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“Believe and act as if it were impossible to
fail” - Charles Kettering.



ABSTRACT

This Thesis deals with the local null control of a free-boundary problem for the 1D
semilinear heat equation with distributed controls (locally supported in space) or bound-
ary controls (acting at x = 0). we prove that, if the final time T is fixed and the initial
state is sufficiently small, there exists controls that drive the state exactly to rest at
time t = T . Furthermore, we analyze the null controllability of a 1D nonlinear sys-
tem which models the interaction of a fluid and its boundary. The fluid is governed
by the viscous Burgers equation and the distributed controls. Lastly, we deal with the
3D Navier-Stokes and Boussinesq system, posed in a cube. In this context, we prove a
result concerning its global approximate controllability by means of boundary controls
which act in some part of cube faces.

Keywords: controllability, free-boundary, parabolic systems of PDEs.
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1 INTRODUCTION

This Thesis deals with the controllability of several systems governed by
nonlinear PDEs. First, the local null controllability of a free-boundary problem for the
1D semilinear heat equation. It is presented in Section 2, where the information are
from the recent work, Fernández-Cara and De Sousa (in preparationa).

We also are interested local null controllability of a free-boundary problem
for the viscous Burgers equation. This is explored in Section 3, where the material
comes from Fernández-Cara and De Sousa (in preparationb).

Finally, some remarks concerning the global approximate controllability of
the Boussinesq and Navier-Stokes systems are given in Section 4. This stems from
Fernández-Cara, De Sousa and De Brito Viera (in preparation).

This section is devoted to the controllability of systems governed by linear
heat equation. We will try to explain which is the meaning of controllability and which
kind of controllability properties can be expected. The main related results, together
with the main ideas in their proofs, will be recalled. Also, some controllability results
for several nonlinear systems from fluid mechanics, like the Burgers, Navier-Stokes
and Boussinesq systems, will be included. Finally, in Subsection 1.5, we review the
main contributions in Sections 2, 3 and 4.

1.1 Basic results for the linear heat equation

This subsection is dedicated to the controllability of the linear heat equa-
tions. I will try to explain which is the meaning of controllability and which kind of
controllability properties can be expected.

Let Ω ⊂ RN be a bounded domain, with boundary Γ of class C2. Let ω be an
open and non-empty subset of Ω and T > 0. Let us consider the linear controlled heat
equation in the cylinder Q = Ω× (0, T )

yt −∆y = v1ω in Q,

y = 0 in Σ,

y(x, 0) = y0(x) on Ω.

(1)

In (1), Σ = Γ × (0, T ) is the lateral boundary of Q, 1ω is the characteristic
function of the set ω, y = y(x, t) is the state and v = v(x, t) is the control. As v is
multiplied by 1ω, the action of the control is limited to ω × (0, T ). Assume That y0 ∈
L2(Ω) and v ∈ L2(ω × (0, T )), so that (1) admits a unique solution

y ∈ C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)).

We will define R(T ; y0) := {y(·, T ) : v ∈ L2(ω × (0, T ))}. Then,
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(a) It is said that system (1) is approximately controllable (at time T ) if R(T ; y0) is dense
in L2(Ω) for all y0 ∈ L2(Ω).

(b) It is said that system (1) is exactly controllable if R(T ; y0) = L2(Ω) for all y0 ∈ L2(Ω).
(c) It is said that system (1) is null controllable if 0 ∈ R(T ; y0) for all y0 ∈ L2(Ω).

We will show below that approximate and null controllability hold for every
non-empty open set ω ⊂ Ω and every T > 0. On the other hand, it is clear that exact
controllability cannot hold, except possible in the case in which ω = Ω. Indeed, due to
the regularizing effect of the heat equation, the solution of (1) at time T are smooth in
Ω \ ω.

Our first main result is the following:
Theorem 1.1. System (1) is approximately controllable for non-empty open set ω ⊂ Ω and
any T > 0.

Proof. This is an easy consequence of Hahn-Banach theorem. For completeness, we
will reproduce the argument here.

Let us fix ω and T > 0. Then, it is clear that 1 is approximately controllable if
and only if R(T ; 0) is dense in L2(Ω). But this is true if and only if ϕT in the orthogonal
complement R(T ; 0)⊥ is necessarily zero.

Let ϕT ∈ L2(Ω) be given and assume that belongs to R(T ; 0)⊥. Let us intro-
duce the following backwards in time system:

−ϕt −∆ϕ = 0 in Q,

ϕ = 0 in Σ,

ϕ(x, T ) = ϕT (x) on Ω.

(2)

Then, if v ∈ L2(ω × (0, T )) is given and y is solution to (1) with y0 = 0, we
have ∫∫

ω×(0,T )

ϕv dx dt =

∫
Ω

ϕT (x)y(x, T ) dx = 0.

Consequently, approximate controllability holds if and only if the following
uniqueness property is true: If ϕ solve (2) and ϕ = 0 in ω × (0, T ), then necessarily
ϕ ≡ 0, i.e. ϕT = 0.

But this is a well known uniqueness property for the heat equation, a con-
sequence of the fact that the solution to (2) are analytic in space. This proves that
approximate controllability holds for (1).

Let us now analyze the null controllability of (1). The other important result
is the following:
Theorem 1.2. The following observability inequality for the adjoint system (2)
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‖ϕ(·, 0)‖2
L2(Ω) ≤ C

∫∫
ω×(0,T )

|ϕ|2 dx dt ∀ϕ0 ∈ L2(Ω). (3)

implies the null controllability of (1)

Proof. We divide the proof into two steps. First, we build a sequence of controls vε ∈
L2(ω× (0, T )) with ε > 0 which provide the approximate controllability of (1). Second,
we pass to the limit when ε tends to zero and we conclude.

Step 1. Let y0 ∈ L2(Ω) and ε > 0 be given. Let us introduce the function Jε,
with

Jε(ϕ
0) =

1

2

∫∫
ω×0,T

|ϕ|2 dx dt+ ε‖ϕT‖L2(Ω) + (ϕ(0), y0)L2(Ω) (4)

for every ϕT ∈ L2(Ω). Here, ϕ is solution of (2) associated to the initial
condition ϕT . Using (3), it is not difficult to check that Jε is strictly convex, continuous,
and coercive in L2(Ω), so it possesses a unique minimum ϕTε ∈ L2(Ω), whose associated
solution is denoted by ϕε. Let us now introduce the control vε = ϕε1ω, and let us denote
by yε the solution (1) associated to vε.

Let y1 be the final state of the solution to (1) with vanishing control. Let us
remark that the unique interesting case to be studied turns out to be when ‖y1‖L2(Ω) > ε

since this is equivalent to ϕTε 6= 0. See (FABRE, PUEL, and ZUAZUA, 1995) for more
details. Under this assumption, we can differentiate the functional Jε at ϕTε and obtain
a necessary condition for Jε to reach a minimum at ϕTε . Consequently,

∫∫
ω×(0,T )

ϕεϕdx dt+ ε

(
ϕTε

‖ϕTε ‖L2(Ω)

, ϕT
)

+ (ϕ(0), y0)L2(Ω) = 0 (5)

for every ϕT ∈ L2(Ω).
Using the above equation and (3) for ϕT = ϕTε , we obtain ‖vε‖ω×(0,T ) ≤√

C‖y0‖L2(Ω), where C is the observability constant of (3).
Since system (1) and (2) are in duality, we have∫∫

ω×(0,T )

ϕεϕdx dt = (yε(T ), ϕT )L2(Ω) − (y0, ϕ(0))L2(Ω), (6)

which, combined with (5), yields

‖yε(T )‖L2(Ω) ≤ ε. (7)

Step 2. Since the sequence {vε} is bounded in L2(ω × (0, T )), it possesses a
weakly convergent subsequence to certain v ∈ L2(ω× (0, T )). Using classical parabolic



14

estimates we deduce that, at least for a subsequence,

yε → y weakly in L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)), (8)

where y is the solution of (1) with control v. In particular, this gives weak convergence
for {yε(t)}(t ∈ [0, T ]) in L2(Ω) so we have y(T ) = 0.

Three important comments,
1. We have proved that (3) implies null controllability with a control that satisfies

‖v‖ω×(0,T ) ≤
√
C‖y0‖L2(Ω),

where C is the observability constant.
Conversely, if we have null controllability with controls v ∈ L2(ω × (0, T )) that
satisfy

‖v‖ω×(0,T ) ≤
√
C‖y0‖L2(Ω)

for some constant C > 0, then it can be checked that we have (3) with the same
constant C.

2. It is possible to present a similar argument in a general frame. Let us consider
three Hilbert spaces U,H,E and two linear continuous operators L ∈ L(U ;E)

and M ∈ L(H;E). Then we have

‖m∗ϕT‖H ≤ C‖L∗ϕT‖U ′ , ∀ϕT ∈ E ′

for some positive constant C if and only if R(M) ⊂ R(L) and, moreover,

∀y0 ∈ H,∃v ∈ U ;Lv = My0, ‖v‖U ≤ C‖y0‖H .

Properties of this kind have been established and analyzed for the first time in the
framework of control theory in (RUSSELL, 1973). They have been successfully
used in many different contexts in recent years.

3. We have to know that the estimates (3) are implied by the so called global Carle-
man inequalities. These have been introduced in the context of the controllability
of PDEs by Fursikov and Imanuvilov; see IMANUVILOV (1995); FURSIKOV and
IMANUVILOV (1996a). When they are applied to the solutions to the adjoint sys-
tem (2), they take the form∫∫

Ω×(0,T )

ρ−2|ϕ|2 dx dt ≤ K

∫∫
ω×(0,T )

ρ−2|ϕ|2 dx dt, ∀ϕT ∈ L2(Ω), (9)

where ρ = ρ(x, t) is an appropriate weight depending on Ω, ω and T and the
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constant K only depends on Ω and ω. Combining (9) and the and the dissipative
backwards heat equation (2), it is not difficult to deduce (3) for some C only
depending on Ω, ω and T .

1.2 Positive and negative controllability results for the Burgers equation

In this subsection, we will be concerned with the null controllability of the
following system for the viscous Burgers equation:

yt + yyx − yxx = v1ω, (x, t) ∈ (0, 1)× (0, T )

y(0, t) = y(1, t) = 0, t ∈ (0, T )

y(x, 0) = y0(x), x ∈ (0, 1)

(10)

Some controllability properties of (10) have been studied in (FURSIKOV and
IMANUVILOV, 1996a) (see Chapter 1, theorems 6.3 and 6.4). There, it is shown that, in
general, a stationary solution of (10) with large L2-norm cannot be reached (not even
approximately) at any time T. In other words, with the help of one control, the Burgers
solutions cannot go anywhere at any time.

For each y0 ∈ L2(0, 1), let us define

T (y0) = inf{T > 0 : (10) is null controllable at time T}.

Then, for each r > 0, let us define the quantity

T ∗(r) = sup{T (y0) : ‖y0‖L2(0,1) ≤ r}.

Our main intention is to show that T ∗(r) > 0, with explicit sharp estimates
from above and from below. In particular, this will imply that (global) null controlla-
bility at any positive time does not hold for (10). Indeed, let us set φ(r) = (log 1

r
)−1. We

have the following result from (FERNÁNDEZ-CARA and GUERRERO, 2007):
Theorem 1.3. One has

C0φ(r) ≤ T ∗(r) ≤ C1φ(r) as r → 0, (11)

for some positive constants C0 and C1 not depending of r.
Remark 1.1. The same estimates hold when the control v acts on system (10) through
the boundary only at x = 1 (or x = 0). Indeed, it is easy to transform the boundary
controlled system

yt + yyx − yxx = 0, (x, t) ∈ (0, 1)× (0, T )

y(0, t) = 0, y(1, t) = w(t), t ∈ (0, T )

y(x, 0) = y0(x), x ∈ (0, 1)

(12)
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into a system of the kind (10) The boundary controllability of the Burgers
equation with two controls (x = 0 and x = 1) was analyzed in (GUERRERO and
IMANUVILOV, 2007). This paper show that even in this more favorable situation null
controllability does not hold for small time. Moreover, it is proved in that work that
exact controllability does not hold for large time. 2

Remark 1.2. It is proved in (CHAPOULY, 2009) that the Burgers equation is globally
null controllable when we act on the system through two boundary controls and an
additional right hand side only depending on t. In other words, for any y0 ∈ L2(0, 1),
there exist w1, w2 and h in L2(0, T ) such that the solution to


yt + yyx − yxx = h(t), (x, t) ∈ (0, 1)× (0, T )

y(0, t) = w1(t), y(1, t) = w2(t), t ∈ (0, T )

y(x, 0) = y0(x), x ∈ (0, 1)

(13)

satisfies

y(x, T ) = 0, x ∈ (0, 1).

However, it is unknown whether this global property is conserved when one of the
boundary controls w1 or w2 is eliminated. 2

The proof of the estimate (13) can be obtained by solving the null controlla-
bility problem for (10) via a standard fixed point argument, global Carleman inequali-
ties to estimate the control and energy inequalities to estimate the state and being very
careful with the role of T in these inequalities.

The proof of the below estimate was inspired by the arguments from (ANITA
and TATARU, 2002) and implied by the following property: there exist positive con-
stants C0 and C ′0 such that, for any sufficiently small r > 0, we can find initial data y0

and associated states y satisfying ‖y0‖ ≤ r and

|y(x, t)| ≥ C ′0r for some x ∈ (0, 1) and 0 < t < C0φ(r).

For more details, see (FERNÁNDEZ-CARA and GUERRERO, 2007).

1.3 Controllability results for Navier-Stokes and Boussinesq systems

In this subsection, N = 2 or N = 3. The controllability properties of the
Navier-Stokes system have been the subject of intensive research these last years. The
question was first treated by Lions in (1990), where approximate controllability was con-
jectured. This was followed by several papers, where many partial answers were
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furnished such as (CORON, 1996), (CORON and FURSIKOV, 1996) and (LIONS and
ZUAZUA, 1998). Concerning null controllability and exact controllability to the trajec-
tories, the first local results were given in (FURSIKOV and IMANUVILOV, 1996b). In
this part we deal with the local exact controllability of the Navier-Stokes system with
distributed controls.

Let Ω ⊂ RN be a bounded connected open set. Let ω ⊂ Ω be non-empty
open subset and let T > 0. We will use the notation Q = Ω× (0, T ) and Σ = ∂Ω× (0, T )

and we will denote by n(x) the outward unit normal to Ω at the point x ∈ ∂Ω. We have
the well known Navier-Stokes equations:

ut −∆u+ (u,∇)u+∇p = v1ω, in Q,

∇ · u = 0, in Q,

u = 0, on Σ,

u(0, x) = u0(x), in Ω.

(14)

The pair (u, p) is the state (the velocity field and the pressure distribution)
and v is the control (a field forces applied to the fluid particles located at ω).

Let us recall the definition of some usual spaces in the context of Navier-
Stokes system.

V = {u ∈ H1
0 (Ω)N : ∇ · u = 0 in Ω}

and

H = {u ∈ L2(Ω)N : ∇ · u = 0 in Ω, y · n = 0 on ∂Ω}.

Let us now introduce the concept of exact controllability to the trajectories for
the Navier-Stokes system. For any trajectory (u, p), i.e. any solution of the uncontrolled
Navier-Stokes system 

ut −∆u+ (u,∇)u+∇p = 0, in Q

∇ · u = 0, in Q

u = 0, on Σ

u(0, x) = u0(x), in Ω.

(15)

Here, u0 ∈ H , there exist controls v ∈ L2(ω × (0, T ))N and associated solution (u, p)

such that

u(x, T ) = u(x, T ), x ∈ Ω. (16)

At the moment, we do not know any global result concerning exact control-
lability to the trajectories for (14). However, the following local result holds:
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Theorem 1.4. Let (u, p) be a strong solution of (15), with

u ∈ L∞(Q)N , u(·, 0) ∈ V.

Then, there exists δ > 0 such that, for any u0 ∈ H ∩ L2N−2(Ω)N satisfying

‖u0 − u0‖L2N−2(Ω)N ≤ δ,

we can find a control v ∈ L2(ω × (0, T ))N and an associated solution (u, p) to (14) such that
(16) holds.

