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Although prestressing is a technique usually linked to reinforced concrete structures, composite steel-concrete
beams may improve their mechanical behaviour through post-tensioning tendons. A particular feature of com-
posite beams is the possibility of slip or partial interaction between the components as a result of the shear con-
nection flexibility. This paper describes the development, implementation and test of a one-dimensional finite
element formulation for the nonlinear analysis of steel-concrete composite beams prestressed by external ten-
dons, fixed at discrete points along the steel component, taking into account the partial interaction between
steel and concrete. Physical and geometrical nonlinearities are considered and a consistent derivation of the tan-
gent stiffness matrix for the tendon is introduced. A recently developed procedure for state determination after
prestressing operation is adapted for partially connected composite beams prestressed by external tendons. The
accuracy and robustness of the finite element formulation is assessed by means of the comparison with a com-
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1. Introduction

Prestressing techniques have been traditionally associated with con-
crete structures. However, steel and composite steel-concrete struc-
tures may benefit strongly from the application of stress states
induced by prestressing prior to working loads.

Post-tensioned composite steel-concrete beams present advantages
over their non-prestressed counterparts. They display an increase in the
range of elastic behavior, as well in yield and ultimate load values [1-3].
In continuous beams, there is reduction of concrete cracking in hogging
moment regions. They may also have better fatigue performance [4] if
cracking of top slab is prevented. Lighter steel sections may be
employed providing economic design [5].

Although post-tensioning on composite beams is mostly present in
rehabilitation and repair, its application on a steel-concrete beam before
service load results in a very efficient load-carrying system, able to with-
stand higher loads with reduced deformations and longer spans.

In the steel-concrete composite beam literature, slip (also called in-
terlayer slip) has been employed as a measure to characterize the differ-
ent displacements between steel and concrete at the level of the
connection, due to deformability of the connector device (e.g. shear
studs). The terms flexible shear connection and partial interaction,
among others, are commonly employed to describe this phenomenon.
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A prestressed steel concrete composite beam (PSCCB) may be de-
signed in different ways depending on the section geometry, the posi-
tion and layout of the tendon and the type of prestressing, as well as
construction sequence and propping scheme. The usual scheme of a
PSCCB consists of a concrete slab, linked to the steel beam by mechanical
shear connectors, and high strength steel cables for the application of
prestressing on the steel beam. If post-tensioning is applied after con-
crete curing, post-tension and load application already takes advantage
of the composite cross section.

Research on PSCCBs focused on experimental tests, as well as analyt-
ical and numerical approaches, and some of these works are listed
below. Saadatmanesh et al. [1] tested PSCCBs where steel beams were
prestressed before slab casting under positive and negative bending.
Their main conclusions are that the addition of tendons increases the
yield and ultimate loads, and that saddle points should be included in
order to keep tendon eccentricity to reach the beam ultimate moment.
Their results were assessed by a scheme based on full interaction.
Ayyub et al. [2] tested three models of PSCCBs with steel beams
prestressed before slab casting. The authors concluded that the assump-
tion of zero slip may not be appropriate and inferred that the slip re-
sulted in larger deflections than predicted by their analytical model.
Moreover, they found that draped tendons increase ductility. The ulti-
mate resistance of draped and straight tendon beams was similar.
Chen and Gu [3] carried out tests of two PSCCBs, and measured deflec-
tions, tendon strains, midspan strains and slips at the beam ends. Lorenc
and Kubica [6] carried out experimental tests on six composite beams,
five of them prestressed, with draped and straight tendons, and
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produced a comprehensive collection of test results, such as displace-
ments, slips, strains on concrete and steel, drawing several conclusions
on PSCCBs behaviour under static loads. Furthermore, they carried out
push-out tests to characterize the connection load-slip relationship.
Among other conclusions from the tests, they found that the tendon lay-
out did not influence the ultimate capacity and the steel-concrete ad-
herence at the contact surface furnished a considerable part of the
connection strength before ultimate loads, leading to difficulties of slip
prediction.

Analytical formulations were developed to find closed-form expres-
sions to capture the behaviour of PSCCB's. Based on equilibrium, com-
patibility, and assuming plastic distribution of stress, Chen and Gu [3]
obtained simplified expressions for the ultimate incremental tendon
stress and ultimate beam moment for four tendon layout cases were de-
rived. Saadatmanesh and coworkers [7] developed expressions for the
behaviour of PSCCB's which agreed well with their test data. Formulas
for calculating the three characteristic loads (crack, yield, and ultimate
loads) of two-span prestressed continuous composite beams under
symmetric concentrated loads were proposed and extended to general
cases by Nie et al. [8].

In order to develop a reliable numerical analysis of such structures,
one should consider the material and geometrical nonlinearities, the in-
teraction between beam and tendon, the slip beteween steel beam and
concrete slab and possibly the long-term effects. Moreover, the multi-
step nature of the system, involving a sequence of post-tensioning oper-
ations and load application [9], poses additional requirements. In
particular, the increase in tendon strain is dependent on the deforma-
tion of the whole member and the tendon stress cannot be determined
by a single section analysis. Moreover, the effective tendon lever arms
would change with member deflections, mainly in the absence of devi-
ator points, which must be taken into account as part of the geometric
nonlinearity [10].

The numerical simulation of postensioned beams has been investi-
gated by several authors. The post-tensioning step is a matter of interest
in itself, either applied to RC or composite beams. Two main approaches
may be identified: The equivalent load scheme, where the tendon is
treated as an external member and introduced as an applied force,
and the load-resisting approach, where the tendon is part of the struc-
ture and its forces are dealt with the discretization of the tendon along
with the beam. In any case, nonlinear geometric and material effects
play a significant role and should be taken into account.

