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Abstract: Functionally Graded Materials are characterized by a smooth and gradual 

microstructural composition along one or more of its dimensions. Problems related to the 

existence of interfaces such as debonding and delaminations, which are commonplace in 

laminated composites, are mitigated in such materials. FGMs are manufactured by varying the 

volume fraction of its constituents throughout its thickness, in order to tailor the final 

mechanical properties. Micromechanics homogenization schemes have been successfully 

employed on the study of these materials to obtain a description of the constitutive laws that 

describe the macroscopic state of stress and strain as a function of the microstructural 

composition. Such methods can be either analytical or numerical, but both approaches take into 

account the influence of the several phases or inclusions on the overall behavior of a 

representative volume element (RVE). The analysis of the differences among various 

homogenization schemes, different volume fraction profiles, as well as the influence of the 

inclusion geometry on the overall behavior of the FGM thick cylinder was carried out in the 

present work. The composite chosen for the analysis was Al-SiC and the comparisons were 

made in terms of stress and strain profiles along the wall of a pressurized hollow cylinder with 

varying SiC profiles. User subroutines (UMAT) were developed in Abaqus in which different 

homogenization schemes were implemented and analyzed. The results found showed the 

importance of the accurately describing the volume fraction distribution as well as the impact of 

the different homogenization schemes on the overall mechanical behavior of the material. 
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1  INTRODUCTION 

Metal Matrix Composites (MMCs) combine the ductility and toughness of metals with 

the high strength, high modulus and low thermal conductivity of ceramics. This combination of 

qualities leads to materials with a superior thermomechanical performance. The use of MMCs 

as a major component in aerospace, automotive, maritime and petroleum industries has been 

established over the recent years. This was the result of the widespread availability of relatively 

inexpensive reinforcements, especially particulates in the micro and nano scales. Additionally, 

the development of various processing and manufacturing technologies resulted in reproducible 

microstructures and final products with more compliant properties. 

Reduction in structural weight can be achieved, not only by reducing the alloy’s density, 

but also by increasing its modulus and strength. For example, an increase in modulus, attained 

by substituting a wrought aluminum part by a particulate reinforced aluminum alloy, can result 

in overall weight reduction [1]. Reinforcement may be in the form of continuous fibers, 

chopped fibers, whiskers, platelets, or particulates. Common reinforcement particulates include, 

but are not restricted to, carbides (e.g., SiC, B4C), nitrides (e.g., Si3N4, AlN), oxides (e.g., Al203, 

SiO2), as well as elemental materials (e.g., C, Si). Silicon Carbide, (SiC), for example, is a 

particulate powder that is commonly used in aluminum and magnesium MMCs.  

The demand for a high performance thermal barrier to withstand the elevated 

temperatures from space vehicles re-entries, originated a new class of composites called 

functionally graded materials (FGMs) [2]. Functionally graded materials are essentially a class 

of advanced composites formed by two or more constituent phases (matrix and inclusions) with 

a gradual and continuously varying microstructural composition. That leads to structural 

elements with different functional performance within different sections of the same part. The 

technologies to produce FGM composites have not reached their maturity yet and are expected 

to have an ever-growing impact on the design and development of new components and 

structures in the years to come. 

There are currently several different approaches to successfully introduce ceramic 

particulates into and alloy melt. Processes such as, injection of powders entrained in an inert 

gas, addition of particles by mechanical agitation, pushing of the particulates in the melt by 

using reciprocating rods, dispersion of the particulates by ultrasound are commonly used in the 

industry [3]. Nonetheless, the dispersion of the particulates in the melt using centrifugal 

acceleration is the method of choice when producing metal pipes, accounting for 15% of the 

total casting output of the world in terms of tonnage [4].  

When a metal melt containing reinforcing particles is subjected to centrifugal force, a 

gradually varying particle enriched (matrix depleted) zone is formed during solidification. 