The proof of theorem (1.4) can be obtained as an application of Liusternik’s
inverse mapping theorem in an appropriate framework.

A key in the proof is a related null controllability result for the linearized
Navier-Stokes system at (u, p), this is to say:

ut −∆u+ (u,∇)u+ (u,∇)u+∇p = v1ω, in Q,

∇ · u = 0, in Q,

u = 0, on Σ,

u(0, x) = u0(x), in Ω.

(17)

This is implied by a global Carleman inequality of the kind (9) that can be
established for the solution to the adjoint of (17), which is the following

−ϕt −∆ϕ+ (∇ϕ+∇tϕ)u+∇π = g, in Q,

∇ · ϕ = 0, in Q,

ϕ = 0, on Σ,

ϕ(0, T ) = ϕT (x), in Ω.

(18)

The details can be found in (FERNÁNDEZ-CARA et al., 2004).
Similar result can found in (GUERRERO, 2006) for The Boussinesq equa-

tions


ut −∆u+ (u,∇)u+∇p = v1ω + θeN , ∇ · u = 0 in Q,

θt −∆θ + u · ∇θ = h1ω, in Q,

u = 0, θ = 0, on Σ,

u(0, x) = u0(x), θ(0, x) = θ0(x) in Ω.

(19)

Here, the state is the triplet (u, θ, p) (θ is interpreted as a temperature distri-
bution) and the control is (v, h) (as before, v is a field of external forces; h is an external
heat source).

Again, a crucial point to prove the null controllability of certain linearized
systems, this time modified controls. For instance, when dealing with (14) the task is
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reduced to prove that, for some appropriate weights ρ, ρ0 and someK > 0, the solution
(18) satisfy the following Carleman estimate

∫∫
Ω×(0,T )

ρ−2|ϕ|2 dx dt ≤ K

∫∫
ω×(0,T )

ρ−2
0 (|ϕ1|2 + |ϕ2|2) dx dt, ∀ϕT ∈ H.

1.4 Free-boundary system and controllability of fluid-rigid body system

Free boundary problem is a partial differential equation to be solved for
both an unknown function y and an unknown domain Ω. The segment Γ of the bound-
ary of Ω which is not known at the outset of the problem is the free boundary.

The classic example is the melting of ice (two-phase Stefan problem). Given
a ice block, one can solve the heat equation given initial and boundary conditions to
determine its temperature. However, if in any region the temperature is higher than
the melting point of ice, this domain will be occupied by liquid water instead. The
boundary formed from the ice-liquid interface is controlled dynamically by the solu-
tion of the PDE. We assume the melting point of ice to be a constant equal 0.

The melting of ice is a problem formulated as follows. Consider a medium
occupying a region Ω consisting of two phases, the liquid phase and the solid phase.
Let the two phases have diffusivity coefficient α1 and α2, where α1 > 0 is the diffusivity
coefficient in water, and α2 > 0 is the diffusivity coefficient in ice (in principle α1 6= α2).

In the regions consisting solely of one phase, the temperature is determined
by the heat equation: in the liquid phase region (temperature> 0),

yt − α1∆y = f,

while in the solid phase region (temperature< 0),

yt − α2∆y = f.

Here, f represents sources or sinks of heat. Let s(t) be the position of the
interface at time t (temperature = 0). Let n denote the unit outward normal vector to
the solid phase. The Stefan condition determines the evolution of the surface s by giving
an equation governing the velocity s′ of the free surface in the direction n, specifically

Ls′(t) = α2∂ny(s(t)+, t)− α1∂ny(s(t)−, t), (20)

where L is the latent heat of melting.
In this problem, we know beforehand the whole region Ω but we only know

the ice-liquid interface s at time t = 0. To solve the Stefan problem we not only have
to solve the heat equation in each region, but we must also track the free boundary
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s(t), t ∈ (0, T ).
Note that, we can have the case where one of the phases has at constant

temperature. Let assume the solid phase in at constant temperature equal 0. Thus (20)
reduces to

Ls′(t) = −α1∂ny(s(t)−, t). (21)

It is therefore evident that on the free boundary both conditions y(s(t)) =

0 and (21) should be prescribed in order to have a well posed problem. The basic
idea to prove the existence of solutions is we assign arbitrarily a free boundary S and
consider the solution y to the problem where y(s(t)) = 0, t ∈ (0, T ). Then we define a
transformed boundary s such that

Ls′(t) = −α1∂ny(s(t)−, t).

We may assume the problem is one dimensional. Assuming that 0 < s(t) <

B, t ∈ (0, T ) and denoting by x the space variable, the complete two-phases problem
can be written as:

yt − α1yxx = 0, (x, t) ∈ Q1

yt − α2yxx = 0, (x, t) ∈ Q2

y(s(t)+, t) = y(s(t)−, t) = k, t ∈ (0, T )

−α1yx(0, t) = h1(t), t ∈ (0, T )

−α2yx(0, t) = h2(t), t ∈ (0, T )

−α1yx(s(t)−, t) + α2yx(s(t)+, t) = Ls′(t), t ∈ (0, T )

y(x, 0) = y0(x), x ∈ (0, B)

s(0) = s0

(22)

Here, 0 < s0 < B, T > 0 and α1, α2, k are given positive number. The
liquid phase occupies at the initial time t = 0 the interval (0, s0), while the solid phase
occupies (s0, B). The problem is posed in the interval (0, T ). Moreover we have set

Q1 = {(x, t) : 0 < x < s(t), t ∈ (0, T )},

Q2 = {(x, t) : s(t) < x < B, t ∈ (0, T )}.

Actually, we will deal mainly with the one phase version of (22) where the
solid phase is at constant temperature. In other words, we will deal with the following
problem:
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

yt − yxx = 0, (x, t) ∈ Qs,

y(s(t), t) = 0, t ∈ (0, T ),

−yx(0, t) = h(t), t ∈ (0, T ),

−yx(s(t), t) = s′(t), t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, B),

s(0) = s0

(23)

Here, we have used the notation

Qs = {(x, t) : x ∈ (0, s(t)), t ∈ (0, T )},

where s ∈ C0([0, T ]).
Theorem 1.5. Let us assume (y0, h) ∈ C0([0, T ])2 and h > 0 and 0 < y0 < s0. Then, there
exists a unique solution (y, s) to problem (23) such that

s ∈ C1((0, T ]) ∩ C0([0, T ]), s(0) = s0, s(t) > 0, t ∈ (0, T );

y ∈ C0(Qs) ∩ C2,1(Qs), yx ∈ C0(Qs − {t = 0}),

For further reading on the one-phase Stefan problem, see (ANDREUCCI,
2002; CANNON, 1984).

Now, we will present some control results for models of fluid-solid interac-
tion, Those results can be found in (IMANUVILOV and TAKAHASKI, 2007),
(DOUBOVA and FERNÁNDEZ-CARA, 2005), and (LIU, 2011). This part is devoted to
the controllability of fluid-structure (or fluid-solid) system. Our goals is obtain knowl-
edge to resolve our controllability problem of a free-boundary Burgers system. The
fluid is viscous and incompressible and its motion is modeled by the Navier-Stokes
equation where the structure is a rigid ball, which satisfies Newton’s laws. We show
results the local null controllability for the velocities of the fluid and of the solid mass
and the exact controllability for the solid mass position.

Let C be an open boundary set of R2, containing the open ball S(t) of radius 1
moving into a viscous fluid which is occupying the domain Ω(t) = C \S(t). Let ω be an
open subset with ω ⊂ Ω(t). The fluid-rigid body (fluid-solid mass) system is controlled
by a force field supported in ω. Then, the equation of motion of the fluid-structure
system are:

ut − ν∆u+ (u · ∇)u+∇p = v1ω, x ∈ Ω(t), t ∈ [0, T ], (24)
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∇ · u = 0, x ∈ Ω(t), t ∈ [0, T ], (25)

u = 0, x ∈ ∂C, t ∈ [0, T ], (26)

u(t, x) = h′(t) + θ′(t)(x− h(t))⊥, x ∈ ∂S(t) t ∈ [0, T ], (27)

Mh′′(t) = −
∫
∂S(t)

σ(u, p)n dΓ, t ∈ (0, T ), (28)

Jθ′′(t) = −
∫
∂S(t)

(x− h(t))⊥ · σ(u, p)n dΓ, t ∈ (0, T ), (29)

u(x, 0) = u0(x), x ∈ Ω(0), (30)

h(0) = h0, h′(0) = h1, θ(0) = θ0, θ′(0) = θ1, (31)

where

σ(v, p) = −pId + 2νD(u) and D(u)i,j =
1

2

(
∂ui
∂xj

,
∂ui
∂xj

)
.

In the above system the unknowns are u(x, t) (the velocity field of the fluid),
p(x, t) (the pressure of the fluid), h(t) (the position of the center of the rigid ball) and
θ(t) (the angular of the rigid body). The function v(x, t) is the control of the system.
The domain S(t) is defined by:

S(t) = B(h(t)),

where B = {x ∈ R2 : |x − c| < 1} denotes the open ball of R2. The constants M and J

are the mass and the moment of inertia of the rigid body. For sake of simplicity, assume
that the rigid body is homogeneous and thus we have that

M = 2πδ, J = δ

∫
S

|y|2dy,

where δ > 0 is the rigid body density. The positive constant ν is the viscosity
of the fluid.

For all x =
(
x1

x2

)
, we denote by x⊥ the vector x⊥ =

(
x2

−x1

)
. Moreover we denote

by ∂S(t) the boundary of rigid body and by n(x, t) the unit normal to ∂S(t) at the point
x directed to the interior of the rigid body.

Assume that

S(0) ⊂ C \ ω, (32)

then, for |hT − h0| small enough, we have that B(hT ) ⊂ C \ ω. Therefore, it is natural to
wonder if with some control v we can have S(T ) = B(hT ). Indeed, we have a control
such that the velocities of the fluid and of the rigid body are equal to at time T . This is
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the main result of (IMANUVILOV and TAKAHASKI, 2007):
Theorem 1.6. Let T > 0 and assume that (32) holds true. Suppose also that u0 ∈ H1(Ω(0))

and that 
∇ · u = 0, x ∈ Ω(0),

u0(x) = h1 + θ1(x− h0)⊥, x ∈ ∂S(0),

u0(x) = 0, x ∈ ∂C.
(33)

Then there exists ε > 0 such that if

‖u0‖H1(Ω(0)) + |h0 − hT |+ |h1|+ |θ0 − θT |+ |θ1| < ε,

then the system (24)-(31) is null controllable at time T in velocity and exactly controllable at
time T for the position of the rigid body. More precisely, there exists v ∈ L2(0, T ;L2(ω)) such
that

u(T ) = 0, h′(T ) = 0, θ(T ) = 0,

and

h(T ) = hT , θ(T ) = θT .

Another result is the null controllability of a one-dimensional nonlinear sys-
tem which models the interaction of a fluid and a particle. The velocity of the fluid is
governed by the Burqers equation at both sides of the point mass location y = h(t)

and the control is exerted at the boundary points. For simplicity, the fluid density was
defined constant and the solid particle has unit mass. The system is thus the following:



yt + yyx − yxx = 0, (x, t) ∈ Q \ h(t),

y(−1, t) = α(t), y(1, t) = β(t), t ∈ (0, T ),

y(h(t), t) = h′(t), [yx](h(t), t) = h′′(t), t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (−1, 1),

h(0) = h0, h′(0) = h1.

(34)

Here, Q = (−1, 1) × (0, T ), T > 0, y(x, t) is the velocity of the fluid particle
located at x at time t, h(t) is the position occupied by the particle at time t, α and β are
the controls (two functions at least in L∞(0, T )) and the initial data satisfy

y0 ∈ H1(−1, 1), h0 ∈ (−1, 1) and h1 = y0(h0), (35)

and [f(x)] denotes the jump of the function f at point x.
In (34), the spatial domain depends on t. |h(t)| ≤ 1 − b where b is a pos-
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itive small constant, we can introduce the following change of variable: For any x ∈
(−1, h(t)) ∪ (h(t), 1), we put ξ = (x− h)/(1− κh), where ξ is the sign of ξ. The change
of variables allows us to rewrite the problem as



(1− κh)yt − (1− κξ)h′yx + yyx −
1

1− κh
yxx = 0, (ξ, t) ∈ Q, ξ 6= 0,

y(−1, t) = α(t), y(1, t) = β(t), t ∈ (0, T ),

y(0, t) = h′(t),

[
1

1− κh
yx

]
(h(t), t) = h′′(t), t ∈ (0, T ),

y(ξ, 0) = y0(ξ), ξ ∈ (−1, 1),

h(0) = h0, h′(0) = h1.

(36)

In (DOUBOVA and FERNÁNDEZ-CARA, 2005), one of the main results is
the following:
Theorem 1.7. The nonlinear system (36) is locally null controllable. More precisely, there
exists ε > 0 depending on T > 0 such that, wherever the initial data satisfy (35) and

‖y0‖H1(−1,1) + |h0|+ |h1| ≤ ε,

we can find controls α, β ∈ L∞(0, T ) and associated states

(y, h) ∈ C0([0, T ];L2(−1, 1))× C1([0, T ]) satisfying

y(ξ, t) = 0 in (−1, 1), h(T ) = 0 h′(T ) = 0.

Finally, in (LIU, 2011) one of the main results is a local null controllability
of system (34) with only one boundary control. In order to clarify the situation, let us
present the result:
Theorem 1.8. Let T > 0. There exists ε > 0 such that, wherever the initial data satisfy (35)
and

‖y0‖H1(−1,1) + |h0|+ |h1| ≤ ε,

we can find a control α ∈ C0[0, T ] and associated states

y ∈ L2([0, T ];H2((−1, 1) \ {h(t)})) ∩ C0([0, T ];H1(−1, 1)), h ∈ C1([0, T ]) satisfying

y(x, t) = 0 in (−1, 1), h(T ) = 0 h′(T ) = 0.
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It has considered a one-dimensional model for a compressible fluid con-
taining a solid represented as a point particle of mass m > 0 which floats with fluid.
The fluid density was assumed to be constant and the fluid velocity governed by the
viscous Burgers equation on both sides of the point mass location x = h(t) and the
boundary control α ∈ C0([0, T ]). The complete system of equation and data is



yt + yyx − yxx = 0, (x, t) ∈ Q \ h(t),

y(−1, t) = α(t), y(1, t) = 0, t ∈ (0, T ),

y(h(t), t) = h′(t), [yx](h(t), t) = mh′′(t), t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (−1, 1),

h(0) = h0, h′(0) = h1.

(37)

1.5 Main results of the Thesis

1.5.1 Main result of section 2

Let T > 0 be given and L ∈ C1([0, T ]) be a function with

0 < L∗ ≤ L(t) ≤ B, t ∈ (0, T ).

Define QL = {(x, t) : x ∈ (0, L(t)), t ∈ (0, T )} and assume that f : R → R
is a globally Lipschitz continuous function. We will consider free-boundary problems
for semilinear parabolic systems of the form

yt − yxx + f(y) = v1ω, (x, t) ∈ QL,

y(0, t) = 0, y(L(t), t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L0),

L(0) = L0,

(38)

with the additional boundary condition

L′(t) = −yx(L(t), t), t ∈ (0, T ). (39)

Here, y = y(x, t) is the state and v = v(x, t) is a control; it acts on the system
at any time through the nonempty open set ω = (a, b) with 0 < a < b < L∗; 1ω denotes
the characteristic function of the set ω; we will assume that y0 ∈ H1

0 (0, L0) and L(0) =

L0.
The main goal of Section 2 is to analyze the null controllability of (38). It

will be said that (38) is null-controllable at time T if, for each y0 ∈ H1
0 (0, T ), there exists

v ∈ L2(ω × (0, T ), a function L ∈ C1([0, T ]) and an associated solution y = y(x, t)

satisfying (38), (39) and
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y(x, T ) = 0, x ∈ (0, L(T )). (40)

Denote by y∗ the extension of y by 0. The main result in the Section 3 is the
following:
Theorem 1.9. Assume that f is globally Lipschitz continuous, f(0) = 0, T > 0 and B > 0.
Also, assume that 0 < a < b < L∗ < L0 < B. Then (38) is locally null-controllable. More
preciselly, there exists ε > 0 such that, if ‖y0‖H1

0 (0,L0) ≤ ε there exists triplets (L, v, y) with{
L ∈ C1([0, T ]), L∗ ≤ L(t) ≤ B,

v ∈ L2(ω × (0, T )), y∗ ∈ C0([0, T ];H1
0 (0, B)),

(41)

satisfying (38), (39) and (40).

