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A B S T R A C T

Due to concrete being consistently used in the filling of prefabricated linear steel structural floor slabs, the
practice of constructing steel-concrete composite structures is becoming more and more popular. The joint action
of the two materials is generally ensured by mechanical connectors that considerably increase the performance
of the composite element structure. For a majority of practical cases, these elements are formed by a concrete
slab connected to I-shaped steel beams. In this study, models of finite elements for the steel-concrete composite
beams with partial interaction are optimized using the sequential linear programming algorithm. The design
variables are considered with two approaches: in the first, only the parameters that define the cross section of the
steel “I” profile vary, while in the second, besides the aforementioned parameters that define the cross section of
the “I” profile, also considered are those that define the concrete section. In addition, the optimum distribution
of the shear connectors along the composite beam are verified; in other words, the longitudinal rigidity of the
deformable connection is considered to be a design variable. The design constraints are those defined in standard
specifications referring to the dimensioning of concrete, steel and composite steel-concrete structures, as well as
the side constraints with respect to the parameters defining the cross section and the step-size for the non-linear
optimization algorithm. The results for the composite beam optimization problems are presented taking into
consideration different boundary conditions. For a given optimized project, the analysis of the results is done
regarding the influence of the constraints on the optimization process, the graph of the load-slip curve along the
composite beam, and the values obtained for the design variables.

1. Introduction

For a majority of the steel constructions, the composite beam so-
lution is adopted in order to make use of the concrete slab height, which
overlays the steel beam, forming a composite beam with a structural
behavior that is superior to the steel beam. This gain in the structural
behavior of the composite element, together with the growing usage of
steel structures in Brazil’s civil construction industry has generated a
relative increase in the use of this constructive technique. This type of
solution is also used when long spans need to be conquered, as in the
case of bridges and industrial sheds. Nie et al. [1] cites these cases as
advantages of the composite beams in relation to the simple beams due
to the fact that there is a high ratio for span versus beam depth, less
deformation, and a high fundamental vibration frequency. For motives
that are generally practical or economic, the interaction between the
different structural elements that compose the composite element,
promoted by the connectors, is partial, or in other words, a relative

displacement between the different elements occurs on the interface of
the contact between them, which is generally called sliding in the in-
terface in literature.

Despite the fact of many journal papers treat of the optimization on
steel, concrete or composite steel-concrete structures, only a few of
them address the problem of optimization of composite beams, espe-
cially on partially connected composite beams. Aiming to provide an
overview about this subject, a succinct review follows. Eskandari and
Korouzhdeh [2] presented a method described as simple and efficient
exact solution that can be applied in practical engineering problems
instead of predictions model such as artificial neural network and ge-
netic algorithm, aiming to be applied for practical designs. García-Se-
gura et al. [3] proposed a new hybrid method combining simulated
annealing with glowworm swarm optimization (SAGSO) algorithms to
optimize a concrete I-beam. Kravanja and et al. [4] presented a com-
parative study of design, resistance and economical properties of a
composite floor system, composed from a concrete slab and steel I
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sections based on the multi-parametric mixed-integer non-linear pro-
gramming (MINLP) approach and Eurocode specifications. Papavasi-
leiou and Charmpis [5] used a structural optimization framework for
the seismic design of multi–storey composite buildings, based on
Eurocodes 3 and 4, with steel HEB-columns fully encased in concrete,
steel IPE-beams and steel L-bracings. A discrete Evolution Strategies
algorithm and OpenSees software were utilized, respectively, to per-
form optimization and all structural analyses. Senouci and Mohammed
[6] employed a genetic algorithm model for the cost optimization of
composite beams based on the load and resistance factor design (LRFD)
specifications of the AISC. The model formulation includes the cost of
concrete, steel beam, and shear studs. Kaveh and Abadi [7] presented
the cost optimization of a composite floor system, comprised of a re-
inforced concrete slab and steel I-beams, where the design constraints
are implemented as in LRFD-AISC rules. Kaveh and Ahangaran [8]
developed an economical social harmony search model to perform the
discrete cost optimization of composite floors where design is based on
AISC–LRFD specifications and plastic design concepts. Kravanja and
Zˇula [9] performed the problem of simultaneous cost, topology and
standard cross-section optimization of single storey industrial steel
building structures in accordance with Eurocode 3. The optimization is
effectuated by the mixed-integer non-linear programming approach,
MINLP. Munck et al. [10] developed a methodology to optimize hybrid
composite-concrete beams, made out of multiple materials with very
different cost/weight ratios, towards the two objectives of cost and
mass, varying the geometry of the elements. An original methodology
combining Non-dominated Sorting Genetic Algorithm (NSGA-II) and a
meta-model is used to find all optimal solutions. A comparison between
composite welded I beams and composite trusses with hollow sections
were accomplished by Kravanja and Silih [11]. Composite I beams and
composite trusses were designed in accordance with Eurocode 4 for the
conditions of both ultimate and serviceability limit states. The optimi-
zation was performed by the Nonlinear Programming (NLP) and Mixed-
Integer Nonlinear Programming approaches. Recently, Pedro et al. [12]
developed an efficient two-stage optimization approach to the design of
steel-concrete composite I-girder bridges. In the first step, a simplified
structural model is employed aiming to locate the global optimum re-
gion and provide a starting point to the local search. Then, a finite
element model (FEM) is used to refine and improve the optimization.
The performance of five meta-heuristic algorithms for this specific
problem was evaluated: Back-tracking Search Algorithm (BSA), Firefly
Algorithm (FA), Genetic Algorithm (GA), Imperialist Competitive Al-
gorithm (ICA) and Search Group Algorithm (SGA).

What it is common for all of these published works is that almost
none of them approach the problem of optimization using a formulation
taking into consideration partially connected composite beams. Thus,
by combining the developed simplex algorithm, in a fashion to be ap-
plied for solving nonlinear optimization problem using the sequential
linear programming, with that for the analysis of composite beams with
deformable shear connection one gets a powerful and robust numerical
tool for the optimization of beams with partial interaction.

The main objective of this study was to implement an optimization
routine within a structural analysis program based on the finite element
method (FEM). To simulate composite beam behavior with partial in-
teraction, one-dimensioned beam elements are used to represent the
behavior of the material above and below the sliding interface of the
composite section and the interface elements to represent the sliding
interface behavior. For design variables, different approaches are con-
sidered. In the first approach, the variables for the project considered
are the dimensions of the steel I profile, along with those of the concrete
slab and the reinforcing bars defined by the designer, according to Silva
et al [13]. In the second approach, the dimension of the steel I profile,
along with those of the concrete slab are considered as design variables.
And finally, the rigidity of the deformable connection is considered to
be a design variable. Through an iterative process that controls the step-
size of each iteration, the nonlinear problem involving the variation of

the composite beam’s structural behavior in relationship with the pro-
ject variables is approximated by a linear problem, which has its op-
timum point defined at each step when using the Simplex method.

This article is organized as follows: Section 2 presents the Simplex
method for sequential linear programming that will be used in each step
of the iterative process for the solution of a constrained linear problem;
In the Section 3, a brief description of the finite element formulation
employed to consider the shear deformable interface between the
concrete and steel in composite beams is presented; Section 4 presents
the constraints of the project for optimization of the composite beams
with partial interaction, considering different objective functions and
design variables; Section 5 presents the objective functions for the
different problems approached in this study, as well as the standard
Simplex form of these problems; Section 6 analyzes the different ex-
amples in order to illustrate the robustness of the method implemented
in this study; and finally in Section 7 some conclusions are cited.

2. The Simplex method

The Simplex method was developed by Dantzig in the latter part of
the 40′s and marks the beginning of the modern optimization era.
Immediately following this development, the method was computerized
and established itself as a powerful optimization tool for the fields of
economy, administration and engineering. Briefly, the linear pro-
gramming problem and the Simplex algorithm are presented as follow.

In linear programming, the objective function, as well as the con-
straints for equality and inequality, is linear. A set of variable points
form a polyhedron that is convex and has its faces given by polygons.
The linear programming is initiated and analyzed in its standard form.

=subject tomin c x Ax b, x 0T (1)

where c and x are vectors in Rn, b is a vector in Rmand A is the matrix
m x n. All linear optimization problems with equality and inequality
constraints can be easily placed in the standard format given by Eq. (1).
For greater details as to how to do this for different forms of linear
programming, refer to Nocedal and Wright [14]; Vanderplaats[15];
Haftka and Kamat [16].

