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A B S T R A C T

Prestressed concrete with internal unbonded tendons has been recognized as an excellent structural option for
beams and slabs and is employed worlwide. Numerical solutions for the analysis of such structures are still an
active field of research. This work presents a finite element model for the physical and geometrical nonlinear
analysis of prestressed concrete beams with unbonded internal tendons, under short-term loading. The re-
inforced concrete beam is modeled by Euler-Bernoulli nonlinear plane frame elements and a total Lagrangian
approach. The prestressing tendon is modeled by a single polygonal element embedded in a specified subset of
the frame elements. Due to lack of strain compatibility between the concrete and the tendon at a given cross-
section, the cable strain is computed from the displacements of all associated frame elements. Geometric and
material nonlinearities are considered for both the reinforced concrete beam and the prestressing tendons. The
internal force vector and corresponding tangent stiffness matrix of each element under large displacements are
derived consistently, and novel expressions for the tangent stiffness operator which ensure the convergence rates
of the Newton-Raphson scheme are developed. The accuracy of the formulation is assessed by comparison with
experimental tests, with very good results.

1. Introduction and literature overview

Prestressed concrete structures are mainly divided into two groups,
according to the application of the prestressing forces to the concrete
element. Pretensioning considers that the steel is tensioned before the
concrete is cast, therefore requiring bond between the elements for the
proper force transfer. Post-tensioning, on the other hand, implies that
the tendon or cable applies stresses upon the concrete element already
during the prestressing operation. In this case the bond between pre-
stressing steel and concrete depends on the constructive solution
adopted.

Unbonded prestressed concrete structures are a very efficient load-
carrying system, especially with the use of greased low-cost tendons
protected by plastic sheathing. These elements have been used ex-
tensively in North America for over 50 years [1] and have become
popular in the construction of medium rise buildings in Brazil in the last
decades.

The numerical simulation of these structures is a challenging task, as
one must necessarily cope with the first stages of application of ten-
sioning, the immediate loss of prestress, the behavior under external
loads and, in case of a long-term analysis, the loss of prestress due to
phenomena such as shrinkage, creep and tendon relaxation.

Numerical analysis of unbonded prestressed concrete beams tends

to be more complex than that of the bonded case, since in the former
there is no strain compatibility between the concrete and the tendon at
a given cross-section. Thus, the cable strain depends on the displace-
ments of the tendon as a whole.

The crucial issue, therefore, is the consideration of the slipping
tendon. The most employed strategy has its roots on the load balancing
concept, which was originally introduced by Lin and Burns [2] and
afterwards extended by Aalami [3,4]. According to this approach, the
tendon acts as an external force applied to the concrete beam.

The FE simulation of mechanical behavior of prestressed concrete
beams with unbonded tendons is still the subject of various research
works. In the following some of the most recent ones, more closely
related to the present work, are briefly described.

Barbieri et al. [5] developed an hybrid FE model for bonded and
unbonded prestressed concrete frames, where the active and passive
reinforcements are modeled as layers within the cross section. The
bonded tendon contributes to the overall stiffness, but the unbonded
tendon is considered as an equivalent force which does not contribute
to the stiffness coefficients.

D’Allasta and Zona [6] developed a FE model for externally pre-
stressed composite beams with deformable connection. Later the same
research group presented a formulation for nonlinear analysis of beams
prestressed with external slipping tendons [7], as well as analytical and
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simplified procedures for prestressed beams [8–10] Their FE model
takes into account the influence of the tendon change of position in the
tangent stiffness matrix in the context of a high order displacement-
based FE formulation.

Lou and Xiang [11,12] developed a numerical procedure to in-
vestigate second-order effects on externally prestressed concrete beams.
Later, Lou et al. [13,14] included the effect of long-term behavior on
the nonlinear analysis of prestressed concrete girders within a similar
nonlinear FE formulation. The same authors have also applied their
numerical formulation for beams prestressed with FRP tendons [15,16],
for prestressed concrete columns [17] and externally prestressed steel-
concrete composite beams [18].

Vu and coworkers [19] developed a nonlinear FE model for the
structural response of post-tensioned beams, based on a so-called macro
finite element which is characterized by its homogeneous average in-
ertia. Kim and Lee [20] developed a flexural analytical model focused
on the behaviour of continuous unbonded post-tensioned members.

The present work focuses on the analysis of prestressed concrete
beams with unbonded internal tendons, under short-term loading. The
reinforced concrete beam is modeled by nonlinear plane frame ele-
ments based on the Euler-Bernoulli-Navier beam theory and the total
Lagrangian approach. Each unbonded tendon is modeled by a single
polygonal element embedded in the correspondent the frame element.
Geometric and material nonlinearities are considered for both the re-
inforced concrete beam and the prestressing tendons. The internal force
vector and tangent stiffness matrix of each element under large dis-
placements are derived in a variationally consistent way, providing
optimal rates of convergence to the nonlinear analysis procedure
Special attention is given to the development of consistent and robust
numerical approaches for the two stages of short-term loaded pre-
stressed concrete beams: tendon stressing and further load application.
The accuracy of the formulation is assessed by comparison with ex-
perimental results.