Depending on the density, the lighter particles segregate towards the axis of rotation, while the 

denser ones move away from axis of rotation. In the case of aluminum alloy, the particle 

enriched zone of heavier particles such as SiC, Al2O3 and ZrSiO4 is at the outer boundary [5]. 

The gradient of particle segregation and volume fraction profiles along the thickness of the 

metal casting are related to the melt temperature, metal viscosity, cooling rate, the densities of 

the particle and liquid, particle size and magnitude of centrifugal acceleration [6]. 

 Most papers in the literature on FGMs employ indiscriminately the  rule of mixture or 

Mori-Tanaka schemes to obtain the effective material properties [7], [8] regardless of the 

constituents of the composite. However care must be taken when choosing the most appropriate 

micromechanical approach in order to accurately quantify the effect of the varying 

microstructure on the overall behavior of the material. In order to address this issue the present 



 
work was divided into two main parts. Firstly a set of user material subroutines (UMATs) was 

developed for the Finite Element Analysis of the proposed problem. The code was later 

validated against analytical solutions for an FGM pressurized thick-wall cylinder with radially 

varying Young’s modulus. Secondly a parametric study involving different volume fraction 

distributions and different homogenization schemes was carried out and discussed. The impact 

of these variables was assessed in terms of their influence on the radial and hoop stresses/strain 

profiles along the wall thickness. 

2  MICROMECHANICS 

A plethora of sound work exists for determining the effective properties of composite 

structures through the use of analytical micromechanics [9]–[12] and other semi-analytical, and 

finite element (FE) approaches [13]–[15]. These micromechanics models provide the necessary 

input to perform structural FE analysis based on the micro-scale properties using a ―bottom-up‖ 

approach. 

In the micromechanical homogenization schemes, the macroscopic equivalent parameters 

are obtained through the structural responses of representative volume elements (RVEs) which 

are defined on a finer scale. In this type of homogenization approach, a material point on the 

macroscopic level can be related to a representative volume element    on the microscopic level 

where stresses and strains prevail as varying micro-fields, assuming a statistically homogeneous 

distribution of the heterogeneities (inclusions) throughout the material. The macro-stresses and 

macro-strains which characterize the mechanical state of the macroscopic material point can be 

treated as volumetric averages of the microscopic fields over a certain volume  . These volumes 

must be chosen large enough to contain a certain number of inclusions, but small when 

compared to any length scale over which the average loading or deformation of the composite 

varies. 

 In the particular case of FGMs, the distribution of heterogeneities presents a spatial 

variation such that the condition of a statistically homogeneous microstructure is not observed 

and the use of effective properties must be understood simply as a reasonable estimate of the 

macro properties [16]. 

If the position vector is denoted by  , the volume-averaged stresses and strains 

(represented by the brackets 〈 〉), are defined as the average of the pointwise stress        

and        over the volume  : 
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It is convenient to define volume-averaged stresses and strain for the inclusions and matrix 

phases. Consider a two-phase composite consisting of an isotropic elastic matrix that occupies a 

volume    and an inclusion phase that occupies a volume    where the sum of these two 

volumes corresponds to the volume   and also consider that these two phases are perfectly 

bonded at their interfaces. The corresponding volume fractions of matrix and inclusions are 

given by         and       ⁄      , respectively. 



 
It follows that the average inclusion and matrix micro-fields (stress or strain) over the 

respective domains    and     are related by: 
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The relationships between the matrix and inclusion averages and the overall averages can 

be defined in terms of the preceding definitions as: 
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The Gauss’ divergence theorem can be used to express these two macroscopic quantities 

by integrals over the boundary    of the averaging domain . It is assumed that the microscopic 

fields are differentiable throughout the entire domain, which does not hold true for 

heterogeneous materials with discontinuously varying properties. 

Now consider that the volume V consists of two subdomains    and   with different 

properties according to Figure 1. Consider also the interfacial surface between the two volumes 

as the boundary  .  

 

Figure 1 – Volume V with an internal interface S. 

