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a b s t r a c t

Physical dispersion is one of the most important key parameters in compositional reservoir simulation. It
is a phenomenon of mixing with mass transfer occurring when gradients in composition arise or exist.
This process tends to homogenize the composition of the phases. When the dispersion term is included
in the material balance equations, we obtain a full tensor structure. However, most of the reservoir
simulators neglect such an important physical term. In this work, we investigate the governing partial
differential equations for modeling miscible flooding by adding dispersion to the material balance
equations. The equations are solved by the Element-based Finite-Volume method (EbFVM) in conjunc-
tion with unstructured meshes. Results of several compositional reservoir simulation case studies are
presented to demonstrate the application of the method.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Gas injection is one of the most important methods for
enhanced oil recovery; but requires careful and prudent modeling
in order to correctly predict field production (Corrêa et al., 1990;
Lim et al., 1997). One of the key physical parameters associated
with miscible gas displacement is physical dispersion. In the cases
of miscible and immiscible gas injections, surfactant flooding, and
tracer injection, physical dispersion plays an important role
because it has a direct influence on the mixing process. As verified
by Yanze and Clemens (2012) and Paraschiv et al. (2012), physical
dispersion has a direct impact in fractured reservoir simulation.
According to these authors, neglect of dispersion can result in
large errors in oil recovery compared to the case including physical
dispersion. Although the importance of physical dispersion has
been known in miscible gas process, most commercial simulators
do not take into account this term in the recovery process
(Oldenburg et al., 2001; Costanza-Robinson and Brusseau, 2006).
This is mainly due to the nature of the full dispersion tensor that
gives rise to approximate equations whose Jacobian matrix stencil
is much larger than the one we obtain when the dispersion term is
not included in a fully implicit compositional simulator. According
to Arya et al. (1988), dispersion mixing is caused by variations
(heterogeneity) in the velocity within each flow channel and from
one channel to another. Molecular diffusion is the transport of

mass because of spatial concentration differences. Dispersion and
diffusion in permeable media play an important role in miscible
displacement, where channeling and/or fingering of the displacing
fluid occurs. As described by Maliska (2004), one of the problems
arising in the solution of advection–diffusion problem is the
numerical dispersion caused by inexact interpolation functions.
This numerical dispersion can be amplified in simulation cases due
to the grid orientation effects. Several approaches have been used
to minimize the numerical dispersion during modeling of physical
dispersion. Arya et al. (1988) using Cartesian meshes suggest
decreasing the mesh size in order to reduce the numerical
dispersion and then extrapolating the results to zero block size.
Corrêa et al. (1990) solved the equations arising from the disper-
sion modeling by inverting the solution from Laplace space to time
space using a numerical inversion. Oldenburg et al. (2001) used
numerical dispersion to mimic the physical dispersion when they
investigated CO2 injection into natural gas reservoirs. Lim et al.
(1997) investigated the effect of numerical dispersion in miscible
gas recovery through grid refinement and use of upwind and third
order TVD schemes. Marcondes and Sepehrnoori (2010) and
Marcondes et al. (submitted for publication) demonstrated that
use of unstructured meshes in conjunction with EbFVM can reduce
the number of gridblocks required to obtain mesh-independent
solutions for gas injection processes, respectively for 2D and 3D
reservoirs. We expect that the EbFVM approach can be more
accurate than the convectional Cartesian grids associated with
physical dispersion.

Several authors highlighted the importance of appropriate
modeling of physical dispersion (Stalkup, 1990; Haajizadeh et al.,
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1999; Solano et al., 2001; Shrivastava et al., 2002) in miscible gas
processes. In order to incorporate the effects of physical disper-
sion, few researchers have tried to find a grid block size whose
numerical dispersion mimics the physical dispersion (Haajizadeh
et al., 1999). The main idea of this approach is to explore the
inherent numerical dispersion in the finite difference method to
find a grid block size capable of accurately representing the mass
transfer transport with physical dispersion. As pointed out by
Fanchi (1983), this methodology is difficult to apply to real field
cases and can lead to errors in one or more cross flow directions.