2. Frame element

The proposed model employs an Euler-Bernoulli displacement-
based frame element for the simulation of the reinforced concrete
member. The hypotheses of plane sections, with large displacements
and moderate rotations, widely used on analysis of reinforced concrete
frames, are considered in the context of a Total Lagrangian description.
The displacement field can be written as:

= − ′ =u X Y u X Y v X v X Y v X( , ) ( ) ( ) ( , ) ( )0 0 0 (1)

where u and v are the axial and transverse displacements and the
subscript 0 refers to displacements at the beam reference axis. The
element geometry and coordinate system are shown in Fig. 1. The
analytical model considers the membrane ε0 and curvature κ terms,
with the geometric nonlinearity taken into account in the membrane
strain as follows:

= ′ + ′ − ″ = −ε u v Yv ε Y κ1
20 0

2
0 (2)

The membrane strain and the curvature can be interpreted as gen-
eralized strains and written in vector form as:
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where the first and second vector represents the linear (εL) and non-
linear (εNL) generalized strains.

The axial stresses (σ) can be computed from the axial strains (ε)
using the constitutive models discussed in Section 4, while the normal
force (N) and bending moment (M), henceforth called generalized
stresses, are computed from the integration of stresses in the cross-
section:

∫
∫
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The element degrees of freedom (DOFs) are depicted in Fig. 1. The
usual beam minimum continuity requirements imply the use of a C0

linear and C1 cubic hermitian interpolation functions for the axial and
transverse displacements, respectively. Let L x( )i be the two axial linear
interpolants and H x( )i be the four transverse interpolant functions. The
introduction of these functions allows the representation of the gen-
eralized strains from the nodal displacements via the strain-displace-
ment matrices

= = +ε Bu B B u( 1
2

)e L NL e (5)

where BL and BNL are respectively the linear and nonlinear strain-dis-
placement matrices and ue is the nodal displacement vector of the
element. Matrix BL contains derivatives of the interpolation functions Li
and Hi and is the same for linear beam elements, as may be seen in any
textbook on linear finite elements. For this reason the focus will be on
the nonlinear strain-displacement term. The source for nonlinearity is
the term ′v0

2.
From the displacement interpolation, the term ′v0, equal to the cross-

section rotation (θ) can be written as:

′ = = ′ ′ ′ ′ =v θ H H H H u G u[0 0 ] e e0 1 2 3 4 (6)

Thus, the nonlinear part of the membrane strain is given by:

= ′ =ε v u G G u1
2

1
2NL e

T T
e0

2
(7)

This expression contains polynomials terms n x up to quartic, while
εL is constant along the element. The unbalanced higher order terms can
lead to membrane locking due to inability to represent membrane
strains associated with inextensional bending [21]. In order to avoid
membrane locking, a higher-order interpolation for the axial displace-
ments was adopted in [7], increasing the number of degrees of freedom
and the element complexity. A simpler approach is adopted here,
whereby the average strain [21] is used instead of the original ex-
pression: Thus:

∫= ′ =ε
L

v dX u A u1
2

1 1
2NL

L
e
T

e0 0
2

(8)

where

∫=
L

dXA G G1 L T
0 (9)

Matrix A is symmetric, constant and can be evaluated analytically,
producing a nonlinear strain vector
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where the implemented form of BNL is shown. Incrementally, with a
view to virtual work application, it can be shown that the following
holds:

= + =εδ δ δB B u B u( )L NL e e (11)

The element internal force vector (ge) can be obtained from theFig. 1. Frame element geometry and degrees of freedom.
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internal virtual work:

∫ ∫= = =ε σ σδU δ dX δ dX δu B u ge
L T

e
T L T

e
T

e0 0 (12)

The tangent stiffness matrix required by the nonlinear analysis
procedure based on Newton-Rapshon iterations is symmetric, and can
be obtained by the differentiation of ge w.r.t. the nodal displacements:
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g
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K KT
e

e
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The material stiffness matrix is given by

∫= dXK B C BE
L T

T0e (14)

where the tangent section constitutive matrix is obtained from the
differentiation of the generalized stresses with respect to the general-
ized strains
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The geometric stiffness matrix is given by

∫= N dXK AG
L

0e (16)

Due to the material nonlinearity of the concrete and rebars, the
cross-section generalized stresses (σ ) and tangent constitutive matrix
(CT) should be evaluated using appropriate procedures, as the fiber
method for path-dependent materials or special integration techniques
for nonlinear elastic materials [22–24]. Integration on the element
length is carried out using Gauss or Lobatto rules. The fiber method and
Gauss integration are used in the examples of this work.