1.5.2 Main result of section 3

In Section 3, we will consider a 1D nonlinear system which models the inter-
action between a fluid and its boundary. We will assume that the velocity of the fluid
is governed by the viscous Burgers equation and, for simplicity, that the fluid density
is constant. Thus, the proposed system is the following:

yt + yyx − yxx = v1ω, (x, t) ∈ Q`,

y(0, t) = 0, y(`(t), t) = `′(t), t ∈ (0, T ),

yx(`(t), t) = −`′′(t) t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, `0),

`(0) = l0, `
′(0) = l1,

(42)

Here, T > 0, 0 < a < b < l∗ < l0 < B and Q` = {(x, t) : x ∈ (0, `(t)), t ∈
(0, T )}. Also, 1ω is the characteristic of ω = (a, b), y(x, t) is the velocity of fluid particle
located at x at time t, v is a distributed control with support in the cylinder ω × (0, T )

which can be interpreted as an external force field acting on the fluid, ` is a function in
the set

X := {` ∈ C2([0, T ]) : 0 < l∗ < `(t) < B, ∀t ∈ (0, T )},

and the initial data satisfy

y0 ∈ H1(0, l0), 0 < l∗ < `0 < B and y0(l0) = l1.

We define Q = (0, B)× (0, T ). Let ŷ be the extension of y defined below:
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ŷ(x, t) =


y(x, t), in Q`

`′(t), in Q \Q`

It will be said that (42) is null controllable at time T if, for every (y0, l0, l1) ∈
H1(0, l0)× (l∗, B)× R, there exist v ∈ L2(ω × (0, T )) and an associated solution (ŷ, l) ∈
C0([0, T ];L2(0, B))× C2([0, T ]) satisfying

ŷ(x, T ) = 0, x ∈ (0, B).

The first main result of the section 3 is the following:
Theorem 1.10. Let us assume 0 < a < b < `∗ < `0 < B. Then (46) is locally null-
controllable. More precisely, there exists ε > 0 such that, if (y0, `1) ∈ H1(0, `0) × R
and ‖(y0, `1)‖H1(0,`0)×R ≤ ε, we can find controls v and associated solutions (y, `) satisfying

v ∈ L2(ω × (0, T )), ŷ ∈ C0([0, T ];H1(0, B)). ` ∈ X

and
ŷ(x, T ) = 0, x ∈ (0, B). (43)

1.5.3 Main result of section 4

Let T > 0 and let Ω be the open set

Ω = {x ∈ R3 : x1, x2, x3 ∈ (0, 1)},

whose boundary is denoted by ∂Ω. We will use the notation Q := Ω × (0, T ) and Σ :=

∂Ω× (0, T ).
Let us introduce the Hilbert spaces

H(Ω) = {w ∈ L2(Ω)3 : ∇ · w = 0 in Ω, w · n = 0 on ∂Ω}

(where n = n(x) is the outward unit normal vector at x ∈ ∂Ω) and

V0(Ω) = {w ∈ H1
0 (Ω)3 : ∇ · w = 0 in Ω}.

We consider the three-dimensional Navier-Stokes and Boussinesq systems
ut −∆u+ (u,∇)u+∇p = f, ∇ · u = 0 in Q,

u(0, x2, x3, t) = 0, in (0, 1)2 × (0, T ),

u(x, 0) = u0(x) in Ω

(44)
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and 
ut −∆u+ (u,∇)u+∇p = θeN + f, ∇ · u = 0 in Q

θt −∆θ + u · ∇θ = g in Q

u(0, x2, x3, t) = 0, θ(0, x2, x3, t) = 0 in (0, 1)2 × (0, T )

(u(x, 0), θ(x, 0)) = (u0(x), θ0(x)) in Ω.

(45)

Here, f ∈ L2(0, T ;L2(Ω)3), g ∈ L2(0, T ;L2(Ω)) are given source terms, u0 ∈
H(Ω) and θ0 ∈ L2(Ω).

The first main result in the section 4 is the following:
Theorem 1.11. Assume that (u0, θ0) ∈ V0(Ω)×H1(Ω) and (f, g) ∈ L2(Q)3 × L2(Q). Then,
there exists a sequence {(fε, gε)}ε>0 in L2(Q)3 × L2(Q) such that

(fε, gε)→ (f, g) in Lr(0, T ;H−1(Ω)3)× Lr(0, T ;H−1(Ω))

for all r ∈ (1, 4/3) and there exist solutions (uε, pε, θε) to the null controllability problems

uε,t −∆uε + (uε,∇)uε +∇pε = θεeN + fε, ∇ · uε = 0 in Q,
θε,t −∆θε + uε · ∇θ = gε in Q
uε(0, x2, x3, t) = 0, θε(0, x2, x3, t) = 0 in (0, 1)2×(0, T ),

(uε(x, 0), θε(x, 0)) = (u0(x), θ0(x)) in Ω,

(uε(x, T ), θε(x, T )) = (0, 0) in Ω,

with
uε ∈ L2(0, T ;V (Ω)) ∩ L∞([0, T ];H(Ω))

and
θε ∈ L2(0, T ;H1

0 (Ω)) ∩ L∞([0, T ];L2(Ω)).

As in (GUERRERO, IMANUVILOV, and PUEL, 2012), the proof of Theo-
rem 4.1 will take four steps. Thus, we divide our time interval (0, T ) in four subinter-
vals, where different strategies are used.

The following two results concern generalizations of Theorem 1 in (GUER-
RERO, IMANUVILOV, and PUEL, 2012). In the first one, we prove that the approxi-
mate boundary controllability can also be obtained with controls acting only on three
faces of the unit cube. In the second one, we show that Ω can be a much more gen-
eral set, namely a bounded domain of R3 whose boundary contains a piece of a plane
entirely located inside one of the associated semispaces.
Theorem 1.12. Assume that u0 ∈ H(Ω) and f ∈ L2(Ω× (0, T )) are given. Then, there exists
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a sequence {(fε)}ε>0 in L2(Q)3 such that

fε → f in Lr(0, T ;H−1(Ω)3)

for all r ∈ (1, 4/3) and there exist solutions (uε, pε) to the null controllability problems
uε,t −∆uε + (uε,∇)uε +∇pε = fε in Ω× (0, T ),

∇ · uε = 0 in Ω× (0, T ),

uε(0, x2, x3, t) = uε(1, x2, x3, t) = uε(x1, x2, 0, t) = 0 in (0, 1)2 × (0, T ),

uε(x, 0) = u0(x), uε(x, T ) = 0 in Ω.

Now, let Π be a plane in R3, let Π+ be one of the semispaces determined
by Π and let ΩΠ ⊂ R3 be a bounded domain satisfying

ΩΠ ⊂ Π+, ΩΠ ∩ Π is a non-empty open set

and let us consider the Navier-Stokes system
ut −∆u+ (u,∇)u+∇p = f in ΩΠ × (0, T ),

∇ · u = 0 in ΩΠ × (0, T ),

u(x, t) = 0 in (∂ΩΠ ∩ Π)× (0, T ),

u(x, 0) = u0(x) in ΩΠ.

Theorem 1.13. Assume that u0 ∈ H(ΩΠ) and f ∈ L2(ΩΠ × (0, T )). Then, there exists a
sequence {(fε)}ε>0 in L2(ΩΠ × (0, T ))3 such that

fε → f in Lr(0, T ;H−1(ΩΠ)3)

for all r ∈ (1, 4/3) and there exist solutions (uε, pε) to the null controllability problems
uε,t −∆uε + (uε,∇)uε +∇pε = fε in ΩΠ × (0, T ),

∇ · uε = 0 in ΩΠ × (0, T ),

uε(x, t) = 0 on (∂ΩΠ ∩ Π)× (0, t),

uε(x, 0) = u0(x), uε(x, T ) = 0 in ΩΠ.

A similar result can be deduced for the Boussinesq system in ΩΠ × (0, T ).
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2 LOCAL NULL CONTROLLABILITY OF A FREE-BOUNDARY PROBLEM FOR
THE SEMILINEAR 1D HEAT EQUATION

2.1 Introduction

Let T > 0 be given and L ∈ C1([0, T ]) be a function with

0 < L∗ ≤ L(t) ≤ B, t ∈ (0, T ).

Define QL = {(x, t) : x ∈ (0, L(t)), t ∈ (0, T )} and assume that f : R → R
is a globally Lipschitz continuous function. We will consider free-boundary problems
for semilinear parabolic systems of the form

yt − yxx + f(y) = v1ω, (x, t) ∈ QL,

y(0, t) = 0, y(L(t), t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L0),

L(0) = L0,

(46)

with the additional boundary condition

L′(t) = −yx(L(t), t), t ∈ (0, T ). (47)

Here, y = y(x, t) is the state and v = v(x, t) is a control; it acts on the system
at any time through the nonempty open set ω = (a, b) with 0 < a < b < L∗; 1ω denotes
the characteristic function of the set ω; we will assume that y0 ∈ H1

0 (0, L0) and L(0) =

L0, see Fig. (1).

Figure 1: The situation in (46)

The main goal of this paper is to analyze the null controllability of (46). It
will be said that (46) is null-controllable at time T if, for each y0 ∈ H1

0 (0, T ), there exists
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v ∈ L2(ω × (0, T ), a function L ∈ C1([0, T ]) and an associated solution y = y(x, t)

satisfying (46), (47) and

y(x, T ) = 0, x ∈ (0, L(T )). (48)

On the other hand, it will be said that (46) is approximately controllable
in L2(0, L(T )) at time T if, for any y0 ∈ H1

0 (0, L0) and any ε > 0, there exists a control
v ∈ L2(ω×(0, T )), a function L ∈ C1([0, T ]) and an associated state y = y(x, t) satisfying
(46), (47) and

‖y(·, T )‖L2(0,L(T )) ≤ ε. (49)

The controllability of linear and semilinear parabolic systems has been ana-
lyzed in several papers. Among them, let us mention (FURSIKOV and IMANUVILOV,
1996a), (BARBU, 2000), (FERNÁNDEZ-CARA and ZUAZUA, 2000) and (DOUBOVA
et al., 2002).

On the other hand, free-boundary problems similar to (46)-(47) have been
motivated by different applications such as:
• Tumor growth and other problems from mathematical biology; see (FRIEDMAN

and Aguda, 2006) and (2012).
• Fluid-solid interaction; see (DOUBOVA and FERNÁNDEZ-CARA, 2005),

(VÁZQUEZ and ZUAZUA, 2003) and (LIU, TAKAHASHI, and TUCSNAK, 2013).
• Gas flow through porous media; see (ARONSON, 1983), (FASANO, 2005) and

(VÁZQUEZ, 2007).
• Solidification and related Stefan problems; see (FRIEDMAN, 2010).
• The analysis and computation of free surface flows; see (HERMANS, 2010),

(STOKER, 1957) and (WROBEL and BREBBIA, 1991).
Denote by y∗ the extension of y by 0. The main result in this paper is the

following:
Theorem 2.1. Assume that f is globally Lipschitz continuous, f(0) = 0, T > 0 and B > 0.
Also, assume that 0 < a < b < L∗ < L0 < B. Then (46) is locally null-controllable. More
preciselly, there exists ε > 0 such that, if ‖y0‖H1

0 (0,L0) ≤ ε there exists triplets (L, v, y) with{
L ∈ C1([0, T ]), L∗ ≤ L(t) ≤ B,

v ∈ L2(ω × (0, T )), y∗ ∈ C0([0, T ];H1
0 (0, B)),

(50)

satisfying (46), (47) and (48).
Remark 2.1. Theorem 2.1 is still true when we consider, instead of (46), a boundary
controlled system with the control acting just at x = 0. This can be deduced in a simple
way as follows:

1. Take δ > 0 and solve the following control problem
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
ỹt − ỹxx + f(ỹ) = v1(−δ/2,0), (x, t) ∈ Q̃L,

ỹ(0, t) = 0, ỹ(L(t), t) = 0, t ∈ (0, T ),

ỹ(x, 0) = ỹ0(x), x ∈ (−δ, L0),

L(0) = L0,

(51)

L′(t) = −ỹx(L(t), t), t ∈ (0, T ), (52)

ỹ(x, T ) = 0, x ∈ (−δ, L(T )). (53)

Here, ỹ0 is the extension of y0 by 0, v is a distributed control with support in the
cylinder (−δ/2, 0)× (0, T ) and Q̃L = {(x, t) : x ∈ (−δ, L(t)), t ∈ (0, T )}.

2. Denote by y the restriction to QL of the function ỹ and set h(t) = ỹ(0, t). The
triplet (L, h, y) is the solution of the boundary null controllability problem. 2

Remark 2.2. An even more interesting case is found when the control acts on the free
boundary: 

yt − yxx + f(y) = 0, (x, t) ∈ QL,

y(0, t) = 0, y(L(t), t) = h(t), t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L0),

L(0) = L0,

together with (47) and (48). This control problem needs a deeper analysis. 2

The rest of this paper is organized as follows. In Subsection 2.2, we prove
a global Carleman inequality, whence we deduce an observability inequality needed
to prove the null controllability of a linear variant of (46)-(47). We also establish a
regularity property for yx(L(t), t). In Subsection 2.3, we give the proof of Theorem 2.1.
Subsection 2.4 deals with some additional comments.

2.2 A controllability result for the linear heat equation in a non-cylindrical domain

2.2.1 The problem and the result

Our final goal is to prove Theorem 2.1. We will use a fixed point argument
and, for this purpose, we must first study the null controllability problem for the linear
system: 

yt − yxx + a(x, t)y = v1ω, (x, t) ∈ QL,

y(0, t) = 0, y(L(t), t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L0),

(54)

where a ∈ L∞((0, B) × (0, T )) and the function L ∈ C1([0, T ]) is given and satisfies,
0 < a < b < L∗ < L(t) < B.
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After an appropriate change of variable, (54) can be rewritten in the form


ws − wξξ +B(ξ, s)wξ + C(ξ, s)w = h, (ξ, s) ∈ (0, L0)× (0, S),

w(0, s) = 0, w(L0, s) = 0, s ∈ (0, S),

w(ξ, 0) = y0(ξ), ξ ∈ (0, L0),

(55)

with B,C ∈ L∞((0, L0)× (0, S)) and h ∈ L2((0, L0)× (0, S)).

We can easily verify that there exists a unique solution y to (54), with y∗ ∈
L2(0, T ;H2(0, B)) and y∗t ∈ L2(0, T ;L2(0, B). Consequently,

y∗ ∈ C0([0, T ];H1
0 (0, B)).

Theorem 2.2. For any y0 ∈ H1
0 (0, L0) and ε > 0, there exist pairs (vε, yε) with

vε ∈ L2(ω × (0, T )), y∗ε ∈ C0([0, T ];H1
0 (0, B))

satisfying (54) and

‖yε(·, T )‖L2(0,L(T )) ≤ ε. (56)

Furthermore, the control υε can be found such that

‖vε‖L2(ω×(0,T )) ≤ C1‖y0‖L2(0,L0), (57)

where C1 > 0 only depends on L∗, B, ω, ‖L′‖∞, ‖a‖L∞(Q0) and T .
The proof follows rather standard arguments. The main tool is a global

Carleman estimate for the solution to the adjoint system of (54), that is given by
−ϕt − ϕxx + a(x, t)ϕ = u, (x, t) ∈ QL,

ϕ(0, t) = 0, ϕ(L(t), t) = 0, t ∈ (x, T ),

ϕ(x, T ) = ϕ0(x), x ∈ (0, L(T )),

(58)

where u ∈ L2(QL) and ϕ0 ∈ L2(0, L(T )).

