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Abstract. The fluid flow in porous media, such as oil reservoirs, is described by complex 

systems of partial differential equations. Several algorithms to solve these equations have 

been and continue to be proposed in the literature, each having different impact on 

convergence rate and computational cost for different scenarios. Numerical formulations 

differ in their nature due to the level of implicitness degree selected, primary variables and 

primary equations, and solution algorithm. Fully Implicit algorithms are remarkably 

important due to their stability, which allows the selection of large time-steps, even for 

complex reservoirs. In this work, a natural variable formulation, in terms of pressure, phase 

mole fractions, and saturations is presented for the compositional reservoir simulation based 

on equation of state using Cartesian grids. In this algorithm, the flow equations are 

decoupled from the constraint equations (equilibrium relationships) through a Gaussian 

elimination, significantly reducing the number of variables to be solved in the linear system 

arising from the discretization of the partial differential equations. The model implemented 

considers an arbitrary number of components; up to four-phase flow; no mass transfer 

between the hydrocarbon phases and the aqueous phase; permeability heterogeneity and 

anisotropy; advection and dispersion. The natural variable formulation is validated with an 

IMPEC formulation. The results are compared in terms of production data, saturation fronts, 

and computational cost. It is observed that this new formulation is extremely robust, has low 

computational cost and requires a low number of iterations per time-step. 

Keywords: Natural Variable; Fully Implicit Approach; Compositional Reservoir Simulation  
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1  INTRODUCTION 

Numerical tools for simulating oil and gas flow in the subsurface and its production are 

known as reservoir simulators. Most numerical simulators developed assume the oil and gas 

to be characterized by a single and distinct component. Such model is known as the black-oil 

model and it obviously fail to describe phenomena such partial vaporization and 

condensation, gas retrograde condensation, among other processes. In order to model such 

processes, more components and an equation of state (EoS) that can describe properly the 

phase behavior are needed. Models that consider such features are called EoS based 

compositional reservoir models. Due to the coupling of the phase behavior and the material 

balance equations, several different algorithms can be developed and used to solve the fluid 

flow with this model. In this paper, special attention is given to the fully implicit algorithms 

for the compositional reservoir simulation due to its unconditional stability, which allows the 

algorithm to use larger time-steps for real field reservoirs when compared to other classes of 

algorithms. 

The use of fugacities and an EoS was introduced into the reservoir simulation community 

by Fussell and Fussel (1979) through an IMPEC formulation (Implicit pressure, explicit 

compositions). It was readily followed by Coats (1980) who proposed the Natural Variable 

formulation. A very successfully fully implicit approach that is still being investigated and 

implemented. Other authors have implemented various fully implicit formulations in the 

literature (Chien et al., 1985; Collins et al., 1992, Wang et al., 1997; Fernandes et al., 2016; 

just to name few). Santos et al. (2013) tested several fully implicit, IMPSAT, and IMPEC 

approaches and notice that the natural variables formulation was, in general, more 

successfully than the other approaches tested. Several other IMPEC approaches for 

compositional simulation were also considered through the years (Nghiem et al., 1981; Young 

and Stepheson, 1983; Acs et al., 1985; to mention few). 

The Coats formulation, or Natural Variables formulation, considers nc+1 components, 

where nc represents the number of hydrocarbon components and the extra component is the 

water, which result in nc+1 components. Therefore, nc+1 material balance equations are 

required. The primary variables considered by this approach are the pressure, phase 

compositions, and saturations. The fugacity equalities are used as constraint equations. 

In this work, the natural variables formulation is implemented and tested. It is 

implemented into the University of Texas Compositional Reservoir Simulator (UTCOMPRS). 

UTCOMPRS is a powerful tool initially developed by Chang (1990), Chang et al. (1990), 

Perschke (1988), Perschke et al. (1989a), and Perschke et al. (1989b) that considers up to four 

phase flow (water, oil, gas, and a second oleic phase) with rigorous flash and phase stability 

calculations. UTCOMPRS was originally implemented with the Acs et al. (1985) IMPEC 

approach for Cartesian grids and has been the subject to several improvements and the 

addition of new capabilities. 