Using the Lagrange method, problem (1) can be placed in the form
expressed by Eq. (2), where the Lagrange multipliers are separated into
a vector of m order for equal constraints, and into vector s of n order
for unequal constraints.

I =(x, ,s) c x (Ax - b) s xT T T (2)

The linearity of problem (1) and its convexity ensure that if a fea-
sible point x* satisfies the first-order optimality condition of KKT
(Karush, Kuhn and Tucker, see Bazaraa and Shetty [17]), given by Eq.
(3), then this point becomes the optimum for problem (1).

+ =A s cT (3-a)

=Ax b (3-b)

x 0 (3-c)

s 0 (3-d)

= =x s i n0, 1, 2, ..,i i (3-e)

If x* satisfies the condition of (3-a), then

= + = +c x* (A * s*) x* (Ax*) * s* x*T T T T T

From condition (3-b), we have =Ax* b, and from conditions (3-c),
(3-d) and (3-e), we have; =s* x* 0T ; thus =c x* b *T T .

From the result of the previous paragraph, it is easy to see that
whatever other feasible point x̄, in other words, =Ax̄ band x̄ 0, sa-
tisfies c x̄ c x*T T . This is because:

= + = +c x̄ (A * s*) x̄ b * s* x̄T T T T T

as =b * c x*T T , and from the conditions (3-c) and (3-e), we have
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s* x̄ 0T , whereby c x̄ c x*T T . As such, the point x̄ will be optimum if
and only if =s* x̄ 0T , which signifies that for the values of s 0i , it is
necessary that =x̄ 0i .

Considering that the matrix Amxn has full row ranking, in other
words, equal to m, and that we can define a subset (x) of the set with
an index of n{1, 2, .., } so that,

I. (x) contains exactly m indexes.
II. i (x) implies that =x 0i .
III. The matrix Bmxm, defined by = AB [ ]i i (x) , is not singular where Ai

is the ith column of A.

If all of the above conditions are satisfied for a design point x, than
this point is said to be the basic feasible point. In its iterative process,
the Simplex method generates a sequence of basic feasible points,
stopping when these points satisfy the conditions given by Eq. (3-a)–(3-
e), which will be the optimum point of the linear problem of Eq. (1).
This point could be unique, or more vertices of the polyhedron. In the
case that more than one vertex of the polyhedron is the optimum point,
we have that whatever point on the straight line or plane that connects
such vertices of the polyhedron will also be the optimum point.

The simplex iterations evolve by evaluating if a feasible point,
which is a vertex of the polyhedron, satisfies the first-order optimality
conditions of KKT. If satisfied, than such point will be the problem’s
solution point (1); to the contrary, a new basic feasible point, or in other
words, another vertex of the polyhedron should be evaluated. This
point is obtained by defining a new subset (x) of the set for the index

n{1, 2, .., }.
To understand which index in (x) should exit and which should

enter to define another basic feasible point in a Simplex iteration, we
define the subset (x) of the set with index n{1, 2, .., }, as being the
complement of (x). And in the same way that B was defined, we will
define N as

= AN [ ]i i (x)

We separated the vectors x, s and c in accordance with the subsets
(x) and (x), which are now denoted by

= =x xx [ ] , x [ ] ,B i i N i i(x) (x)

= =s ss [ ] , s [ ] ,B i i N i i(x) (x)

= =c e cc [ ] c [ ] .B i i N i i(x) (x)

From condition (3-b), we have

= + =Ax Bx Nx bB N (4)

Admitting =x 0N , we have from Eq. (4), =x B bB
- 1 . To satisfy the

condition (3-e), we can set =s 0B . From condition (3-a), we can define
and sN , given by =B cT

B and + =N s cT
N N , so that,

= andB cT
B

1 (5)

=s c (B N) cN N
T

B
1 (6)

If sN , defined by Eq. (6), satisfies s 0Ni for all i (x), then the
basic feasible point evaluated is the solution of the problem of pre-
sented in Eq. (1). On the contrary, that is when one or more of the
components of sNi are negative, then a new point should be evaluated.
The index q in (x) that should be submitted to index p in (x) is such
that <s 0Nq , while the index p should be the smallest between:
x
t
Bi

i (7)

for >t 0i and i (x), where =t B Aq
1 .

3. Finite element formulation: beam and interface element

In order to supply an idea of the finite element formulation em-
ployed to consider the shear deformable interface between the concrete
and steel in composite beams is presented a summary of the equations
in terms of the internal forces vector and the tangent stiffness matrix
and figures to illustrate the deformations and degrees of freedom of
beam and interface elements. For more details, the readers can see
other works of the authors (Sousa and Silva [18], Sousa and Silva [19],
Sousa et al. [20], Silva and Sousa [21], Sousa [22], Machado et al.
[23]), where an numerical solution for the analysis of composite beams
with deformable shear connection is developed and applied on different
aspects. The solution treats with the development of a specific zero-
thickness interface element to represent the behavior of the connection,
associated with inelastic two-noded beam elements. The upper and
lower parts of the composite beam may be of generic cross-section, and
analytical integration of section forces and tangent moduli are em-
ployed, thus yielding a powerful and robust numerical tool for the
analysis of beams with partial interaction (Sousa and Silva [18,19]).

In numerical modeling of the composite beam, the concrete slab and
steel I beam is simulated by one-dimensional beam element, while the
deformable shear connection by a one-dimensional interface element.

3.1. Euler-Bernoulli theory

3.1.1. Displacement equations
Assuming that the composite beam lies in the xy plane, the dis-

placement field is given by (Fig. 1)

=u x y u x y y v x( , ) ( ) ( ) ( ) (8)

=v x y v x( , ) ( ) (9)

where α = 1,…,2 represents the upper and the lower element, re-
spectively, and yα is the reference axis for each constituent element,
which is usually taken at the centroid.

3.1.2. Interface sliding
The interface element to be used for the simulation of the deform-

able connection has two translational and one rotational displacement

Fig. 1. Displacement field of composite beam.
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at each node, Fig. 2. The displacement field has for the tangential re-
lative displacement

= +s x u x u x y d v x y d v x( ) ( ) ( ) ( ) ( ) ( ) ( )2
0

1
0

2 2 1 1 (10)

3.1.3. Relative vertical displacement
and for the normal relative displacement

=w x v x v x( ) ( ) ( )2 1 (11)

Application of the principle of virtual work to the isolated beam and
interface element leads, after some manipulations, to the equations of
the internal force vector and the element tangent stiffness matrix.

3.1.4. Interface elements
From the internal virtual work expression one gets into a standard

fashion the internal force vector. Related to this vector and Fig. 1, d, y1
and y2 are contact interface positions and reference axes of the upper
and lower parts of the composite beam, respectively. Shear and normal
forces along the contact interface are designated, respectively, by Sb

and Nb. While u and v are, respectively, vectors containing the in-
terpolation functions for axial and transverse displacements. For the
four-node interface element associated with two-node beam elements,
where a joint interpolation of transverse displacements and rotation is
accomplished, there are linear interpolation functions for axial dis-
placements and cubic for transverse displacements, so u it has two
terms and v has four terms.

=

+

S
d y S N

S
y d S N

dxf
( )

( )
L

b u

b v b v

b u

b v b v

int
1

2 (12)

The derivation of fint with respect to the nodal displacements (q)
gives the element tangent stiffness matrix

=

+

( )
( ) ( )

( )
( ) ( )

d y

y d

dxK
( )

( )

T
l

u
S T

v
S T

v
N T

u
S T

v
S T

v
N T

q

1 q q

q

2 q q

b

b b

b

b b

(13)

3.1.5. Beam elements
The interface element developed in the work [18] may be associated

to a two-noded beam-column element with displacement and rotational
DOF. As the main concern there is the modeling of composite steel–-
concrete beams with interlayer slip, the elements implemented had
cubic interpolation of transverse displacements and linear interpolation
of axial displacements. By applying the same procedure used to the
interface element, one gets the internal force vector, Eq. (14), and
element tangent stiffness matrix, Eq. (15) for the beam element. In
these equations, N and M are the normal and bending forces developed
in the transverse section of the beam, respectively. As seen for the

interface element, u and v are vectors containing the interpolation
functions for axial and transverse displacements, respectively, and q,
the nodal displacements vector.