3. Unbonded tendon element

In unbonded prestressed beams, as depicted in Fig. 2, there is no
strain or even displacement compatibility between the sliding tendon
and the embedding concrete. Thus, the tendon and the concrete have
the same displacement only at the anchorage points. As a consequence,
the tendon strain cannot be evaluated by means of a cross-section
analysis, requiring the consideration of the whole structure deformation
[25,26].

Similar to [13], the proposed model considers the curved unbonded
prestressing tendon as an assemblage of straight segments. However, in
[13] the tendon is considered as an external force, while in the present
work the tendon is considered as a finite element, contributing not only
to the internal force vector, but also to the tangent stiffness matrix.

Considering that the tendon slides without friction inside the plastic
sheathing, the strain along the tendon is uniform and equal to the
average strain of the surrounding concrete. So, the tendon stress is
considered constant along the cable length. The endpoints of each
straight segment are linked to the RC element degrees of freedom, as
shown in Fig. 3.

It is important to note that the coordinates of each tendon segment
do not correspond to the same material point, which slides relative to
the concrete section, but rather to the coordinates of the plastic
sheathing, which is considered perfectly bonded to the surrounding
concrete. These coordinates are then employed to evaluate the varia-
tion of the tendon length and subsequently its strain. From the tendon

strain, it is possible to evaluate the contribution of the tendon to the
total virtual work of the prestressed beam and obtain the internal force
vector and the consistent tangent stiffness of the tendon element, as
shown in the following.

The displacements of the straight tendon segment are obtained from
the displacement of the embedding frame element substituting its end
coordinates in Eq. (1):
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where u u,p p1 2 are the axial displacements and v v,p p1 2 are the vertical
displacements of the straight segment end points. This expression can
be written in matrix form as
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or in compact form

=u T upe e e (19)

where upe is the end displacement vector of the tendon segment, ue is
the displacement vector of the embedding frame element and Te is a
transformation matrix which depends only on the undeformed co-
ordinates of the segment end points. On the other hand, the displace-
ments of the embedding element can be related to the global dis-
placement vector (u) of the complete finite element model by

=u L ue e (20)

where Le is a Boolean localization matrix relating the degrees of
freedom of a tendon segment e with the global degrees of freedom.
Thus, the segment displacements can be directly related to the global
displacements:

=u T L upe e e (21)

As the strain is assumed constant along the tendon length, the in-
ternal virtual work associated with its deformation is given by:

∫ ∫= =δU δε σ A S δε F Ld dp L A p p p p p
p p (22)

where =F A σp p p is the tendon force and Lp is the initial (i.e. un-
deformed) tendon length. The tendon strain is given by the sum of a
constant initial strain εp0 and the incremental displacement-dependent
strain ( εΔ p):

= +ε ε εΔp p p0 (23)

The initial strain εp0, which does not have a physical meaning in the
case of post-tensioning, corresponds to a reference strain value whose
interpretation is provided later in this paper. The incremental strain is
defined conveniently as the engineering strain [21] leading to the fol-
lowing definition of total strain:Fig. 2. Unbonded prestressed beam.

Fig. 3. Frame element and tendon segment before/after deformation.
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where Lpe and ℓpe are the initial and deformed segment lengths, as
depicted in Fig. 3, and np is the number of tendon segments.

The strain variation used in the evaluation of the virtual work can
be obtained from the previous equation as

=δε
δ
L
ℓ

p
p

p (25)

After some manipulation, the variation of a segment length can be
written as:
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where β is the angle of the deformed segment with the horizontal axis.
This equation can be conveniently cast in matrix form as
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where δupe are the virtual displacements of the tendon segment.
Summing up the contributions for all the elements which form the
tendon yields the variation of the current length:
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Therefore, the internal virtual work of the prestressing tendon is
given by
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This equation can be written in a compact form as
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where the internal force vector of the each tendon segment is
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where =w T re e
T

e. It is important no note that, in Eq. (32), vector re
depends only on the segment displacements, while the tendon force Fp
depend on the global displacement vector u.