An immediate consequence of Theorem 2.2 is the following:
Corollary 2.1. For any y0 ∈ H1

0 (0, L0), there exists pairs (v, y), with

v ∈ L2(ω × (0, T )), y∗ ∈ C0([0, T ];H1
0 (0, B)),

satisfying (54) and (48). Furthermore, v can be found such that

‖v‖L2(ω×(0,T )) ≤ C2‖y0‖H1
0 (0,L0)
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where C2 only depends on L∗, B, ω, ‖L′‖∞, ‖a‖L∞(Q0) and T .

This will be recalled in the next section.

2.2.2 A global Carleman inequality for the linear heat equation and its consequences

Let us first introduce some weight functions. Let us denote the lateral bound-
ary of QL by

ΣL = {(x, t) : x = 0 or x = L(t), 0 < t < T}.

Lemma 2.1. Let ω0 be a non-empty open set with ω0 ⊂ (a, b). There exists a function η0 ∈
C1(QL) with η0,xx ∈ C0(QL) such that

η0(x, t) = 0, (x, t) ∈ ΣL,

|η0,x| > 0, (x, t) ∈ QL \ (ω0 × (0, T )),

η0(x, t) = 1− x− b
l(t)− b

, (x, t) ∈ (b, L(t))× (0, T ).

The proof of this Lemma can be found in (FERNÁNDEZ-CARA, LIMACO,
and MENEZES, 2016), Lemma 2.1. We introduce now the weight functions

α(x, t) :=
e2λ‖η‖∞ − eλη(x,t)

β(t)
,

ξ(x, t) :=
eλη(x,t)

β(t)
,

where β(t) = t(T − t), η(x, t) = η0(x, t) + 1 and λ > 0.

The following result contains a Carleman estimate for the solutions to the
adjoint systems (58); it is inspired by the ideas in Fursikov-Imonolov (1996a) and the
proof is identical to the proof of Theorem 2.2 in (FERNÁNDEZ-CARA, LIMACO, and
MENEZES, 2016).
Theorem 2.3. Let η, α, β and ξ be the functions defined above. There exist positive constants
λ0, s0 and C0, only depending on L∗, B, ω, ‖L′‖∞, ‖z‖L∞(Q0) and T , such that, for any s ≥ s0

and any λ ≥ λ0, we have
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∫∫
QL

e−2sα

(
1

sξ
(|ϕt|2 + |ϕxx|2) + λ2sξ|ϕx|2 + λ4s3ξ3|ϕ|2

)
dx dt

+

∫ T

0

e−2sα(L(t),t)λsξ(L(t), t)|ϕx(L(t), t)|2 dt

+

∫ T

0

e−2sα(0,t)λsξ(0, t)|ϕx(0, t)|2 dt

≤ C0

(∫∫
QL

e−2sα|u|2 dx dt+

∫∫
ω×(0,T )

e−2sαλ4s3ξ3|ϕ|2 dx dt
)

(59)

In a second step, we will prove an observability inequality for the solutions
to the adjoint systems. This is a consequence of the previous Carleman inequality.
Proposition 2.1. There exists a constantC > 0, only depending onL∗,B, ω, ‖L′‖∞, ‖z‖L∞(Q0)

and T , such that for any ϕ0 ∈ L2(0, L(T )), the associated solution to (58) with u = 0 satisfies∫ L0

0

|ϕ(x, 0)|2 dx ≤ C

∫∫
ω×(0,T )

|ϕ|2 dx dt (60)

Proof. Let us take λ = λ0 and s = s0 in (3.4). Then∫∫
QL

e−2sαξ3|ϕ|2 dx dt ≤ C

∫∫
ω×(0,T )

e−2sαξ3|ϕ|2 dx dt

and, consequently,

∫ 3T/4

T/4

∫ L(t)

0

|ϕ|2 dx dt ≤ C

∫ 3T/4

T/4

∫ L(t)

0

e−2sαξ3|ϕ|2 dx dt

≤ C

∫∫
ω×(0,T )

|ϕ|2 dx dt.

(61)

On the other hand, if we introduce the auxiliary function ψ = et‖a‖∞ϕ, we
find that

−1

2

d

dt

(∫ L(t)

0

|ψ|2 dx

)
+

∫ L(t)

0

|ψx|2 dx+

∫ L(t)

0

(‖a‖∞ + a)|ψ|2 dx = 0,

for all t ∈ (0, T ), whence
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d

dt

(∫ L(t)

0

|ψ|2 dx

)
≥ 0.

This implies

∫ L(0)

0

|ϕ(x, 0)|2 dx ≤ eT‖a‖∞
∫ L(t)

0

|ϕ(x, t)|2 dx ∀t ∈ (0, T )

and

T

2

∫ L(0)

0

|ϕ(x, 0)|2 dx ≤ eT‖a‖∞
∫ 3T/4

T/4

∫ L(t)

0

|ϕ(x, t)|2 dx dt. (62)

From (61) and (62), we conclude the proof.

The observability inequality (60) leads to the approximate controllability re-
sult in Theorem 2.2. The argument is well known; see (FABRE, PUEL, and ZUAZUA,
1995) for more details. Thus, let y0 ∈ L2(0, L0) and ε > 0 be given and let us introduce
the functional Jε(·, a, L), with

Jε(ϕ
0; a, L) =

1

2

∫∫
ω×(0,T )

|ϕ|2 dx dt+ ε‖ϕ0‖L2(0,L(T )) + (ϕ(·, 0), y0)L2(0,L0)

for all ϕ0 ∈ L2(0, L(T )).

Here, ϕ is the solution to (58). Using (60), it is relatively easy to check that
Jε(·; a, L) is strictly convex, continuous, and coercive in L2(0, L(T )), so it possesses a
unique minimum ϕ0

ε ∈ L2(0, L(T )), whose associated solution is denoted by ϕε. Let
us now introduce the control vε = ϕε1ω, and let us denote by yε the solution to (54)
associated to vε. Then, either ϕ0

ε = 0, or we can differentiate the functional at ϕ0
ε and

obtain a necessary condition to reach a minimum at ϕ0
ε:



∫∫
ω×(0,T )

ϕεϕdx dt + ε

(
ϕ0
ε

‖ϕ0
ε‖L2(0,L(T ))

, ϕ0

)
L2(0,L(T ))

+ (ϕ(·, 0), y0)L2(0,L0) = 0

∀ϕ0 ∈ L2(0, L(T )),

(63)

From this and (60) for ϕ0 = ϕ0
ε, we get the estimate (57). On the other hand,

since the systems (54) and (58) are in duality, we also have
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∫∫
ω×(0,T )

ϕεϕdx dt = (ϕ0, yε(T ))L2(0,L(T )) − (ϕ(0), y0)L2(0,L0) (64)

which, combined with (63), yields (56).

2.2.3 The uniform Hölder-continuity of yx

We introduce here a class of functions of standard use in the regularity
theory of parabolic equations, see (LADYZHENSKAIA, SOLONNIKOV, and URAL-
CEVA, 1988).

Let us fix an integer m ≥ 0 and α ∈ (0, 1). Let us set Q0 = (0, B)× (0, T ), let
G ⊂ Q0 be a non-empty open set and let us assume the Dr

tD
s
xu is continuous in G for

2r + s < m+ α. Then, we set

〈u〉(α)
x,G = sup

(x,t),(x′,t)∈G

|u(x, t)− u(x′, t)|
|x− x′|α

, 〈u〉(m+α)
x,G =

∑
2r+s=m

〈Dr
tD

s
xu〉

(α)
x,G,

〈u〉(α/2)
t,G = sup

(x,t),(x,t′)∈G

|u(x, t)− u(x, t′)|
|t− t′|α/2

, 〈u〉(
m+α

2
)

t,G =
∑

2r+s=m

〈Dr
tD

s
xu〉

(α
2

)

t,G .

|u|(m+α)
G =

∑
2r+s≤m

‖Dr
tD

s
xu‖L∞(G) + 〈u〉(m+α)

x,G + 〈u〉(
m+α

2
)

t,G ,

The space of the functions u = u(x, t), such that |u|(m+α)
G < +∞ will be

denoted by

Km,α(G).

This is a separable Banach space for | · |m,αG . Furthermore, it is easy to check
that Km,0(G) = Cm(G) and, if m + α < m′ + α′, the embedding Km′,α′(G) ↪→ Km,α(G)

is compact.
Let us denote by N0 the norm of y0 in L2(0, L0) and let (υ, y) be a control-

state pair furnished by Theorem 2.2. Let b′ be given with b < b′ < L0 and let us set

RL = QL ∩ {(x, t) : x > b′}.

From Theorems 10.1 and 11.1 in (LADYZHENSKAIA, SOLONNIKOV, and
URALCEVA, 1988, pp. 204 and 211), we can affirm that y ∈ K1,α for all α ∈ [0, 1/2), the
function VL with VL(t) := yx(L(t), t) satisfies VL ∈ C0,α([0, T ]) and, furthermore,
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‖VL‖C0,α([0,T ]) ≤ C‖y‖L∞(QL) (65)

where the constant C > 0 only depends on C1 and N0 and α only depends on L∗ and
B.

Let us write y = ŷ+ ỹ where ŷ is the solution to (54) with y0 ≡ 0 and ỹ is the
solution to (54) with v ≡ 0.

Using Gronwall’s Lemma, one can easily prove that

‖ŷ‖L∞(QL) ≤ C(‖a‖L∞(Q0), ‖L′‖∞, B, T )‖υ‖L2(ω×(0,T )). (66)

On the other hand, from the Maximum Principle, we have

‖ỹ‖L∞(QL) ≤ C(‖a‖L∞(Q0), ‖L′‖∞, T )‖y0‖L∞(0,L0). (67)

Consequently, we see that

‖VL‖C0,α([0,T ]) ≤ C3‖y0‖L∞(0,B) (68)

where the constant C3 > 0 only depending on ‖a‖L∞(Q0), ‖L′‖∞, B, T, L∗, ω and N0.
The estimate (68) will be crucial in the proof of Theorem 2.1 in the next

section.

2.3 Proof of Theorem 2.1

In a first step, let us assume that f ∈ C1(R) and |f ′| is uniformly bounded.
We define the function g : R→ R as follows:

g(s) =
f(s)

s
for s 6= 0 and g(0) = f ′(0).

For any (z, `) ∈ L∞(Q0)×C1([0, T ]) with L∗ ≤ ` ≤ B and any y0 ∈ H1
0 (0, L0),

we consider the following controllability problem
yt − yxx + g(z)y = υ1ω, (x, t) ∈ Q`,

y(0, t) = 0, y(`(t), t) = 0, t ∈ (x, T ),

y(x, 0) = y0(x), x ∈ (0, L0),

(69)

‖y(·, T )‖L2(0,`(T )) ≤ ε (70)

.
Let us introduce the set

N = {z ∈ L∞(Q0) : ‖z‖L∞(Q0) ≤ R},
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where R > 0 will be defined later. Let R1 > 0 be given and let us set

M = {` ∈ C1([0, T ]) : L∗ ≤ ` ≤ B, `(0) = L0, ‖`′‖∞ ≤ R1}.

We will consider the mapping Λε : N ×M 7→ L∞(Q0) × C1([0, T ]) defined
by Λε = (y∗ε , Lε), where yε satisfies (69) and (70) for v = ϕε|ω×(0,T ), ϕε is the unique
minimum of Jε(·; g(z), `) and

Lε(t) = L0 −
∫ t

0

yε,x(`(s), s) ds (71)

We will apply a fixed point technique to prove Theorem 2.1. First, note that
in view of the results in Section 2, Λε is well defined. Moreover, one has

‖y∗ε‖L∞(Q0) ≤ C4‖y0‖L∞(0,L0),

where C4 only depends on L∗, B, ω,R1 and T ,

‖L′ε‖ ≤ C3‖y0‖H1
0 (0,L0)

and, consequently,

|Lε(t)− L0| ≤ C3T‖y0‖H1
0 (0,L0), ∀t ∈ [0, T ].

Therefore, if we take

R = C4‖y0‖L∞(0,L0)

and, we assume that

‖y0‖H1
0 (0,L0) ≤ min

(
R1

C3

,
B − L∗
C3T

,
L0 − L∗
C3T

)
,

we find that Λ maps N ×M into itself.

Let us now prove that, for some α ∈ (0, 1), Λε maps the bounded sets of
L∞(Q0)×C1([0, T ]) into bounded sets in K0,α(Q0)×C1,α([0, T ]). We will use the results
from (LADYZHENSKAIA, SOLONNIKOV, and URALCEVA, 1988, see Theorems 7.1
and 10.1, Ch. III). Thus, there exists α ∈ (0, 1/2) (only depending on L∗, B and T ) such
that yε ∈ K0,α(Q0) and there exists a constant C > 0, only depending on L∗, B, T, α and
‖y0‖H1

0 (0,L0) such that

|yε|(0+α)
Q0

≤ C;
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more details can be found in (FERNÁNDEZ-CARA, LIMACO, and MENEZES, 2016).

On the other hand, from (93) we already knew that

‖Lε‖C1,α ≤ C, (72)

where C > 0 only depends on the previous data and N0. As a consequence, Λε maps
N ×M into a compact set of L∞(Q0)× C1([0, T ]).

Now, we will show that (z, `) 7→ Λ(z, `) is a continuous mapping. Thus, let
the (zn, `n) be such that

(zn, `n)→ (z, `), in L∞(Q0)× C1([0, T ]) (73)

and let us set (y∗ε,n, Lε,n) = Λε(zn, `n).
Obviously, Λε(zn, `n) converge strongly to some (y∗ε , Lε). We must prove that

(y∗ε , Lε) = Λε(z, `).

To this purpose, the following result will be used:
Proposition 2.2. Let M be the mapping

M : N ×M 7→ L2(0, 1),

where M(z, `) = ψ0
ε , ψ0

ε(ζ) ≡ ϕ0
ε(ζ`(T )) and ϕ0

ε is the minimizer of Jε(·; g(z), `).
If zn → z ∈ L∞(Q0) and `n → ` strongly in C1([0, T ]), then ψ0

ε,n converges
strongly in L2(0, 1) to ψ0

ε .
The proof can be obtained as in

(FERNÁNDEZ-CARA, LIMACO, and MENEZES, 2016).

A direct use of Proposition 2.2 shows that the controls υε,n associated to the
(zn, `n) converge strongly in L2(ω × (0, T )) to the control vε associated to (y, `):

vε,n → vε strongly in L2(ω × (0, T )).

Thus, it is straightforward to check that the (y∗ε,n, Lε,n) converge to Λε(z, `)

and consequently is continuous.

A consequence of these propositions of Λε is that there exists δ > 0 (inde-
pendent of ε) such that, if ‖y0‖H1

0 (0,L))
≤ δ, Schauder’s Theorem can be applied to the

fixed point equation (y, L) = Λε(y, L).
Let (yε, Lε) be a fixed point of Λ for each ε > 0. Then it is clear that (yε, Lε)

satisfies, together with vε, (46), (47), (56) and (57). Moreover, Lε and vε are uniformly
bounded in C1+α([0, T ]) and L2(ω × (0, T )), respectively. Consequently, our assertion
is proved.
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Now, at least for a subsequence, one has

Lε → L strongly in C1([0, T ]) and vε → v, weakly in L2(ω × (0, T ))

as ε→ 0. Obviously, (y, L, v) satisfies (2.1) and (47). Also, it is clear that y satisfies (48).
This proves the result when f is of class C1.
The general case can be easily obtained through a simple approximation

process. Hence, The proof of Theorem 2.1 is completed.

2.4 Additional comments and questions

The global null controllability of (46)–(47) is an open question. As noticed
in (FERNÁNDEZ-CARA, LIMACO, and MENEZES, 2016), it is open even in the case
f ≡ 0. It s not clear at all how the existence of a fixed point of Λε can be obtained for
large y0.

