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An element-based finite-volume approach in conjunction with unstructured grids for heterogeneous and
anisotropic compositional simulation is presented. This approach adds flexibility to map complex features of
the reservoir such as irregular boundaries, discrete fractures, faults, inclined and distorted wells. The mesh,
for two dimensional domains, can be built of triangles, quadrilaterals or a mix of these elements. According
to the number of vertex, each element is divided into sub-elements and then mass balance equations for
each component are integrated along each interface of these sub-elements. The finite-volume conservation
equations are assembled from the contribution of all the elements that share a vertex creating a cell vertex
approach. The results for several compositional reservoir simulation case studies are presented to
demonstrate the application of the method.
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1. Introduction

Unstructured meshes present an important step in reservoir
simulation since there is no line or surface restriction similar to that
found in structuredmeshes. Unstructured meshes based on the finite-
volumemethod have been used for a long time in petroleum reservoir
simulation (Forsyth, 1990; Fung et al., 1991; Gottardi and Dall´Olio,
1992; Verma and Aziz, 1997; Edwards, 2000, 2002; Prévost et al.,
2002). Also, several authors have employed the finite-element or the
mixed finite element methods for solving such problems (Hegre et al.,
1986; Durlofsky and Chien, 1993; Deb et al., 1995; Hoteit and
Firoozabadi, 2005; Hoteit and Firoozabadi, 2006).

The approach used by Forsyth (1990), Fung et al. (1991) and
Gottardi and Dall'Olio (1992) in petroleum reservoir simulation and
computational fluid dynamics literature is called Control Volume-
based Finite Element Method (CVFEM). In most CVFEM approaches
used in petroleum reservoir simulation, the approximate equations
for multiphase fluid flow are obtained from the single phase flow and
then the transmissibilities are multiplied by the mobilities and
densities in order to obtain the equations for the multiphase flow.
The approach used by Verma and Aziz (1997), Edwards (2000, 2002),
and Prévost et al. (2002) is called multi-point flux approximation
(MPFA). In this approach, permeability and porosity are evaluated at
the element vertex. In order to calculate the fluxes, along each
integration point a local linear system is solved to evaluate the fluxes
that obey the flux continuity. Also, in this approach each control
volume has a constant porosity and absolute permeability tensor.
Using ideas from Raw (1985) and Baliga and Patankar (1983), in
conjunction with quadrilateral and triangles, respectively, Cordazzo
(2004) and Cordazzo et al. (2004a,b) used a similar approach to the
CVFEMmethodology to simulate a water flooding problem. However,
the approximate equations were obtained using the multiphase
equations, rather than obtaining from the approximate equation for
single phase flow, and then the transmissibilities were multiplied by
the mobilities to obtain the equations for multiphase flow. The
authors demonstrated that the equations obtained from a single phase
flow do not correctly approximate the equations for multiphase flow.
If the approximate equations are obtained for single phase flow and
then transmissibilities are multiplied by mobilites in order to obtain
the equations for multiphase flow, the angles of meshesmust be equal
to or less than right angles, in order to avoid negative transmissi-
bilities. This restriction can be difficult to follow for most reservoirs
due mainly to the heterogeneity of the medium, fractures, faults, or
even generic boundaries of the reservoirs. Cordazzo (2004) and
Cordazzo et al. (2004a,b) called their methodology element-based
finite-volume method (EbFVM). The term EbFVM seems to be more
appropriate than CVFEM used by other authors. As explained by
Maliska (2004), we have a methodology that still follows the
conservative principles at the discrete level and only borrows the
idea of elements and shape functions from the finite element method.
Cordazzo (2004) used an Implicit Pressure Explicit Saturation (IMPES)
formulation in conjunction with high distorted triangular and
quadrilateral elements with EbFVM to simulate two phase fluid flow
(oil and water) problems. Excellent results were obtained with very
little grid orientation effects.
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Marcondes and Sepehrnoori (2007) applied EbFVM to simulate
compositional, multiphase, multi-component fluid-flow problems in
conjunction with anisotropic and heterogeneous reservoirs. Although
the meshes used for the most of the investigations presented several
elements with angles equal or bigger than right angles, the results
obtained with triangles and quadrilateral presented a good agree-
ment. In this study, we investigated the EbFVM in conjunction with
2D heterogeneous and anisotropic reservoirs. We expect that most of
the findings observed with the unstructured approach presented in
the present paper for 2D reservoirs can be extended to 3D reservoirs.
Except for absolute permeability tensor and porosity, all the physical
parameters are evaluated at the vertices of each element rendering a
cell vertex approach. As each element has a constant permeability
tensor, all the fluxes along each integration point employ the same
absolute permeability. On the other hand, if the permeability tensor is
stored in the vertexes of the element an interpolation procedure to
evaluate the fluxes along each integration point of each element is
necessary, as used in the MPFA approach by Verma and Aziz (1997),
Edwards (2000, 2002), and Prévost et al. (2002). The EbFVM was
implemented in an in-house compositional simulator called General
Purpose Adaptive Simulator (GPAS). GPAS was developed at the
Center for Petroleum and Geosystems Engineering at The University
of Texas at Austin for the simulation of enhanced recovery processes.
GPAS is a fully implicit, multiphase/multi-component simulator
which can handle the simulation of several enhanced oil recovery
processes. This simulator is divided into two main modules:
Framework and EOScomp. Framework is responsible for input/output
andmemory allocation, while EOScomp handles the computations for
flash calculation and solution of non-linear equations arising from the
discretization of the governing equations. Details of EOScomp and
Framework modules can be found in Wang et al. (1997) and Parashar
et al. (1997), respectively.