From Eq. (20), =δ δu L ue e . Thus, the tendon contribution to the
global internal force is given by
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In the actual computer implementation, the global internal force
vector of the prestressing tendon can be obtained using the classical
finite element assembly operator:

A=
=

g g( )p e

n

pe1

p

(35)

The tendon global tangent stiffness KTp is obtained straightfor-
wardly from the differentiation of the global internal force vector with
respect to the nodal displacements:
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Differentiating Eq. (32) with respect to the nodal displacements, one
gets
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Therefore, the tangent stiffness matrix of the tendon is given by
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The second term of the r.h.s. can be identified as the material
stiffness matrix. The tendon force derivative with respect to the nodal
displacements is given by
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where the index a was introduced because the tendon force Fp depends
on the displacements of the whole tendon and not only on those of
segment e in Eq. (38). Therefore, the material stiffness matrix of the
tendon can be written as
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Thus, KEp is a symmetric and dense matrix whose dimension de-
pends on the beam discretization, since it connects the degrees of
freedom of the nodes of all embedding elements.

The first term of the r.h.s. of Eq. (37) corresponds to the geometric
stiffness matrix of the tendon segment. The derivative of the vector re
with respect to the global displacement vector is given by
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where the derivative of re with respect to ue is given by
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The geometric stiffness matrix of the tendon is then given by
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corresponds to the geometric stiffness matrix of a tendon segment.
According to the above expressions the geometric stiffness is a sym-
metric matrix with the same sparsity pattern than the stiffness matrix of
the embedding beam.

Finally, the tangent stiffness matrix of the prestressing tendon is the
sum of the material and geometric stiffness matrices:

= +K K KTp Ep Gp (48)

Due to the characteristics of its two components, this is a symmetric
and dense matrix.

4. Material models

Material nonlinearity is considered in the present model by non-
linear uniaxial stress-strain relations for the prestressing tendon, the
concrete and the reinforcement. A large number of such stress-strain
relations have been proposed, especially for the concrete component,
and there is no agreement in the literature as to which equation leads to
the best numerical behaviour, or even to the best fit of experimental
data. Issues such as softening and confinement for the concrete and
tension stiffening for the reinforcement play important roles on the
definition of these relations.

The FE formulation of the beam and tendon elements allows for
different stress-strain relations to be considered, as long as the uniaxial
constitutive equation and is first derivative are available. Only mono-
tonic loading situations are considered, avoiding the use of more so-
phisticated plasticity or damage models.

4.1. Concrete

Among the concrete models available, two have been adopted in the
numerical assessments. The first one was used by Zupan and Saje [27].
It is composed of a single expression ranging from the ultimate com-
pressive strain in the concrete εcu to εctr, the value of strain corre-
sponding to the resistance of the concrete in tension, and a straight line
from this peak tensile stress to zero, attained at the maximum tensile
strain εctu:
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(49)

This model is numerically convenient as a single smooth expression
is used from the tension to the compression ranges, with a straight
segment after peak tension stress. The four model input parameters are
εcu, ε ε ε, ,c ctr ctu0 and fc, which is concrete compressive resistance.

When concrete confinement by the transverse reinforcement must
be taken into account, the stress-strain model from Scott and coworkers
[28] for the compressive region was also considered. This relation in-
volves a large set of initial parameters, namely: the concrete peak
compressive stress fc, the concrete ultimate strain εcu, the transverse
reinforcement yield stress fyh, the ratio of volume of hoop reinforce-
ment to concreteQs, center-to-center hoop reinforcement spacing sh, the
confined concrete core width h, the elastic modulus of steel Es.

The expressions for this uniaxial constitutive relation under com-
pression are
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In the previous equations, one has the definitions =ε K0.002c0 and
= +ε εc min c Z, 0
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where fc is in MPa units. In order to consider the influence of concrete
under tension, and the tension stiffening effect, a constitutive model for
concrete under tension after cracking was proposed by Hernández-
Montes et al. [29], based on a previous exponential decay model de-
veloped by Stramandinoli and La Rovere [30]. According to this model,
the stress-strain relationship is linear with elastic modulus Ec until the
peak tensile stress for concrete fct is reached. After that, the tensile
stress decays in a nonlinear fashion:
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In the previous equations, the elastic concrete modulus Eci may be
taken as the CEB prescription (MPa)

= ×E
f

2.15 10
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(52)

and the strain εcr is given as

=ε
f
Ecr

ct

ci (53)

Also, the symbols =n E
E

s
ci
for the modular ratio and =ρ A

A
s
c
for the

reinforcement ratio are used, where A A,s c are the equivalent areas of
reinforcement and concrete [30].

4.2. Prestressing and reinforcing steel

The constitutive relation adopted for the prestressing steel is that
from Menegotto and Pinto [31], given by the single expression valid
only in tension
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where Ep is the initial elastic modulus, σpy is the conventional yield
stress (corresponds to a yield strain equal 0.01), and K Q, and R are
nondimensional coefficients which may be adjusted to improve fit to
experimental data.