2  GOVERNING EQUATIONS 

This work considers the isothermal multiphase flow in the porous media. The velocities 

are modelled according to the multiphase Darcy’s law. Mass transfer between the aqueous 
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phase and hydrocarbon phases is neglected. Flow of up to four phases is considered, where 

the phase equilibria is applied only to the hydrocarbon phases. Advection and dispersion are 

both considered. The model is also prepared to handle reservoir heterogeneity and inactive 

cells. 

The material balance for each hydrocarbon component can be written as 

    ,    ,...,

np

rjk k
kj j j j j j ij ij c

b j bj

kN q
x K P g D S x k n

V t V
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


  
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

2

1
1 , (1) 

and for water 
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  

1
, (2) 

where Pj is the pressure of phase j, krj, ξj, and μj are the relative permeability, the molar 

density, and viscosity of phase j, respectively. K  is the absolute permeability tensor, Vb is the 

bulk volume, xkj is the molar fraction of component k in phase j, kq  is the source/sink term of 

component k due to the producing/injecting well, ρj is the mass density of phase j, g is the 

gravity acceleration, D is the depth, which is positive in the downward direction, Sj is the 

saturation of phase j, ϕ is the porosity, and ij  is the dispersion tensor of component i in 

phase j. Herein, the subscript w stands for water component or phase, and will be used 

interchangeably along with the subscripts 1, for aqueous phase, and nc+1 for the water 

component. Similarly, subscripts 2 and o stands for oil phase, 3 and g for gas phase, and 4 and 

l stand for a second oleic phase. In UTCOMPRS, the phase pressures are computed with 

respect to the oleic pressure according to the capillary relationship 

         ,...,j cjo pP P P j n   1 , (3) 

where P is the oleic pressure and Pcjo is the capillary pressure of phase j with respect to the 

reference phase (oil). 

The dispersion considers both molecular and mechanical dispersion and the Young 

(1990) model, Chang (1990). 

The Peng-Robinson equation of state (EOS) (Peng and Robinson, 1976) is used to 

compute density and fugacities. Phase appearance and disappearance is treated using a 

stability test calculation. Two phase stability test algorithms are implemented in the 

UTCOMPRS simulator: the stationary point location method (Michelsen, 1982) and the Gibbs 

free energy minimization algorithm that is similar to the Trangenstein (1987) method and was 

modified by Perschke (1988) to deal with the equilibrium of three hydrocarbon phases. Phase 

disappearance is also considered when the saturation of a phase goes below zero. 

The constraint equations are the fugacity equalities given as 

ln ln          ,..., ,     ,...,kj kr p cf f j n k n   0 3 1 , (4) 

where fij is the fugacity of component i in phase j, and r is a reference phase. 
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3  APPROXIMATE EQUATIONS 

The finite volume method is used to obtain the approximate equations for the material 

balances. Integrating Eqs. (1) in time and into the Cartesian control volume presented in Fig. 

1, evaluating all variables implicitly, and using the residual form, one obtains 

 , , , , , , , , ,

, , , , , ,                                   

             

np

N n n n n n n n n

k p k p k p kj e kj w kj n kj s kj f kj b
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1 1 1 1 1 1 1

2

1 1 1 1 1 1
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,                                                                       ,     ,..., ,n

k p ctq k n 1 1

, (5) 

where Fkj,e is the advective mole flux of component k in phase j through the interface e and 

Jkj,e is the dispersive mole flux of component k in phase j through the interface e. The 

advective mole fluxes are written as 

   , , , ,

n n n n n n n n n

kj r kj j j r R p cjr R cjr p j r R pr
F x T P P P P g D D                

 
1 1 1 1 1 1 1 1 1 , (6) 

where Tr is the transmissivity at the interface r, and r is any interface (e, w, n, s, f, or b) and R 

is the gridblock that shares interface r with the gridblock P. 