Chang (1990) presented a method to incorporate physical
dispersion in an IMPEC compositional reservoir simulator. Later
Chang et al. (1994) investigated the formation of viscous fingering
for different dispersivity scenarios of CO2 injection. Shrivastava
et al. (2005a, 2005b) presented a similar approach as proposed by
Chang et al. (1994) to incorporate physical dispersion in a fully
implicit compositional reservoir simulator.

In this study, we introduce a similar methodology as proposed
by Chang (1990) in a fully implicit compositional reservoir
simulator based on Coats (1980) formulation for Cartesian grids.
The original formulation of Coats (1980) is implemented using an
Element-based Finite-Volume Method (EbFVM) as described in
Marcondes and Sepehrnoori (2007, 2010). This approach has been
implemented for several gas flooding reservoir simulation studies
and has been shown to be less prone to the numerical dispersion
effect. In this approach, we expect that the correct effect of the
physical dispersion can be correctly modeled through simulation.

We implemented the EbFVM in conjunction with the physical
dispersion in an in-house simulator called General purpose Adap-
tive Simulator (GPAS). The current implementation adds a new
capability, by adding the dispersion term in the simulator, com-
pared with the previous EbFVM implementations carried out in
GPAS. GPAS was developed at the Center for Petroleum and
Geosystems Engineering at The University of Texas at Austin for
the simulation of enhanced recovery processes. GPAS is a fully
implicit, multiphase/multi-component simulator, which can han-
dle simulation of several enhanced oil recovery processes. This
simulator is divided into two main modules: Framework and
EOScomp. Framework is responsible for input/output and memory
allocation, while EOScomp handles the computations for flash
calculation and solution of non-linear equations arising from the
discretization of the governing equations. Details for EOScomp and
Framework modules can be found in Wang et al. (1997) and
Parashar et al. (1997), respectively.

2. Physical model

The mathematical problem for compositional modeling is
composed of ðnp�1Þncþnpþ1 equations (where nc is the number
of components and np is the number of phases present in the
system) which give rise to ðnp�1Þncþnpþ1 unknowns as follows.

For each component i there is one material balance equation
defined by

∂
∂t
ðϕNiÞ� ∇

!
U ∑

np

j ¼ 2
ðξjxijλjK U∇Φj�ϕξjSjKij U∇xijÞ�qi ¼ 0; ð1Þ

where ϕ is the porosity of the control volume, K is the full and
symmetric absolute permeability tensor, λj, μj, and ξj are the
mobility, the viscosity, and the density of the j-th phase, respec-
tively, Φj is the potential of the phase j, Sj is the saturation of the

phase j, Kij is the full dispersion tensor for the component i at the
phase j, xij is the mole fraction of the component i at the phase j, qi
is the molar flow rate of the component i due to well injection/
production per unit of bulk volume. The number of moles of

component i per pore volume ðNiÞ and the phase potential are
defined by

Ni ¼ ∑
np

j ¼ 2
ξjSjxij; ð2Þ

Φj ¼ Pj�γjD; ð3Þ

where γj is the specific weight of phase j, D is the depth, which is
positive in the downward direction.

The second term inside the parenthesis in Eq. (1) is the mass
transport by diffusion/dispersion. For this term, the full symmetric
dispersion tensor Kij is given by

Kij ¼
Kxx Kxy Kxz

Kxy Kyy Kyz

Kxz Kyz Kzz

0
B@

1
CA

ij

; ð4Þ

which can be expanded by (Lake, 1989)