=
N
M

dxf
L

u

v
int

(14)

=
( )
( )

dxKT
L

u
N T

v
M T

q

q (15)

4. Formulation of the constraints for composite beam analysis

For the problem analyzed in this study, we considered the safety
criteria for: the concrete’s maximum compressive stress, the maximum
tensile stress of reinforcing bars in the concrete section, the maximum
tensile stress in the steel profile, and maximum force on the connectors,
as well as local buckling of the flanges and web of the steel profile and,
as serviceability limit state criteria, the maximum deflection of the
beam span is considered. These constraints are defined through the
dimensioning criteria adopted by standards to ensure safety and utili-
zation of the structure, such as NBR-6118 [24] for concrete and NBR
8800 [25] for steel and composite steel/concrete elements.

Besides the constraints cited in the previous paragraph, others in
relation to the steel dimension profiles, concrete section dimensions,
maximum and minimum spacing between the shear connectors, as well
as the size of the iterative processing step should be considered.

More details in relation to the constraint expressions defined in the
sub-items below can be obtained in the article of Silva et al. [13].

4.1. Stress on the concrete section and reinforcing bars

The composite section consists of a concrete slab with the re-
inforcement bars connected to a steel I profile. In the discretization of a
problem for a partially interacting composite beam, the beam elements
are used to simulate the behavior of the concrete sections and the steel
profile. Thus, to determine the maximum compression stress on the
concrete section, and the stresses on the reinforcing bars along the
composite beam, all beam elements that represent the concrete section
should be processed.

Assuming that there is a linear stress-strain relationship for the
materials of the composite section, we have

= =y E u y E y( , ) ( ) [ ]qc c u
T

v
T

0 (16)

In Eq. (16), Ec is the modulus for concrete deformation; u and v are
form functions for the axial displacements (linear interpolation) and
cross-sections/rotations (cubic interpolation), respectively, giving

= u u v vq [ ]1 2 1 1 2 2 as the vector of the nodal displacements of the
beam element.

As in Eq. (16) u is the constant and v is linear along the element,
then y( , ) is maximum and minimum at the element extremes, or:

= = = =y E y( 1, ) [ ( 1) ( 1)]qc u
T

v
T

(17)

Fig. 2. Degrees of freedom for interface and beam element.
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and

= = = =y E y( 1, ) [ ( 1) ( 1)]qc u
T

v
T

(18)

It should be remembered that in Eqs. (17) and (18), the derivatives
are related to the global variable x and the shape functions are defined
in relationship to the local variable of the element.

With h being the height of the concrete slab, = = h( 1, /2)1 ,
= = h( 1, /2)2 , = = h( 1, /2)3 and = = h( 1, /2)4 , we can

determine that:

= =the greatest value for jwith 1, ..,4j1,max (19)

= =the least value for jwith 1, ..,4j2,min (20)

For each stress defined in Equations (19) and (20) a stress on the
other face of the rectangular concrete section is determined by 1,min
and 2,max. The maximum compression stress of the concrete ( c) of the
analyzed element is given by 2,min, if < 02,min ; to the contrary, the
compression’s stress is null. Meanwhile, the maximum compressive
stress of the reinforcing bars ( Sb) is obtained in accordance with one of
the three cases below, which are verified for each pair of stresses
( , )1,max 1,min and ( , )2,max 2,min :

Case 1: > 01,max and < 01,min .
From Fig. 3, we can determine:

=h h1,max

1,max 1,min (21)

Due to the linear physical condition of the problem analysis, the
concrete section resists a traction force given by:

=F h b
2t

1,max
(22)

In Eq. (22), b is the width of the rectangular concrete section. As the
concrete’s resistance to traction is ignored, the force given by Eq. (22)
should be resisted by the reinforcing bars.

In Fig. 4, c is the cover of the reinforcing bars. From the equilibrium
condition of the moments in relation to B, we have:

=F h c h
h c

F/3
2A t (23)

From the equilibrium condition of the horizontal forces, we have:

=F F FB t A (24)

The stresses on the rebars due to the deformation of the section are
given by:

= =E Where h c
h

andA s A A 1,max (25)

= =E Where h c
hB s B B 1,min (26)

In Eq. (26), =h h h , the maximum tensile stress on the re-
inforcing bars ( Sb) of the analyzed element is given by the greatest
value between +F

A A
A and +F

A B
B , where A is the area of the cross-

section of the reinforcing bars.
Case 2: > 01,max and > 01,min

As > 01,min , then the whole concrete section is under traction, as
shown in Fig. 5.

In Fig. 5, c is the cover of the reinforcing bars of the concrete sec-
tion. This figure determines that:

= +
+

h h1
3

1,min

1,max 1,min (27)

The traction force acting on the concrete section is given by:

=
+

F hb
2t

1,max 1,min
(28)

In Eq. (28), b is the width of the rectangular concrete section. As the
concrete’s resistance to traction is ignored, the force given by Eq. (28)
should be resisted by the reinforcing bars.

From the equilibrium condition of the moments in relation to B, see
Fig. 5, we have:

=F h c h
h c

F
2A t (29)

From the equilibrium condition of the horizontal forces, we have:

=F F FB t A (30)

The stresses on the bars due to deformation of the section are given
by:

= = +E where c
h

and( )A s A A 1,min 1,max 1,max (31)

= = +E where h c
h

( )B s B B 1,min 1,max 1,max (32)

The maximum stress on the reinforcing bars ( Sb) in the analyzed
element is given by the greater value between +F

A A
A and +F

A B
B ,

where A is the area of the cross section of the reinforcing bars.
Case 3: < 01,max and thus < 01,min
As < 01,max , then the entire concrete section is compressed as

shown in Fig. 6
As the section is entirely compressed, the acting stress on the bars

depends only on the deformation of these, then:

= = +E where c
h

and( )A s A A 1,min 1,max 1,max (33)

= = +E where h c
h

( )B s B B 1,min 1,max 1,max (34)Fig. 3. Stresses acting on the concrete section.

Fig. 4. Traction stress on the concrete section.

Fig. 5. Stresses acting on the concrete section.
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The maximum stress on the reinforcing bars ( Sb) of the analyzed
element is given by the greater value between | |A and| |B .

The stress resistance limit to the concrete compression ( c̄ ) is given
by = f¯ 0.85c cd.

Herein, =f MPa30ck , =E f0.85(5600 )c ck and =f f /1.4cd ck were
adopted, while for the reinforcing bars, =E MPa210000S , =f MPa500yk
and =f f /1.15yd yk were used. Thus, the stress resistance limit for the
compression or traction of the reinforcing bars ( S̄b ) is given by:

= fS̄ ydb

The equations for these two constraints are defined in the form
presented below:

=C (x) ¯ 0c c1 and

=C (x) ¯ 0S S2 b b

4.2. Stress on the steel section

In a manner similar to that which was obtained for the maximum
compressive stress of the concrete section, we determine the maximum
stress on the steel section ( S).

= =y E u y E y( , ) ( ) [ ]qS S u
T

v
T

0 (35)

In Eq. (35), ES is the steel’s deformation modulus and the rest is
defined as in Eq. (16).

As in Eq. (35) u is constant and v is linear along the element, then
y( , ) is the maximum and minimum of the extremities of the element,

so that:

= = = =y E y( 1, ) [ ( 1) ( 1)]q andS u
T

v
T

(36)

= = = =y E y( 1, ) [ ( 1) ( 1)]qS u
T

v
T

(37)

Remembering that in Eqs. (36) and (37), the derivatives are related
to the variable x global and the shape functions are defined in relation
to the local variable of the element. With h being the total height of
the steel I profile, = = h( 1, /2)1 , = = h( 1, /2)2 ,

= = h( 1, /2)3 and = = h( 1, /2)4 , we determine:

= =the greatest between com j and1, ..,4jmax (38)

= =the least between com j 1, ..,4jmin (39)

The maximum stress on the steel profile ( S) will be the greatest
value between | |max and | |min .

Herein, for the steel I profile, =E MPa210000S , =f MPa500yk and
=f f /1.15yd yk were adopted. Thus, the stress resistance limit for com-

pression or traction for the profile ( S̄ ) is given by = fS̄ yd.
The equation for this constraint is defined as given below:

=C (x) ¯ 0S S3

4.3. Maximum force on the connectors

Fig. 7 displays a composite beam element and the resulting forces
acting on it. When the horizontal forces are in equilibrium, we have:

=
=

F F
i

n

i
1 (40)

In Eq. (40), Fi represents the forces in each connector due to dis-
placement s between the steel and concrete sections. According to
Oehlers and Coughlan [26], a bolt connector has a linear behavior until
50% of its maximum force resistance. The same authors relate the
connector’s rigidity modulus with the maximum force it can resist
(Fmax), the diameter of its base (dc), and the concrete’s resistance to
compression that is involved ( fc), as shown in Eq. (41).