 

Figure 1. Illustration of a Cartesian Control-Volume with indexations according to Maliska 

(2004). 

The dispersive mole fluxes in the x-direction are computed as 
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The dispersive mole fluxes for the other interfaces are obtained similarly. 

The constraint equations for each grid block are given by Eq. (4). In the residual form, 

this restriction is given by 

, ,ln ln          ,..., ,     ,...,F

kj P kj P kr p cR f f j n k n   3 1 , (9) 

4  NATURAL VARIABLES FORMULATION 

In the natural variables formulation, the unknowns are the reference pressure, np-1 

saturations, and (np-1)(nc-1) compositions. All other variables are determined through material 

balance constraints or other relationships. The total number of unknowns per gridblock is then 

np+(np-1)(nc-1). However, through the Gibbs phase rule and knowing that temperature does 

not change for the isothermal considered in this work, one can observe that only nc+1 

equations will determine the whole system, thanks to the thermodynamics relationships (the 

fugacity equality). These nc+1 unknowns are called primary variables, and the rest of the 

unknowns are the secondary variables. In this formulation, pressure and saturations are 

always considered primary variables, while nc+1-np are phase compositions. Since Equations 

(5) and (9) are strongly non-linear, the Newton-Raphson method is used in order to obtain the 

solution. Through Newton’s method one obtains 

n n n

k k kJ x r    1 1 1 , (10) 

where n

kx  1  are the changes in the primary variables at iteration k, n

kr
1  are the residues of 

the volume balance and material balances at iteration k, and 
n

kJ 1
 is the Jacobian matrix at 

iteration k. For better illustration, Eq. (10) is written for a 1D grid using a blocked Jacobian, 

blocked vector unknowns, and blocked vector residues vector below. 
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where Ai,j is the matrix with the derivatives of the material balance residues of gridblock i 

with respect to the primary variables of gridblock P, Bi,j is the matrix with the derivatives of 

the material balance residues of gridblock i with respect to the secondary variables of 

gridblock P, Ci is the matrix with the derivatives of the fugacity residues of gridblock i with 

respect to the primary variables of gridblock i, and Di is the matrix with the derivatives of the 

fugacity residues of gridblock i with respect to the secondary variables of gridblock i. 

Solving the whole system is too expensive. However, one may notice that C and D are 

present only on main diagonals, once the fugacities are functions only of the gridblock 

unknowns. Due to this fact, a Gaussian elimination can be used to make all B’s zero in the 

matrix of Eq. (11). Once B is eliminated, the secondary variables can be decoupled from the 

primary variables. To do so, the row that corresponds to the secondary variables is multiplied 

by the inverse of D, resulting in 
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 (12) 

The row of the secondary variables is then multiplied by B and subtracted from the row 

of the primary variables 
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With the B from the main diagonal eliminated, one can proceed the eliminating of the off 

diagonal B. 
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where nnb is the number of neighbors from the gridblock, considering itself as a neighbor, and 

vk is the index of that neighbor (P, E, W, N, S, F, B). After B is eliminated, it can be observed 

that the secondary variables can be obtained as 

1 1
SP P SP P P PPX D R D C X     , (15) 

and the linear system from Eq. (14) can be rewritten as 
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Equation (16) is used to update the primary variables, followed by Eq. (15) to update the 

secondary variables. The procedure presented here can be easily extended to 2D and 3D grids. 

In fact, it can be extended for any type of grid (structured corner point or unstructured grid). 