Chen and Gu [3] presented FE analyses of their experiment (beam
B2). The concrete slab, steel flanges and web was modeled using large
deformation shell elements, shear connectors by spring-link elements
and the tendons by beam elements. Dall'Asta, Zona and coworkers
[10,11] developed a one-dimensional FE model for externally
prestressed composite beams with deformable connection and linear
geometric assumptions. Later the same group [12,13] extended the an-
alytical and numerical formulations for large displacement problems
tackling the nonlinear effects that the displacements of the tendon pro-
duce on the equilibrium of the beam, for concrete and composite beams.
They also presented a rigorous discussion on the possibilities of simpli-
fications, under the small strain and moderate rotation theory, which is
adopted in the present work. Lou, Lopes and Lopes [14] presented a FE
beam model for PSCCB's subjected to long-term loads, enabling the con-
sideration of creep and shrinkage, for full interaction assumptions. Nie
et al. [8] employed a robust commercial finite element scheme to assess
their analytical formulaes. Mohamed and coworkers [15] developed a
3D model using ANSYS and investigated the effect of variations of geo-
metrical properties on the strength of PSCCB's. The studied parameters
include different cases of loading, tendon profiles, beam spans, initial
prestressing levels and different dimensions of steel sections and con-
crete deck, for different tendon layouts. Other works on PSCCB's based
on nonlinear static 3D analysis were recently published [16,17].

The purpose of the present paper is to present the development, im-
plementation and test of a specialized 1D finite elements for the

nonlinear analysis of PSCCBs under static short-term loading. The anal-
ysis takes into account the relative displacements between steel and
concrete, named as partial interaction, partial shear connection or inter-
layer slip. The treatment of the prestressing step is discussed in detail
and is carried out by the algorithm recently developed by Moreira
et al. [18] adapted for external prestressing of tendons with or without
deviators, and partially connected composite beams. The tendon is con-
sidered as a load-resisting element which contributes to the overall in-
ternal force and stiffness matrix, and assumed to slide without friction
along deviators. Nonlinear material and geometric effects are dealt
with providing a consistent tangent stiffness with excellent conver-
gence properties. The assessment of the numerical scheme is carried
out by comparison of results of experimental tests on composite steel-
concrete beams.

2. Beam FE formulation

Despite improvements on computational resources, one-
dimensional finite elements still play an important role among other
possibilities of numerical modeling, due to their simplicity of formula-
tion and implementation, as well as their fair compromise between
computing costs and precision of results.

Composite beams under partial interaction have been the focus of
intense research in the last decades and their numerical analysis by
the FE method is the subject of a great amount of published work.
Many different formulations for beam elements have already been im-
plemented and tested, and some of the related works are presented in
the following.

The requirement for the analysis of PSCCB is a robust beam-column
FE for nonlinear analysis which takes into account partial interaction. A
very common framework is the Euler-Bernoulli (EB) beam model com-
bined with Newmark composite beam theory, which usually provides
good results for slender beams. One of the first elements of such type
for nonlinear analysis was developed by Dall'Asta and Zona [19]. Several
other formulations have been proposed since, with improvements on
topics such as physical and geometric nonlinearity, employment of al-
ternative force-based formulations, elements based on the analytical so-
lutions and many more [9,20-26]. This is still an active area of research.

The chosen model in this work is based on a nonlinear EB model, de-
scribed by Sousa Jr. et al. [27]. This is a displacement-based element
with cubic (hermitian) interpolation of transverse displacements and
quadratic interpolation of axial displacements. The steel and concrete
beams may have any symmetric cross section, and the transverse dis-
placement and rotation are shared between the upper and lower com-
ponents. It has been shown that this choice of interpolants avoids the
slip locking which appears in some FE for beams with interlayer slip
and provides excellent results in linear as well as nonlinear analyses.

A brief description of the FE formulation follows. The in-plane beam
displacements U,(x,y) and V,(x,y), where «is either c or s for the upper
(concrete) or lower (steel) sections respectively, are expressed as

Ua(X,y) = Ua(X)—Yq 0(X) = Ua(X)—Vo Vx (1)

where y,, is a section local axis, not necessarily centroidal, and

ValX,y) = V(x) )

For the slip at the connection, one gets

S(X) = uc(x)—us(x)—h vy (3)

Under EB assumptions, only the axial strain &, and corrresponding
stress 0y are considered for each component, and for small strain-
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moderate rotation theory [12], the strains are given by

1
Exa = Uax—Yoa Vxx + ) (V.x)z 4)

The last term is responsible for the nonlinear geometric effects. With
the membrane and bending terms the strain may also be expressed as

Exa = €a—Ya K (5)

with k = v defined as the curvature. The shear connection is assumed
to have a nonlinear force-slip relationship of the type S = S(s), where S
means the connection force per unit length. Proper expressions for the
connection behaviour are discussed later.

The internal virtual work is given by the sum of the contributions of
the steel and concrete components plus the shear connection

/
Wiy = / <Z SsxaoxadAaJrﬁsS) dx (6)
JO \a=12/ A«

and leads to the internal force vector in the FE context.
From the definition of the axial strain (4), the incremental strain is
given by

0&xa = OlUgx—Yq OVaxx + Vx OV x (7)

Introducing (7) in the internal virtual work expression, and defining
the normal force and bending moment on each component as

No = | OxadAa (8)

Ax

My = — A OxayadAa (9)

the internal virtual work may be rewritten in matrix form as
/
Wiy — / b6t odx (10)
0

with the generalized stresses and strains given by
A | and o' =[N. Ny M §] (11)
with M = M, + M;. Collecting the displacements in vector u

u' =[u us v (12)
the generalized strains are given by

£=0u (13)

with matrix @ given by

1

oy O iv"‘ Ox

a-|o @, %v_x 3, (14)
0 0 —0x
—1 1 —h 0k

The generalized strain variations are given in a similar fashion by
b = 06u (15)

with matrix 9 identical to @ except from the terms 1 which are not pres-

entin 513 and 523.
To carry out the development of the FE formulation the displace-
ment interpolation must be defined. For the axial u,, us and transverse

v displacements the interpolation functions ®, and ®, are introduced
with identical interpolations for virtual quantities 6u, and 6v. Functions
@, are quadratic to circumvent the slip locking problem. Functions ®,
must reflect continuity of v and its first derivative, therefore hermite
polynomials are used. Fig. 1 shows the element degrees of freedom.
The matrix expression for the displacement interpolation is

u(x) = d(x)d (16)
where
u' ={u. us v} (17)