Kxx ¼
Dij

τ
þ αlj
ϕSj

u2
xj

jujj
þ αtj
ϕSj

u2
yj

jujj
þ αtj
ϕSj

u2
zj

jujj
; ð5aÞ

Kyy ¼
Dij

τ
þ αlj
ϕSj

u2
yj

jujj
þ αtj
ϕSj

u2
xj

jujj
þ αtj
ϕSj

u2
zj

jujj
; ð5bÞ

Kzz ¼
Dij

τ
þ αlj
ϕSj

u2
zj

jujj
þ αtj
ϕSj

u2
xj

jujj
þ αtj
ϕSj

u2
yj

jujj
; ð5cÞ

Kxy ¼
αlj�αtj
ϕSj

uxjuyj

jujj
; ð5dÞ

Kxz ¼
αlj�αtj
ϕSj

uxjuzj

jujj
: ð5eÞ

In Eqs. (5a)–(5e), we can see a new parameter, α, which Bear
(1988) defined as the medium's (geometrical) dispersivity. Accord-
ing to Lake (1989), this parameter depends on rock properties and
also by the scale of the experiment. Finally, uj is the phase velocity
and is given by Darcy's equation.

For the water phase, there is an additional material balance
equation which is given by

∂
∂t
ðϕNwÞ� ∇

!
λwξw UK U∇Φw�qw ¼ 0; ð6Þ

where the subscript w refers to the water phase. It is important to
mention that there is no mass transfer between hydrocarbon
components and water. Therefore, no physical dispersion was
added to the water molar balance equation.

For each component there are ncðnp�2Þ fugacity constraints as
follows:

f 2i � f ji ¼ 0 for j¼ 3⋯np and i¼ 1;…; nc; ð7Þ

where f ji is the fugacity of component i in phase j. It is worthwhile
to mention that in Eq. (7), the fugacity of the oil phase (2) was
selected as the base for the fugacity calculation of all other phases
when three or more hydrocarbon phases are present.

There are also np�1 mole fraction constraints:

∑
nc

i ¼ 1
xij ¼ 1 for j¼ 2⋯np: ð8Þ

Finally, there is one volume constraint defined by

∑
np

j ¼ 1

Nj

ξj
�1¼ 0 or ∑

np

j ¼ 1
Sj�1¼ 0: ð9Þ
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3. Approximate equations

In this work, the approximate equations are obtained by using
the EbFVM. In the EbFVM, each element is divided into sub-
elements. The conservation equations, Eqs. (1) and (6), need to be
integrated for each of these sub-control volumes. We have
employed for the numerical discretization four element types
(hexahedron, tetrahedron, prism and pyramids) which allows the
use of hybrid meshes. Fig. 1 presents the four element types.
Integrating each term of Eq. (1) in time and for each of the sub-
control volumes and applying the Gauss theorem for the advective
and dispersion terms we obtain:Z
V ;t

∂
∂t
ðϕNiÞdV dt�

Z
V ;t

∑
np

j ¼ 2
ðλjξjxijK U∇Φj�ϕξjSjKij U∇xijÞ

U dA
�!

dt�
Z
V ;t
qidV dt ¼ 0: ð10Þ

In order to evaluate the accumulation and the advective and
dispersion terms of Eq. (10) for each of the four element types, we
used the shape functions defined in Marcondes et al. (submitted
for publication). The shape functions allow calculation of the
position vector and the physical properties inside each element
from the latter known for the vertices of each element. In the
EbFVM approach we used, it is assumed that each element has a
constant permeability tensor. Hence, when the advective fluxes
are evaluated at each interface of each sub-control volume no
interpolation function is necessary. It should be emphasized that if
a block-centered approach was used instead of a cell-vertex
approach, some interpolation for the permeability tensor would
be necessary; for instance, the one used by multipoint flux
approximation (Verma and Aziz, 1997; Edwards, 2000; Edwards,

2002). We should emphasize that in the second option, the control
volume around each vertex will have constant porosity and
absolute permeability tensor. For the dispersion tensor compo-
nents, as there is phase dependency through the phase velocity we
evaluate for the velocity of each phase at each integration point
using the shape functions of each element. This approach allows a
complete variation through the element of the physical dispersion
tensor. Performing the integration of first and second terms of Eq.
(10) and evaluating the fluid properties through a fully implicit
procedure, the following equations for the two mentioned terms
are obtained:

Accm;i ¼ Vscvm;i
ϕNm

Δt

� �
i
� ϕNm

Δt

� �o

i

� �
; m¼ 1; Nv; i¼ 1; ::; nc;

ð11Þ

Fm;i ¼
Z
A

∑
np

j ¼ 1
ðλjξjxijK U∇Φj�ϕξjSjKij U∇xijÞU dA

�!