It can be seen that across the interface  , the stresses and displacements may not be 

differentiable. This challenge can be overcome if the divergence theorem is applied separately 

to the two subdomains where   appears, once as the boundary of    (with outer unit normal   ) 

and also as the inner boundary of    (with outer unit normal    ). Considering the 

corresponding traction vectors of    and    as   
   

 and   
   

, respectively we have: 
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The equilibrium condition implies that   
   

   
   

. As a result, for quasi-static problems, in 

the absence of body forces, the average stress in a given RVE is prescribed only in terms of the 

boundary traction and the macroscopic average quantities are valid regardless of the 

discontinuous material properties. 

A similar expression for strain can also be developed if the strain tensor      is substituted 

by the corresponding displacement vector   into the definition of macrostrains (Equation 2). If 

the domain   is subjected to a surface displacement     , the divergence theorem can be 

applied: 
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This is called the average strain theorem [17].  

2.1 Eshelby Tensor 

J. D. Eshelby developed a very important micromechanics solution for a specific class 

of inclusions inside an unbounded domain [10]. He considered an ellipsoidal inclusion, defined 

within the region     n an infinite homogeneous, isotropic, and elastic medium (matrix) 

undergoing a change in shape and size. He used the concept of eigenstrains (   
 )  to prove that 

under the constraint of the matrix, the inclusion has an arbitrary homogeneous strain and stress 

fields. He proposed that the stress concentrated in an inhomogeneity can be equally represented 

as the stress concentrated by an inclusion undergoing an arbitrary type of transformation strain 

produced without external forces (eigenstrain). In this problem, the equilibrium strain and stress 

are to be determined in the case where a strain is prescribed in a certain volume within an 

infinitely large homogeneous material. The work of Toshio Mura is indicated as a further 

reading on the theory behind this model [18].  The strains inside the ellipsoidal inclusion are 

linearly related to the eigenstrains by the fourth order Eshelby tensor       , as follows: 

〈   
 〉        〈   

 〉 (9) 

This tensor presents the minor symmetry, but in general lacks the major symmetry: 

                        (10) 

The geometry of an ellipsoidal inclusion   with semi axis    can be defined as: 
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Assuming          , the components of the Eshelby tensor are defined as 
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All other non-zero components are obtained by cyclic permutation of (1, 2, 3). The components 

which cannot be obtained this way are zero [18]; for instance                    . The 

   can be expressed by standard elliptic integrals of the form: 
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where 
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The remaining components are obtained by the following inter-relationships: 
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2.2 Mean-Field Homogenization 

The multiscale method adopted in this work is the so called hierarchical method (also 

known as sequential method), where information is transmitted from the microscale to the 

macroscale in a straightforward way [19]. In a hierarchical approach, the micro-scale is modeled 

using an RVE, or unit cell, and is homogenized to determine the effective properties for use in 

an upper scale (meso or macro-scale) analysis.  

The Mean-Field method is a well-known approach which is built upon the concept of an 

imaginary RVE. It accounts for the interaction subdomains pertinent to the various inclusions 

and finds the new averages that satisfy the boundary conditions [20]. As is typical for mean 

field micromechanics models, fourth-order concentration tensors relate the average stress or 

average strain tensors in inclusions and matrix to the average macroscopic stress or strain 

tensor, respectively.  

Within the premises of the mean-field homogenization method, the per-phase average 

strains  〈   〉 are related to one another by means of the strain concentration tensor. This tensor 

is essentially the ratio between the average inclusion strain and the corresponding average strain 

in the matrix: 
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The per-phase average strains are related to the overall macrostrain by: 
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where   designates the fourth order symmetric unit tensor. Different homogenization schemes 

will differ by the expression of       , but in all of them the macro-stiffness tensor of the two 

phase composite is written as: 

      [       
                   

 ] [                   ]
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where      
  and      

  are the inclusion and matrix stiffness, respectively. 