On the other hand, for higher spatial dimensions, the local null controlla-
bility is also open. In view of the previous results and arguments, a natural strategy
would be to introduce a mapping of the form

(z, `) ∈ L 7→ Λ(z, `) = (y∗, L) ∈ L,

where v is a minimal L2-norm control that produces a state satisfying

‖y(T )‖L2(Ω(T )) ≤ ε, x ∈ Ω(T ).

and {Ω(t)}t∈[0,T ] is a family of sets whose boundaries are parameterized by ` and try to
prove the existence of a fixed point. But, again, this does not seem easy.

On the other hand, it is not difficult to prove a result similar to Theorem 2.1
under spherical symmetry hypotheses. Indeed, it suffices to adapt the assumptions on
the data ω and y0 and define the weights appropriately.
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3 LOCAL NULL CONTROLLABILITY OF A FREE-BOUNDARY PROBLEM FOR
THE VISCOUS BURGERS EQUATION

3.1 Introduction

We will consider a 1D nonlinear system which models the interaction be-
tween a fluid and its boundary. We will assume that the velocity of the fluid is gov-
erned by the viscous Burgers equation and, for simplicity, that the fluid density is con-
stant. Thus, the proposed system is the following:

yt + yyx − yxx = v1ω, (x, t) ∈ Q`,

y(0, t) = 0, y(`(t), t) = `′(t), t ∈ (0, T ),

yx(`(t), t) = −`′′(t) t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, `0),

`(0) = `0, `
′(0) = `1,

(74)

Here, T > 0, 0 < a < b < `∗ < `0 < B and Q` = {(x, t) : x ∈ (0, `(t)), t ∈
(0, T )}. Also, 1ω is the characteristic of ω = (a, b), y(x, t) is the velocity of fluid particle
located at x at time t, v is a distributed control with support in the cylinder ω × (0, T )

which can be interpreted as an external force field acting on the fluid, ` is a function in
the set

X := {` ∈ C2([0, T ]) : 0 < `∗ ≤ `(t) ≤ B, ∀t ∈ (0, T )},

and the initial data satisfy

y0 ∈ H1(0, `0), 0 < `∗ < `0 < B and y0(`0) = `1.

Note that two conditions are required. Since y is the velocity of the fluid,
we have to assume y(`(t), t) = `′(t) and each boundary particle at `(t) is accelerated by
yx(`(t), t).

A model similar to (74) for the interaction between a fluid and a solid repre-
sented by a point mass is considered and analyzed in (VÁZQUEZ and ZUAZUA, 2003)
and (VÁZQUEZ and ZUAZUA, 2006) and investigated from the viewpoint of the null
controllability in (DOUBOVA and FERNÁNDEZ-CARA, 2005) and (LIU, 2011).

The modeling and analysis of fluid-solid interaction have attracted a lot
of attention in recent years. In particular, in the case of two- and three-dimensional
Navier-Stokes fluids in contact with one or more rigid or elastic bodies, this has been
the goal for instance of (DESJARDINS, 2000), (TAKAHASHI, 2003) and
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TAKAHASHI and TUCSNAK (2004).
We define Q = (0, B)× (0, T ). Let ŷ be the extension of y defined below:

ŷ(x, t) =


y(x, t), in Q`

`′(t), in Q \Q`

It will be said that (74) is null controllable at time T if, for every (y0, `0, `1) ∈
H1(0, `0)× (`∗, B)×R, there exist v ∈ L2(ω × (0, T )) and an associated solution (ŷ, l) ∈
C0([0, T ];L2(0, B))× C2([0, T ]) satisfying

ŷ(x, T ) = 0, x ∈ (0, B).

The controllability of PDE has also been the object of extensive research dur-
ing the last years. Since the pioneering papers such as (LIONS, 1988b) and (1988a),
where systems governed by linear wave and heat equations were considered, a lot of
works has been done in this area, such as (FABRE, PUEL, and ZUAZUA, 1995), (FUR-
SIKOV and IMANUVILOV, 1996a), (ZUAZUA, 1991) and (2007) for the approximate,
exact and null controllability of semilinear parabolic and hyperbolic PDEs.

The first main result of this paper is the following:
Theorem 3.1. Let us assume 0 < a < b < `∗ < `0 < B. Then (74) is locally null-
controllable. More precisely, there exists ε > 0 such that, if (y0, `1) ∈ H1(0, `0) × R
and ‖(y0, `1)‖H1(0,`0)×R ≤ ε, we can find controls v and associated solutions (y, `) satisfying

v ∈ L2(ω × (0, T )), ŷ ∈ C0([0, T ];H1(0, B)), ` ∈ X

and
ŷ(x, T ) = 0, x ∈ (0, B). (75)

Figure 2: The situation in Theorem 3.1
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For the proof, in a first step, we must consider a linearized system:

yt + yyx − yxx = v1ω, (x, t) ∈ Q`,

y(0, t) = 0, y(`(t), t) = `′(t), t ∈ (0, T ),

yx(`(t), t) = −`′′(t) t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, `0),

`(0) = `0, `′(0) = `1,

(76)

with potential y ∈ L∞(Q) and ` ∈ X such that `(0) = `0, `
′
(0) = `1 and |`′| < 1 given.

The following result holds:
Theorem 3.2. For any v ∈ L2(ω × (0, T )) and any (y0, `1) ∈ H1(0, `0) × R, there exists a
unique solution (y, `) to (76) satisfying

ŷ ∈ C0([0, T ];L2(0, B)) ∩ L2(0, T ;H1(0, B)), ŷt ∈ L2(0, T ;H−1(0, B)) (77)

and

` ∈ H2(0, T ). (78)

Furthermore, there exists a positive constantC, only depending on `∗, B, T, ‖y‖L∞(Q)

and `0, such that

‖ŷ‖L2(0,T ;H1(0,B)) + ‖ŷt‖L2(0,T ;H−1(0,B)) + ‖`′‖H1(0,T )

≤ C
(
‖(y0, `1)‖L2(0,`0)×R + ‖v‖L2(ω×(0,T ))

)
.

(79)

Remark 3.1. It is interesting to note that Theorem 3.1 is still true for similar boundary
controllability problem, with the control h ∈ L∞(0, T ) acting at x = 0. This can be
deduced from the case shown in this paper by simple extension process. 2

This Section is organized as follows. In Subsection 3.2, we state and prove a
uniform approximate controllability result. This will rely on useful global Carleman es-
timates and some related observability inequalities. We will also establish a regularity
property for the states. In Subsection 3.3, we give the proof of Theorem 3.1. Subsection
3.4 deals with some additional comments and the Appendix contains the proof of the
Carleman estimates.

3.2 A controllability result and a regularity property

In the section, we assume that `0 > 0, T > 0 and 0 < a < b < `∗ < `0 < B are
given. We fix (y0, `1) ∈ H1(0, `0)× R and ` ∈ X with `(0) = `0 and |`′| < 1.
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3.2.1 A uniform approximate

We will need an estimate for the velocity of the fluid at time T and the con-
trol of the system (76), such that the control keeps an explicit dependence with respect
to (y0, `1). The precise result is the following.
Theorem 3.3. For any (y0, `1) ∈ H1(0, `0) × R and any ε > 0, there exist a control vε ∈
L2(ω × (0, T )) such that the corresponding solution (yε, `ε) of (76) verifies

‖(yε(T ), `′ε(T ))‖L2(0,`(T ))×R ≤ ε, ∀x ∈ (0, `(T )), (80)

Moreover, vε can be chosen satisfying the estimate

‖vε‖L2(ω×(0,T )) ≤ C1‖(y0, `1)‖L2(0,`0)×R, (81)

where C1 is a positive constant, only depending on `∗, B, ω, ‖y‖L∞(Q) and T .
The proof follows rather standard arguments. The main tool is a global

Carleman estimate for the solution to the adjoint system of (76), that is given by

−ϕt − (yϕ)x − ϕxx = g(x, t), (x, t) ∈ Q`,

ϕ(0, t) = 0, ϕ(`(t), t) = m′(t), t ∈ (0, T ),

ϕx(`(t), t) = m′′(t)− y(`(t), t)m′(t), t ∈ (0, T ),

ϕ(x, 0) = ϕT (x), x ∈ (0, `(T )),

m(T ) = `(T ), m′(T ) = m1,

(82)

where g ∈ L2(Q`) and (ϕT ,m1) ∈ L2(0, `(T ))× R.

This will be established in the next subsection.

3.2.2 An observability inequality

In this subsection, we will establish a technical result needed in this section.
More precisely, we will present and prove the required Carleman estimates for the
systems (82).

In this technique it is fundamental to use some weight functions.
Lemma 3.1. Let ω0 be a non-empty open set with ω0 ⊂ (a, b). There exists a function η0 ∈
C1(Q`) with η0,xx ∈ C0(Q`) such that

|η0,x| > 0, (x, t) ∈ Q` \ (ω0 × (0, T )),

η0,x(0, t) = 0,

η0(x, t) =
`(t)− x
`(t)− b

, (x, t) ∈ (b, `(t))× (0, T ).

For the proof, it suffices to take (for instance)
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η0(x, t) =



x2

a
, if 0 ≤ x < a

a+ p
(

2(x−a)
b−a , b−a

2a

)
, if a ≤ x < a+b

2

a+ p
(

2(b−x)
b−a , b−a

2(`(t)−b)

)
, if a+b

2
≤ x < b

1− x− b
`(t)− b

, if b ≤ x < `(t)

where

p(x, y) = xy + (10− 6y)x3 + (8y − 15)x4 + (6− 3y)x5.

Let λ > 1 large enough and ‖ · ‖∞ := ‖ · ‖L∞(Q`)
. Let us introduce the weights

ξ(x, t) =
eλη(x,t)

t(T − t)
and α(x, t) =

e2λ‖η‖∞ − eλη(x,t)

t(T − t)
,

where η(x, t) = η0(x, t) + 1. Then we have the following Carleman estimate:
Theorem 3.4. Let η, ξ and α be the functions defined above. There exist positive constants
λ0, s0 and C0 only depending on ‖y‖W 1,∞(Q`)

, `∗, ω, B and T such that for any s ≥ s0, λ ≥ λ0

any g ∈ L2(Ql) and any ϕT ∈ L2(0, `(T )), one has

∫∫
Q`

e−2sα

(
1

sξ
(ϕt + ϕxx) + sλ2ξ|ϕx|2 + s3λ4ξ3|ϕ|2

)
dx dt

+sλ

∫ T

0

e−2sα(`(t),t)ξ(`(t), t)|ϕx(`(t), t)|2 dt

+s3λ3

∫ T

0

e−2sα(`(t),t)ξ(`(t), t)3|m′(t)|2 dt

≤ C0

(
‖e−sαg‖2

2 + s3λ4

∫∫
ω×(0,T )

e−2sαξ3|ϕ|2 dx dt
)
,

(83)

where ϕ is the corresponding solution of (82).
The prof of this Theorem is given in the Appendix.

We now prove the observability inequality for the solutions to the adjoint
system. Observe that it is a consequence of the Carleman Inequality presented above.
Proposition 3.1. There exists C > 0, only depending on `∗, B, ω, ‖y‖∞ and T , such that for
any ϕT ∈ L2(0, `(T )), the associated solution to (82) with g = 0 satisfies∫ `0

0

|ϕ(x, 0)|2 dx+ |m′(0)|2 ≤ C

∫∫
ω×(0,T )

|ϕ|2 dx dt (84)
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Proof. Let us take λ = λ0 and s = s0 in Theorem 3.4. Then

∫∫
Q`

e−2sαξ3|ϕ|2 dx dt+

∫ T

0

e−2sα(l(t),t)ξ(`(t), t)3|m′(t)|2 dt

≤ C

∫∫
ω×(0,T )

e−2sαξ3|ϕ|2 dx dt
(85)

and consequently

∫ 3T/2

T/2

∫ `(t)

0

|ϕ|2 dx dt+

∫ 3T/2

T/2

|m′(t)|2 dt

≤ C

∫∫
ω×(0,T )

|ϕ|2 dx dt.
(86)

Let us multiply the equation (82) by ϕ and let us integrate with respect to x
in (0, `(t)). Then we see that

−1

2

d

dt

(∫ `(t)

0

|ϕ|2 dx+ |m′|2
)

+

∫ `(t)

0

|ϕx|2 dx+

∫ `(t)

0

yϕϕx dx = 0.

Consequently,

− d

dt

(∫ `(t)

0

|ϕ|2 dx+ |m′|2
)
≤ ‖y‖2

L∞(Q`)

∫ `(t)

0

|ϕ|2 dx

We deduce that

d

dt

(
e
t‖y‖2

L∞(Q
`
)

∫ `(t)

0

|ϕ|2 dx+ |m′|2
)
≥ 0 ∀t ∈ (0, T )

and, consequently,

∫ `0

0

|ϕ(x, 0)|2 dx+ |m′(0)|2 ≤ e
t‖y‖2

L∞(Q
`
)

(∫ `(t)

0

|ϕ(x, t)|2 dx+ |m′(t)|

)
,

forall t ∈ (0, T ) and

T

2

(∫ `0

0

|ϕ(x, 0)|2 dx+ |m′(0)|2
)

≤ e
T‖y‖2

L∞(Q
l
)

(∫ 3T/2

T/2

∫ l(t)

0

|ϕ(x, t)|2 dx+

∫ 3T/2

T/2

|m′(t)|

)
.

(87)
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From (86) and (87), the proof of Proposition 3.1 is done.

3.2.3 Proof of Theorem 3.3

This controllability result, Theorem 3.3, is implied by the observability esti-
mate (84). Let (y0, `1) ∈ L2(0, `0)×R and ε > 0 be given. Let us introduce the functional
Jε, with

Jε(ϕ
T ,m1) =

1

2

∫∫
ω×(0,T )

|ϕ|2 dx dt+ ε‖(ϕT ,m1)‖L2(0,`(T ))×R

+((ϕ(0),m′(0)), (y0, `1))L2(0,`0)×R

for ϕT ∈ L2(0, `(T )). Here, ϕ is solution of (82) with ϕ(T ) = ϕT . Using (84) it is not
difficult to check that Jε is strictly convex, continuous, and

lim inf
‖(ϕT ,m1)‖L2(0,l(T ))×R→∞

Jε(ϕ
T ,m1)

‖(ϕT ,m1)‖L2(0,`(T ))×R
≥ ε. (88)

This implies that the functional Jε is coercive.
Consequently, Jε achieves its minimum at a unique point

(ϕTε ,m
1
ε) ∈ L2(0, `(T ))× R

.
Let (ϕε,m

′
ε) be the solution of (82) associated to (ϕTε ,m

1
ε). Let us now intro-

duce the control vε = ϕε1ω, and let us denote by (yε, `
′
ε) the solution of (76) associated

to vε. Let us remark that the unique interesting case to be studied turns out to be when
ϕTε 6= 0; see (FABRE, PUEL, and ZUAZUA, 1995) for more details. Under this assump-
tion, we can differentiate the functional Jε at (ϕTε ,m

1
ε) and obtain a necessary condition

for Jε to reach a minimum at (ϕTε ,m
1
ε)

J ′ε(ϕ
T
ε ,m

1
ε)(ϕ

T ,m1) =

∫∫
ω×(0,T )

ϕεϕdx dt

+ε
((ϕTε ,m

1
ε), (ϕ

T ,m1))L2(0,`0)×R

‖(ϕTε ,m1
ε)‖L2(0,`(T ))×R

+((ϕ(0),m′(0)), (y0, `1))L2(0,`0)×R

= 0,

(89)
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for every (ϕT ,m1) ∈ L2(0, `(T ))×R. From this equality and (84) written for (ϕT ,m1) =

(ϕTε ,m
1
ε), we obtain

‖vε‖L2(ω×(0,T )) ≤ C1‖(y0, `1)‖L2(0,`(T ))×R, (90)

where C1 > 0 only depends on `∗, B, ω, ‖y‖∞ and T . Since systems (76) and (82) are in
duality, we have

∫∫
ω×(0,T )

ϕεϕdx dt = ((ϕT ,m1), (yε(T ), `′ε(T )))L2(0,`(T ))×R

−((ϕ(0),m′(0)), (y0, `1))L2(0,`0)×R

(91)

which, combined with (89), yields

‖(yε(T ), `′ε(T ))‖L2(0,`(T ))×R ≤ ε, ∀x ∈ (0, `(T )).