=K F
d f(0.16 0.00172 )c

c c

max

(41)

In Eq. (41), the dimensions are in N and mm. =F A f E0.5 sh c cmax ,
where Ash is the area of the cross-section of the connector’s base.

Assuming that the displacement is the same along the element in
Fig. 7 and that the connectors are all the same, we have:

=F nK sc (42)

By defining =K nK x/c and substituting it in Eq. (42), we have:

=F
x

Ks or, (43)

for a small x , =F Ks. Considering a constant spacing between the
connectors along xwith value e, we have =ne x , and as such:

=K K e/c (44)

The project for the revision of the standard NBR-8800 [25] limits
the spacing between connectors as six times the diameter of the con-
nector, and when adopting a connector diameter of 19 mm, we have

=e 11.4min cm. After determiningKc, using Eq. (41), we obtain from Eq.
(44), the maximum rigidity allowed on the sliding interface. This ri-
gidity was utilized in the numerical analysis of the composite beam.

The maximum force acting on a connector due to the deformation of
the composite beam should be calculated at the level of the element
through the integral equation =F Ks, where the integration limits
should be spaced according to the spacing between the connectors,
being thus:

= = =
+

+

+

F Ksdx F Ksdx F Ksdx, ,
e

e

e

n
e

1
1

1

2
1

1 2

1

1

The maximum acting force (Fs) will be the greatest value ofF| |1 , F| |2 ,
…, F| |n .

According to NBR-8800 [25] the maximum force resisted by a
connector (F̄s ) should be the least of the two values.

=F
A f E¯ 0.5

s
cs ck c

cs (45)

Fig. 6. Stresses acting on the concrete section.
Fig. 7. Acting forces in a composite beam element.
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=F
A f

s̄
cs u

cs (46)

For Eqs. (45) and (46), Acs is the area of the cross-section of the
connector, fu is the rupture resistance stress of the connector, and

= 1.25cs .
The equation for this constraint is defined as below:

=C F F(x) ¯ 0s s4

4.4. Maximum deflection

The equation for the transverse displacement in an element is given
by:

=v ( ) [0 ]qT
v
T

(47)

where = u u v vq [ ]1 2 1 1 2 2 is the vector of the nodal displacements
of the beam element, and v is the vector of the shape functions for the
transverse displacements/rotations. As cubic interpolation is adopted
for these displacements, we have the maximum displacement (vmax)
being in one of the extremities of the element ( = 1 or = 1), or at
some point within the element where the derivative is null ( =v ( ) 0),
which could be two, one or none.

For this study, we have adopted a transverse limit deflection (v̄) of
L/350, where L is the length of the beam’s span.

The equation for this constraint is then defined as written below:

=C v v(x) ¯ 05 max

4.5. Local buckling of the steel profile

According to NBR-8800 [25] the local buckling effects can be ig-
nored when determining the cross-sections resistance forces for the case
of I profiles with a web slenderness ratio less than:

= E
f

3.76w
s

y

And with a flange slenderness ratio less than:

= E
f

0.38f
s

y

Being that the flange slenderness ratio is given by the relationship
b t/(2 )f f , where tf is the thickness of the flange and bf is it width, and the
web slenderness ratio is given by b t/w w, where tw is the thickness of the
web and bw is its height.

The constraint equations are then defined as below:

=C t b(x) 1
2

0f
f

f6

=C t b(x) 1 0w
w

w7

4.6. Profile and concrete section dimensions

Constraints regarding the total height of the steel I profile are
adopted herein, along with the minimum and maximum dimensions for
the web and flanges and concrete section’s height and width.

Define h̄ as the height limit of profile I, t̄i and t̄s respectively as the
thickest and thinnest thickness possible for the web and flanges, b̄i and
b̄s as the narrowest and widest widths possible of the web and flanges,
h̄i and h̄s as the smallest and greatest height possible for the concrete
section, and also l̄i and l̄s as the narrowest and widest width possible for
the concrete section. These constraints can then be written as presented
below:

= +C h t b(x) ¯ (2 ) 0f w8

=C t t(x) ¯ 0w i9

=C t t(x) ¯ 0s w10

=C t t(x) ¯ 0f i11

=C t t(x) ¯ 0s f12

=C b b(x) ¯ 0f i13

=C b b(x) ¯ 0s f14

=C b b(x) ¯ 0w i15

=C b b(x) ¯ 0s w16

=C h h(x) ¯ 0c i17

=C h h(x) ¯ 0s c18

=C l l(x) ¯ 0c i19

=C l l(x) ¯ 0s c20

4.7. Spacing between the connectors (longitudinal stiffness of the
connection)

For an approach considering the longitudinal rigidity as a variable
of the project, the spacing limit between shear connectors should be
considered as a constraint, or in other words, the longitudinal rigidity of
the connection should have upper and lower limits. Considering K̄i and
K̄s as the rigidity limits of the connection, we have the equations below
for these constraints:

=C K K(x) ¯ ) 0s j21

=C K K(x) ¯ 0j i22

In the above equations, Kj refers to the longitudinal rigidity of a
connection simulated by an interface element, the index j refers to a
stretch of the composite beam that has constant spacing between con-
nector, or in other words, the same longitudinal rigidity of the con-
nection. The number of stretches of the composite beam with different
spacing between the connectors can be any amount, remembering that
this would influence the number of design variables and constraints.

4.8. Iterative step size

As the Simplex method is linear, the problem of determining the
optimum steel I profile dimensions of a composite beam should be
linearized, truncating its expansion in the first term to the Taylor series.

Adopting the step size limit as value d̄ and calling f the function that
need to be minimized, we have:

+ = +f f f(x d) (x ) dk k
T

k

And thus, f dd | ¯|T
k limits the step size.

5. The objective function and standard form of the simplex
method

5.1. Optimization of the steel I profile

In this first approach, we intend to determine the steel profile di-
mensions of a composite concrete-steel beam with partial interaction,
so that the cross-section area of the steel beam is the minimum possible.
Therefore, in accordance with Fig. 8, the objective function can be
defined in the following manner:
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= +f b t b t(x) 2 f f w w (48)

Where the vector x is given by = b t t bx [ ]f f w w .
The optimization of the problem is given by:

f subject to Cmin (x) (x) 0i
x (49)

Substituting the objective function and the constraints by their ex-
pansion from the truncated Taylor series in the first term, we have the
linear optimization problem:

f subject to C C and f dmin d d - (x ) d | ¯|T
k

T
i j i k

T
kd

, (50)

In the above equation, i varies from 1 until the number of con-
straints, j varies from 1 until the number of design variables, and d
refers to the step of the incremental process for the solution of the non-
linear problem.

Placing the linear problem of Eq. (50) in the standard Simplex
method form, we have:

×f fmin[ 0 ]dT
k

T
kd*

1 18

Subject to

=×

×

C C
f f

f f

C
d
d

I
0
0

d
0 0

1 0
0 1

*
(x )
¯
¯

T
i k

T
i k x

T
k

T
k

T
k

T
k

i k, , 16 16

1 16

1 16 (51)

In the equation above, = +d [d d u w ]T T T T T , where +d and d
are two vectors with 4 components (number of design variables), u is a
vector with 16 components (number of constraints), w is a vector with
2 components (referring to the step size constraint), I16x16 is an identity
matrix of order 16, and 01x16 is a matrix line with 16 columns of null
elements. For greater details as to how to arrive at this standard form,
consult Vanderplaats [15]; Haftka and Kamat [16].

The derivatives in relation to the objective function and the con-
straints of C (x)i with i = 5,…,16 are obtained in an analytic manner by
deriving these equations in relation to =x bf0 , =x tf1 , =x tw2 and

=x bw3 . While the derivatives C (x)i with i = 1,…,4 are obtained by a
semi-analytic form as shown below.