5  RESULTS 

In this work, four case studies are investigated. The first case study considers CO2 

injection in a heterogeneous reservoir at constant surface rate. The second case is very similar 
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to the first, but the reservoir has an irregular geometry that is discretized using inactive cells, 

and is strongly heterogeneous. Also, the CO2 rich fluid is injected at a constant bottom hole 

pressure. The third case is a gas/solvent injection in a heterogeneous reservoir, which contains 

a gas cap initially. Finally, the last case study considers the CO2 injection in a heterogeneous 

reservoir with irregular geometry. This case differs from all the cases, because it considers up 

to three hydrocarbon phases. The results are compared with the IMPEC formulation originally 

implemented into UTCOMPRS whenever possible. IMPEC scheme require a limited time-

step due to instability issues. Using these approaches alone for heterogeneous reservoirs may 

be a very challenging problem. Despite of this, we can combine both fully implicit and 

IMPEC algorithms to further enhance performance while keeping the stability, but this will 

not be treated in this work. All reservoir geometry and heterogeneity maps are synthetic and 

were developed to test UTCOMPRS with very challenging cases. 

The first case study considers a reservoir with heterogeneity in the permeabilities in the X 

and Y directions. Also, twenty three wells injecting at constant rate are considered in this 

case. A 153x77x10 grid is used. The permeability in X is equals to the permeability in Y and 

the absolute permeability field is presented in Figure 2. 

  

Figure 2. Permeability (10-13 m2) in X- and Y- directions distribution for Case 1 (reservoir 

dimensions in feet). 

The reservoir data for this case is presented in Table 1. No physical dispersion is 

considered in this run and the simulation was performed up to 2190 simulation days (about 

0.22 PVI). 

A comparison of the oil and gas production rates between the natural variables fully 

implicit approach implemented in this work and the IMPEC approach is presented in Figure 

3, where it can be observed that a good match of the results are obtained. The time-stepping 

profile is presented in Figure 4, where we can observe that the IMPEC approach was able to 

reach time-step size up to 1 day. Through our tests, any further increase in this time-step 

would cause the simulation to eventually fail or cause non-physical oscillation in the solution. 

On the other hand, the FI approach implemented in this work performed the run mostly at the 

maximum time-step that was set to 20 days. In fact, it was observed that the FI simulation 

could be carried out using even large time-steps, but this could lead to unsatisfactory results. 
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Table 1. Reservoir data for Case 1. 

Property Value 

Length, width, and thickness 1865.37 m, 938.78 m, and 121.92 m 

Reference Porosity 0.30 

Initial Water Saturation 0.25 

Initial Pressure 20.68 MPa 

Permeability in z direction 9.87×10-15 m2 

Formation Temperature 299.82 K 

Gas Injection Rate 4.92 m3/s (internal wells), 2.46 m3/s (lateral 

wells), 1.23 m3/s (corner wells) 

Producer’s Bottom Hole Pressure 20.68 MPa 

Reservoir initial composition (CO2, C1, and nC16) 0.01, 0.19, and 0.80 

Injection fluid composition (CO2, C1, and nC16) 0.95, 0.05 and 0.00 

 

 

(a) 

 

(b) 

Figure 3. Production rates for case study 1. a) Oil and b) gas. 
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Figure 4. Time-step profile for Case 1. 

A very good match of the gas saturation field at 2190 days of simulation time can be 

observed in Figure 5. 

 

(a) 

 

(b) 

Figure 5. Gas saturation field for Case 1 at 2190 (grid sizes in feet). a) IMPEC; and b) Natural 

Variables FI. 

The comparison between the CPU times for the IMPEC and natural variables approach is 

presented in Table 2, where it can be observed that the natural variables is considerably faster 

than the IMPEC approach. 

Table 2. CPU Time for Case 1. 

Formulation CPU Time (s) Normalized CPU Time 

IMPEC 1810.27 1.00 

Natural Variables FI 938.59 0.52 
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The second case is very similar to the first. However, we replaced the reservoir formation 

with a more complex one and the injector wells now inject fluid at a constant bottom hole 

pressure of 21.37 MPa. A 200x400x25 grid is considered, but only 465,816 cells are actually 

active (about 23% of all gridblocks). Forty-three wells are considered. In the approach 

implemented here, inactive cells are not allocated and are not included in any calculation, 

reducing both CPU time and memory required for the runs. The reservoir geometry is 

presented in Figure 6. The distance from the gridblock center to the reservoir top is colored 

within the grid. The porosity and permeability maps are presented in Figure 7. 