(O 0 0 dp 0 D3 0 0 0
=0 P, 0 0 0 P 0 dy3 O 0 |(18)
0 0 &y Py 0 0 0 0 d3 Dy

d ={ug ug vi 0 U Up Us Uz Vv, B} (19)

Employing the displacement interpolation one gets for the total
strains

£ = (00)d = Bd (20)
and for the incremental strains

oe = (90)5d — Bod (21)
where the strain-displacement matrices B, B may be written as

B:Bo+%BL B=B,+B, (22)

Matrices By and By, respectively, are independent of and linear on
the nodal displacement vector. It may be easily verified that By is writ-
ten as

Dy x 0 0 0 Dy x 0 Dyzx 0 0 0
0 Dy1x 0 0 0 Do x 0 D3 x 0 0
0 0 Dy e Dy xx 0 0 0 0 Dy3 ¢ Dy

_q')ul (l’ul _h(l’vl‘x _h(l’vz.x _‘[’uZ (l’uz _q')u3 (l)u3 _hq')v&x _h(l)vz.x
(23)
If the following vector is defined
m=[0 0 dy,, Py 0 0 0 0 D3y Dygy] (24)
the displacement-dependent matrix B; may be written as
d m'm
d’ m'm (25)
05,10

Introduction of the previous terms into the virtual work expression
allows the identification of the internal force vector gz (subscript B re-
fers to beam)

o/ 4
gB:/ B o dx:/ (§£+§[) o dx (26)
Jo Jo

The external virtual work is a function of the applied loads (body
forces, surface and member end loads). These terms will give rise to

—>c3 \ |

C T > Uc — U A
— Ugp--mmmmmmmmmooen —»U,Z&#l —1s3 I
2 U2

601 1
Fig. 1. Degrees of freedom for composite beam element.




150 J.B.M. Sousa r. et al. / Journal of Constructional Steel Research 159 (2019) 147-160

equivalent loads r to be applied to the discrete finite element model and
their evaluation follows standard procedures.
The tangent stiffness matrix is obtained from the derivative of the in-
ternal force with respect to the displacement vector
dg; [/ OB ‘1 3o
l(B_ﬁ_ A ﬁ<7dx+/0 B %dx (27)

The second integral on the r.h.s. of Eq.(27) is obtained using

g—: = %—:g—z =CB (28)
where matrix C collects the cross section stiffness coefficients
EAc O ESc 0
c= Egc ggss EICE-%EIS 0 @9)
0 0 0 K

which, ifE; = %—‘8’ is defined as the material tangent modulus, are defined
as

CdNe
A /  ErdAe (30)
CdN, dM,
BSo =G = o =~ [, Ervadc 1)
dm,
Bl = dKa - /AHETyédAa >

along with the connection tangent stiffness

ds

K_E

(33)

The integrations in Eqs.(8), (9) and (30)—(32) are influenced by
material nonlinearity and may be performed in a number of ways
[28]. Numerical integration is usually employed either with Gauss,
Gauss-Lobatto or midpoint rules in the so-called fiber method, which
in the plane case becomes a layer method, which is employed here.

The first term in the integral on the r.h.s. of Eq.(27) may be written as

2 (BiNc + ByNy) (34)

od od

o=const

whereB; is the transpose of the i" line of B. Performing the derivatives in
Eq.(34) one gets

98’ ‘
— o dx :/ (Ne+N) m'm dx (35)
o od 0

Combining the previous equations the final form of the tangent stiff-
ness matrix for the beam is

/ /
K — / B'CB dx + / (Ne + Ns) m'm dx (36)
0 0

3. Material and connection properties

The uniaxial monotonic stress-strain relations for the concrete, the
reinforcement and the prestressing tendon are essential for the numer-
ical procedure.

For the concrete component, several stress-strain relations have
been proposed, and there is no agreement in the literature as to which
one leads to the best numerical behaviour, or even to the best fit of ex-
perimental data. Softening, confinement and tension stiffening play im-
portant roles on the definition of the relations to be used.

In this work the model from Zupan and Saje [29] is employed. It is
composed of a single expression ranging from the ultimate compressive
strain in the concrete &, to &, the value of strain corresponding to the
resistance of the concrete in tension, and a straight line from this peak
tensile stress to zero, attained at the maximum tensile strain &q,:

2€e0| &
fe |2c7|26 EulEc<Eaur
O = Eo T & (37)

Ec—Ectu
R S u— EctrS€cSEcu
Ectr—Ectu

This model is numerically convenient as a single smooth expression
is used from the tension to the compression ranges, with a straight seg-
ment after peak tension stress. The four model input parameters are &,
€00y Ectrr Ectw aNd f¢, which is concrete compressive resistance.

The constitutive relation adopted for the prestressing steel is that
from Menegotto and Pinto [30], given by the single expression valid
only in tension

R\ /R
Op =gE |:Q+ (1-Q) <1 + < Eey > ) :| SOpu (38)

Kopy

where E,, is the initial elastic modulus, 0p, is the conventional yield
stress (corresponds to a yield strain equal 0.01), and K, Q and R are non-
dimensional coefficients which may be adjusted to improve fit to exper-
imental data.

A bilinear model is adopted for the reinforcing steel, under either
tension or compression:

_fy_Esh (35 + 8sy) —EuSES—E&yy
O =< Esg —EgySEsLEyy (39)
fy + Egn (gs_gsy) EsySEsSEqy

where E; and E;;, are the moduli before and after yielding, &, the yielding
strain and &, the ultimate strain.

In the described FE model the shear connection, which is essentially
adiscrete set of mechanical devices, needs to be represented as a contin-
uous nonlinear resisting element. A very well-known expression for the
connection behaviour is the Ollgaard relation [31]:

F(s) = Fonae (1—e7F%)% (40)

where F,,4x is the connector ultimate resistance, s is the slip and 3, a are
parameters to be adjusted. Eq.(40) is numerically unstable as its em-
ployment results in infinite connection stiffness for a zero value of
slip. To circumvent this issue, in this work a secant linear relation is
employed at the vicinity of the origin.