A bilinear model is adopted for the reinforcing steel, under either
tension or compression:
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5. Nonlinear analysis

The main aim of the nonlinear analysis of prestressed beams is to
obtain their load-displacement curves, which allows to assess the de-
flections, load-carrying capacity, ductility and other important struc-
tural parameters. This curve is obtained solving the nonlinear equili-
brium equations of the finite element model:

= − =λ λr u g u q 0( , ) ( ) (56)

where r is the residual force vector, g is the internal force vector, q is
the reference vector for the external loads and λ the load factor which
scales the external loads. In the model presented in this work, both
beam and tendon are considered as resisting elements, contributing to
the internal force vector.

The nonlinear analysis of prestressed beams with unbonded tendons
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requires two separate steps. The first step corresponds to the prestres-
sing operation, which is the evaluation of the displacement field which
results in tendon force Fp equal to the given equivalent prestressing
force Fpe, assumed constant.

In practice, there are two ways to introduce prestressing on concrete
beams. They will be briefly described here under the ideal assumption
of zero prestress loss.

Pretensioning employs a device that applies and holds fixed an in-
itial stress σp0, correspondent to a strain εp0, to the tendon. After, this
initially stressed tendon is connected to the concrete beam (which may
be cast after the tendon prestressing) at some discrete points (unbonded
pretensioned beam) or continuously in contact with the concrete
(bonded pretensioned beam). Upon release from the device, self-equi-
librating forces develop in the beam-tendon system, which will give rise
to a displacement field u and reduce the initial strain (and force) on the
tendon.

Post-tensioning, on the other hand, consists on applying an in-
creasing force to both the tendon and the concrete element. Tension
strains on the tendon and compressive strains on the concrete element
develop gradually, with or without the influence of friction, until a
specified force (or tendon elongation) is reached. At this point an an-
choring system is attached to the prestressing end, in order to keep the
beam under this self-equilibrating force system.

Regardless of the way the prestress was introduced, for the final
tendon force Fpe corresponds an equilibrium state described by the
beam and the linked tendon displacements. In most cases, however, the
only information available is this final tendon force.

With the FE model used on this paper, the tendon material points
are not followed, and there is no information on the differential dis-
placements of the tendon and the concrete which would allow the
evaluation of the strains in the case of post-tensioning. Nonetheless, it is
enough to obtain the final equilibrium state, regardless of the pre-
stressing scheme employed. For this reason, the simulation of the pre-
stressing operation in the present work may be interpreted as the ap-
plication of a pretensioning operation with initial strain εp0 which is
initially unknown. The consideration of this fixed initial strain allows
the subsequent incremental strain calculations to be evaluated from Eq.
(24), since after the release of the tendon in the pretensioning, or the
anchoring in post-tensioning, the endpoints of the tendon are always at
known positions.

Therefore, as a first step in the structural analysis, the initial strain
resulting in a tendon force =F A σpe p pe and in equilibrium with the
beam must be evaluated. Eq. (56) should be solved for =λ 0 (no ex-
ternal loads) and an unknown εp0, resulting in the nonlinear system
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This nonlinear system with +n 1 variables and +n 1 equations can
be solved using the Newton-Raphson method and may be interpreted as
a variant of the usual path-following methods in which the step is
stress-controlled. The linearization of this system results in
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where i is the iteration number and δu and δεp0 are the iterative cor-
rections. The internal force of the structure is given by

= + = + Fg g g g wb p b p (59)

Since the internal force vector of the beam elements (gb) does not
depend on the initial prestressing strain εp0:
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In addition, using Eq. (39):
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Therefore, Eq. (58) can be written as
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In order to efficiently solve this system, the displacement increment
is written as

= +δ δ δε δu u up1 0 2 (63)
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The substitution of Eq. (63) in the second line of Equation (62)
yields the strain increment:
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Thus, the displacements and the initial prestressing strain are up-
dated in each iteration as

= +
= +
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where δu is computed using Eq. (63). This iterative procedure can be
stopped when

̂ ⩽
F
r|| || TOL
pe (67)

where TOL is the prescribed tolerance for convergence. This iterative
procedure is very robust and converges in few steps, and may be in-
itialized with =u 0 and =ε 0p0 .

The second step is the analysis of the beam under external loading
considering the initial prestressing strain (εp0) evaluated in the first step.
To this end, Eq. (56) may solved using the Newton-Raphson method for
increasing λ. However, as these beams tend to fail after reaching limit
points, this simple load control approach cannot trace the complete
load-displacement curve. Thus, in order to capture effectively the be-
havior of these structures, a displacement control strategy with
Newton-Raphson iterations [32] is adopted for the load application
stages in this work.

6. Applications

This section presents the validation of the proposed formulation for
nonlinear analysis of post-tensioned beams with unbonded tendons
based on the comparison of finite element responses with experimental
results.