2. Physical model

Isothermal, multi-component, multiphase fluid flow in a porous
medium can be described using three types of equations: the
component-material balance equation, phase equilibrium equation,
and equation for constraining phase saturations and component
concentrations (Wang et al., 1997).

The material balance equation for the i-th component for a full
symmetric permeability tensor using the Einstein notation can be
written as

∂ ϕNið Þ
∂t −∇⋅ ∑

np

j=1
ξjxijλj

¼
K⋅∇Φj

" #
− qi

Vb
= 0; i = 1;2; ::;nc: ð1Þ
Fig. 1. Triangular and quadrilateral elements a
In Eq. (1), nc is the number of hydrocarbon components, np is the
number of phases present in the reservoir, ϕ is the porosity, Ni is the
moles of the i-th component per unit of pore volume, ξj and λj are the
molar density and relative mobility of the j-th phase respectively, xij is
the molar fraction of the i-th component in the j-th phase, K̿ is the
absolute permeability tensor, and Vb is a volume of control volume
that could contain a well. Φj is the potential of the j-th phase and is
given by

Φj = Pj−γj Z ð2Þ

where Pj denotes the pressure of the j-th phase and Z is depth, which is
positive in a downward direction.

The first partial derivative of the total Gibbs free energy with
respect to the independent variables gives the equality of component
fugacities among all phases,

fi = f ji −f ri = 0; i = 1; ::::;nc; j = 2; :::::;np: ð3Þ

In Eq. (3), fi
j
=ln(xijϕij), where ϕij is the fugacity coefficient of

component i in the j-th phase, r denotes the reference phase, and nc is
the number of components excluding the water. The restriction of the
molar fraction is used to obtain the solution of Eq. (3),

∑
nc

i=1
xij−1 = 0; j = 2; ::;np; ∑

nc

i=1

ziðKi−1Þ
1 + νðKi−1Þ = 0 ð4Þ

where zi is the overall molar fraction of the i-th component, Ki is the
equilibrium ratio for the i-th component, and ν is the mole fraction of
the gas phase in the absence of water. The closure equation comes
from the volume constraint, i.e., the available pore volume of each cell
must be filled by all phases present in the reservoir. This constraint
gives rise to the following equation:

Vb ∑
nc + 1

i=1
ϕNið Þ ∑

np

j=1
Lj

Pνj−Vp = 0 ð5Þ

where Vp is the pore volume, and v ̅j is the molar volume of the j-th
phase. In GPAS the unknown primary variables are water pressure Pw,
N1,.., Nnc, lnK1,.., lnKnc.

3. Approximate equation

In the EbFVM, each element is divided into sub-elements. These
sub-elements will be called sub-control volumes. The conservation
equation, Eq. (1), needs to be integrated for each one of these sub-
control volumes. Fig. 1 presents a triangular and a quadrilateral
element and all of the sub-control volumes associated with each
nd their respective sub-control volumes.
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Fig. 2. Control volume.