4. Tendon FE formulation

Similar to [14,18], the proposed model considers the prestressing
tendon as an assemblage of straight segments, but in the present work
the tendon is considered as a resisting element, contributing not only
to the internal force but also to the tangent stiffness matrix.

The present formulation neglects the friction between tendon and
deviators. Therefore, tendon strain &, and stress o, are considered con-
stant along the tendon length. The endpoints of each straight segment
are linked to the steel element degrees of freedom, see Fig. 2. The
terms e;, e; are the vertical distances (eccentricities) between the axis
of the steel component and the corresponding tendon point position,
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Fig. 2. Deformation of tendon and beam elements.

at nodes i and j respectively. It is mandatory that the global mesh has a
node at every anchorage or deviator point.

The displacements of the straight tendon segment connecting an-
chorage or deviation points located at horizontal positions correspond-
ing to nodes i and j are obtained from the displacements of the
respective nodes:

Upi = Xpi—Xpi = Usi—e;};

Vpi = Ypi—Ypi = Vi 41)
Up = Xpj—Xpj = U —e;0;

Vo) =Y~V = Vj

where u,,;, U,; are the horizontal and v,;, vy, the vertical displacements of
the straight segment end points. This is an expression related to the
small strain, moderate rotation kinematical assumption which is valid
provided that the layout of the cable remains close to the beam, see
[13] for a rigorous mathematical analysis.

The previous expression can be written in matrix form as

Uci
Usj
Up, 010 —€j Vi
Vp,‘ o 0 0 1 0 01'
y 01 0 —e|)u; (42)
Vpj 001 O Us
Vi
0
or in compact form
ue =T, dpe (43)

where uy, is the displacement vector of the tendon segment, d,, collects
the displacement vector of the two linked nodes and T, is a transforma-
tion matrix which depends only on the undeformed coordinates of the
segment end points. On the other hand, the displacements of the tendon
segment can be related to the global displacement vector (D) of the
complete FE model by

dpe =L.D (44)

where L, is a kinematic relation matrix relating the tendon d.o.f.'s seg-
ment e with the global d.o.f.'s. Thus, the segment displacements can
be directly related to the global displacements:

upe = Te Le D (45)

As the strain is assumed constant along the tendon length, the inter-
nal virtual work associated with its deformation is given by:

MF/LA%%mm:%@% (46)
P P

where F, = A, 0 is the tendon force and L, is the initial (D = 0) tendon
length. The tendon strain is given by the sum of a constant initial strain
&0 and the incremental displacement-dependent strain (Ag,):

&p = Epo + Agp (47)

The initial strain €, corresponds to a reference strain value yet to be
defined. The incremental strain is defined as the engineering strain,
leading to the following definition of total strain:

/o— o (Zpe—L
& = Epo + /P LP =&po + Ze:l( pe pe) (48)

LP 2221 Lpe

where L, and /. are the initial and deformed segment lengths, and n,,
is the number of tendon segments.

The strain variation used in the evaluation of the virtual work can be
obtained from the previous equation as

se, =2 (49)

The variation of a segment length can be written as:
6/ pe = €OSB (Bup—buy) + SinB (6vy—5vy) (50)

where f3 is the angle of the deformed segment with the horizontal axis.
This equation can be conveniently cast in matrix form as

6/pe=[—cosp —sinB cosp  sinB]| o P | =r{bupe (51)

where du,, are the virtual displacements of the tendon segment. Sum-
ming up the contributions for all the elements which form the tendon
yields the variation of the current length:

mp p
6/p=" 6/pe= T, Teddp (52)
e=1 e=1
Therefore, the internal virtual work of the prestressing tendon is
given by
np np
0Up =6/pFp = 6/peFp =" 1;Teody Fp (53)
e=1 e=1
This equation can be written in a compact form as

P
oUp = > gl 6dye (54)

n
e=1
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where the internal force vector of the each tendon segment is

Epe =TeTeFp (55)
or
gpe = We FP

=[—cos3 —sinB e cos3 cosB sinB —e; cosB}TFp (56)

where w, = TZr,. It is important to note that, in Eq.(55), vector r, de-
pends only on the segment displacements d,., while the tendon force
F,, depends on the global displacement vector D.

Using Eq.(44), the tendon contribution to the global internal force is
given by

p
g=> L& (57)
e=1

In the actual computer implementation, the global internal force
vector of the prestressing tendon can be obtained using the classical fi-
nite element assemblage operator:

5~ K (s) 5o

The tendon global tangent stiffness Kz, is obtained straightforwardly
from the differentiation of the global internal force vector with respect
to the nodal displacements:

08, <1 0%
KTP - ﬁ - ;Le oD (59)

Differentiating Eq.(55) with respect to the nodal displacements, one
gets

dF,

0! or,
Epe il Te aD

oD ¢ 0D

Fp+T! (60)

Therefore, the tangent stiffness matrix of the tendon is given by

np
or, OF,
Ky, = (LTTT =S Fp+ LTy, ”) (61)
= (U gy 2

The second term of the r.h.s. can be identified as the material stiff-
ness matrix. The tendon force derivative with respect to the nodal dis-
placements is given by

0F, 00, gy ApEpi 1
D Mag - 1, 2Tl (62)
a=

where the index a was introduced because the tendon force F, depends
on the displacements of the whole structure and not only on those of
segment e in Eq.(61). Therefore, the material stiffness matrix of the ten-
don can be written as

Ky = (E‘”A”> ww' (63)
L

where
T 11

w= Z Lowe= A (We) (64)

Thus, K, is a symmetric matrix whose dimension depends on the
tendon discretization, since it connects only the degrees of freedom of
the segment end nodes.

The first term of the r.h.s. of Eq.(60) corresponds to the geometric
stiffness matrix of the tendon segment. The derivative of the vector r,
with respect to the global displacement vector is given by

ore Ore du. Ore
0D 0dy OD  Odpe L (65)

where the derivative of r, with respect to d. is given by

al'g al'e aB auPe aB

e OB Oy 0dpe Oupe Te (60
with

2l =[sinB — cosp —sinB cosB] (67)
and

Bz

Ouyp, - Tpe ©%

The geometric stiffness matrix of the tendon is then given by

p np
Koy = 2; L Ke, Lo = A (Kgp,) (69)
where
F b T T
Kep, = y T,z.z,T. (70)
pe

corresponds to the geometric stiffness matrix of a tendon segment. Ac-
cording to the above expressions the geometric stiffness is a sparse sym-
metric matrix with the same sparsity pattern than the stiffness matrix of
the embedding beam.