3.2.4 A regularity property

We introduce here a class of functions of standard use in the regularity
theory of parabolic equations, see (LADYZHENSKAIA, SOLONNIKOV, and URAL-
CEVA, 1988)).

Let us fix an integer m ≥ 0 and α ∈ (0, 1). Let us set Q = Ω × (0, T ), let
G ⊂ Q be a non-empty open set and let us assume the Dr

tD
s
xu is continuous in G for

2r + s < m+ α. Then, we set

〈u〉(α)
x,G = sup

(x,t),(x′,t)∈G

|u(x, t)− u(x′, t)|
|x− x′|α

, 〈u〉(m+α)
x,G =

∑
2r+s=m

〈Dr
tD

s
xu〉

(α)
x,G,

〈u〉(α/2)
t,G = sup

(x,t),(x,t′)∈G

|u(x, t)− u(x, t′)|
|t− t′|α/2

, 〈u〉(
m+α

2
)

t,G =
∑

2r+s=m

〈Dr
tD

s
xu〉

(α
2

)

t,G .

|u|(m+α)
G =

∑
2r+s≤m

‖Dr
tD

s
xu‖L∞(G) + 〈u〉(m+α)

x,G + 〈u〉(
m+α

2
)

t,G ,

The space of the functions u = u(x, t), such that |u|(m+α)
G < ∞ will be de-

noted by

Km,α(G).

This is a separable Banach space for | · |m,αG . Furthermore, it is easy to check
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that Km,0(G) = Cm(G) and, if m+α < m′+α′ the embedding Km′,α′(G) ↪→ Km,α(G) is
compact.

Let us denote by N0 the norm of y0 in L2(0, L0) and let (υ, y) be a control-
state pair furnished by Theorem 3.3. Let b′ be given with b < b′ < L0 and let us set

R` = Q` ∩ {(x, t) : x > b′}.

Let δ > 0 be sufficiently small to have b < b′− δ < b′+ δ < `∗. From Theorem
10.1 in (LADYZHENSKAIA, SOLONNIKOV, and URALCEVA, 1988, p. 204), we can
say that

yε ∈ K1,α([b′ − δ, b′ + δ]× (0, T )),

where α ∈ [0, 1/2).
Let us now introduce the following change of variables in Rl:

ξ(x, t) =
b′(`(t)− x) + `0(x− b′)

`(t)− b′
, s(t) =

∫ t

0

(
`0 − b′

`(τ)− b′

)2

dτ

and let us set z(ξ, s) = y(x, t). Then, we have
−zs − zzξ − zξξ = 0, in R,

z(0, s) = 0, z(`0, s) = `′(t(s)), s ∈ (0, S),

zξ(`0, s) = −`′′(t(s)), s ∈ (0, S),

z(ξ, 0) = y0(ξ), ξ ∈ (b′, `0),

(92)

whereR = (b′, `0)×(0, S) with S = s(T ) and z ∈ L∞((b′, `0)×(0, S)) and ‖z‖L∞((b′,`0)×(0,S))

is bounded a constant only depending on ‖y‖∞, `∗, `0 and b′. Taking again into ac-
count Theorems 10.1 and 11.1 of (LADYZHENSKAIA, SOLONNIKOV, and URAL-
CEVA, 1988, p.211), we can verify that the function z satisfies

z ∈ K1,α(R).

Consequently, we can verify that the function `′′(t) := −yε,x(`(t), t) satisfies

‖`′′‖C0,α/2([0,T ]) ≤ C2‖(y0, `1)‖H1(0,`0)×R, (93)

where the constant C2 > 0 only depending on ‖y‖∞, `∗, `0, B, ω and T .

3.3 The local null controllability of the nonlinear system

To prove that (74) is null controllable, we proceed as follows. Let us set
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Z = L2(Q)×X0, X0 := {` ∈ X : `(0) = `0, `
′(0) = `1, ‖`′‖∞ < 1}.

Let ZR be the closed convex set

ZR = {(z, `) ∈ Z : ‖z‖L∞(Q) < R, ‖`′‖∞ < 1}

(R will be chosen below).
We will denote by ‖ · ‖Z the usual norm in Z:

‖(z, `)‖Z = ‖(z, `)‖L2(Q)×C0([0,T ]).

Let ε > 0 be given. For any (z, `) ∈ Z, let us denote by vε the minimal L2

norm control satisfying, together with the state (yε, kε), the following:

yε,t + zyε,x − yε,xx = vε1ω, (x, t) ∈ Q`

yε(0, t) = 0, yε(`(t), t) = kε(t), t ∈ (0, T )

yε,x(`(t), t) = −k′ε(t), t ∈ (0, T )

yε(x, 0) = y0(x), x ∈ (0, `0)

kε(0) = `0, kε(0) = `1,

‖(yε(T ), kε(T ))‖L2(0,`(T ))×R ≤ ε.

We will set
Θε(z, `) := vε

and
Λε(z, `) := (ŷε, Lε),

where

ŷε(x, t) =

{
yε(x, t), in Q`

kε(t), in Q \Q`

and

Lε(t) = `0 +

∫ t

0

kε(s) ds.

We will try to apply Schauder’s Fixed-Point Theorem to the mapping Λε

in ZR. To this end, we note for the moment that, in view of Theorems 3.2 and 3.3, the
following estimates hold:

‖vε‖L2(ω×(0,T )) ≤ C1‖(y0, `1)‖L2(0,`0)×R
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and
‖(ŷε, kε)‖Z ≤ C3‖(y0, `1)‖L2(0,`0)×R,

where C3 > 0 only depend ons `∗, B, ‖z‖L∞(Q), ω and T .
It is clear that (z, l) 7→ Λε(z, l) is a well defined mapping from Z into a

bounded set of L∞(Q) × C0([0, T ]). On other hand, we have by construction Lε ∈
C2([0, T ]), L′ε(t) ≡ kε(t) and Lε(0) = `0, whence

|L′ε(t)| ≤ C3‖(y0, `1)‖H1(0,`0)×R and |Lε(t)− `0| ≤ TC3‖(y0, `1)‖H1(0,`0)×R.

Therefore, if we choose ‖(y0, `1)‖H1(0,`0)×R such that

‖(y0, `1)‖H1(0,`0)×R ≤ min

(
1,
R

C3

,
B − `0

TC3

,
`0 − `∗
TC3

)
,

the property Λε(ZR) ⊂ ZR holds.

We denote by X2(Q) the following Banach space:

X2(Q) := L2(0, T ;H1(0, B)) ∩W 1,2(0, T ;L2(0, B)).

Let us prove that Λε maps bounded sets in Z into bounded sets in X2(Q)×
C2,α([0, T ]), for some α ∈ (0, 1/2). This will suffice to our purpose, since this space is
compactly embedded in L2(Q) × C2([0, T ]). But this is clear: indeed, combining (79),
(81) and (93), we deduce that

‖ŷε‖X2(Q) + ‖kε‖C1,α/2([0,T ]) ≤ C4‖(y0, `1)‖H1(0,`0)×R,

where C4 is a positive constant, only depending on `∗, B, ‖z‖L∞(Q), ω and T .
Now, we will show that (z, `) 7→ Λε(z, `) is a continuous mapping on Z.

Thus, let the (zn, `n) be such that

(zn, `n)→ (z, `) in Z, (94)

and let us set (yε,n, Lε,n) = Λε(zn, ln) for all n. We must prove that (yε, Lε) = Λε(z, `).
Proposition 3.2. Let us consider the mappingM : Z → L2(0, `0)×C0([0, T ]), withM(z, `) =

(ϕTε ,m
1
ε), where (ϕTε ,m

1
ε) is the minimizer of Jε and

Jε(ϕ
T ,m1) =

1

2

∫∫
ω×(0,T )

|ϕ|2 dx dt+ ε‖(ϕT ,m1)‖L2(0,l(T ))×R

+((ϕ(0),m′(0)), (y0, `1))L2(0,`0)×R
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for all (ϕT ,m1) ∈ L2(0, `(T ))×R (here, (ϕ,m′) is solution of (82) with potential z and initial
condition (ϕT ,m1)).

One has the following:
i If {zn} is a bounded sequence in L∞(Q) and the `n ∈ X0, there exists a constant C > 0

independent of n such that
‖ϕTε,n‖L2(0,L0) ≤ C, ∀n,

where (ϕTε,n,m
1
ε,n) is the minimizer of the functional Jε,n corresponding to zn and Qln .

ii If zn → z ∈ L∞(Q) weak-∗ and `n → ` ∈ C0([0, T ]), then ϕTε,n converges strongly
in L2(0, l(T )) to ϕTε .

After this proposition, it is not difficult to check that, indeed,

(ŷε,n, Lε,n)→ (ŷε, Lε) strongly in Z

and, consequently, Λε is continuous.

We can apply Schauder’s Theorem to Λε. Let (yε, Lε) be a fixed point of Λε

for each ε > 0. Then, the vε are uniformly bounded in L2(ω× (0, T )) and it is clear that,
at least for a subsequence,

vε → v, weakly in L2(ω × (0, T )) as ε→ 0,

where v satisfies, together with some (y, L), the following:

yt + yyx − yxx = v1ω, (x, t) ∈ QL,

y(0, t) = 0, y(L(t), t) = L′(t), t ∈ (0, T ),

yx(L(t), t) = −L′′(t), t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, `0),

L(0) = `0, L
′(0) = `1

(95)

and
y(x, T ) = 0, x ∈ (0, `0), L′(T ) = 0.

3.4 Additional comments and questions

• A global null control result is, to our knowledge, unknown.
• It is also interesting to analyze a similar model with two fluids and an external

force field only acting on one of the fluids. The objective would be in this case
to see whether the system can be driven exactly to zero with only one control
starting from an arbitrary state, see (LIU, 2011) for a local result.



54

• Consider the following inviscid Burgers free-boundary problem:

yt + yyx = v1ω, (x, t) ∈ Q`,

y(0, t) = 0, y(`(t), t) = `′(t), t ∈ (0, T ),

yx(`(t), t) = −`′′(t), t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, `0),

`(0) = `0, `
′(0) = `1.

(96)

On the other hand, for each ν > 0, consider the following system, similar to (46):

yt + yyx − νyxx = v1ω, (x, t) ∈ Q`,

y(0, t) = 0, y(l(t), t) = l′(t), t ∈ (0, T ),

yx(`(t), t) = −`′′(t), t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, `0),

`(0) = `0, `
′(0) = `1.

(97)

Assume that (y0, `1) ∈ H1(0, `0) × R and 0 < a < b < `∗ < `0 < B and let vν be a
null control for (97) and (yν , `

′
ν) an associated state satisfying

yν(x, T ) = 0, x ∈ (0, `0), `′ν(T ) = 0.

Is it possible to prove convergence result, at least for a subsequence, of the vν and
the (yν , `ν) respectively to v and (y, `) ?
• As a system in higher spatial dimension, consider the Navier-Stokes free-boundary

problem 
yt −∆y + (y,∇)y +∇p = v1ω, (x, t) ∈ Ω(t)× (0, T ),

∇ · y = 0, (x, t) ∈ Ω(t)× (0, T ),

y(l(t, s), t) = lt(t, s), t ∈ (0, T ), s ∈ (0, 1),

y(x, 0) = y0(x), x ∈ Ω0,

together with 
∂y

∂η
(l(t, s), t) = −ltt(t, s) · η, t ∈ (0, T ), s ∈ (0, 1)

l(t, 0) = l(t, 1), ls(t, 0) = ls(t, 1), t ∈ (0, T )

where Ω(t) ⊂ Rn, n = 2 or 3 and ∂Ω(t) = l(t, s), t ∈ (0, T ), s ∈ (0, 1).
The local null controllability is open in this case (in fact, even for the Stoles sys-
tem, the answer is unknown).
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4 REMARKS CONCERNING THE APPROXIMATE CONTROLLABILITY OF THE
BOUSSINESQ AND NAVIER-STOKES SYSTEMS

In this Section, we deal with the 3D Navier-Stokes and Boussinesq systems
in a cube. We prove some extensions and variants of a result by Guerrero, Imanuvilov
and Puel that concerns the (global) approximate boundary controllability.

4.1 Introduction

Let T > 0 and let Ω be the open set

Ω = {x ∈ R3 : x1, x2, x3 ∈ (0, 1)},

whose boundary is denoted by ∂Ω. We will use the notation Q := Ω × (0, T ) and Σ :=

∂Ω× (0, T ).
Let us introduce the Hilbert spaces

H(Ω) = {w ∈ L2(Ω)3 : ∇ · w = 0 in Ω, w · n = 0 on ∂Ω}

(where n = n(x) is the outward unit normal vector at x ∈ ∂Ω) and

V0(Ω) = {w ∈ H1
0 (Ω)3 : ∇ · w = 0 in Ω}.

We consider the three-dimensional Navier-Stokes and Boussinesq systems
ut −∆u+ (u,∇)u+∇p = f, ∇ · u = 0 in Q

u(0, x2, x3, t) = 0, in (0, 1)2 × (0, T )

u(x, 0) = u0(x) in Ω

(98)

and 
ut −∆u+ (u,∇)u+∇p = θeN + f, ∇ · u = 0 in Q

θt −∆θ + u · ∇θ = g in Q

u(0, x2, x3, t) = 0, θ(0, x2, x3, t) = 0 in (0, 1)2 × (0, T )

(u(x, 0), θ(x, 0)) = (u0(x), θ0(x)) in Ω.

(99)

Here, f ∈ L2(0, T ;L2(Ω)3), g ∈ L2(0, T ;L2(Ω)) are given source terms, u0 ∈
H(Ω) and θ0 ∈ L2(Ω).

In a recent work, Guerrero, Imanuvilov and Puel (GUERRERO, IMANUVILOV,
and PUEL, 2012) have established a result concerning the approximate controllability
of (98). Specifically, they have proved that, for any u0 and f , there exists a sequence
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{fn} in L2(0, T ;L2(Ω)3) such that fn → f in an appropriate sense and, for each n, the
corresponding system (98) is null-controllable, with controls supported by the faces on
the boundary where x1 6= 0.

This paper is devoted to present some extensions and variants that include
in particular a result of the same kind for the Boussinesq system (99).

Note that, in view of the time irreversibility of (98) and (99), we cannot ex-
pect the exact controllability to hold to an arbitrary target function. On the other hand,
recall that the global approximate controllability is an open question for these systems,
due to the presence of a Dirichlet condition at x1 = 0.

Let us now recall some (partial) results concerning the controllability of (98)
and (99).

Global controllability results can be proved using the arguments in (FUR-
SIKOV and IMANUVILOV, 1999) if the control is exerted on the whole boundary. On
the other hand, the local exact controllability to bounded trajectories with distributed
controls was first established in (FERNÁNDEZ-CARA, GUERRERO, IMANUVILOV,
and PUEL, 2004) and GUERRERO (2006), respectively for the Navier-Stokes and Boussi-
nesq systems. This has been revisited and improved in a set of papers, where it was
shown thatN−1 or even less scalar controls suffice; see (FERNÁNDEZ-CARA, GUER-
RERO, IMANUVILOV, and PUEL, 2006; CARREÑO, 2012; CARREÑO and GUER-
RERO, 2013; CORON and LISSY, 2014). In (CORON, 1996), the global approximate
controllability of the 2D Navier-Stokes equations completed with Navier slip bound-
ary conditions was proved. Then, in (CORON and FURSIKOV, 1996), a global exact
controllability result was established for the same system in a 2D manifold without
boundary.

