
through net indicated work. These exergy efficiencies and the
cumulative terms of the in-cylinder exergy balance were computed in
full load conditions only, and the averaged results presented in
Section 3.3 were calculated with 200-rpm intervals of engine speed.
Since the solution of the thermodynamic states of the working fluid
considered here relies on experimental pressure diagrams, the exergy
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analysis data presented in Fig. 6 can be viewed as semi-experimental
results, in a way similar to the well known heat release analysis.

3. Results and discussion
3.1. Combustion characteristics

Fig. 2a presents the fuel mass flow rate data obtained during full load
operation with biodiesel blends and diesel fuel. Owing to the modifi-
cations introduced in the fuel’s viscosity (see Table 1), the addition of
biodiesel affects fuel pump lubrication and plunger/barrel blowby [19].
In the engine used in this study, the combination of these effects caused
a reduction of the fuel mass flow rate as the concentration of biodiesel
increased. However, this behavior was found to be significant only
under moderate to high speeds. Since biodiesel (an oxygenated fuel)
also has a lower stoichiometric air—fuel mass ratio (ag), it would be
reasonable to expect the engine to operate in overall leaner mixture
conditions with the biodiesel blends [8]. The extent of the overall
reduction in the fuel—air equivalence ratio is depicted in Fig. 2b.

Biodiesel viscosity also affects the fuel spray dynamics, increasing
spray momentum, tip penetration and velocity [24,37—39]. Therefore,
one can expect an important reduction in the local fuel—air equivalence
ratio present in the fuel rich zones of the biodiesel spray combustion, as
shown by Rakopoulos et al. [40]. The increase in the spray momentum
promoted by biodiesel blending also improves the turbulent kinetic
energy available in the fuel jet, which has a significant positive effect in
the burning rate during the mixing-controlled combustion [41].

For the studied fuels, these modifications introduced in the fuel
spray with biodiesel blending accelerated the processes of mixture
preparation and burning, as can be seen in Fig. 3a and b. In full load
conditions, the crank angle interval required to a combustion reac-
tion progress of 90% presented an average reduction of 1.81 for B10
blend, 1.87 for B20 blend and 1.97 for B30 blend with relation to
diesel fuel. These results are in accordance with those obtained by
Tormos et al. [42], who explained the faster combustion obtained
with neat biodiesel with an analogy between diesel spray and gas jet,
concluding that neat biodiesel (B100) characteristic mixing time is
always shorter for mixing-controlled combustion conditions. The
lower in-cylinder mean temperatures observed in Fig. 3¢ for the B20
blend can be attributed to the previously commented reductions in
the fuel heat value and injected mass caused by biodiesel addition to
diesel fuel. As shown in Fig. 3a, the initial heat release rates of diesel
and B20 were very well matched, which indicated that the biodiesel
bulk modulus of compressibility, or speed of sound, does not affect
the beginning of injection with the engine, rotary pump injection
system and low biodiesel concentration fuel blends utilized here.

3.2. Engine brake thermal efficiency

Contour maps of engine brake thermal efficiency are shown in
Fig. 4 [14]. For most engine operational conditions, biodiesel
blending slightly increased the brake thermal efficiency. These
results are qualitatively consistent with the effects of engine
thermal efficiency enhancement reportedly achieved with neat
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Fig. 8. Performance maps for diesel fuel/biodiesel blends.

biodiesel [42] and blends of other oxygenated compounds and
diesel fuel [43—49]. The efficiency maps indicate greater modifi-
cations with biodiesel additions of up to 10% in volume, whereas
the B20 blend presented a higher increase in efficiency in relation
to the baseline fuel. An average increase of 4.16% was observed in
the brake thermal efficiency for B20 blend and full load conditions.
The causes of the thermal efficiency enhancements obtained with
the use of biodiesel blends are investigated in the next section.

3.3. Fuel exergy allocation
In order to obtain some insight into the relative impact upon

engine performance of each combustion modification caused by
biodiesel properties, it is interesting to isolate the effects of the fuel

burning acceleration verified with biodiesel blending from those
imposed by mixture leaning and bulk temperature reduction.
Obviously, it is not possible to obtain the input data necessary to
accomplish this task with the exergy analysis model presented in
the current work, which relies on experimental pressure diagrams
where the above mentioned effects of biodiesel blending appear
together.

For that reason, the consequences of the advance in heat release
produced by the B20 fuel blend were addressed with exergy
balances provenient from an engine simulation model [50,51]. This
simulation model requires heat release curves represented by two
Wiebe functions as input data, and also utilizes a single-zone
working fluid representation. Two simulation conditions were
employed with this purpose. The first one corresponds to a standard
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diesel combustion at 2600 rpm and full load, and was considered
here as the reference simulation case. The second simulation
emulates the shorter combustion duration observed with biodiesel
blending through a 2° advance of the Wiebe function correspondent
to the mixing-controlled combustion, while maintaining the
remaining input parameters of the reference case. The reference
simulation was validated against experimental in-cylinder pressure
data, as shownin Fig. 5a. From the very similar exergy balance results
presented for the reference and advanced combustion simulations
in Fig. 5b, it becomes evident that the combustion acceleration
observed in the heat release analysis could not explain, by itself, the
engine performance effects of biodiesel blending.