Finally, the tangent stiffness matrix of the prestressing tendon is the
sum of the material and geometric stiffness matrices:

Krp = Kep + Kep (71)

5. Prestressing step simulation

In this work, the post-tensioning operation is assumed to be carried
out in a single step by means of devices such as hydraulic jacks, on either
one or both ends of the prestressing tendon. No friction loss is assumed
at the deviators, so that the tendon is under a constant state of stress and
strain.

The main difficulty on the numerical modeling of the post-
tensioning operation is the lack of compatibility between the tendon

pI2 1- 915 -lF’/Z

P2 1— 915 -T P2

Fig. 3. Prestressed composite beams—positive and negative bending.



J.B.M. Sousa Jr. et al. / Journal of Constructional Steel Research 159 (2019) 147-160 153

915 (beamA)—————————+
|«————455 (beam B)——] ‘

= - 7 o o D*A mj
S Ay & o Dr\A
76

b

Fig. 4. Cross sections for positive (beam A)and negative (beam B)bending.

and the composite beam, which makes difficult to trace the material
points of the former.

It is usual that the only information available is the final value of ten-
don stress. In the present work, the procedure developed in [18] will be
adapted for the PSCCB post-tensioning step. The procedure relies on the
observation that after the post-tensioning is finished and the ends of the
tendon are anchored, there is a displacement field u for the mesh of
beam and tendon which is in equilibrium with the forces applied by
the tendon at anchorage and deviator points. These forces depend on
the tendon final force Fpe = A,0p and associated strain &pe.

A similar, but not completely equivalent, situation consists in the po-
sitioning of a pretensioned tendon with initial stress 0y, related to a
strain &0, fixed on the same points (anchorages and deviators) of the
undeformed beam. Upon release, the system will eventually reach a
state of equilibrium with a displacement field u, which will change
the strain &y and stress 0 states of the tendon. The nonlinear equilib-
rium system to be solved is

gu) =g, +8,=0 (72)
where the tendon state is given by

& = €0 + Agy(u) (73)
Op = 0o + A0y (Agp(u)) (74)

700

700 T T T

T
395288 Ei&ﬁ,aq}&&éaaaa—aéﬁ
600 |
500 |
Z 00 —=— full interaction i
4
\_: —— Fae = 2194 kKN
£ 300 —o— Fae = 1097 kKN |
A Frar = 549 kKN
200 |
100 ¢ J
0 '7{ L L L L L L L L
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Displacement (m)

Fig. 6. Load-displacement for beam A [1] with different connections.

It is clear by similarity that if the final stress of this system is equal to
the desired value 0y, leading to a final force F,, the correct values of
displacement for the prestressing step are obtained. Therefore the initial
problem is reduced to finding which value of initial strain &po will pro-
duce F, = Fy. This could be done by a one-dimensional search proce-
dure such as bissection of interval.

Another option is to explicitly construct a system of nonlinear equa-
tions, where all the conditions are simultaneously met:

. g(u, gyp0)
F= {Fp P (75)

=[00
(“rgpo)_Fﬂe‘] 100

This nonlinear system can be solved using the Newton-Raphson
method and may be interpreted as a variant of the usual path-
following methods in which the step is strain-controlled. Upon lineari-
zation one gets

g+ Bouy %8 500
ou Oepo 76
0Fy R, o (76)
Fp—Fpe +7au u+788p0 Epo =

where i is the iteration number and éu and &g, are the iterative
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Fig. 5. Load-displacement for beams A and B from Saadatmanesh et al. [1].
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Table 1

Peak load comparison [1].
Beam Test Numerical Error
A 642 674 4.98%
B 351 365 3.99%

corrections. The internal force of the structure is given by
g£=8 +8 =8+ FHw (77)

Since the internal force vector of the beam elements (g},) is consid-
ered independent on the initial prestressing strain &:

dg 0F, 00, 0gp
Beyo e W = e, By W = ERW 7

In addition, using Eq.(62):

0F, 0o, 0gp  AE
—=A b Z% — p=pt T 79
u P, ou L " 79)
Therefore, Eq.(76) can be written as
Krou + 6epApEpe W = —8
Lﬁm W 61+ Ay Epe 6650 = Fpo—F) (80)

In order to efficiently solve this system, the displacement increment
is written as

ou = ouy + 6,0 6U, (81)
where

Krouy = —g
{ Krou, = —ApEhW (82)

The substitution of Eq.(81) in the second line of Eq.(80) yields the
strain increment:

(Fpe—Fp) Ly—Ap Epe W' 61
ApEpe (WTouy + L)

6600 = (83)

Thus, the displacements and the initial prestressing strain are up-
dated in each iteration as

w1 = +ou

84
€p0,.1 = €p0; + 08p0 (84)

where 6u is computed using Eq.(81). This iterative procedure can be
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Fig. 7. Cross section at midspan for beams A, B and C from Ayyub et al. [2].

stopped when

Il o (85)

pe

where TOL is the prescribed tolerance for convergence. This iterative
procedure is very robust and converges in few steps, and may be initial-
ized with u = 0 and &,o = 0. Obviously the tendon strain is easily
bounded to furnish an interval that contains the solution. After this
step is complete the global displacement vector D is initialized with
the displacement vector u and the load application phase is carried
out, either with load or displacement control.

6. Applications

Examples of prestressed steel-composite beams were analyzed with
the described procedure. Otherwise stated, in all the cases meshes
with 18 elements were employed, and along the beam gauss integration
with four points. At the cross section level, the fiber method is used with
eight layers for the steel web, two layers for the flanges and eight layers
for the concrete slab. To the knowledge of the authors, most experimen-
tal tests carried out so far employed designs of beams aiming at full
interaction, as prescribed in design codes such as Eurocode 4. This
implies a number of shear studs able to minimize the connection slip.
The ocurrence of slip, even with full interaction design, was reported
in some of these works, but a study on the influence of weaker shear
connections still remains to be done.