The constraints C (x)i , with i = 1,…,4, depend on q that depends on
x, and as such:

=C
x

C
x

(x) (x)
q

qi

i

i
T

i (52)

For the first constraint, we have:

=C
x x
(x)

q
q

i

c
T

i

1

(53)

From the condition of balanced internal and external forces acting

on the elements, we have:

=Kq fext (54)

Considering the external forces as being constant in regards to the
design variables and deriving Eq. (54) in relation to x, we have:

=
x x

K q K q
i i (55)

From Eqs. (54) and (55), we determine q and
x
q
i
: being able then to

evaluate (q)c and + q( q )c xi
q , and finally determine that:

=
+

q
q
q

( q ) (q)c

i

c xi i c

i

q

5.2. Optimization of the composite section (steel I profile together with the
rectangular concrete section)

In this second approach, we intend to determine the dimension of
the steel I profile and the rectangular concrete section of the composite
steel-concrete beam with partial interaction, so that the cost function
related to the steel and concrete volume utilized in the production of
this composite element is the minimum possible. Therefore, according
to Fig. 9, the objective function can be defined as below:

= + +f C b t b t C l h(x) (2 )S f f w w C c c (56)

Where the vector x is given by = b t t b l hx f f w w c c , and CS and CC
are, respectively, constants that relate the steel and concrete volumes to
their production cost.

Similar to the former item, the standard form for the Simplex
method for a linearized problem stemming from Eq. (56) is:

×f fmin[ 0 ]dT
k

T
kd*

1 22

Subject to

=
×

×

×

C C
f f

f f

C
d
d

I 0 0
0 1 0
0 0 1

d*
(x )
¯
¯

T
i k

T
i k

T
k

T
k

T
k

T
k

i k, , 20 20

1 20

1 20 (57)

In the expression above, = +d [d d u w ]T T T T T , where +d and d
are two vectors with 6 components (number of design variables), u is a
vector with 20 components (number of constraints), w is a vector with
2 components (refers to the step size constraint), I20x20 is an identity
matrix of order 20, and 01x20 is a matrix line with 20 columns of null
elements. For greater details as to how to arrive at this standard form,
consult Vanderplaats [15]; Haftka and Kamat [16].

Fig. 8. Steel profile.

Fig. 9. Composite section.
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The derivatives in relation to the objective function and the con-
straints are obtained in a manner that is analogous to the previous
section.

5.3. Optimization of the number of shear connectors

This last approach intends to determine the number of shear con-
nectors needed for a steel-concrete composite beam with partial inter-
action, so that the number of connectors utilized will be the minimum
possible. Thus the objective function can be defined as:

=
=

f n(x)
i

nc

i
1 (58)

where ni is the number of connector along the stretch i, and nc is the
number of stretches into which the beam was divided.

Therefore, as defined in Item 4.3 herein, we have =K nK x/c , where
K is a longitudinal rigidity within the connection, Kcis the rigidity
modulus of the connector used, and n is the number of equally-spaced
connectors along the length of the composite beam. As such, the ob-
jective function can be written in function of the connection rigidity
and the length of the different stretches of the beam (Li), so that:

=
=

f L
K

K(x)
i

nc
i

c
i

1 (59)

In Eq. (59), the vector x is given by = K Kx . . . nc1 , while Li and
Kc are specifically determined for each problem depending on the type
and configuration of the connector adopted.

Similar to the previous item regarding the standard form for a
problem, using Eq. (59) in the Simplex method gives:

× +f fmin[ 0 ]dT
k

T
k nr

d*
1 ( 2)

Subject to

=
×

×

×

C C
f f

f f

C
d
d

I 0 0
0 1 0
0 0 1

d
(x )
¯
¯

T
i k

T
i k nr nr

T
k

T
k nr

T
k

T
k nr

i k, ,

1

1

*

(60)

In the above expression, = +d [d d u w ]T T T T T , where +d and d
are two vectors with the number of components given by the number of
design variables, u is a vector with nr (number of constraints) compo-
nents, w is a vector with 2 components (referring to the step size
constraint), Inrxnr is an identity matrix of order nr, and 01xnr is a matrix
line with nr columns of null elements. For greater details as to how to
arrive at this standard form, consult Vanderplaats [15]; Haftka and
Kamat [16].

The derivatives in relation to the objective function and the con-
straints are obtained in a form that is similar to that described in
Section 5.1.

6. Examples

6.1. Optimization of the steel I profile – simply supported beam

Aiming to illustrate a practical application for the method devel-
oped in this work, the composite beam of Fig. 10 is designed con-
sidering both the criteria defined by the Brazilian Code NBR8800 [25]
and the method proposed herein.

6.1.1. Design criteria according to Brazilian Standard NBR8800
The load of 150 kN applied to composite beam of Fig. 10 is obtained

as a consequence of an ultimate load combination; whereas for servi-
ceability combination, the load of 75 kN is applied for computing the
maximum deflection. Consider for the materials in the composite sec-
tion: fck = 30 MPa (characteristic concrete strength to compression),
fyk = 500 MPa (steel rebar yield strength), =f MPa250yk (steel beam

yield strength) and steel connectors with = MPaf 345yk and
=f MPa415uk (ultimate tensile strength).

6.1.1.1. Pre-dimensioning. For a pre-dimensioning considering the
ultimate limit state determinant in the analysis, it is considered total
interaction in the steel-concrete connection and the plastic neutral axis
(PNA) located at the concrete slab. In this situation the moment of
resistance is given by = +M T d h a( 0.5 )Rd ad 1 , where =T A fad s yd
(required Force for the whole cross‐section reach the yield stress),

=d d/21 (half of the total height of the doubly symmetric I profile),
h = 12 cm (concrete slab thickness), and a is the distance from the PNA
to the upper face of the concrete slab. Given =f f /1, 10yd yk ,
MRd = 375 kNm (maximum moment in the mid-span of the
composite beam) and considering a = 9.6 cm (PNA at 80% of the
slab thickness), we have + =A d( 14.4) 3300s . Choosing the W310 steel
cross-section from the Gerdau table (d approximately 310 mm), we
have As = 72.7 cm2, with this area and returning to the Gerdau table
we define the profile W310 × 60 (As = 76.1, bw = 277, tw = 7.5, bf

= 203, tf = 13.1) as the first attempt to design the composite beam.

6.1.1.2. Connectors for full interaction. Stud-shear connector with
19.1 mm of diameter is adopted in the design. Its design resistance is
obtained considering the lowest value between the crushing of the
concrete surrounding the connector or the shear rupture of the
connector. Since the connectors are welded directly to the profile,
and 1.25 is the safety factor adopted to calculate the ultimate resistance
of the connector, we have: = kNQ 95.12Rd .

The following Eq. (61) quantifies the degree of interaction of the
composite beam. In this equation, Fhd is the force needed for the plas-
tification of the steel or concrete section, whichever is less. For the
chosen section we have =F 1729.5hd kN.

= Q
F

Rd

hd (61)

In Eq. (61), QRd is the sum of the design ultimate resistances of the
connectors arranged between the maximum moment and the adjacent
null moment (variable Le in Eq. (62)). In the case of simply supported
beams, Le corresponds to half length of span. Admitting equally spaced
connectors along the span of the beam, the spacing s necessary to have a
full shear interaction, that is, = 1, is given by the following equation.

= = × =s L Q
F

m5 95.12
1729.5

0, 275e Rd

hd (62)

The spacing between connectors obtained in Eq. (62) meets the limit
values specified by NBR8800 [25]. Dividing the length of the beam by
the necessary spacing to have full interaction results in an amount of 37
connectors uniformly spaced along the span of the composite beam.

6.1.1.3. The bending moment resistance. To define the moment
resistance of the section it is necessary to check the position of the
plastic neutral axis (PNA) in the composite section. For full shear
interaction, this position is unique and as <A f f bh0.85s yd cd the PNA is
located at the concrete slab at position a = 10 cm below the upper face
of the concrete section. In this position, there is an upper rebar and half
of the lower rebar is compressed and the other half tensioned, that is,
PNA passes through the centroid of the lower rebar.

The moment resistance of the section acting in the centroid of
tensioned rebar, when PNA lies in the concrete slab, is given by

= × × + × × =M kNm76.1 (25/1.1) 0.222 6 (50/1.15) 0.03 392.6Rd

(63)

From Eq. (63), it is observed that MRd > MSd and the chosen sec-
tion in the pre-dimensioning meets the ultimate limit states related to
bending. It is considered that the composite beam is laterally restrained
so there is no possibility of lateral buckling with torsion, and as the
section is all under tension, there are no problems with local buckling of
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the flange or web.