 

Figure 6. Depth from the gridblock center to the reservoir’s top in meters for Case 2 

(reservoir dimensions in feet). 

 

(a) 

 

(b) 

 

(c) 

Figure 7. Permeability and porosity maps for Case 2 (reservoir dimensions in feet). a) 

permeability in X and Y directions (10-13 m2); b) permeability in Z direction (10-13 m2); and c) 

porosity. 

The oil and gas production rates are presented in Figure 8, but they are not compared to 

the IMPEC approach because it could not finish the simulation, properly. 
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(a) 

 

(b) 

Figure 8. Production rates for Case 2. a) Oil and b) gas. 

The gas saturation field at 1000 days is presented in Figure 9. 

 

Figure 9. Gas saturation field at 1000 days for Case 2. 

The time-step profile is presented in Figure 10. 

 

Figure 10. Time-step profile for Case 2. 

The CPU time for this run was 10,881.54 seconds. 
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The third case study considers a gas/solvent injection based on the SPE comparison 

project presented by Killough and Kossack (1987). The reservoir data is presented in Table 3. 

Notice that dispersion is considered in this case. Heterogeneity in the permeabilities is 

considered and presented in Figure 11. 

Table 3. Reservoir data for Case 3. 

Property Value 

Length, width, and thickness 
170.688 m, 170.688 m, and 

30.48 m 

Reference Porosity 0.35 

Initial Water Saturation 0.30 

Initial Pressure 10.34 MPa 

Formation Temperature 344.26 K 

Longitudinal Dispersivity 4.74 m 

Transverse Dispersivity 0.47 m 

Longitudinal parameter for Young’s Dispersion 0.91 

Transverse parameter for Young’s Dispersion 0.91 

Gas Injection Rate 0.328 m3/s 

Producer’s Bottom Hole Pressure 8.96 MPa 

Reservoir’s initial composition (C1, C3, C6, C10, C15, and C20) 
0.50, 0.03, 0.07, 0.20, 0.15, 

and 0.05 

Injection fluid composition (C1, C3, C6, C10, C15, and C20) 
0.77, 0.20, 0.01, 0.01, 0.005 

and 0.005 
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(a) 

 

(b) 

Figure 11. Permeability distribution (10-13 m2) for Case 3. a) X and Y directions and b) Z 

direction. 

A comparison of the production rates obtained with the natural variables against the 

IMPEC is presented in Figure 12, where a good match can be observed. 

 

(a) 

 

(b) 

Figure 12. Production rates for Case 3. a) Oil and b) gas. 

A comparison of the gas saturation field at 1000 days is presented in Figure 13, where a 

good agreement can also be observed between the IMPEC and the Natural Variable approach. 
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(a) 

 

(b) 

Figure 13. Gas saturation field for Case 3 at 1000 (grid scale in feet). a) IMPEC and b) 

Natural Variables FI. 

The time-step profile presented in Figure 14 shows a very steady time-step for all 

formulations. The time-step for the IMPEC formulation is set to not exceed 0.005 days due to 

the inclusion of oscillations in the production curves and simulation crash. Therefore, one can 

observe an increase in the time-step of about 4000 times in this case for the FI compared to 

the IMPEC approach. It was observed that this excessive decrease in time-step size of the 

IMPEC approach is much related to the effect of dispersion, since the time-step for IMPEC 

are much larger when dispersion is not considered. As a consequence of such small time-step, 

the CPU time used for the IMPEC run is considerably bigger than that of the natural variables 

as presented in Table 4. 

 

Figure 14. Time-step profile for Case 3. 
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Table 4. CPU time for Case 3. 

Formulation CPU Time (s) Normalized CPU Time 

IMPEC 703,501.81 1.00 

Natural Variables FI 16,656.82 0.024 

The last case study considers a CO2 injection in an irregular and heterogeneous reservoir. 