In the numerical model the shear connection force-slip relation is
based on the Ollgaard expression with a straight secant line for small
values of s, and the individual connection ultimate force is evaluated
with the expression

Fy=Acs 7'2& (86)

where A is the connector section, f, and E. the ultimate resistance and
the elastic modulus of the concrete. This value is then smeared along the
connection. The precision of this approach is hard to ensure, since the
experimental results show a great influence of effects such as bond be-
tween steel and concrete. Nonetheless it is important to assess the ef-
fects of different connection properties on the overall beam behaviour.

6.1. Experiments by Saadatmanesh et al.(1989)

Saadatmanesh et al. [1] carried out tests with simply supported
beams subjected to positive and negative bending moments and com-
pared the results with those obtained from their analytical-numerical
formulation [7]. In the latter, deflections, stresses, and strains were cal-
culated with an incremental deformation method, ensuring compatibil-
ity of deformations and equilibrium of forces, without slip. Full
interaction was also considered in the design of the connection for the
tests. In the original work, the beams under positive and negative bend-
ing were identified as A and B respectively. Geometric data for both
beams is shown in Fig. 3.

Beam A had a concrete with peak stresses of 33.4 MPa and 3 MPa in
compression and tension respectively. Reinforcement consisted of
10 mm diameter deformed bars, three spaced longitudinally at
229 mm on centers and 11 transversely at 455 mm on centers. The lon-
gitudinal reinforcement had yield stress of 367 MPa, elastic modulus
200 GPa and hardening stiffness 3 GPa. The steel beam was prestressed
with two 16 mm diameter Grade 150 DYWIDAG threadbars with
910 MPa and 1090 MPa yield and ultimate stresses respectively,
reaching 98 kN, placed under the bottom flange of the beam. Pairs of
13-mm diameter by 51 mm long shear studs were welded to the top
flange, 120 mm on centers, between the load points and the supports.
The mean tensile properties of three test specimens cut from the web
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Fig. 8. Geometry of PSCCB with straight and draped tendon from [2].

of the beam were 367 MPa yield stress, 520 MPa tensile strength, and
24% elongation.

Beam B had a concrete with peak stress of 32.4 MPa in compression
and 2.8 MPa in tension. The same shear studs were placed at 610 mm on
centers between each load point and the nearby support. Reinforcement
consisted of two 10-mm diameter deformed bars placed longitudinally
at 152 mm on centers and ten transversely at 455 mm. The steel beam
had 379 MPa yield strength and 530 MPa tensile strength, and 26%
elongation.

The cross sections are shown in Fig. 4. both concrete slabs were
76 mm thick, and the widths are 915 mm and 455 mm for beams A
and B respectively. Stiffeners were placed under the points of applied
load for both beams.

In beam A, the steel beams are prestressed before the concrete was
cast. This would prevent the comparison with the present model during
prestressing. Nonetheless the comparison may be made with the dis-
placements due to external loading only.

In the present numerical analysis the connection constitutive law
was described by Eq.(40), with the parameters « and 3 taken respec-
tively as 0.588 and 1000 mm ™. The maximum value of the connection
force is obtained smearing the resistance of 16 single studs per meter,
and the ultimate load of a single stud was established as 68.58 kN. Up
to a slip of 0.1 mm a secant value is used for the load-slip relation. In
the region between the loads, where there are no studs, a very small
connection force is attributed to the elements to avoid numerical
problems.

Fig. 5 shows the load-displacement curve for beams A and B, for the
present numerical procedure, along with the experimental values,
adapted from the original work.

With respect to the beam subject to positive moment, a very good
agreement may be verified. The initial stiffness in the elastic portion is
well represented by the numerical model. The ultimate load is higher
for the present procedure, which might be due to the consideration of
the whole section already working during the prestressing step,
delaying the compressive forces on the concrete section.

In the experimental setup, no slip was observed until there was a
loss of bond between the flange and the slab, with a load of 356 kN.
After that there is a slight drop of the load and then a gradual loss of stiff-
ness is observed. The tension flange extreme fiber yields at 445 kN and
the ultimate load is attained as 641 kN, when the concrete crushes. Dur-
ing the test an unloading-reloading step was undertaken at 578 kN, as
may be seen in the figure.

For beam B, which is subjected to pretensioning near the concrete
slab, simulating a hogging moment region, once again the agreement
between the results is quite good. The spacing of connectors equal to

Table 2
Peak load comparison [2].
Beam Test Numerical Error
A 709 716 0.98%
C 773 762 —1.42%

610 mm is large, providing a weak shear connection. The tests showed
areduction of the load level after reaching the maximum value. The au-
thors explained that this was due to local buckling of the lower flange,
which the present numerical procedure is unable to catch.

The proposed procedure was employed to study the influence of the
connection stiffness on the load-displacement pattern of beam A. A full
interaction analysis based on the formulation by Moreira et al. [18] is
compared with the above connection stiffness (based on 16 studs
smeared along 1 m) and with weaker shear connections, even if these
low values are not admissible by design codes. The results for the
load-displacement behaviour in these cases are depicted in Fig. 6.
There is a reasonable influence on the stiffness and strength of the
beam with the variation on the connection stiffness.

Table 1 shows the comparison of the maximum loads in each situa-
tion along with the relative error.

For beam B (negative moment), increasing the connection stiffness
(e.g. by reducing space between studs) has practically no effect on the
behavior of the composite beam, therefore this comparison will not be
shown here.

6.2. Experiments by Ayyub et al. (1990)

The paper by Ayyub, Sohn and Saadatmanesh [2] presents tests with
three externally prestressed simply supported composite beams
(named A,B and C). Differences between the beams were on layout
and type of prestressing component. Straight elements were used for
beams A and B, and draped for beam C. Strands were used for beams B
and C, while beam A was tensioned by a deformed bar. Details of the
cross section and geometry are shown in Figs. 7 and 8 respectively.