6.1. Unbonded prestressed concrete beam with curved tendon

A set of unbonded prestressed concrete beams was tested by Hussien
et al. [33]. The specimen called B7 is a simply supported beam under
four-point bending load, with rectangular cross section and tendon
profile as indicated in Fig. 4. Upper and lower reinforcement with
1.57 cm2 each are positioned 4 cm distant from the top and bottom
faces of the beam. The prestressing tendon is anchored at the centroid
of end cross-sections and its lowest segment lies at 4.3 cm from the
bottom of the beam. The tendon has area of 0.99 cm2 and the pre-
stressing, after initial losses, is assumed as 1000MPa.

The only concrete parameter available in [33] is the compressive
resistance of 43MPa. Following the Eurocode guidelines, the peak
compressive strain was estimated as × −2.246 10 3 and the ultimate
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compressive strain was taken as × −3.1 10 3. The peak and ultimate
tensile strains were estimated as × −1 10 5 and × −4 10 4, respectively for
use with the Zupan and Saje [27] concrete model. The parameters
adopted for the steel reinforcement were: yield stress of 470MPa,
elastic modulus 210 GPa, hardening modulus 1.2 GPa and ultimate
strain 0.12. The prestressing tendon has a yield stress of 1674MPa,
ultimate stress of 1860MPa, elastic modulus 195 GPa, ultimate strain of
0.06 and K Q, and R taken as 1.04, 0.012 and 8.127, respectively.

Three meshes with 6, 10 and 18 beam elements were employed in
the numerical analysis, with a uniform discretization of 4, 8 and 16
elements between the supports, respectively. Element integration was
performed using 2 Gauss points and cross sectional integration was
carried out using 50 layers. The nonlinear analysis was performed in-
crementing the vertical displacement (v) of the central node in 20 in-
crements of 5mm and a tolerance for convergence of −10 5. The load-
displacement curves of the central node are shown in Fig. 5. It can be
noted that the finite element results are in very good agreement with
the experimental results, even for the coarser (6 element) mesh. The
results with finer meshes are practically identical.

This example was chosen to assess the convergence properties of the
proposed FE scheme. Table 1 presents the iterative results of the first
analysis step for the 18-element mesh, corresponding to the prestress
application and prior to the external load increments. It can be noted
that the procedure proposed in this work presents a fast convergence
rate due to the adoption of the Newton-Raphson method with the
consistent linearization of the residual vector.

The iterations corresponding of the last displacement increment
( =v 100 mm) are presented in Table 2. These results show that the
formulation proposed in this work, where the stiffness matrix of the
prestressing tendon is obtained by the consistent linearization of the
internal forces, ensures the optimal quadratic convergence of the
Newton-Rapshon iterations.

The same example, with the 6-element mesh under a displacement
control step of 10mm and a total of 10 steps is considered next. Fig. 6

displays the evolution of the error associated with each analysis step,
with and without the consideration of the tendon contribution to the
tangent stiffness matrix. Also shown is the convergence analysis of the
prestressing step for which the error parameter is given by Fr|| ||/ pe. It is
clear from the graphics that the presence of the tendon stiffness Kc
improves the convergence rates restoring the optimal rates of the
Newton-Raphson scheme. It is worth noting that if the analysis is ex-
tended until a target final displacement of 200mm in 20 steps, without
the tendon stiffness, the 6, 10 and 18-element meshes stop at steps 13,
11 and 10 respectively. The full consistent matrix, however, is able to
trace the path up to the final step.

6.2. Unbonded prestressed concrete beams with straight tendon

Tao and Du [34] carried out a series of tests of 22 simply supported
unbonded prestressed concrete beams. The span for all the specimens
was 4.20m and the beams are subject to a four-point load scheme, as
depicted in Fig. 7.

Nine specimens for the group A of beams were analyzed by the
present numerical procedure. These examples include beams with dif-
ferent reinforcement ratios and prestressing forces, and Table 3 displays
details for each specimen (stresses in MPa, areas in cm2 and strains in
mm/m). The beam cross sections were 16 cm wide and 28 cm deep,
with the position from the top fiber of the reinforcement bars and the
prestressing tendon 25 cm and 22 cm respectively. The prestressing
tendon, which is straight for every specimen, has a yield stress of

Fig. 4. Prestressed beam from [33] (units in cm).

Fig. 5. Load-displacement curve of Example 1.

Table 1
Convergence of prestress application.

Iter εp0 σp (Pa) ̂ Fr|| ||/ pe

1 ×0.000000 100 ×0.000000 100 ×1.000000 100

2 × −5.219815 10 3 ×9.987055 108 × −1.322045 10 1

3 × −5.232335 10 3 ×1.000003 109 × −4.400811 10 2

4 × −5.233903 10 3 ×1.000001 109 × −7.977834 10 3

5 × −5.234049 10 3 ×1.000000 109 × −2.544561 10 6

Table 2
Convergence of the last displacement increment.