101F. Marcondes, K. Sepehrnoori / Journal of Petroleum Science and Engineering 73 (2010) 99–106
element. Integrating Eq. (1) in time and for each one of the sub-
control volumes, and applying the Gauss theorem for the advective
term we obtain:

∫V
∂ ϕNið Þ

∂t dV−∫
A

∑
np

j=1
ξjxijλj K

¼
⋅∇Φj ⋅

→
dA−∫

V

qi
Vb

= 0; i = 1;2; ::;nc: ð6Þ

To evaluate the first and second terms of Eq. (6), it is necessary to
define the shape functions. For triangles and quadrilaterals, linear and
bi-linear shape functions as defined through Eqs. (7) and (8), will be
used, respectively.

N1ðs; tÞ = 1−s−t; N2ðs; tÞ = s; N3ðs; tÞ = t ð7Þ

N1ðs; tÞ = 1=4⁎ð1−sÞð1−tÞ; N2ðs; tÞ = 1=4⁎ð1 + sÞð1−tÞ;
N3ðs; tÞ = 1=4⁎ð1 + sÞð1 + tÞ; N4ðs; tÞ = 1=4⁎ð1−sÞð1 + tÞ: ð8Þ

Using the shape functions any physical properties or positions can
be evaluated inside an element as

xðs; tÞ = ∑
Nv

i=1
Ni xi; yðs; tÞ = ∑

Nv

i=1
Niyi; Φjðs; tÞ = ∑

Nv

i=1
NiΦji ð9Þ

where Nv denotes the number of vertex for each element. Elements
using the same shape function for coordinates and physical properties
are known as isoparametric elements (Hughes, 1987). Using the
shape functions, gradients of potentials can be easily evaluated as

∂Φj

∂x = ∑
Nv

i=1

∂Ni

∂x Φji;
∂Φj

∂y = ∑
Nv

i=1

∂Ni

∂y Φji: ð10Þ

To evaluate the gradients, it is necessary to obtain the derivatives
of shape functions relative to x and y. These derivatives are given by

∂Ni

∂x =
1

detð JtÞ
∂Ni

∂s
∂y
∂t −

∂Ni

∂t
∂y
∂s

� �
;
∂Ni

∂y =
1

detð JtÞ
∂Ni

∂t
∂x
∂s−

∂Ni

∂s
∂x
∂t

� �
ð11Þ

where Jt is the Jacobian of the transformation and it is given by

detð JtÞ =
∂x
∂s

∂y
∂t −

∂x
∂t

∂y
∂s

� �
: ð12Þ

Further details of the expressions given by Eq. (11) can be found in
Maliska (2004) and Cordazzo (2004). To perform the integral of
Eq. (6), it is necessary to define the volumes of each sub-control
volume and the area of each interface. The volumes of each sub-
control for triangles and quadrilaterals, respectively, are given by

Vscvi =
detð JtÞΔsΔt h

6
ð13Þ

Vscvi = detð JtÞΔsΔt h ð14Þ

where h is the thickness of the reservoir. For quadrilateral det(Jt)
needs to be evaluated at the center of each sub-control volume. The
area of each interface, reading a counterclockwise, is given by

→

dA = hdy
→

i−hdx
→

j: ð15Þ

Substituting Eqs. (13) and (14) for the accumulation term, and Eq.
(15) for the advective flux into Eq. (6), and evaluating the fluid
properties through a fully implicit procedure the following equations
for the two mentioned terms are obtained:

Accm;i = Vscvm;i
ϕNm

Δt

� �
i
− ϕNm

Δt

� �o

i

� �
;m = 1;Nv ð16Þ

Fm;i = ∫
A

∑
np

j=1
ξjxijλj K

¼
⋅∇Φj ⋅

→
dA = ∫

A

∑
np

j=1
ξjxijλjKnp

∂Φj

∂xp
dAn;

m = 1;Nv; n;p = 1;2:

ð17Þ

By inspecting Eq. (17), it can be inferred that it is necessary to
evaluate molar densities, molar fraction and mobilities in two
interfaces of each sub-control volume. To evaluate these properties,
an upwind scheme based on Cordazzo (2004) will be used. The
mobilities and other fluid properties are evaluated at the integration
point 1 of Fig. 1, for instance, by

λj1 = λj2 if K
¼
⋅∇Φj ⋅

→

dA j ip1≤0

λj1 = λj1 if K
¼
⋅∇Φj ⋅

→

dA j ip1 N 0
: ð18Þ

Inserting Eqs. (16) and (17) into Eq. (6), the following equation for
each element is obtained:

Accm;i + Fm;i + qi = 0; m = 1;Nv; i = 1;nc + 1: ð19Þ

Eq. (19) denotes the conservation for each sub-control volume of
each element. Now, it is necessary to assemble the equation of each
control volume obtaining the contribution of each sub-control volume
that shares the same vertex. This process is similar to the assembling
of the stiffness global matrix in the finite element method. Fig. 2
presents a control volume around vertex 5 (dark continuous lines)
that will receive contributions from sc1 of element 1, sc3 of element 2,
sc4 of element 6, and sc1 of element 7. It is important to mention that
each control-volume equation can have different permeabilities and
porosities.

4. Test problems

This section presents four simulation case studies using the EbFVM
approach. The first two cases studies were used to validate the present
formulation with another in-house petroleum reservoir simulator
called UTCOMP (Chang et al., 1990). UTCOMP was developed at the
Center for Petroleum and Geosystems Engineering at The University
of Texas at Austin for the simulation of enhanced recovery processes.
UTCOMP is an IMPEC, multiphase/multi-component compositional
equation of state simulator which can handle the simulation of several
enhanced oil recovery processes. Only Cartesian meshes can be used
with UTCOMP. UTCOMP has been validated with several commercial
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Table 2
Corey's model relative permeability data.

Water Oil Gas

End point relative permeability 1.0 1.0 1.0
Residual saturation 0.2 0.1 0.1
Exponent of relative permeability 1.0 1.0 1.0

Fig. 3. Quadrilateral-grid configurations used for case studies 1 and 2. a) 195 control
volumes and b) 619 control volumes.
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codes. Case 1 is the simulation of three-component gas injection in a
quarter-of-five spot with the simultaneous flow of gas and oil. Fig. 3
presents the two-grid configurations used for case 1 and case 2.
Table 1 presents the fluid and physical properties. The relative
permeability data for Corey's model is given in Table 2.

The second case study also refers to gas injection in a quarter-of-
five spot, but now the reservoir contains oil that has been
characterized using six hydrocarbon components. Except for the
initial global molar fraction, all of the previous data presented for case
Table 1
Input data for case 1.

Reservoir data Initial conditions Physical properties
and well conditions

Reservoir dimension
(Lx=Ly=170.69 m, Lz=30.48 m)

Water saturation
Swi=0.17

Water viscosity=
1×10−3 Pa s

Absolute permeability
(Kxx=Kyy=Kzz)=1.0×10−14 m2

(10 mD)

Reservoir
pressure=3.45 MPa
(500 psi)

Gas injection rate=
0.164 m3/s
(500×103 ft3/d)

Porosity=0.35 Overall fraction of
hydrocarbon
components (C1, C3,
C10)=0.3, 0.3, 0.4

Bottom hole
pressure=3.45 MPa
(500 psi)
1 were used. For this case, the components and global molar fractions
are the following: C1 (0.50), C3 (0.03), C6 (0.07), C10 (0.20), C15 (0.15),
and C20 (0.05).

The third case study again refers to a gas injection in a quarter-of-five
spot and the reservoir fluid again was characterized by the same 3
hydrocarbon components used in case 1, but now the effect of a
homogenous and anisotropic tensor is accounted for. For this case, the
following values of K̿ were used: Kxx=Kyy=1.0×10−13 m2 (100 mD),
Kxy=Kyx=1.0×10−14 m2 (10 mD). Instead of Corey's model, we used
theStone IImodel for the relative permeabilities curves. Fig. 4presents the
relative permeabilities curves employed for this case. We also compare
the results obtainedwith theGPAS code using full tensor and corner point
meshes, Marcondes et al. (2008). For this case, we have used three
meshes: one is shown in Fig. 3b, the second is equivalent to the first one,
butnowrotated45° counterclockwise, and the thirdone is a trianglemesh
with 385 control volumes. The latter twomentionedmeshes are shown in
Fig. 5.

The last case study refers to a quarter-of-five spot, but now we
have considered an isotropic and heterogeneous reservoir. Fig. 6
presents the porosity and absolute permeability field investigated. For
this case we have used the quadrilateral mesh shown in Fig. 3b, the
Fig. 4. Relative permeability curves.
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Fig. 6. Absolute permeability and porosity data used for case study 4.