The first main result in this paper is the following:
Theorem 4.1. Assume that (u0, θ0) ∈ V0(Ω) × H1(Ω) and (f, g) ∈ L2(Q)3 × L2(Q). Then,
there exists a sequence {(fε, gε)}ε>0 in L2(Q)3 × L2(Q) such that

(fε, gε)→ (f, g) in Lr(0, T ;H−1(Ω)3)× Lr(0, T ;H−1(Ω))

for all r ∈ (1, 4/3) and there exist solutions (uε, pε, θε) to the null controllability problems

uε,t −∆uε + (uε,∇)uε +∇pε = θεeN + fε, ∇ · uε = 0 in Q
θε,t −∆θε + uε · ∇θ = gε in Q
uε(0, x2, x3, t) = 0, θε(0, x2, x3, t) = 0 in (0, 1)2×(0, T )

(uε(x, 0), θε(x, 0)) = (u0(x), θ0(x)) in Ω

(uε(x, T ), θε(x, T )) = (0, 0) in Ω,

with
uε ∈ L2(0, T ;V (Ω)) ∩ L∞([0, T ];H(Ω))



57

and
θε ∈ L2(0, T ;H1

0 (Ω)) ∩ L∞([0, T ];L2(Ω)).

As in (GUERRERO, IMANUVILOV, and PUEL, 2012), the proof of Theo-
rem 4.1 will take four steps. Thus, we divide our time interval (0, T ) in four subinter-
vals, where different strategies are used:
• In the first interval (0, T1) no control is needed, so we let the Boussinesq sys-

tem evolve from our initial condition (u0, θ0) to same (uε, θε) with zero Dirichlet
boundary conditions.
• In the second time interval, we explicitly give our solution (uε, θε). This way, we

drive (u, θ) to some compactly supported state (u1,ε1 , θ1,ε1) at a time T2.
• In the third time interval, we construct our solution (uε, θε) in a much more in-

trinsic way. Indeed, we write (uε, θε) as the sum of three and two functions: a
very particular solution (U,Θ) to the Boussinesq system constructed multiplied
by a large parameter plus a solution (y, h) to a transport equation plus acouple of
the form (W, 0), where W solves a linear Stokes system.
This allows to drive the (uε, θε) to a solution to a heat equation.
• In the last time interval, we reduce the question to drive (uε, θε) to zero, that is, a

null controllability problem for a system composed of two coupled 1D parabolic
equations. In view of well known results, this is easy to achieve and allows to
conclude.

The following two results concern generalizations of Theorem 1 in (GUER-
RERO, IMANUVILOV, and PUEL, 2012). In the first one, we prove that the approxi-
mate boundary controllability can also be obtained with controls acting only on three
faces of the unit cube. In the second one, we show that Ω can be a much more gen-
eral set, namely a bounded domain of R3 whose boundary contains a piece of a plane
entirely located inside one of the associated semispaces, see Fig. (3).

Figure 3: The situation in Theorem 4.3

Theorem 4.2. Assume that u0 ∈ H(Ω) and f ∈ L2(0, T ;L2(Ω)3) are given. Then, there exists
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a sequence {(fε)}ε>0 in L2(0, T ;L2(Ω)3) such that

fε → f in Lr(0, T ;H−1(Ω)3)

for all r ∈ (1, 4/3) and there exist solutions (uε, pε) to the null controllability problems
uε,t −∆uε + (uε,∇)uε +∇pε = fε in Ω× (0, T )

∇ · uε = 0 in Ω× (0, T )

uε(0, x2, x3, t) = uε(1, x2, x3, t) = uε(x1, x2, 0, t) = 0 in (0, 1)2 × (0, T )

uε(x, 0) = u0(x), uε(x, T ) = 0 in Ω.

Now, let Π be a plane in R3, let Π+ be one of the semispaces determined
by Π and let ΩΠ ⊂ R3 be a bounded domain satisfying

ΩΠ ⊂ Π+, ΩΠ ∩ Π is a non-empty open set

and let us consider the Navier-Stokes system
ut −∆u+ (u,∇)u+∇p = f in ΩΠ × (0, T )

∇ · u = 0 in ΩΠ × (0, T )

u(x, t) = 0 in (∂ΩΠ ∩ Π)× (0, T )

u(x, 0) = u0(x) in ΩΠ.

Theorem 4.3. Assume that u0 ∈ H(ΩΠ) and f ∈ L2(ΩΠ × (0, T )). Then, there exists a
sequence {(fε)}ε>0 in L2(ΩΠ × (0, T ))3 such that

fε → f in Lr(0, T ;H−1(ΩΠ)3)

for all r ∈ (1, 4/3) and there exist solutions (uε, pε) to the null controllability problems
uε,t −∆uε + (uε,∇)uε +∇pε = fε in ΩΠ × (0, T )

∇ · uε = 0 in ΩΠ × (0, T )

uε(x, t) = 0 on (∂ΩΠ ∩ Π)× (0, t)

uε(x, 0) = u0(x), uε(x, T ) = 0 in ΩΠ.

A similar result can be deduced for the Boussinesq system in ΩΠ × (0, T ).
For brevity, we leave the details to the reader.

This section is organized as follows. In the next subsection, we construct
some intermediate functions and we prove some crucial estimates.
In the Subsection 4.3, the proof of Theorem 4.1 is given, following the ideas in (GUER-
RERO, IMANUVILOV, and PUEL, 2012). Subsection 4.4 deals with the proofs of Theo-
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rems 4.2 and 4.3. Finally, in Subsection 4.5, we present some additional comments and
questions.

4.2 Some auxiliary problems and estimates

In this subsection, we will construct a specific solution (U, P,Θ) to the Boussi-
nesq system with boundary conditions, with (U,∇)U ≡ 0.

4.2.1 The Navier-Stokes system with a boundary control acting on three faces

Let z = z(x1, x3, t) be solution to the following system for the 2D heat PDE:
zt − (zx1x1 + zx3x3) = c(t), (x1, x3, t) ∈ (0, 1)2 × (0, T )

z(0, x3, t) = z(1, x3, t) = z(x1, 0, t) = 0, x1, x3 ∈ (0, 1), t ∈ (0, T )

z(x1, 1, t) = w(t), (x1, t) ∈ (0, 1)× (0, T )

z(x1, x3, 0) = 0, (x1, x3) ∈ (0, 1)2.

Here, c ∈ C2([0, T ]) is a positive function with positive c(0) (as large as needed) and w

is a nonnegative function satisfying

w(t) ∈ C∞([0, T ]), w(0) = 0, w′(0) = c(0), w′′(0) = c′(0). (100)

Figure 4: The situation in Theorem 4.2

Thanks to the compatibility condition (100), we can argue as in (GUER-
RERO, IMANUVILOV, and PUEL, 2012) and check that

z ∈ C2([δ, 1− δ]2 × [0, T ]) ∀δ > 0.

On the other hand, thanks to Taylor’s formula, we can obtain functions βδ, γiδ, λδ and µijδ
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in C0([δ, 1− δ]2 × [0, T ]) such that

z(x1, x3, t) = c(0)t+ βδ(x1, x3, t)t
2

zxi(x1, x3, t) = γiδ(x1, x3, t)t
2, i ∈ {1, 3}

zt(x1, x3, t) = c(0) + λδ(x1, x3, t)t

zxi,xj(x1, x3, t) = µijδ (x1, x3, t)t, i, j ∈ {1, 3}.

(101)

Let G and I be given by

G = { (x1, x2, x3) : x2 ∈ R, (x1, x3) ∈ (0, 1)2 },

I = ({0, 1} × R× (0, 1)) ∪ ((0, 1)× R× {0}).

Now, we introduce the functions U and q, with U(x, t) := (0, z(x1, x3, t), 0)

and q := −c(t)x2. Note that the couple (U, q) satisfies
Ut −∆U +∇q = 0, in G × (0, T )

∇ · U = 0, in G × (0, T )

U(x, t) = 0, on I × (0, T )

U(x, 0) = 0, in G.

Later, we will look for a solution to the Navier-Stokes system of the form

u = N2U + y + ξ(t)W,

where N is a large constant, y is the solution to a transport equation, W solves a Stokes
system and ξ ∈ C2[0, 2/N ] is a cut-off function.

4.2.1.1 Transport equation

For an arbitrary initial condition y0 ∈ V0(Ω) ∩ C1
0(Ω) extended by zero on G

we consider the system
yt +N2(U,∇)y +N2(y,∇)U = 0, (x, t) ∈ Q2/N ,

y(x, t) = 0, (x, t) ∈ Σ2/N ,

y(x, 0) = y0(x), x ∈ Ω,

(102)

Here, we have used the notation

Q2/N = G × (0, 2/N), Σ2/N = I × (0, 2/N).
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Let us introduce the constant

Cδ := sup{‖g‖C0((δ,1−δ)2×[0,T ]) : g ∈ {βδ, γiδ, µ
ij
δ }}.

We will look for a particular estimate for y, with an explicit dependence on Nδ that is
satisfied when it is large enough. It is given in the following lemma:
Lemma 4.1. Let y0 ∈ C1

0(Ω) ∩ V0(Ω). Then, there exists Nδ = N(δ) such that, for any
N > Nδ, there exist a solution y to (102) and a positive constant Kδ (independent of N ), with
the following properties:

‖y‖C1(Q2/N ) ≤ Kδ‖y0‖C1
0 (Ω) (103)

and
y(x, t) = 0, t ∈ [1/N, 2/N ], x ∈ Ω.

Proof. Let us consider the Banach space

Y = {y ∈ C1(Q2/N) : y(x, 0) = y0(x)}.

Let us assume that supp y0 ⊂ (δ, 1− δ)3.
There exists Nδ such that, for any N > Nδ, the existence of y can be estab-

lished by applying Banach’s Fixed-Point Theorem to the mapping Λ, where

Λ(y)(x, t) = y0(x−N2Z(x, t))−N2

∫ t

0

(y,∇)U(x−N2Z(x, s), s) ds,

Z(x, t) =

(
0,

∫ t

0

z(x1, x3, s)ds, 0

)
, (x, t) ∈ Q2/N

Let us denote y0 = (y0,1, y0,2, y0,3) and U = (U1, U2, U3). Then, we have

y1(x, t) = y0,1(x−N2Z(x, t)),

y2(x, t) = y0,2(x−N2Z(x, t))−N2

∫ t

0

y · ∇U2(x−N2Z(s, x), s) ds,

y3(x, t) = y0,3(x−N2Z(x, t)).

From these formulae, it is easy to check that, for N large enough, one has:

‖y‖C0(Q2/N ) ≤ C‖y0‖C0(Ω)

‖∇y1‖C0(Q2/N ) ≤ C‖∇y0,1‖C0(Ω)

‖∇y3‖C0(Q2/N ) ≤ C‖∇y0,3‖C0(Ω).

(104)
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On the other hand, we also have

‖∇y2‖C0(Q2/N ) ≤ 7‖∇y0,2‖C0(Ω) + Cδ‖y0‖C0(Ω)

+ 3
Cδ
N
‖∇y‖C0(Q2/N ) + 15

C2
δ

N2
‖∇y‖C0(Q2/N ).

(105)

From (104) and (105), the inequality (103) holds (for N large enough). This
ends the proof.

4.2.1.2 The solution W to a Stokes-like system with∇ ·W = −∇ · y

Consider the following Stokes problem:

Wt −∆W +∇r = 0, (x, t) ∈ Q2/N ,

∇ ·W = −∇ · y, (x, t) ∈ Q2/N ,

W (x, t) = 0, (x, t) ∈ Σ2/N ,

W (x, 0) = 0, x ∈ Ω,

W (x, t)→ 0 as |x2| → +∞.

(106)

The following result holds:
Proposition 4.1. Let W be the solution to problem (106). Then, for any p ∈ (1,∞),

‖W‖Lp(Q2/N ) ≤
C(p)

N1/p
‖y0‖C3(Ω). (107)

Furthermore, there exists a positive constant C > 0 independent of N such that

‖W‖C0([0,2/N ];L2(G)) + ‖∂x2W‖C0([0,2/N ];L2(G)) + ‖∂x3W‖C0([0,2/N ];L2(G)) ≤
C

N1/4
. (108)

The proof can easily be obtained arguing as in (GUERRERO, IMANUVILOV,
and PUEL, 2012) (see the proof of Proposition 1).

4.2.2 Boussinesq system

We will construct a specific solution (U,Θ) to the Boussinesq system. Let
us first introduce the functions z2 = z2(x1, t), z3 = z3(x1, t) and Θ = Θ(x1, t): z2 is the
solution to the system

∂tz2 − ∂2
x1x1

z2 = c(t), (x1, t) ∈ (0, 1)× (0, T ),

z2(0, t) = 0, z2(1, t) = w2(t), t ∈ (0, T ),

z2(x1, 0) = 0 x1 ∈ (0, 1),

(109)
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where c ∈ C2([0, T ]) is a positive function and w2 is a nonnegative function satisfying

w2(t) ∈ C∞[0, T ], w2(0) = 0, w′2(0) = c(0), w′′2(0) = c′(0);

on the other hand, (z3,Θ) solves

∂tz3 − ∂2
x1x1

z3 = c(t) + Θ(x1, t), (x1, t) ∈ (0, 1)× (0, T )

∂tΘ− ∂2
x1x1

Θ = 0, (x1, t) ∈ (0, 1)× (0, T )

z3(0, t) = 0, z3(1, t) = w3(t), t ∈ (0, T )

Θ(0, t) = 0, Θ(1, t) = w(t) t ∈ (0, T )

z3(x1, 0) = 0, Θ(x1, 0) = 0 x1 ∈ (0, 1).

(110)

with
w3 ∈ C∞[0, T ], w3(0) = 0, w′3(0) = c(0), w′′3(0) = c′(0),

w ∈ C∞[0, T ], w(0) = w′(0) = w′′(0) = 0.

Proposition 4.2. Under the above assumptions on w2 and c, there exist a unique solution to
(109) with

z2 ∈ L2(0, T ;H1(0, 1)) ∩ L∞((0, 1)× (0, T )), z2,t ∈ L2(0, T ;H−1(0, 1)).

Furthermore, for all small δ > 0, we have that z2 ∈ C2([δ, 1]× [0, T ]) and there exist functions
β2, γ2, µ2 andλ2 such that

(i) z2(x1, t) = c(0)t+ β2(x1, t)t
2, |β2| ≤ Cδ,

(ii) ∂x1z2(x1, t) = γ2(x1, t)t
2, |γ2| ≤ Cδ,

(iii) ∂tz2(x1, t) = c(0) + µ2(x1, t)t, |µ2| ≤ Cδ,
(iv) ∂2

x1x1
z2(x1, t) = λ2(x1, t)t, |λ2| ≤ Cδ.
The proof is not difficult. For instance, let us see how (i) can be proved.
We simply write that

z2(x, t) = z2(x1, 0) +

∫ t

0

z2,t(x1, s) ds

= z2,t(x, 0)t+

(∫ t

0

z2,t(x1, s) ds− tz2,t(x1, 0)

)
= c(0)t+ β2(x1, t)t

2

with 0 < t̃ < t, where we have used the notation β2(x1, t) := (z2,t(x, t̃)− z2,t(x1, 0)) t−1.
The proof of (ii), (iii) and (iv) follows through analogous computations.

A similar result can be established for the solution (z3,Θ) to the system (110):
Proposition 4.3. Under the above assumptions on w3, w2 and c, there exists a unique solution
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(z3,Θ) to (110) with

z3 ∈ L2(0, T ;H1(0, 1)) ∩ L∞((0, 1)× (0, T )), z3,t ∈ L2(0, T ;H−1(0, 1)),

Θ ∈ L2(0, T ;H1(0, 1)) ∩ L∞((0, 1)× (0, T )), Θt ∈ L2(0, T ;H−1(0, 1)).