Iter λ r q|| ||/|| ||

1 138.975438 ×2.676338 101

2 138.943002 × −1.849663 10 1

3 138.942995 × −6.738832 10 5

4 138.942996 × −4.254647 10 8

Fig. 6. Convergence analysis.
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1465MPa, ultimate stress of 1790MPa, elastic modulus 205 GPa, ulti-
mate strain of 0.06 and coefficients K Q, and R taken as 1.04, 0.02472
and 4.6019, respectively. Additionally, the concrete strain εcr is taken as

−1.0 5, the Esh modulus of reinforcement is 1.2 GPa and its ultimate strain
εsu is 0.16. The model described by Eqs. (49) is employed for the con-
crete. Twelve frame elements were employed in the numerical simu-
lation. Cross-section integration was carried-out using 50 layers. Tol-
erance for convergence in nonlinear analysis was taken as −10 4.

For the beams, The FE and experimental load-displacement curves
at the mid-span are presented in Figs. 8 and 9, while the increase in
tendon stress are depicted in Figs. 10 and 11. It can be noted that the
proposed model was able to obtain the complete load-displacement
curves of all beams, showing its robustness. In addition, the agreement
between the finite element and experimental results vary from good to
excellent, for both load-displacements and evolution of tendon stresses.

It is worth noting the three distinct phases of the load-displacement
curves for the beams in this example. Initially an elastic behaviour is
evident, with very similar stiffness for all beams. After cracking the
beam stiffness is reduced and after yielding the ultimate load is
reached. For specimens A3, A6 and A9, which have the highest values
of prestressing tendon areas, the gain in ultimate resistance comes at a
price of much less ductile behaviour.

6.3. Continuous unbonded prestressed beams

In this section, a series of five two-span continuous unbonded pre-
stressed concrete beams with curved tendons are analyzed with the
proposed methodology. These beams have been studied by Lou, Lopes
and Lopes [13] from which the results presented were obtained. The
geometry of the continuous beam is depicted in Fig. 12, where the
positions of the tendon and reinforcements are shown.

Fig. 7. Prestressed beams of [34] (units in cm).

Table 3
Data for postensioned beams by Tao and Du [34].

Beam fc fy As Ap σpe εc0 εcu

A1 30.6 267 1.57 0.588 960 2.021 4.0
A2 30.6 430 1.57 0.980 904 2.021 6.0
A3 30.6 430 2.36 1.568 820 2.021 6.0
A4 30.6 430 1.57 0.588 869 2.021 6.0
A5 30.6 430 3.08 0.784 810 2.021 4.5
A6 30.6 400 4.62 1.568 854 2.021 4.0
A7 30.6 400 3.08 0.392 885 2.021 6.0
A8 33.1 400 4.62 0.588 894 2.071 4.0
A9 33.1 395 8.04 1.568 920 2.071 4.0

Fig. 8. Load-displacement curves (beams A1 to A5).

Fig. 9. Load-displacement curves (beams A6 to A9).

Fig. 10. Tendon stress increase (beams A1 to A5).

Fig. 11. Tendon stress increase (beams A6 to A9).
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The beam sections are rectangular with 150mm width and 300mm
height and each span is 4800mm long. Reinforcement bars lie at 35mm
from the top/bottom of the concrete section. The layout of the tendons
was the same for all beams, the position of the tendon being defined by
piecewise quadratic equations [13]. Seven-wire 15mm strands are used
for the prestressing tendons, with ultimate strength, yield strength and
elastic modulus of 1941MPa, 1680MPa and 197 GPa, respectively. The
reinforcement consisted of 12, 16 or 18mm diameter bars with yield
strengths of 361, 384 and 364MPa, respectively. The shear reinforce-
ment consisted of 10mm stirrups with spacing of 150mm in the outer
shear spans and of 200mm in the flexural spans for all beams, while the
shear reinforcement in the inner shear spans consisted of 10mm stir-
rups with spacing of 150mm for Beams YLA1 and YLA2, 100mm for
Beam YLB2 and 80mm for Beams YLC1 and YLC2. The reinforcements
As and effective prestress values fpe for the beams are shown in Table 4.
The areas of the ∅12, ∅16 and ∅18 reinforcement bars were considered
as 113, 201 and 254mm2 respectively. For the rebars, the elastic
modulus is taken as 200 GPa.