6.1.1.4. Deflection calculation. Linear behavior of the materials is
permitted for serviceability load combination. The composite section
is transformed into a steel-only section using the homogenization
technique employed in the Strength of the Materials, for which the
elasticity modules of = =E f0.85(5600 ) 26072c ck MPa for concrete and

=E 200000S MPa for the steel section were considered.
Initially, the position of the elastic neutral axis (ENA) is calculated

by checking whether it lies within the concrete slab or the steel profile.
It is verified that the ENA lies in the steel profile and, therefore, the
concrete slab is completely compressed for external actions that do not
induce the plastification of the section. The moment of beginning of
plastification is the smallest moment between the plastification mo-
ments of the most compressed and the most stretched fiber of the sec-
tion, that is, 188.9kNm. As the maximum moment acting for service-
ability combination is less than the moment when plastification begins,
it is concluded that the section inertia is constant along the composite
beam and given by I = 23523.6 cm4.

The maximum deflection for a simply supported beam with a con-
centrated load in the mid- span and constant inertia along the axis is
given by the following equation.

= = ×
× ×

=PL
EI

cm
48

75 1000
48 20000 23523.6

3.32
3 3

(64)

As the above deflection is larger than the limit deflection of L/350
(2.86 cm), it is verified that the section initially defined does not meet
the serviceability limit state of maximum deflection. Therefore, a
counter-deflection would be necessary to meet this serviceability limit
state.

6.1.2. Proposed method in the present work
A linear stress-strain relationship of the materials is considered in

the proposed method of this work. Thus, it is used in the pre-di-
mensioning of the composite beam in such way to select the steel profile
more optimally and then the prescriptions of standards are checked
referring to the ultimate limit states.

6.1.2.1. Pre-dimensioning. In the numerical analysis, a mesh of 20
interface elements was adopted for a deformable connection and 40
beam elements, being 20 of the elements for the concrete section and 20
elements for the steel section. The data referring to the physical
properties of the materials in the composite section are the same as
in the previous item.

According to item 6.1.1.2 of this example, 37 stud-shear connectors
with 19 mm of diameter ( = =F Q 95.12RDmax kN) spaced of 27 cm along
the span of the composite beam are adopted. Therefore, according to
Item 4.3, the stiffness per connector is given by =K 46184c N/mm and
the stiffness of the connection per unit length is given by

=K 171.05MPa.
As described in Section 4.6 herein, some dimension limits were

admitted as constraints, and these are:
=t mm¯ 5i (minimum thickness of the flanges and web steel profile)
=t mm¯ 25, 4s (maximum thickness of the flanges and web steel

profile)
=h cm¯ 35 (maximum height of the steel profile)
=b cm¯ 70s (maximum width of the flanges and web steel profile)
=b cm¯ 5i (minimum width of the flanges and web steel profile)

As the structural analysis of the composite beam in this proposed
model is based on the linear relationship between stress and deforma-
tion of the materials, it is not possible to achieve the total plastification
of the composite section, but only the beginning of the plastification.
Thus, the use of the load related to an ultimate combination of actions
makes the proposed model provides overestimated sections, so the
authors suggest that for the verification of the ultimate limit states, 75%
of the load related to these limit states should be used when the

Fig. 10. Simply supported composite beam (dimensions in cm).

Fig. 11. Evolution of the incremental process.
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composite beam is not subject to negative moment.
Fig. 11 shows the evolution of the incremental process for solving

the nonlinear problem. The graph in the figure depicts how much of the
restrictions have already been required with the area of the steel profile
at each step of evolution of the incremental process in searching for the
optimum point, that is, the steel section of the smallest area that meets
all constraints. Fig. 12 shows two graphs for the same problem, the
difference being the starting point (as can be seen in Fig. 12), verifying
that both converge to a minimum profile area of approximately 68 cm2.

In Fig. 11, notice that the determinant constraints are those refer-
ring to the buckling of the web and the yield stress of the steel profile
and there is a gap of approximately 51% in relation to the maximum
deflection, 35% in relation to the compression stress in the concrete,
20% in relation to the buckling of the web, 82% in relation to the re-
inforcement and 52% in relation to the shear of the connectors.

Figs. 12 and 13 show the variation of the design variables along the
incremental process evolution in search of the optimum point. The
graphs for these figures are compared to the evolution of the search for
the optimum point for two distinct starting points.

In the figures below, 1 and 2 used as labels to the design variables,
refer to the different starting points adopted. Observe that the con-
vergence for the same cross section is independent of the starting sec-
tion.

The section As = 68.74 cm2, bw = 32.79 cm, tw = 0.5 cm,
bf = 23.72 cm and tf = 1.10 cm obtained in this section using the
proposed method in this work is checked in the following items

regarding the design criteria stated by NBR8800 for steel–concrete
composite beams design.

6.1.2.2. Verification of the optimized section – bending moment
resistance. In order to define the resistant moment of the section, it is
necessary to verify if for the analyzed section with the distribution of
connectors defined in 6.1.2.1 there is full or partial shear interaction of
the connection. Since =A f 1562.3s yd kN is less than the shear force
generated by the connectors distributed between the point of null
moment and the maximum moment ( =F 1729.5hd kN), there is full
interaction.

For full shear interaction, this position is unique and
as <A f f bh0.85s yd cd , the PNA is located at the concrete slab at position
a = 9.09 cm below the upper face of the concrete section. In this po-
sition, the upper reinforcement is compressed with part of the lower
reinforcement tensioned and part compressed.

The moment resistance of the section, with PNA being within the
concrete slab, the upper reinforcement under compression and dis-
regarding the contribution of the lower reinforcement, is given by

= × × + × × =M kNm68.74 (25/1.1) 0.250 6 (50/1.15) 0.0254 397.2Rd

(65)

From Eq. (65), it is observed that MRd > MSd and the chosen sec-
tion in the pre-dimensioning meets the ultimate limit states related to
bending. It is considered that the composite beam is laterally restrained
so there is no possibility of lateral buckling with torsion. The local
buckling constraints of the flange and web of the implemented model
guarantee these ultimate limit states.

6.1.2.3. Verification of the optimized section – deflection
calculation. Similarly to 6.1.1.4, it is noticed that the ENA lies in the
steel profile and, therefore, the concrete slab is completely compressed
for external actions that do not induce the plastification of the section.
The moment of beginning of plastification is the smallest moment
between the plastification moments of the the most compressed and the
most stretched fiber of the section, that is, 295.7 kNm. As the maximum
moment acting for serviceability combination is less than the moment
when plastification begins, it is concluded that the section inertia is
constant along the composite beam and given by I = 42503.08 cm4.

The maximum deflection for a simply supported beam with a con-
centrated load in the mid-span and constant inertia along the axis is
given by the following equation.

= = ×
× ×

=PL
EI

cm
48

75 1000
48 20000 42503.1

1.84
3 3

(66)

As the above deflection is smaller than the limit deflection of L/350
(2.86 cm), it can be seen that the section initially defined also meets the
serviceability limit state of maximum deflection.

6.1.3. Comparison between the two solutions
The solution obtained considering the section defined by the pro-

posed model presented a considerable slack in relation to the service-
ability limit state of maximum deflection and a plastification moment
resistance superior to the soliciting moment obtained for the ultimate
loading.

The section defined without the use of the presented algorithm is
10.7% heavier and requires a counter-deflection during its execution to
meet the serviceability limit state of maximum deflection.

Using the response of the proposed model to define a practical steel
cross-section from the Gerdau table, the authors suggest checking the
profile W310 × 52 (As = 67, bw = 317, tw = 7.6, bf = 167, tf = 13.2).

In this example, the increase in the maximum height limit of the
profile makes the model present much lighter solutions. For instance, if
this limit is changed from 35 cm to 50 cm and the rest of the parameters
are maintained, the model provides the profile given by
As = 53.92 cm2, bw = 48.26 cm, tw = 0.5 cm, bf = 17.12 cm and

Fig. 12. Evolution of the design variables in the incremental process.

Fig. 13. Evolution of the design variables in the incremental process.
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tf = 0.87 cm. However, in practical terms (for example, using the
Gerdau's profile table) it is not possible to have a profile approximately
480 mm height and an area of 53.92 cm2. A profile with such height has
an area of around 100 cm2, making this solution unfeasible.

6.2. Optimization of the steel I profile – fixed-fixed beam

This example is identical to the previous one, changing only the
support conditions at the beam extremities and the number of con-
nectors used.

6.2.1. Pre-dimensioning
In this example, stud-shear connectors of 19 mm diameter (Kc =

46184 N/mm, Fmax = QRd = 95.12 kN) are used spaced with the
minimum distance allowed by Brazilian standard (6 times the diameter
of the connector). Therefore, according to Item 4.3, the connection
stiffness per unit of length is given by =K 405.12MPa. All other data
needed to analyze this example is the same as in the previous one.