¼
Z
A

∑
np

j ¼ 1
ξjxijλjKnl

∂Φj

∂xl
�ϕξjSjKijnl

∂xij
∂xl

 !
dAn;

m¼ 1; Ne; n; l¼ 1; 3: ð12Þ
In the above equations Nv and Ne denote the number of vertices

and the number of elements of the grid, respectively. By inspecting
Eq. (12), it can be inferred that it is necessary to evaluate molar
densities, molar fraction, and mobilities for each interface of each
sub-control volume. To evaluate these properties, an upwind
scheme based on Cordazzo et al. (2004) will be used. Mobilities
and other fluid properties are evaluated at the integration point
1 in Fig. 1a, for instance by

λj1 ¼ λj2 if K U∇Φj U dA
�!���

ip1
r0

Fig. 1. 3D elements and their respective sub-control volumes. (a) Hexahedron, (b) tetrahedron, (c) prism and (d) pyramid.
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λj1 ¼ λj1 if K U∇Φj U dA
�!���

ip1
40 ð13Þ

Inserting Eqs. (11) and (12) into (10), the following equation for
each element is obtained:

Accm;iþFm;iþqi ¼ 0; m¼ 1; Ne; i¼ 1; ncþ1 ð14Þ

Eq. (14) denotes the conservation for each sub-control volume
of each element. Now, it is necessary to assemble the equation of
each control volume for obtaining the contribution of each sub-
control volume that shares the same vertex. This process is similar
to assembling of the stiffness global matrix in the finite element
method. Further details can be found in Cordazzo et al. (2004) and
Marcondes and Sepehrnoori (2007, 2010). Finalizing this section, it
is important to mention that each element can have different
permeabilities and porosities, allowing simulation of high aniso-
tropic reservoirs.

4. Test problems

This section presents four simulation case studies for investigation
of the dispersion tensor effect in conjunction with the EbFVM
approach. The first case study refers to simulation of tracer injection
into a one-dimensional isotropic and homogeneous reservoir satu-
rated with water. Table 1 presents the fluid and physical properties.

The second case study refers to a two-dimensional simulation
in a quarter-of-five spot of tracer injection in a homogeneous and
isotropic saturated reservoir. The fluid and physical properties are
presented in Table 2.

The third case study refers to solvent injection in a quarter-of-
five spot, but now a heterogeneous reservoir has been considered
and a 3D variation of fluid and rock properties has been taken into
account. Tables 3 and 4 present the fluid and physical properties
and Corey's model coefficients (Eq. (15)), respectively. The Kxx

absolute permeability of the field is shown in Fig. 2. For each grid
block, the same value of Kxx was used for Kyy, and the value of Kzz

was set to one-tenth of the Kxx component. The other components
of the absolute permeability tensor were set to zero.

Krj ¼ K0
rjS

nj

j ; Sj ¼
Sj�S0j

1� ∑
np

i ¼ 1
S0i

ð15Þ

where S0j denotes the residual saturation of the j-th phase, and the
others parameters were previously defined in Table 4.

The last case study refers to simulation of solvent injection into
an irregular reservoir. Except for the reservoir dimensions and the
absolute permeabilities, we used the same properties shown in
Tables 3 and 4. Fig. 3 shows two grid-configurations employed for
this reservoir. The first mesh, Fig. 3a, is composed only of
hexahedrons, while the other one, Fig. 3b, is a hybrid mesh
composed of tetrahedron, pyramid and hexahedron elements. In
Fig. 3a and b, we show the reservoir top and bottom topologies,
respectively. From these figures, we can see that this reservoir is
irregular in the x, y, and z directions. The absolute permeabilities
in the x and y directions are 5.0�10–13 m2 (500 mD), and the
absolute permeability in the z direction is 5.0�10–14 m2 (50 mD).
For each injection well, we used the volumetric rate presented in
Table 3.