Fig. 5. Quadrilateral and triangular grid configurations used for case study 3. a) 619
control volumes and b) 385 control volumes.
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triangle mesh shown in Fig. 5b, and two more refined quadrilateral
meshes with 1173 and 1915 volumes. Except by the porosity and
absolute permeability data set, the same parameters presented for
case 3 were used in this case study.
5. Results

Fig. 7 presents the results in terms of volumetric rate at standard
conditions for oil, and gas phases for case 1 using two-quadrangular
meshes. The results of this simulation using the UTCOMP simulator in
conjunction with Cartesian grids are also shown. Fig. 7 shows that the
results of the present work using a coarse and a more refined
quadrilateral mesh are very close for both oil and gas rates. Although
the results obtained with UTCOMP simulator do not coincide with the
ones obtained with the EbFVM, it can be inferred that when the mesh
is refined using the UTCOMP simulator the results approach the ones
using EbFVM. For a 120×120 Cartesian mesh the results for both oil
and gas are in between the results using coarse and refined element-
based method. To obtain a close result with Cartesian mesh it was
necessary to use about 73 times more gridblocks compared to the
coarse unstructured mesh whose results are very close to the ones
obtained with the refined unstructured mesh.
The results in terms of volumetric rates of oil and gas rates at
standard conditions obtained for case study 2 are shown in Fig. 8. The
only difference between case studies 1 and 2 is the number of
hydrocarbon components. For this case study, the reservoir fluid was
characterized by 6 hydrocarbon components. Again, the results
obtained in conjunction with the EbFVM for both coarse and refined
meshes for oil and gas rates are very close to each other. Similarly, the
results obtained with UTCOMP clearly approach the ones obtained
using the EbFVMwhen the Cartesian mesh is refined. Mainly, the only
difference when we compare the results obtained with traditional
finite-volume method and EbFVM is the large number of control
volumes necessary for the former approach to obtain approximately
the same solution of the later mentioned approach.

The results for case study 3, the homogeneous anisotropic
reservoir, in terms of volumetric rates at standard conditions of oil
and gas obtained with two quadrilateral meshes and one triangular
mesh are shown in Fig. 9. The results obtained with GPAS in
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Fig. 8. Results for case 2. (a) Oil production rate vs. time and (b) gas production rate vs.
time.

Fig. 7. Results for case 1. (a) Oil production rate vs. time and (b) gas production rate vs.
time.
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conjunctionwith Cartesian full tensor are also shown for two different
meshes.

From Fig. 9, it can be seen that the results obtained using EbFVM
for both quadrilateral and triangles give approximately the same
solution. Also, the results for quadrilateral meshes present a small
mesh orientation effect since the results with andwithout rotation are
close to each other. Once again, if Cartesian meshes are employed it is
necessary to use very refined meshes to obtain results close to the
ones obtained with EbFVM approach.

Fig. 10 presents the results, in terms of oil and gas volumetric rates
at standard condition, for the last case study. This figure shows that
although some differences are observed between the results obtained
using coarse and refined meshes, the differences are not significant.
Also, the results with triangles and quadrilateral meshes were very
similar, demonstrating the small grid orientation effect of the
presented results.
6. Conclusions

An element-based finite-volume approach for compositional
reservoir simulation using unstructured grids based on triangular
and quadrilateral elements was presented. The results for the gas
flooding simulation using triangular and quadrilateral elements were
compared to the results obtained using an in-house simulator called
UTCOMP in conjunction with Cartesian meshes. The results of
UTCOMP using fine meshes were close to that ones obtained using
the EbFVM approach implemented and tested in the present work.
Grid orientation effects observed in the simulation results presented
using EbFVMmethod were small. When these results were compared
to the ones obtained using GPASwith full tensor Cartesian grids, it was
observed that the simulation using Cartesian grids requires many
more gridblocks than the EbFVM approach. For instance, the results
obtained using quadrilateral and triangular elements with 619 and
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Fig. 10. Results for case 3. (a) Oil production rate vs. time and (b) gas production rate vs.
time.

Fig. 9. Results for case 3. (a) Oil production rate vs. time and (b) gas production rate vs.
time.
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319 control volumes, respectively were very close. However, the
results using a Cartesian 64×64 mesh (4096 gridblocks) were far
from the previously mentioned results. In conclusion, the EbFVM
approach was tested for several 2D case studies and based on the
results the method seems to be an excellent method for solving such
problems.
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