The authors also employed a formulation based on the transformed
area method and the strain compatibility method in their analyses. The
ultimate capacity was calculated by assuming fully plastic state of the
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Fig. 9. Load-displacement curves for beams A and C from Ayyub et al. [2].
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Fig. 10. Section of beam BS2 [3].

cross section. End rotations and deflection at midspan were obtained by
integrating the curvature along the span.

In the present work, beams A and C will be analyzed, as A and B
displayed a very similar behavior. For beam A, a W360 x 45 rolled
steel beam 4.83 m long was supported on a 4.57 m simple span. The
1.07 m wide, 90 mm thick, and 4.73 m long concrete slab was connected
to the steel beam by stud connectors. Pairs of 16 mm diameter stud con-
nectors, spaced by 93 mm, were placed along the shear spans, except
between the applied loads. Reinforcement consisted of 9.5 mm diame-
ter Grade 60 (yield stress 414 MPa) deformed bars placed in two or-
thogonal directions. Straight 16 mm prestressed threadbars were
placed 30.5 mm above the bottom part of the lower flange. The bars
were extended on both sides of the web along the full length of the
beam. The prestressing was performed before the concrete was cast to
prevent the tensile cracking. Four pairs of stiffeners are present on devi-
ator and anchorage points.

Beam C is identical except for the draped tendon profile, and the use
of strands for prestressing. The inclined portion of the draped tendon
was placed at an angle of 9.2 degrees with the beam axis. The strands
were anchored at both ends, 32 mm below the top (compression)
flange and were positioned between loading points 30.5 mm above
the bottom (tension) flange. Cross sections are identical as well as the
overall design.

The adopted material properties are as follows: for the concrete, the
peak compressive stress is 40 MPa, and the tensile stress 4 MPa. For the
steel of the beams, the yield stress is 411,6 MPa with elastic modulus
200 GPa. For the prestressing strands, the stress f,, is taken as
1620 MPa and elastic modulus E,, is 195 MPa. For the prestressing bar,
yield strength f,,, is taken as 915 MPa. The tendon forces are 267 kN
for both beams.

In the present numerical analysis the same parameters of the previ-
ous example are used to describe the connection load-slip relation, but
the smaller spacing results in a higher value of the connection peak re-
sistance. A single connector is assumed to have maximum load of 42.2
kN (Table 2).

Results for the vertical displacement of the central section of the
beams are shown in Fig. 9, along with the experimental measurements.
There is a very good correspondence between the numerical and exper-
imental results.
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Fig. 12. Moment-displacement results for beam BS2 [3].

6.3. Tests by Chen and Gu (1990)

For another verification of the proposed model the prestressed com-
posite beam, designated BS2, from the work of Chen and Gu [3] was se-
lected. The beam was prestressed with straight external tendons with
no deviators along the span, placed at 30 mm above the bottom of
beam. The tendons consisted of two 7¢5 high-strength steel strands
with cross section of 137.4 mm? and the initial prestress was
819.5 MPa. Two rows of 16 mm diameter by 65 mm long shear studs
were welded to the top flange with a transverse spacing of 76 mm sym-
metric to the centerline of the top flange and a longitudinal spacing
of 200 mm. Details of the beam section and geometry are shown in
Figs. 10 and 11.

The material properties are as follows: for the concrete, the peak
stress f is 41 MPa; for the profile steel, the yield stress is 327,7 MPa
and 406,5 MPa for the web and flange respectively, with elastic modulus
200 GPa; for the prestressing steel, the plastic stress is f,, is taken as
1860 MPa and elastic modulus E, is 195 MPa. Although the beams
were designed for full interaction, slip was measured at the ends: for
BS1 the maximum slips during the test were 0.4 and 0.5 mm, and for
BS2 they were 0.6 and 0.5 mm. A 3D FE model was used to assess the re-
sults with good agreement. The authors also presented an analytical
method, based on rigid plastic assumptions, for the evaluation of the ul-
timate capacity of the beams and the tendon force increment, for differ-
ent layouts of tendons. The authors presented the results in terms of
external bending moment rather than applied loads, which requires
the evaluation of the total bending effects at midspan. The values of
total moment from the original work apparently include the weight of
the beam and the experimental apparatus, but were not taken into ac-
count in the present work.

Based on the description of the shear stud connection, the average
number of shear connectors per unit length is initially taken as 10 (2
rows of studs at 200 mm spacing) and the correspondent value of ulti-
mate force is adopted for the force-slip relation, with the same parame-
ters 3 and « from the previous examples. This resulted in a higher
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Fig. 11. Geometry of beam BS2 [3].
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Fig. 13. Bending moment components results for beam BS2.

moment capacity for the beam when compared to the experimental re-
sults. In their FE analyses, Chen and Gu [3] used spring-link elements to
simulate the connection, but did not provide the value of the connection
strength or stiffness. Therefore, different values of the connection stiff-
ness, including a full-interaction analysis, and the corresponding results
for the moment-displacement curves are depicted in Fig. 12. It is clear
from the results that this PSCCB is very sensitive to changes on the prop-
erties of the shear connection. It is worth noting that beam BS2 has no
intermediate fixed points (deviators). The geometric nonlinearity then
plays an important role as the eccentricity of the tendon varies due to
the vertical displacement.

It is interesting to visualize the different components of the total
bending moment and their distribution along the beam length. Fig. 13
shows the variations of M., M, internal bending moments of the con-
crete and steel section, and M, the contribution to internal bending mo-
ment of the tendon, which is given by
Mp = Fp(h—ep(x) +v(x)) (87)
where h is the distance between the reference axes of the two sections,
e,(x) is the tendon eccentricity and v(x) the transverse displacement of
the beam. The total moment taken with respect of the concrete axis is
the sum of the following components
Mot = Mc + Ms + Nsh + Fp (h—ep(x) + v(x)) (88)
where N; is the normal force on the steel section. This moment counter-
acts the external moment which is readily available.