Mean field homogenization schemes are relatively simple to implement within the 

framework of finite element codes and are very efficient from a computational standpoint. The 

homogenization schemes used in this work were implemented as Abaqus® custom subroutines 

to define the constitutive behavior of the material (UMATs). The methods used herein are 

briefly described as follows. 

2.3 Voigt and Reuss Models 

The two simplest homogenization schemes are the Voigt [21] and Reuss [22] models. 

The Voigt model is also known as Rule of Mixtures (RoM) and is based on the assumption of a 

uniform strain field within the RVE, which means that both matrix and inclusions are subjected 

to the same strain.  It follows from this assumption that the strain concentration factor equals to 

the unit tensor, which yields the following expression when substituted in Equation 19:  

                          
     

        
             

  (20) 

This model can also be understood as a linearly weighted average of the properties of 

each phase. The Reuss model, on the other hand, assumes a uniform stress inside the RVE, 

meaning that all phases experience the same stress. This premise leads to a strain concentration 

factor that corresponds to the ratio between the stiffness of the matrix over the stiffness of the 

inclusion. Substituting the resulting strain concentration factor on Equation 19 one obtains: 

             
   

       
               

      *       
   

            
   

+
  

 (21) 

Knowing that the inverse of the stiffness matrix corresponds to the compliance 

matrix        
         , the Equation 21 can be similarly expressed as: 

       
             

             
  (22) 

Those two models are too far apart from each other and do not take into account the 

shape or the orientation of the inclusions. Moreover, the interaction between inclusions inside 



 
the matrix is not accounted for, which renders the two schemes useless for medium to high 

concentration of inclusions. However, the two models serve the purpose of setting the extreme 

(upper and lower) boundaries where the other models must lay inside. 

2.4 Mori-Tanaka Model 

Except for Reuss and Voigt models, all the other mean field homogenization schemes are 

based on the fundamental work of Eshelby [10]. The Mori-Tanaka model [11] is one of the most 

prominent models in this category. In their original paper, Mori and Tanaka treated the problem 

of homogeneous inclusions. 

As is typical for mean field micromechanics models, fourth-order concentration tensors 

relate the average stress or average strain tensors in inhomogeneities and matrix to the average 

macroscopic stress or strain tensor, respectively; inhomogeneity "feels" effective matrix fields, 

accounting for phase interaction effects in a collective, approximate way. 

The Mori-Tanaka homogenization scheme considers the strain concentration tensor to be 

equal to that of a single inclusion problem, which in turn means that the inclusions in the RVE, 

experience the matrix strain as the far-field strain in the Eshelby theory. The strain 

concentration tensor in Mori-Tanaka’s model is given by: 
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       + 
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The homogenized macro stiffness is obtained by substituting Equation 23 into 19 [12]:  

     
               *     

   
      

       + 
   (24) 

2.5 Self-Consistent Model 

The Self-Consistent homogenization scheme has been originally developed to estimate the 

equivalent stiffness of polycristals and take into account the interaction of the matrix and the 

grains following Eshelby’s formulation. This approach was originally proposed by Hill [17], 

[23] and focused on spherical particles and continuous aligned fibers.  

The Self-Consistent approach to homogenization is based upon the idea that the existence 

of a single inhomogeneity does not affect the effective material properties in a system with 

many inclusions. Therefore, the inclusions interact with each other through the effective 

medium, which means that the localization tensors will be based on the effective medium 

properties rather than the matrix material properties [24]. Conversely, the local interaction of the 

inclusions with the surrounding matrix material remains unaltered.  

Self-Consistent models are also referred to as embedding models, because the properties of 

the composite are assumed to be the same as the averaged properties of a single particle 

embedded into an infinite matrix with a given stiffness      . Of course these properties are 

initially unknown; however, numerical solutions are easily obtained by an iterative algorithm. 