The reservoir fluid is the BSB west Texas Oil (Khan et al., 1992) and considers 7 

hydrocarbon components. A 200x200x10 grid is used with 99,816 active cells (about 25% of 

the total cells) and 13 wells. The importance of this case here is to present the capability of 

our approach to simulate the four phase flow. Herein, a second liquid hydrocarbon phase is 

formed. The reservoir data is summarized in Table 5. Dispersion, is also considered for this 

case. The reservoir geometry is presented in Figure 15. The distance from the gridblock center 

to the reservoir top is colored within the grid. The porosity and permeability maps are 

presented in Figure 16. The permeability in Z direction is 10 times smaller than those in X 

and Y directions. 

 

Table 5. Reservoir data for Case 4. 

Property Value 

Length, width, and thickness 1219.2 m, 1219.2 m, and 60.96 m 

Initial Water Saturation 0.25 

Initial Pressure 7.58 MPa 

Formation Temperature 313.706 K 

Longitudinal Dispersivity 4.74 m 

Transverse Dispersivity 0.47 m 

Longitudinal parameter for Young’s Dispersion 9.1 

Transverse parameter for Young’s Dispersion 9.1 

Injector’s Bottom Hole Pressure 8.62 MPa (all injectors) 

Producer’s Bottom Hole Pressure 7.58 MPa (all producers) 

Reservoir’s initial composition (CO2, C1, C2-3, C4-6, 

C7-15, C16-27, and C28+) 

0.0337, 0.0861, 0.1503, 0.1671, 0.3304, 

0.1611, and 0.0713 

Injection fluid composition (CO2 and C1) 0.95, 0.05 



B.R.B. Fernandes, K. Sepehrnoori, F. Marcondes 

CILAMCE 2017 

Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering 

P.O. Faria, R.H. Lopez, L.F.F. Miguel, W.J.S. Gomes,  M. Noronha (Editores), ABMEC, Florianópolis, SC, 

Brazil, November 5-8, 2017. 

 

 

Figure 15. Depth from the gridblock center to the reservoir’s top in meters for Case 4 

(reservoir dimensions in feet). 

 

(a) 

 

(b) 

Figure 16. Permeability and porosity maps for Case 4 (reservoir dimensions in feet). a) 

permeability in X and Y directions (10-13 m2) and b) porosity. 

The oil and gas production rates are presented in Figure 17, but once again, they are not 

compared to the IMPEC approach because it could not finish the simulation properly. 

 

(a) 

 

(b) 

Figure 17. Production rates for Case 4. a) Oil and b) gas. 
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The gas saturation, second liquid saturation, and CO2 overall composition at 2000 days of 

simulation are presented in Figure 18. 

 

(a) 

 

(b) 

 

(c) 

Figure 18. Fields for Case 4 at 2000 (grid scales in feet). a) Gas saturation; b) second liquid 

saturation; and c) CO2 overall mole fraction. 

The time-step profile is presented in Figure 19. The run was completed in 148,358.95 

seconds. 

 

Figure 19. Time-step profile for Case 4. 
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6  CONCLUSIONS 

In this work, the implementation of the natural variables fully implicit approach for a 

compositional reservoir simulation was presented. The new implementation considered 

advection, dispersion, up to four phases flow, and inactive cells, to mention some of the 

capabilities. 

The new implementation was compared to the originally implemented IMPEC, which has 

been previously benchmarked with commercial simulators. The case studies presented 

considered heterogeneous properties and some cases considered irregular reservoir geometry. 

Such scenarios were really challenging for the IMPEC approach, which was not able to run 

any of the cases with inactive cells presented here, due to the complex phase behavior and 

large heterogeneity present in these cases. For the cases that IMPEC was able to run, the CPU 

time was excessive when compared to the natural variable implemented. Finally, the approach 

implemented was successful in running all cases. 
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