6.4. Beams tested by Lorenc and Kubica (2006)

Lorenc and Kubica [6] presented in 2006 a large set of experimental
results for six simply supported composite steel-concrete beams, five of
which post-tensioned, one non-prestressed. The beams were subjected
to positive bending until failure. Straight and draped tendons were
used. The influence of shear connection flexibility was taken into

157

800

=100 =

straight tendon

' _ draped tendon

370

Fig. 15. Prestressed composite beam cross section from [6].

account and slip was measured along the beam axis. Additionally,
force-slip relations for the connections were determined by test of
push-out specimens. The geometric characteristics of the 6 beams are
depicted in Fig. 14, where the difference between the draped and
straight tendon layouts is shown. The cross section for the beams is
shown in Fig. 15.

Each beam consisted of an unpropped steel profile IPE360 with a
4500 mm long coverplate and an 800 mm wide and 100 mm thick con-
crete slab. Shear connectors (KB 13x75 mm, S235]2G3 + C450) were
spaced at every 100 mm along the whole length of the beam, except
for 50 cm close to the support regions where studs were placed in
three rows at a spacing of 80 mm. Force-slip relations for the connec-
tions, based on push-out tests and employed in the theoretical analysis
of the authors, led to the definition of the Ollgaard general equation
with parameters 0.3 and 3 0.550 mm ™ '. The maximum force of a sin-
gle connector was established as 75 kN.

Deviator plates of the draped tendons are cut in the case of straight
tendon. The six composite beams tested are named B1, B3 and B5
(draped tendons), B4 and B6 (straight tendons), and B2 (non-
prestressed). Load-midspan displacements, tendon stresses, strains on
top and coverplate bottoms were presented for all beams. More detailed
experimental results including slips were given for B3, B4 and B6 spec-
imens. Seven-wire strands with a nominal diameter of 15.7 mm, a cross-
sectional area of 150 mm? and a tensile strength of 1860 MPa were used.
The strand modulus of elasticity E; was 197.8 GPa. The slabs had two dif-
ferent concretes: CI (weaker) and CII (stronger). Initial values of con-
crete peak stress were obtained from cylinders 150 x 300 mm, and
from smaller specimens cut out from the beams after the tests.

In this paper beams B3 (draped) and B6 (straight) were analyzed by
the numerical procedure. The load-displacement curves of the five
prestressed beams presented in the original work are very close to
each other, except beam B4 which according to visual inspection prior
to testing showed the slab concrete to be damaged in some points and
with shrinkage cracks. Beam B3 has a total pretensioning force of 281
kN, while B6 was prestressed with a total force of 300 kN. The individual
strengths of the stud bolts were evaluated by Eq.(86). Concrete strength
is taken as the average of the cylinder values.

Fig. 16 depicts the load-midspan displacement behavior of beam B3,
showing good agreement between the experimental values and the
present formulation.

straight

| 1612 |

2300

| 1612 }

Fig. 14. Prestressed composite beam geometry from [6].
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Fig. 16. Midspan displacement for beam B3.

In the original work, experimental results of axial strains along beam
B3 were given for 4 load levels (0 kN-after prestressing, 200, 300 and
360 kN) in seven discrete points along the span. Fig. 17 compares the
values of axial strain measured and calculated on the top of the concrete
slab (&) and on the bottom of the steel coverplate (&;). A very good
agreement with the discrete experimental results is observed, except
at midspan for the maximum load, after there has been yielding and
large variations on measured strains are expected.

The load-midspan displacement curve for beam B6 is shown in
Fig. 18. Once again a good agreement was obtained and the overall stiff-
ness and load carrying capacity as predicted by the numerical model are
close to the experimental values.

Fig. 19 shows the comparison between the strains on top of the con-
crete slab and the coverplate bottom for beam B6. In this case the value
of the maximum strain in the coverplate flange was extrapolated for the
original data. As may be seen from the pattern of the steel and concrete
strains the region between the applied loads does not have a constant
value even though external moment is constant. The reason is the influ-
ence of the tendon geometric nonlinear effect which alters the distribu-
tion of moment components in the central region of the beam.

The authors reported that in all the beams, including the non-
prestressed one, the slab failed at the ends, cracking over the studs,
under force P of 250-300 kN. As the load was increased, the cracks prop-
agated in the slab's bottom obliquely towards midspan. This effect obvi-
ously is not detectable by the present FE model. They also detected a large
influence of adherence on the behavior of the composite steel-concrete
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Fig. 18. Midspan displacement for beam B6.

connection. The value of the shear force per stud at cohesion breakdown
was close to the value of the design shear resistance of a single stud con-
nector. Therefore, there was no flexible connection up to the yield load.

The value of the ultimate load for the two beams analyzed is com-
pared with the test values in Table 3.

7. Summary and conclusions

Prestressed steel-concrete composite beams are an efficient solution
with greater load-carrying capacity and improved overall behaviour
with respect to their non-prestressed counterparts. Few works,
however, have considered the partial interaction or connection flexibil-
ity in the context of PSCCBs. This paper presented a nonlinear
displacement-based FE formulation for PSCCBs, comprising beam and
tendon elements, where the tendon is considered as a load-resisting
member, and the relative displacements between steel and concrete
(partial interaction) may be taken into account. The numerical analysis
of the prestressing step is carried out by the adaptation of a newly
develped strain-controlled equilibrium procedure, followed by a dis-
placement controlled load stage. A very good agreement was observed
between the proposed numerical model and experiments from various
authors. The examples showed, for instance, the influence of the consid-
eration of the partial interaction for the correct simulation of the PSCCB
both in terms of stiffness and ultimate resistance, and the importance of
the tendon nonlinear geometric effects on the distribution of moments
and strains along the members. It is important to note that the design of
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Fig. 17. Strains on concrete and steel fibers for beam B3.
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Fig. 19. Strains on concrete and steel fibers for beam B6.

Table 3

Peak load comparison [6].
Beam Test Numerical Error
B3 404 382 —5.44%
B6 396 375 —5.30%

the experiments was done with the objective of attaining full interac-
tion of the connection, with small values of slip measured during the
tests. Further research is necessary to obtain load-slip relations which
characterize more precisely the behavior of the steel-concrete interface
and may include, for instance, the important effect of bond between
steel and concrete. The proposed procedure constitutes a reliable, ro-
bust and computationally inexpensive option for the assessment of
post-tensioned steel-concrete beams.
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