The material model employed for the concrete was the one by Scott
and coworkers [28] for the compression behaviour and, for the beha-
vior under tension, the model of Hernández-Montes et al. [29]. Table 5
displays the necessary parameters for the employment of these con-
stitutive equations (dimensions in mm and stresses in MPa). Moreover,
the yield stress of the transverse bars fyh is taken as 360MPa. For all the
beams the ultimate concrete strain in tension εctu was taken as 0.001.
The stirrup spacing sh takes the values of 80, 100, 150 or 200mm as
explained above.

·
·
In order to assess the results of the FE analysis, once again load-

displacement curves are employed. Figs. 13–17 show the load-dis-
placement relations for the five beams analyzed and they match closely
the numerical results from [13]. A very good agreement for the tendon
force evolution with the applied load was also obtained.

With the aim to identify precisely the performance of the specimens
during the loading stage, two cross sections are analyzed in terms of
steel and concrete strains and beam generalized strain (curvature).
These are the sections over the support and a critical section of the
flexural span. Fig. 18 display the evolution of the curvature of the two
sections analyzed. As expected the section over the central support
starts to gradually reduce its stiffness while the span critical section still
exhibits an almost linear behaviour. Only when the load-curvature
reaches its limit value for the cross section over the central support the

Fig. 12. Two-span prestressed beam geometry.

Table 4
Reinforcements and initial pretension.

Beam As1 As2 As3 As4 fpe

YLA1 4∅12 2∅12 2∅12 2∅12 1083
YLA2 4∅12 2∅12 2∅12 2∅12 1196
YLB2 3∅16 2∅18 2∅12 3∅16 1193
YLC1 3∅18 3∅18 2∅12 3∅18 1169
YLC2 3∅18 3∅18 2∅12 3∅18 1205

Table 5
Parameters for the concrete model of the continuous beams.

Beam fc εcu Qs h fct ρ

YLA1 34.9 0.01764 0.01263 262 1.5 0.010
YLA2 36.7 0.01764 0.01263 262 0.8 0.005
YLB2 33.0 0.01727 0.01229 266 1.0 0.013
YLC1 37.1 0.01708 0.01211 268 0.8 0.017
YLC2 33.2 0.01708 0.01211 268 0.6 0.017

Fig. 13. Beam YLA1 load-displacement curve.

Fig. 14. Beam YLA2 load-displacement curve.

Fig. 15. Beam YLB2 load-displacement curve.
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stiffness of the critical span section decreases abruptly. At the ultimate
stages it becomes clear the formation of plastic hinges at these sections,
with the span cross section displaying a more ductile behaviour.

The five beams have similar behaviour with respect to the evolution
of strains until the ultimate load is reached. Initially, after application
of prestress, the strains remain in the elastic range, and apparently
there is no cracking. For relatively low levels of the applied force the
concrete reaches its ultimate tension level almost simultaneously at the
top of the central support and the bottom of the span critical section.
After that there is the yielding of the reinforcement at the top of the
central support, followed by yielding of the reinforcements at the
bottom and the top of the critical section.

In order to investigate the evolution of strains at these cross sec-
tions, Fig. 19 has been produced, with respect to beam YLA1. It depicts
the concrete strains at the bottom of the support section and the top of
the span critical section, as well as the strains for the four reinforce-
ments at the top and bottom of these two sections. It is possible to see
the yielding of the reinforcements on the top of the support and the
bottom of the critical span sections occur at load levels around 90 and
130 kN respectively. It is interesting to observe the ductile behaviour of
the concrete at the top of the critical span section, where strains up to
0.007 arise. For this reason the concrete model that considers con-
finement must be used in this example.

7. Conclusions

This work presented a novel finite element model for the material
and geometric nonlinear analysis of prestressed concrete beams with
unbonded internal tendons, under short term loading.

In this model, the RC beam is discretized using nonlinear Euler-
Bernoulli frame elements based on the Total Lagrangian approach,
while the slipping tendon is modeled by a single cable element em-
bedded in a specific subset of frame elements. The formulation of the
tendon element is based on the engineering strain for large displace-
ments, allowing the consideration of the variation of the tendon force
and geometry along the analysis. The contribution of frame and tendon
elements to the global internal force vector and stiffness matrix is
evaluated in a consistent way, leading to a more robust and stable
nonlinear solution. It was shown that if the nonlinear terms of the
tendon stiffness matrix are not complete the convergence is slowed and
may even not be reached. A novel stress control strategy was developed
to simulate the prestressing step of the analysis. It is based on the im-
position of equilibrium of the final tendon force with the internal beam
forces, and by consideration of an initial reference strain, does not need
to enforce compatibility.

The proposed formulation was tested against a series of experi-
mental results and displayed very good agreement in terms of load-
displacement curves, as well as tendon force evolution and other
structural responses, along the complete loading history up to collapse.
Therefore, the newly proposed FE model provides an important con-
tribution for the simulation of prestressed beams with unbonded in-
ternal tendons.
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