The Self-Consistent strain concentration tensor is given by: 
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The Self-Consistent method is known to overestimate the influence of the interaction 

among the inclusions, especially for softer matrices [25]. Christensen and Lo [26] proposed an 

improved methodology to address this issue and make it yield the correct asymptotic behavior 

for rigid inclusions as its volume fraction approaches 100%. This scheme was named 

Generalized Self-Consistent Method and considers that the particulate phase is first surrounded 

by some matrix material and then embedded in the effective medium [24]. As the Generalized 

Self-Consistent Method is widely regarded as superior when compared to the original approach 

[27], it was adopted in this study. 

3  UMAT DEVELOPMENT AND VALIDATION 

In order to conduct the Finite Element Analysis of the FGM pressurized pipe in 

Abaqus®, a user material subroutine (UMAT) was developed. The main purpose was to code 

the various homogenization schemes as well as to allow for the possibility of using different 

Eshelby tensors for different shapes and aspect ratios. The first step towards this goal was to 

make sure that the stresses and strains obtained by the UMAT, given a pre-established modulus 

profile, were in accordance with the analytical solutions available for this type of problem. This 

was done prior to the implementation of the actual homogenization schemes and relied upon an 

already homogenized radial variation of the Young’s modulus along the pipe wall. At this stage 

the UMAT would get the three Cartesian coordinates of each Gauss (integration) point passed 

on by Abaqus, and transform it to cylindrical coordinates. The homogenized modulus, at each 

Gauss point, was then obtained by the designated equation for the Young’s modulus as a 

function of radial position. Finally, the three-dimensional stiffness and consistent matrices were 

assembled and the stress vector calculated.  

A set of analytical solutions found in the literature was used in this work to verify the 

accuracy of the numerical results. The analytical expressions for radial hoop stresses were given 

by Li and Peng [28] for an FGM cylinder with an inner radius  , and outer radius  , subjected 

to an internal pressure   . The authors assumed a fixed Poisson’s ratio,       , and 

established that the Young’s modulus varied radially according to a power law given by: 
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The expressions for radial and hoop stresses are respectively: 
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The finite element model consisted of ¼ of a cylindrical section subjected to an internal 

pressure and with a traction-free outer surface. It had 200 mm in height and the inner and outer 

radius were, a = 100 and b = 150 mm respectively. The wall thickness was discretized using 10 

elements and employed the 20 node quadratic element with reduced integration (C3D20R). An 

internal pressure of 10 MPa was applied at the inner surface of the cylinder, while no boundary 



 
conditions were imposed on the outer surface. The model and the radial stress field can be seen 

in Figure 2. 

 

Figure 2 – Finite element radial stresses. 

The numerical results for three different values of the exponent   (equation 27) were 

compared with results from Equation 28.  The normalized radial and hoop stress profiles are 

given in Figures 3 and 4. 

 

Figure 3 – Radial stress profiles along the pipe wall. 

 



 

 

Figure 4 – Hoop stress profiles along the pipe wall. 

The results were deemed satisfactory in spite of minor differences on the hoop stresses. 

This is believed to be caused by the boundary conditions of the finite element model, which had 

no radial constraints at the top and bottom faces. The analytical model, on the other hand, was 

based on a plane strain configuration. 

3.1 Implementation of the Homogenization Schemes 

The next step on the development of the UMATs was to implement the various 

homogenization schemes discussed in this study. In order to establish a baseline for comparison 

among all models, several experimental studies on Al/SiC MMCs were compiled 

[29][30][31][32][33][34],  and presented in Figure 5. The studies encompassed various volume 

fractions of SiC ranging from 0% to a little over 75%. It is worth noting that these studies used 

different aluminum alloys and SiC particles with various gradations.  



 

 

Figure 5 – Comparison of various homogenization schemes against experimental data. 

 The four homogenization schemes in discussion here were firstly implemented as 

Fortran standalone programs in order to check for any errors prior to the implementation as 

subroutines within the UMAT. This effort also served the purpose of showing which model 

ranked best among the four over various volume fraction ranges (low medium and high 

concentrations). This is important because the effective measurement of the Young’s modulus 

along the thickness of an FGM is very difficult to achieve, whereas the measurement of the 

volume fraction distribution along the same thickness is more amenable from an experimental 

standpoint. 