Table 1
Input data for Case 1.

Reservoir data Initial conditions Physical properties and well conditions

Reservoir dimension
(Lx¼12.192 m, Lz¼Ly¼0.03048 m)

Water saturation Swi¼1.0 Water viscosity¼2.49�10�4 Pa s
Reservoir pressure¼13.79 MPa (2000 psi) Water density¼87.70 mol/m3 (2.4833 lbmol/ft3)

Absolute permeability (Kxx)¼5.0�10�13 m2 (500 mD) Bottom hole
pressure¼13.79 MPa (2000 psi)Porosity¼0.2

Peclet number (Npe)¼200 Injected well rate¼1.31�10�8 m3/s (7.13�10–3 barrels/day)
Tracer concentration¼1.0

Table 2
Input data for Case 2.

Reservoir data Initial conditions Physical properties and well conditions

Reservoir dimension (Lx¼Ly¼502.92 m, Lz¼0.3048 m) Water saturation Swi¼1.0 Water viscosity¼0.249�10�3 Pa s
Absolute
permeability (Kxx¼Kyy¼Kzz)¼5.0�10�13 m2 (500 mD)

Reservoir pressure¼0.689 MPa (100 psi) Water density¼87.70 mol/m3 (2.4833 lbmol/ft3)
Bottom hole pressure¼0.689 MPa (100 psi)

Porosity¼0.2 Injected well
rate¼5.12�10�3 m3/s (2785 barrels/day)Longitudinal dispersivity (αl)¼2.01 m

Transversal dispersivity (αt)¼0.201 m Tracer concentration¼1.0

Table 3
Input data for Case 3.

Reservoir data Initial conditions Physical properties and well conditions

Reservoir dimension
(Lx¼Ly¼609.6 m,
Lz¼60.96 m)

Water saturation Swi¼0.25 Water viscosity¼1�10�3 Pa s
Reservoir pressure¼13.79 MPa (2000 psi) Gas injection rate¼3.28 m3/s (107 ft3/d)

Porosity¼0.30
Longitudinal dispersivity
(αl)¼2.01 m

Bottom hole pressure¼13.10 MPa (1900 psi)

Transversal dispersivity
(αt)¼0.201 m

Overall fraction of hydrocarbon components (CO2, C1, C3, C6, C10, C15,
C20)¼0.01, 0.20, 0.30, 0.05, 0.025, 0.025, 0.39

Injected mole fraction (CO2, C1, C3, C6, C10, C15, C20)¼0.7,
0.2, 0.065, 0.02, 0.01, 0.004, 0.001
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5. Results

Fig. 4 presents results of the dimensionless concentration of
tracer versus the dimensionless length of the reservoir for case
1. The results of this simulation using the GPAS simulator in

conjunction with Cartesian grid are also shown and both are
compared with the analytical. Fig. 4 shows that the results of the
present work using a Hexahedron element (500 elements; 2004
vertices) and the Cartesian (1000 grid blocks) mesh match the
analytical solution. As the control-volumes are created around
each vertex of the mesh, it is important to mention that the
number of vertices of the EbFVM approach is equal to the
number of control volumes. Also, a 3D formulation is used to
run this case. Therefore, in terms of discretization of the
problem, we have 501 control volumes in the flux direction.
Thus, we can verify that the number of control volumes of the
coarse Cartesian mesh is about twice larger than the
hexahedron grid.