As in the previous example, the use of the load referring to an ul-
timate combination of actions causes the proposed model to provide
overestimated sections, so the authors suggest that for the verification
of the ultimate limit states, 85% of the ultimate load combination
should be used when the composite beam is subjected to negative
moments.

Fig. 14 (analogous to the previous example) shows two graphs for
the same problem, the difference being the starting point (see Figs. 15
and 16), verifying that both converge at a minimum area of approxi-
mately 45 cm2 for the profile. Also observe that in this figure, the
preponderant constraints, unlike the previous case, are the constraints
related to the flange buckling and the yield stress of the steel profile,
with a slack of approximately 78% in relation to beam’s maximum
deflection, 40% in relation to the compression stress in the concrete,
20% in relation to the buckling of the web, 28% in relation to the yield
strength of the reinforcement and 77% in relation to the shear in the
connectors.

Observe that in the Figs. 15 and 16, the convergence for the same
cross section is independent of the section’s starting point.

Then the section As = 45.42 cm2, bw = 334 mm, tw = 5 mm, bf

= 176 mm and tf = 8.2 mm obtained in this example using the pro-
posed method is checked according to the design criteria stated by
NBR8800.

6.2.2. Negative bending moment resistance
In order to define the moment resistance of the section, it is ne-

cessary to verify if for the analyzed section and the defined connector
distribution there is full or partial shear interaction of the connection.
Since =A f 1032.3s yd kN is less than the shear force generated by the

connectors distributed between the point of null moment and the
maximum negative moment (21 connectors, =F 1997hd kN), there is full
interaction.

For full interaction the position of the plastic neutral axis (PNA) in
the composite section is unique and as >A f A fs yd sb ybd, the PNA is lo-
cated at the concrete slab at position 0.638 cm below the upper face of
the steel profile.

The negative bending moment resistance of the section with PNA
within the upper flange of the steel profile is given by

Fig. 14. Evolution of the incremental process.

Fig. 15. Evolution of the design variables in the incremental process.

Fig. 16. Evolution of the design variables in the incremental process.
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= × + + + × + =M kNm5.217 (6 0.638 22.6) 2.552 (0.638/2 22.6) 211Rd

(67)

From Eq. (67), it is observed that MRd > MSd and the chosen sec-
tion in the pre-dimensioning meets the ultimate limit states related to
bending. It is considered that the composite beam is laterally restrained
so there is no possibility of lateral buckling with torsion. The local
buckling constraints of the flange and web of the implemented model
guarantee these ultimate limit states.

6.2.3. Positive bending moment resistance
The positive moment resistance is calculated taking into account the

contribution of the concrete, therefore resulting greater than the ne-
gative moment resistance, and consequently for the analyzed example,
also greater than the solicitant maximum positive moment.

6.2.4. Deflection calculation
For the region of negative moment, disregarding the contribution of

concrete, it is noticed that the ENA lies in the steel profile and, there-
fore, the concrete slab is all tensioned and should really be disregarded
in the analysis. The moment of beginning of plastification is the smal-
lest moment between the plastification moments of the most com-
pressed and the most stretched fiber of the section, that is, 153.3 kNm.
As the solicitant maximum moment for serviceability loading is less
than the moment of beginning of plastification, it is concluded that the
section inertia is constant in the negative moment stretch of the com-
posite beam and given by I = 15255.1 cm4.

The maximum deflection for a fixed–fixed beam with a concentrated
load in the mid-span and constant inertia along the axis is given by the
following equation. As the inertia in the positive moment stretch is
greater than the inertia in the negative stretch, it was admitted, in the
below equation, constant inertia and equal to the inertia to the negative
stretch.

= = ×
× ×

=PL
EI

cm
192

75 1000
192 20000 15255.1

1.28
3 3

(68)

As the above deflection is smaller than the limit deflection of L/350
(2.86 cm), it can be seen that the section initially defined also meets the
serviceability limit state of maximum deflection.

6.3. Optimization of the composite section

In this example, it is shown that the proposed model can also be
used for the pre-dimensioning of composite sections. The same beam in
Fig. 10 of the previous example was analyzed considering now the
objective function given by Eq. (56) and the height and width of the
concrete section added to the design variables of the previous example.
As the section is composed of two materials, the objective of simply
minimizing the sum of the cross-sectional areas of each material would
be prioritized for the reduction of the material variables that have a
greater area, which generally is the concrete section. To avoid this, we
used an objective function given by Eq. (56). This pre-dimensioning
section was defined for 4 fictional relationships for the production cost
of the structural element: the cost of steel being twice that of the con-
crete ( =C C2S c); the cost of steel being 50 times greater than that of the
concrete ( =C C50S c); the steel cost being 100 times more than that of
the concrete ( =C C100S c); and the cost of the steel being 300 times

greater than the cost of concrete ( =C C300S c).
As described in Section 4.6 of this work, some limitations of di-

mensions were admitted as design constraints. The constraints re-
garding the steel section are the same as those used in the previous
example, whereas for the concrete section, we have:

=h cm¯ 8i (minimum height of concrete section)
=h cm¯ 20s (maximum height of concrete section)

=l cm¯ 220s (maximum width of concrete section)
=l cm¯ 20i (minimum width of concrete section)

Table 1 shows the design variables for different relationships be-
tween the cost of steel and concrete after convergence of the optimi-
zation iterative method proposed in this work. As can be observed in
Table 1, as the relationship between the cost of steel and concrete in-
creases, there is a reduction of the steel area and an increase in the
concrete area, as expected.

Next, the composite section shown in Table 1 is checked for the cost
of steel being 50 times greater than that of the concrete. The data for
reinforcement and connectors are the same as in example 1 for the
simply supported beam.

6.3.1. Bending moment resistance
In order to define the moment resistance of the composite section, it

is necessary to verify if for the analyzed composite section and the
connector distribution defined in 6.1 there is full or partial interaction
of the connection. Since =A f 1699.3s yd kN is less than the shear force
generated by the connectors distributed between the point of null
moment and the maximum moment, ( =F 1729.5hd kN), there is full in-
teraction.

For full interaction, the position of the plastic neutral axis (PNA) in
the composite section is unique and as < +A f f bh A f0.85s yd cd sb ybd, the
PNA is located at the concrete slab at position a = 14.4 cm below the
upper face of the concrete section. In this position, the upper re-
inforcement is compressed with part of the lower reinforcement ten-
sioned and part compressed.

The moment resistance of the section, with PNA being within the
concrete slab, the upper reinforcement under compression and dis-
regarding the contribution of the lower reinforcement, is given by

= × × =M kNm74.77 (25/1.1) 0.237 402.3Rd (69)

From Eq.(69), it is observed that MRd > MSd and the chosen section
in the pre-dimensioning meets the ultimate limit states related to
bending. It is considered that the composite beam is laterally restrained
so there is no possibility of lateral buckling with torsion. The local
buckling constraints of the flange and web of the implemented model
guarantee these ultimate limit states.

6.3.2. Deflection calculation
It is verified that the ENA lies in the steel profile, therefore the

concrete slab is completely compressed for actions that do not plasticize
the section. The moment of beginning of plastification is the smallest
moment between the plastification moments of the most compressed
and the most stretched fiber of the section, that is, 311.8 kNm. As the
solicitant maximum moment for serviceability loading is less than the
moment of beginning of plastification, it is concluded that the section
inertia is constant along the composite beam and given by
I = 39354.7 cm4.

Table 1
Optimum point for different cost relationships.

Cost: (C C/s c) bf (cm) tf (cm) tw (cm) bw (cm) lc (cm) hc (cm) As (cm2) Ac (cm2)

2 25.16 1.43 0.50 26.80 55.16 8.00 85.38 441.28
50 24.68 1.24 0.50 27.27 54.68 16.00 74.77 874.88
100 19.35 1.13 0.50 32.74 58.33 20.00 60.02 1166.61
300 18.90 1.06 0.50 32.87 76.25 20.00 56.65 1524.99
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The maximum deflection for a simply supported beam with a con-
centrated load in the mid-span and constant inertia along the axis is
given by the following equation.

= = ×
× ×

=PL
EI

cm
48

75 1000
48 20000 39354.7

1.98
3 3

(70)

As the above deflection is smaller than the limit deflection of L/350
(2.86 cm), it can be seen that the section defined by the proposed model
also meets the serviceability limit state of maximum deflection.