One important thing to be noted here is that, despite its enormous popularity, the use of 

the Voigt model (rule of mixtures) to predict the homogenized modulus of Al/SiC MMCs must 

be avoided. From this dataset, it is also pondered that the Generalized Self-Consistent seems to 

be the most suited model for this type of material. The Mori-Tanaka only provided reasonable 

results up to 20%. This is a well-known characteristic of this model and arises from the fact that 

it is based on a dilute assumption where the interference between adjacent inclusions is 

neglected.  The four homogenization schemes were then coded as UMATs, one for each 

model and used in the parametric study described as follows. 

4  PARAMETRIC STUDY 

 The volume fraction profiles in FGMs are usually approximated by well-defined 

functions such as exponentials, power-laws, sigmoidal functions as well as linearly varying 

distributions. The use of a parametric form to represent the volume fraction profiles is 

fundamental to establish the right quantities of each phase at any given point along the axis 

where the properties vary. However those functions must reflect the actual distribution of 

inclusions along the wall thickness, and in many cases simple functions are not able to represent 

well the measured data. 



 
The parametric study was based upon the volume fraction profile obtained from Rajan 

et al, 2010 [35] shown in Figure 6. The experimental data was fitted to an exponential and a B-

Spline curve so as to quantify the divergences when assuming a simpler curve (exponential) 

comparatively to a curve that represents better the measured data. The UMATs corresponding to 

each homogenization scheme were used for calculation of the hoop and radial stresses along the 

wall thickness. 

 

Figure 6 – Different fitted curves to the experimental data. 

The Generalized-Self Consistent method was used to provide the comparison between 

the B-Spline fitted curve and the exponential fitted one. Figure 7 shows the results obtained 

using the two functions. No substantial differences are observed in terms of radial stress. 

 

 

Figure 7 – Radial stress profiles for different representations of the volume fraction distribution. 



 
In the case of hoop stresses (Figure 8), the overall trend is captured by both curves; 

however there are major differences between the results from the two approaches. The 

―waviness‖ of the volume fraction distribution reflects directly on the calculated stress when the 

actual volume fraction profile is taken into account. This is an important fact to be considered 

when employing an FGM material because it defeats the idea that the material is free of stress 

concentrations due to abrupt changes in stiffness.  

 

Figure 8 – Hoop stress profiles for different representations of the volume fraction distribution. 

 

These results were further investigated and the influence of the homogenization method 

was assessed. The same B-Spline function was used in all four homogenization schemes and the 

results are presented in Figure 9. As can be seen, the homogenization scheme also plays a major 

role on the final results of hoop stresses. In the case of the Voigt model, the stresses calculated 

at the inner surface of the wall were higher than the stresses on the outer surface, contradicting 

the other models. The results show the critical role the homogenization schemes play on 

mechanical analysis of thick-walled FGM structures. 



 

 

Figure 9 – Normalized hoop stress from various homogenization methods. 

5  CONCLUDING REMARKS 

 This work was aimed at investigating the influences of different forms of volume 

fraction description as well as the impact of using different homogenization schemes on the 

overall behavior of a FGM pressurized hollow cylinder. To achieve this goal, a set of user-

material subroutines were developed and implemented into Abaqus. They were used to simulate 

an FGM pressurized pipe, where the volume fraction of the SiC particulate was precisely 

measured. The results obtained showed the importance of correctly describing the distribution 

of the particulate reinforcement (volume fraction of inclusions) along the wall thickness. An 

assumption of an exponential variation may lead to unrealistic hoop stress distributions along 

the radial profile of the structural element. It may also mask potential issues related to stress 

concentration in some areas were the volume fraction concentration does not varies as smoothly 

as predicted by simple functions, such as exponential, power-laws and so forth. The tools and 

analysis methodology developed in this paper are also expected to improve the understanding of 

FGM material behavior and the importance on quality control on the production of such 

materials. 
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