The results in terms of normalized effluent tracer concentra-
tion obtained for Case 2 are shown in Fig. 5. Fig. 5 compares
several hexahedron grids in conjunction with the EbFVM
approach and Cartesian meshes and the analytical solution.
From this comparison, we can see that a good match for the

Table 4
Corey's model relative permeability data for Case 3.

Relative permeability parameters Water Oil Gas Second oil

End point relative permeability 0.3 0.75 0.9 0.9
Residual saturation 0.25 0.2 0.0 0.0
Exponent of relative permeability 2.0 2.0 2.0 2.0

Fig. 2. Component of Kxx absolute permeability field – Case 3.

Fig. 3. Reservoir and grid-configurations used for Case 4. (a) Top view and (b) bottom view.
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breakthrough time was obtained with the “100�100�1”
EbFVM mesh, but the same was not true for the same level of
refinement of the Cartesian mesh. Also, we can observe that for
all the three levels of grid refinement investigated (30�30,
50�50, and 100�100), the EbFVM approach always produced
concentration curves with less numerical dispersion compared
to the original GPAS approach using Cartesian grids. In order to
test the capability of the EBFVM approach for reducing the
numerical dispersion, it is also important to mention that an

upwind scheme was used for both formulations (EbFVM and
Cartesian).

The results for Case 3, in terms of volumetric rates at standard
conditions of oil and gas, obtained in conjunction with hexahe-
dron element and Cartesian grid are shown in Fig. 6. From Fig. 6,
we can observe that the volumetric rates by the hexahedron
mesh are close to the ones obtained by the Cartesian mesh.
Spikes present in the curves are due to phase changes in the
reservoir associated with the phase composition and pressure
changes. We also would like to stress that because the EbFVM
approach has a larger stencil than the Cartesian grid, we expect to
see more spikes in the volumetric rates than observed for both oil
and gas production rates. Comparing both curves, we can see that
the breakthrough in the EbFVM mesh was later than in the
Cartesian one. Fig. 7 presents CO2 concentration fields at 2500
days for both EbFVM and Cartesian grids. From this figure, we can
see that although the fronts are similar, the EbFVM mesh
presents sharper fronts, since the numerical dispersion is lower
for this approach.

Fig. 8 presents the results, in terms of oil and gas volumetric
rates at standard condition, for the last case study in conjunction
with the two meshes shown in Fig. 3. Although the two grid
configurations are different, the results in terms of oil and gas
rates for both grids are in good agreement. The CO2 mole fraction
for two simulation times is shown in Fig. 9 for the two grid
configurations. From this figure, it can be seen that a reasonable
agreement between results using two different grid configurations
has been obtained.Fig. 5. Normalized effluent tracer concentration versus pore volumes injected.
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Fig. 7. Results for Case 3. (a) EbFVM CO2 mole fraction at 2500 days and (b) Cartesian CO2 mole fraction at 2500 days.
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6. Conclusions

Physical dispersion full tensor was implemented in an in-house
compositional simulator in conjunction with an element-based
finite volume approach using unstructured grids. The methodol-
ogy was tested for four different case studies: two tracer injections
(1D and 2D), and two case studies involving solvent injection. The
results of 1D tracer injection were compared to the analytical
solution and to the results of GPAS in conjunction with Cartesian

meshes. The results suggest that the element-based approach
reduces numerical dispersion, compared to the Cartesian meshes.
The results of the second case study (2D tracer injection) are also
demonstrated to be more accurate than the ones using Cartesian
meshes. The two other applications were performed in a hetero-
geneous quarter-of-five-spot and in a reservoir with a complex
geometry. The results demonstrate the flexibility of the method in
representing complex reservoirs and difficult phase behavior and
also its capacity to deal with heterogeneous media. In conclusion,
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Fig. 9. CO2 mole fraction field – Case study 4. Hexahedron: (a) 1500 days and (b) 7000 days. Hybrid: (c) 1500 days and (d) 7000 days.
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the EbFVM approach was tested for several case studies involving
physical dispersion. Based on the results, the approach presented
advantages, compared to the traditional Cartesian meshes.
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