The section obtained in this example compared to the section de-
fined in (6.1) has a higher moment resistance and less deflection, even
with a reduction of the section of 8.9% in concrete and 1.7% in steel.

6.4. Optimization of the number of shear connectors – simply supported
beam

In this example, the proposed model is used to optimize the dis-
tribution of the shear connectors along the simply supported composite
beam of Fig. 17, with the cross section given in Fig. 18. The design
variables are the longitudinal stiffnesses in the deformable connection.
The goal is to searching for the optimum distribution of connectors for a
given set of constraints already met.

Fig. 17 shows the configuration adopted for the equally spaced
stretches between connectors of the simply supported composite beam
analyzed in this example. As can be seen in this Figure, the composite
beam was divided into 5 stretches, and as such, due to the symmetry of
the problem, there are three design variables, given by the longitudinal
rigidity of the deformable connections of the elements of the interface.

As in the previous examples, for the numerical analysis, we used a
20-interface element mesh for the deformable connections, and 40
beam elements, being 20 elements for the concrete section and 20 for
the steel section. Therefore, in the first and last stretches of the com-
posite beam of Fig. 18, there will be 4 interface elements that will have
a longitudinal rigidity for the connection given byK1, while the second
and the second to the last ones will have 3 interface elements with a
longitudinal rigidity for the connection given byK2, and the middle
stretch will have 6 interface elements whose longitudinal rigidity is
given byK3.

As described in the previous Section 4.7, additions constraints have
been admitted for project limitations regarding longitudinal rigidity of
the connection. The Brazilian standard NBR-8800 [25] limits the
minimum spacing between the connectors to six times the diameter of
the connector, and for a 19 mm diameter, we have =e m0.114 . While
the maximum spacing is limited to eight times the height of the rec-
tangular concrete section of the beam, and for a section height of 12 cm,
we have =e m0.96 . As seen in Section 4.3, the longitudinal rigidity is
given by =K K e/c , then:

= =K kPa¯ 60874/0.114 533982s (maximum longitudinal rigidity)
= =K kPa¯ 60874/0.96 63410i (minimum longitudinal rigidity)

Table 2 below displays the design variables after convergence of two
different starting points achieved by an iterative method. The compo-
site beam’s cross section is shown in Fig. 19. Table 2 also displays the
number of connectors needed in each section of the composite beam
shown in Fig. 18. It has been verified that this number of connectors
increases from the middle to the extremities of the beam, which was
expected in the case of the simply supported beams that have null
sliding in the middle of the span and maximum sliding at the ex-
tremities.

Fig. 19 below demonstrates the evolution of the incremental process
for the solution of a non-linear problem. The figure’s graph displays
how many of the constraints have already been required with the total
number of connectors during each step of the evolution of the incre-
mental process in search of the optimum point; in other words, the
configuration with the least number of connectors that meets all of the
constraints. Observe in Fig. 19 that the maximum deflection constraint
is a determinant for the analyzed problem.

Fig. 20 shows the same analysis as that of Fig. 19, only without the
maximum deflection constraint. Notice in the figure that the de-
termining constraint changes to the maximum force on the connectors,
and that the total number of connectors reduces significantly, going
from 57 to 10 connectors (minimum number permitted by NBR-6118
[24].

6.5. Optimization of the shear connector numbers – fixed-fixed beam

This example is analogous to the previous one, changing only the
support conditions of the composite beam of Fig. 17, from simply
supported to fixed-fixed. Also changing the cross section as shown
in Fig. 21.

Table 3 shows the design variables after two different starting points
converge using an iterative method. The analysis of cross section of the
composite beam is presented in Fig. 22. Table 3 also displays the
number of connectors needed for each stretch of the composite beam of
Fig. 18, taking into consideration fixed-fixed support.

Fig. 22 below shows the evolution of the incremental process for the
solution of a non-linear problem. The graph of the figure relates the

Fig. 17. Stretches with the same longitudinal rigidity in the composite beam connections.

Fig. 18. Cross section (dimensions in cm).
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amount of the constraints already required with the total number of
connectors for each step of the evolution of the incremental process in
search of the optimum point; or in other words, the configuration with
the least number of connectors that meets all of the constraints. Observe
in Fig. 22 that the maximum deflection constraint together with the

initial yield constraint of the steel profile are determinant constraints in
the problem analyzed.

Fig. 23 below displays the same analysis as Fig. 22, only without the
maximum deflection constraint. Notice is this figure that the de-
termining constraint becomes the maximum force of the connectors,
considerably reducing the number of connectors and permitting a gap
in relation to the beginning of the yield of the steel profile, which is the
determinant for the beam when analyzed with the maximum deflection
limited.

7. Conclusions

In this work an optimization algorithm is developed and im-
plemented and coupled with a structural analysis program based on
finite element method. The matrix formulation of simplex method is

Table 2
Quantity of connectors needed for the section analyzed.

Starting Point Optimum point Number of connectors Total
K1 K2 K3 K1 K2 K3 Stretch 1 and 5 Stretch 2 and 4 Stretch 3

440,000 533,000 533,000 490,850 440,850 63,140 16 11 3 57
533,000 533,000 150,000 488,529 445,250 63,410 16 11 3 57

Fig. 19. Evolution of incremental process considering all of the constraints.

Fig. 20. Evolution of the incremental process without the maximum deflection constraint.

Fig. 21. Cross section (dimensions in cm).
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addressed to the nonlinear optimization problem, named sequential
linear programming. In numerical modeling of the composite beam, the
concrete slab and steel I beam is simulated by one-dimensional beam
element, while the deformable shear connection by a one-dimensional
interface element. A set of design variables and constraint are taken
into consideration. Design variables are considered on different ap-
proaches: for the first approach, the dimensions of the steel I profile are
only the design variables, remaining to the engineer specify the di-
mensions of concrete slab and rebar area. In the second approach, the
dimension of the steel I profile, along with those of the concrete slab are
considered as design variables. And finally, the connector stiffnesses of
the deformable connection is considered to be a design variable.
Although the followed specifications are according to Brazilian stan-
dards, they can be adapted in a straightforward fashion for other, as
Eurocode.

As can be observed from the examples presented, the Simplex al-
gorithm used for sequential linear programming problem worked sa-
tisfactorily in the optimization of the composite beams when

considering different design variables, as well as different constraints
and support conditions for a steel-concrete composite beam. In this
study, we did not distinguish between the different types of load
combinations for the different dimensioning criteria. The dimensioning
standards for reinforced concrete and steel (NBR-6118 [24], NBR-8800
[25]) admit different load combinations for verification of the servi-
ceability and ultimate limit states. Thus, in some examples herein, the
maximum deflection constraint was removed.

It is important to highlight that the way the results are presented, in
terms of percentage of the achieved constraint rate, shows very clearly
for a given optimization problem, which constraints can be worked on
to improve the performance of the structural system regarding the
minimization or maximization of a given objective function. The ana-
lysis of results show which constraints drive the composite beam opti-
mization process, when it is observed that some constraints are active
(100% of the constraint reached), while other constraints are under-
used.

Regarding the influence of the type of support condition on the

Table 3
Quantity of connectors need for the analyzed section.

Starting point Optimum point Number of connectors Total
K1 K2 K3 K1 K2 K3 Stretch 1 and 5 Stretch 2 and 4 Stretch 3

533,000 533,000 533,000 217,340 434,658 307,312 7 11 15 51
250,000 533,000 350,000 208,240 449,642 320,563 7 11 15 51

Fig. 22. Evolution of the incremental process considering all of the constraints.

Fig. 23. Evolution of the incremental process without the maximum deflection constraint.
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distribution of connectors, it is observed: on one hand, an increase in
the number of connectors from end to center on the simply supported
beam; on other hand, an increasing from center to end on the beam
with fixed ends. This structural behavior is directly connected to the
influence of the interface sliding and on the degree of interaction of the
composite beam.

More importantly, the optimization process coupled to the partially
connected composite beam analysis process goes in the direction of
what is currently understood as advanced analysis: “if the engineer
employs an analysis method that adequately represents a limit state,
then the checks of corresponding specification would not be required”.

Finally, as can be seen in Section 4, the constraints were based on a
linear analysis, so the critical section was taken to the beginning of its
plasticity. The dimensioning criteria for reinforced concrete, steel or
steel-concrete composite structures permit total plasticity of the cross
section for the ultimate load combinations, which has motivated the
authors to consider the non-linearity of the materials in a future study.
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