The exergy analysis results shown in the remaining of this section
were obtained with experimental pressure data, which was pro-
cessed by the model proposed in the current work. To reduce the
uncertainties of calculated variables, the in-cylinder exergy balance
analysis (see Equation (10)) involved full load engine operation and
comparisons of the B20 blend, which showed greater deviations in
efficiency in relation to the baseline fuel. In fact, variations in both
fuel—air equivalence ratio and combustion temperature were found
to govern the impact resulting from the addition of biodiesel on
engine thermal efficiency. The combustion irreversibility rate is
known to increase as the temperature of the working fluid decreases
[52]. Due to the reduction in the fuel—air equivalence ratio and the
decrease in the fuel heating value, it has been observed in Fig. 3c that
biodiesel blends decrease mean in-cylinder temperatures, thus
increasing combustion irreversibility. This expected trend is
consistent with the results presented in Fig. 6, which shows that the
use of the B20 blend led to an increase of the fraction of fuel exergy
destroyed by irreversibilities (4I) in comparison with diesel fuel. On
the other hand, the reductions of the fuel—air equivalence ratio and
fuel C/H ratio achieved with biodiesel blending also increased the
concentration of substances with low chemical exergies such as O,
and H;O0, in detriment to the participation of substances with high
chemical exergies such as CO;, CO and Hs. Thus, the B20 blend
showed a reduction in the loss of fuel exergy associated with the
chemical exergy of end gases (4Ex"). The lower bulk in-cylinder
temperatures obtained with biodiesel blending diminish not only
the heat transfer rate, but also the amount of thermomechanical
exergy that is removed from the working fluid by heat transfer (see
Equation (10)). Accordingly, the in-cylinder fuel exergy losses
associated with heat transfer (4Exq) were also reduced with the B20
blend. For the engine and fuels studied here, these combined effects
of biodiesel blending increased the amount of fuel exergy trans-
ferred through indicated work (4Exy), thus augmenting the gross
indicated thermal efficiency.

Full load operational regimes were also adopted for the in-
cylinder exergy efficiency analysis. Fig. 7 presents gross indicated
thermal efficiencies and exergy efficiencies obtained with diesel
fuel, B10, B20 and B30 blends. On average, the combination of the
above mentioned effects also enhanced the combustion exergy
efficiency (7p) by 0.42% for B10 blend, 0.75% for B20 blend and 0.19%
for B30 blend in relation to diesel fuel. For the thermomechanical
exergy transfer efficiency (), average increases of 1.15%, 3.24%
and 2.82% were computed, respectively, for B10, B20 and B30 fuel
blends. Hence, the following average variations were observed for
the gross indicated thermal efficiency with relation to diesel fuel:
B10 (+1.57%); B20 (+4.10%); B30 (+3.57%).

3.4. Sfc and brake torque

Performance maps obtained with baseline fuel, BO5, B10, B15, B20
and B30 blends are shown in Fig. 8. In these maps, one can observe
areduction in sfc with biodiesel blending in concentrations up to 10%
in volume, and an increase in sfc with further biodiesel addition.

With respect to diesel fuel and in full load conditions, average
reductions of 1.16%, 1.73%, 0.55% and 0.36% were observed in the sfc
for B05, B10, B15 and B20 blends, respectively. Increases of 0.52% and
1.18% were observed, respectively, for B25 and B30 bends. For the
engine and fuels utilized here, the engine sfc behavior is well rep-
resented by a balance between engine thermal efficiency elevation
and fuel exergy reduction caused by biodiesel blending (see Equation
(3)). Since engine thermal efficiency suffers greater improvements
with biodiesel additions of up to 10% in volume while the fuel exergy
is reduced in a quasi-linear way with the increase of the biodiesel
concentration, this balance is favorable here to the B10 blend.

When analyzing the engine brake torque influence of biodiesel
blending, the amount of fuel delivered to the engine has also to be
taken into account (see Section 3.1 and Equation (2)). Concerning
maximum brake torque and, accordingly, maximum brake power,
the following average variations were observed for the analyzed
blends with relation to diesel fuel: BO5 (+0.40%); B10 (+1.15%); B15
(—0.37%); B20 (—1.67%); B25 (—2.83%); B30 (—4.76%).

4. Summary and conclusions

The performance effects of the addition of soybean oil ethyl
ester were studied employing indicated and brake data obtained in
steady-state experiments conduced with a turbocharged high
speed diesel engine. Experimental data regarding overall fuel—air
equivalence ratio, combustion reaction progress, exergy efficien-
cies, sfc and brake torque was reported for the engine operation
with biodiesel blends of up to 30% in volume.

Biodiesel viscosity caused a reduction of the fuel mass flow rate as
the concentration of biodiesel and the engine speed increased.
Biodiesel’s viscosity and oxygen content also contributed to
areduction of the local fuel—air equivalence ratio present in the fuel
rich zones of the biodiesel spray combustion, accelerating the
processes of mixture preparation and burning. In full load condi-
tions, the crank angle interval required to a combustion reaction
progress of 90% presented an average reduction of 1.81 for B10 blend,
1.87 for B20 blend and 1.97 for B30 blend with relation to diesel fuel.

For the engine and fuels utilized here, a balance between engine
thermal efficiency elevation and fuel exergy reduction caused by
biodiesel blending was found to govern the engine sfc. With respect
to diesel fuel and in full load conditions, average reductions of
1.16%, 1.73%, 0.55% and 0.36% were observed in the sfc for BO5, B10,
B15 and B20 blends, respectively. Increases of 0.52% and 1.18% were
observed, respectively, for B25 and B30 bends.

The impact of biodiesel blending in engine torque was governed
by the above mentioned balance between engine efficiency eleva-
tion and fuel exergy reduction and, in addition, by the reduction in
the amount of fuel delivered to the engine. Concerning full load
brake torque and, accordingly, brake power, the following average
variations were observed for the analyzed blends with relation to
diesel fuel: B05 (+0.40%); B10 (+1.15%); B15 (—0.37%); B20
(—1.67%); B25 (—2.83%); B30 (—4.76%).
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