Furthermore,, for all small δ > 0, we have that z3,Θ ∈ C2([δ, 1] × [0, T ])2 and
there exist functions β3, γ3, µ3, λ3, β, γ and µ such that

(i) z3(x1, t) = c(0)t+ β3(x1, t)t
2 and Θ(x1, t) = β(x1, t)t

2, with |β|, |β3| ≤ Cδ,
(ii) ∂x1z2(x1, t) = γ3(x1, t)t

2 and ∂x1Θ(x1, t) = γ(x1, t)t
2, with |γ|, |γ3| ≤ Cδ,

(iii) ∂tz2(x1, t) = c(0)+µ3(x1, t)t and ∂tΘ(x1, t) = ∂x1x1Θ(x1, t) = µ(x1, t)t, with |µ|, |µ3| ≤
Cδ,

(iv) ∂2
x1x1

z2(x1, t) = λ3(x1, t)t, with |λ3| ≤ Cδ.
Now, consider the functions U(x, t) = (0, z2(x1, t), z3(x1, t)), Θ = Θ(x, t) as

before and q(x, t) = −(x2 + x3)c(t). Observe that (U, q,Θ) solves the following Boussi-
nesq problem: 

Ut −∆U + (U,∇)U +∇q = Θe3, in G × (0, T )

∇ · U = 0 in G × (0, T )

Θt −∆Θ + U · ∇Θ = 0 in G × (0, T )

U(0, x2, x3, t) = 0, Θ(0, x2, x3, t) = 0 in G × (0, T )

U(x, 0) = 0, Θ(x, 0) = 0 in G.

(111)

In the proof of Theorem 4.1, the construction of the solution to (99) is divided
into four steps. In one of them, (u, θ, p) is written in the form

u(x, t) = N2U(x, t) + y(x, t)−W (x, t), (x, t) ∈ Ω× (T1, T2)

θ(x, t) = N2Θ(x, t) + h(x, t), (x, t) ∈ Ω× (T1, T2)

p(x, t) = N2q(x, t) + r(x, t), (x, t) ∈ Ω× (T1, T2)

where (y, h) is the solution to a transport equation and W is the solution to a linear
Stokes system. In the next two paragraphs, we construct (y, h) and W and we prove
some estimates.

For any δ > 0, we define

C0
δ (Ḡ × [0, 2/N ])4 := {(y, h) ∈ C0(G × [0, 2/N ])4; y = 0, h = 0 for x1 ∈ [0, δ]}.

4.2.2.1 Transport equation

For an arbitrary initial condition extended by zero on G and for some N ∈ N
large enough, which will be defined precisely later, we solve the following null con-
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trollability problem for the transport equation
yt +N2(U,∇)y +N2(y,∇)U = he3, in Q2/N ,

ht +N2U · ∇h+N2y · ∇Θ = 0 in Q2/N ,

y(0, x2, x3, t) = 0, h(0, x2, x3, t) = 0 in R2 × (0, 2/N),

y(x, 0) = y0, h(x, 0) = h0 in x ∈ G,

(112)

where Q2/N = G × (0, 2/N).
Lemma 4.2. Let us assume that (y0, h0) ∈ (C1

0(Ω)∩V0(Ω))×C1
0(Ω). Then there exists N0(δ)

such that, for any N ≥ N0(δ), there exists a solution (y, h) to problem (112) and a positive
constant C(δ) independent of N , such that (y, h) ∈ C0

δ (Ḡ × [0, 2/N ]),

‖y‖C1
δ (Q̄2/N ) + ‖h‖C1

δ (Q̄2/N ) ≤ C(δ), (113)

‖yt‖C1
δ (Q̄2/N ) + ‖ht‖C1

δ (Q̄2/N ) ≤ C(δ) (114)

and
y(x, t) = 0, h(x, t) = 0 (x, t) ∈ Ω× [1/N, 2/N ].

Proof. Since (v0, h0) ∈ (C1
0(Ω) ∩ V0(Ω))× C1

0(Ω), then there exist δ > 0 such that

supp v0 ∪ supph0 ⊂ [δ, 1]× [0, 1]2.

The existence of the solutions is established by the Banach’s Fixed Point
Theorem. Let us consider the Banach space

Y = {(y, h) ∈ C0
δ (Ḡ× [0, 2/N ])4; y(x, 0) = y0(x), h(x, 0) = h0(x)}

and let us introduce Z = (0, Z2, Z3), with

Z2(x1, t)=

∫ t

0

z2(x1, s) ds, Z3(x1, t)=

∫ t

0

z3(x1, s) ds, (x1, t) ∈ (0, 1)×(0, T ).

We will define the mapping Λ : Y → Y as follows: for each (ỹ, h̃) ∈ Y ,
Λ(ỹ, h̃) = (y, h) if and only if

y(x, t) = y0(x−N2Z(x1, t)) +

(∫ t

0

h̃(x−N2Z(x1, s), s) ds

)
e3

− N2

∫ t

0

((ỹ,∇)U)(x−N2Z(x1, s), s) ds,

(115)
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h(x, t) = h0(x−N2Z(x1, t))−N2

∫ t

0

(ỹ · ∇Θ)(x−N2Z(x1, s), s) ds. (116)

Let us see that, if N0(δ) is large enough, we can apply Banach’s Fixed Point Theorem to
Λ and deduce the existence of a fixed point. For (y1, h1), (y2, h2) ∈ Y , by propositions
(4.2) and (110) we have

N2

∫ t

0

((y2,∇)U)(x−N2Z(x1, s), s) ds

−N2

∫ t

0

((y1,∇)U)(x−N2Z(x1, s), s) ds

≤ Cδ
N
‖y2 − y1‖C0

δ (Ḡ×[0,2/N ])3

and

N2

∫ t

0

(y2 · ∇Θ)(x−N2Z(x1, s), s) ds

−N2

∫ t

0

(y1 · ∇Θ)(x−N2Z(x1, s), s) ds

≤ Cδ
N
‖y2 − y1‖C0

δ (Ḡ×[0,2/N ])3 .

Then, we obtain

‖Λ(y2, h2)− Λ(y1, h2)‖Y ≤
Cδ
N
‖(y2, h2)− (y1, h1)‖C0

δ (Ḡ×[0,2/N ])4 .

Therefore, for N0 large enough Λ possesses at least one fixed point (y, h). Obviously,
Λ(y, h) = (y, h) is a solution to (112).

Now let us verify the estimates (113) and (114).
First, note that

|N2∇U | ≤ CN2t2, in [δ, 1]× [0, 2/N ],

|N2∇Θ| ≤ CN2t2, in [δ, 1]× [0, 2/N ].

We can verify that

|y| ≤ C +

∫ t

0

|h(x−N2Z(x1, s), s)|ds+ C

∫ t

0

|y(x−N2Z(x1, s), s)| ds,

|h| ≤ C + C

∫ t

0

|y(x−N2Z(x1, s), s)| ds.

Now as t ∈ [0, 2/N ], we immediately obtain
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‖y‖C0
δ (Q̄2/N ) + ‖h‖C0

δ (Q̄2/N ) −
C1

N
(‖y‖C0

δ (Q̄2/N ) + ‖h‖C0
δ (Q̄2/N )) ≤ C2.

Therefore, choosing N large enough, we have

‖y‖C0
δ (Q̄2/N ) + ‖h‖C0

δ (Q̄2/N ) ≤ 2C2. (117)

Taking the derivatives of (115) and (116) with respect to x1 and using Propo-
sitions 4.2 and 110, after some computations, we deduce that

|∂x1y| ≤ C +
C

N
+
C

N
‖∂x1h‖C0

δ (Q̄2/N ) +
C

N2
‖∂x2h‖C0

δ (Q̄2/N )

+
C

N2
‖∂x3h‖C0

δ (Q̄2/N ) +
C

N
‖∂x1y‖C0

δ (Q̄2/N ) +
C

N2
‖∂x2y‖C0

δ (Q̄2/N )

+
C

N2
‖∂x3y‖C0

δ (Q̄2/N )

and

|∂x1h|≤C+
C

N
+
C

N
‖∂x1y‖C0

δ (Q̄2/N )+
C

N2
‖∂x2y‖C0

δ (Q̄2/N )+
C

N2
‖∂x3y‖C0

δ (Q̄2/N ).

With a similar argument, we obtain estimates of the same kind for ∂x2y, ∂x3y,
∂x2h and ∂x3h. Then, we can write

‖∇y‖C0
δ (Q̄2/N ) + ‖∇h‖C0

δ (Q̄2/N ) −
C1

N
‖∇y‖C0

δ (Q̄2/N ) −
C1

N
‖∇h‖C0

δ (Q̄2/N ) ≤ C2

and, for N large enough, we have

‖∇y‖C0
δ (Q̄2/N ) + ‖∇h‖C0

δ (Q̄2/N ) ≤ 2C2. (118)

Taking the derivative of (115) and (116) in time, thanks the properties of
(y, h) in (117) and (118), we get:

‖yt‖C1
δ (Q̄2/N ) + ‖ht‖C1

δ (Q̄2/N ) ≤ C.

Now, our objective is to elect a N0 such that

y1(t, x) = 0, (t, x) ∈ [1/N, 2/N ]× Ω. (119)

Notice that
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y1(x, t) = y0,1(x−N2Z(x1, t))

y2(t, x) = y0,2(x−N2Z(x1, t))−N2

∫ t

0

∂x1z2(x1, s)y1(x−N2Z(x1, s), s) ds

y3(t, x) = y0,3(x−N2Z(x1, t))−N2

∫ t

0

∂x1z3(x1, s)y1(x−N2Z(x1, s), s) ds

+

∫ t

0

h(x−N2Z(x1, s), s) ds

h(t, x) = h0(x−N2Z(x1, t))−N2

∫ t

0

y1(x−N2Z(x1, s), s)∂x1Θ(x1, s) ds.

For x1 ∈ [0, δ/2], we have that y1 = 0 and h = 0. Recall that c(t) is a positive function.
Without loss of generality we way assume that

c(0) > 3.

Observe that by Proposition 4.2 we have

−N2

∫ t

0

z2(x1, s)ds = −N2

∫ t

0

(sc(0) + β2(x1, s)s
2) ds

≤ −c(0)

2
+

8

3N
Cδ,

for N enough large we can assume that

x2 −N2Z2(x1, t) < 0, (x1, t) ∈ [δ/2, 1]× [1/N, 2/N ], (120)

consequently, we obtain (119).
Let check that

y2(t, x) = y3(t, x) = h(t, x) = 0, t ∈ [1/N, 2/N ], x ∈ Ω.

To this purpose, we consider the curve

(x̃2(t), x̃3(t)) = (N2

∫ t

0

z2(x1, s) ds+ α1, N
2

∫ t

0

z3(x1, s) ds+ α2),

with α1 and α2 constant such that (x̃2(t), x̃3(t)) ∈ (0, 1)2. Denoting

cx1(t) = y2(x1, x̃2(t), x̃3(t), t),
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we have that

c′x1
(t) = ∂ty2 +N2z2∂x2y2 +N2z3∂x3y2 = −N2∂x1z2(x1)v0,1(x1, α1, α2).

Then, for any fixed x1 ∈ [0, δ/2] we have that c′x1
(t) = 0, wich implies that cx1(t) =

cx1(0) = y2(x1, α1, α2, 0) = v0,2(x1, α1, α2) and therefore y2 = 0, x1 ∈ [0, δ/2].
Now if (x1, x2, x3) ∈ (δ/2, 1)× (0, 1)2, by (120)

N2

∫ t

0

z2(x1, s)ds > 1,

which implies that α1 < 0. Then, c′x1
(t) = 0, which gives cx1(t) = cx1(0) = y2(x1, α1, α2, 0) =

v0,2(x1, α1, α2) = 0 and, therefore, y2 = 0, (x1, x2, x3) ∈
(
δ
2
, 1
)
× (0, 1)2.

We can get similar properties for h, consequently for y3. This ends the proof.

Finally, consider the Stokes problem

∂tW −∆W +∇r = 0 in Q2/N

W (0, x2, x3, t) = W (1, x2, x3, t) = 0 in R2 × (0, 2/N)

W (x1, x2, x3, t)→ 0 as |x2|+ |x3| → ∞
∇ ·W = ∇ · y in Q2/N

W (x, 0) = 0 in G,

(121)

where y is the function furnished by Lemma 4.2.
Proposition 4.4. Let W be the solution to problem (121). Then, for any p ∈ (1,∞), one has
(107). Furthermore, there exists a positive constant C > 0 independent of N such that (108) is
satisfied.

The proof is given in (GUERRERO, IMANUVILOV, and PUEL, 2012) (see
Proposition 1).

4.3 Proof of Theorem 4.1

As mentioned above, the proof of Theorem 4.1 closely follows Theorem 1
in (GUERRERO, IMANUVILOV, and PUEL, 2012) and, as there, is divided in several
steps, each them related to a time subinterval.
• FIRST STEP:
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We know there exists at least one weak solution (u, p, θ) to the problem
ut −∆u+ (u,∇)u+∇p = θe3 + f, ∇ · u = 0 in Q,

θt −∆θ + u · ∇θ = g in Q,

u = 0, θ = 0 on ∂Ω× (0, T ),

(u(x, 0), θ(x, 0)) = (u0, θ0) in Ω,

with

u∈L2(0, T ;V0(Ω))∩L∞([0, T ];H(Ω)), θ∈L2(0, T ;H1
0 (Ω))∩L∞([0, T ];L2(Ω)).

Let T̃1 ∈ (T − δ0, T ) be such that (ũ1, θ̃1) := (u(T̃1), θ(T̃1)) ∈ V0(Ω) × H1
0 (Ω)

and
‖f‖L2(T−δ,T ;V ′0(Ω)) + ‖g‖L2(T−δ,T ;H−1(Ω)) ≤

ε

5
.

For a small interval (T̃1, T̃1 + η) with T̃1 + η < T , there exists a unique strong so-
lution (u, p, θ) to the Boussinesq problem, such that (u(T̃1), θ(T̃1)) = (ũ1, θ̃1) (see for
instance VISKIK and FURSIKOV (1988)) and there exists T1 ∈ (T̃1, T̃1 + η) with

(u(T1), θ(T1)) ∈ ((H2(Ω)3 ∩ V0(Ω))× (H2(Ω) ∩H1
0 (Ω)).

On the interval (0, T1) we do not exert any control and take

uε := u, pε := p, fε := f, θε := θ, gε := g.

• SECOND STEP:
Write (u1, θ1) := (u(T1), θ(T1)) and take u1,α ∈ V0(Ω) ∩ C∞0 (Ω)3 and θ1,α ∈

C∞0 (Ω) such that

(u1,α, θ1,α)→ (u1, θ1) in V0(Ω)×H1
0 (Ω) as α→ 0+

and
‖u1,α‖V0(Ω) + ‖θ1,α‖H1

0 (Ω) ≤ 2 (‖u1‖V0(Ω) + ‖θ1‖H1
0 (Ω)).

Let T2 ∈ (T1, T ) be a time; its precise value will be given below. We introduce
now (uε, pε, θε) in (T1, T2), with

uε =
(t− T1)

(T2 − T1)
u1,α +

(T2 − t)
(T2 − T1)

u1, pε = 0, fε = Luε − θεe3,

θε =
(t− T1)

(T2 − T1)
θ1,α +

(T2 − t)
(T2 − T1)

θ1, gε =Mεθε
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where
Luε = ∂tuε −∆uε + (uε,∇)uε and
Mεθε = ∂tθε −∆θε + uε · ∇θε.

Then, it is clear that

(uε(T1), θε(T1)) = (u1, θ1), (uε(T2), θε(T2)) = (u1,α, θ1,α), ∇ · uε = 0

and the couple (fε, gε) satisfies

(fε, gε) ∈ L2(0, T ;L2(Ω))3 × L2(0, T ;L2(Ω)),

‖fε‖L2(T1,T2;V ′0(Ω)) ≤
C√

T2 − T1

‖u1,α − u1‖V0(Ω)+

C
√
T2 − T1

(
‖u1‖H1

0 (Ω)3 + ‖u1‖2
H1

0 (Ω)3 + ‖θ1‖H1
0 (Ω)

)
and

‖gε‖L2(T1,T2;H−1(Ω)) ≤
C√

T2 − T1

‖θ1,α − θ1‖H1
0 (Ω)+

C
√
T2 − T1

(
‖θ1‖H1

0 (Ω) + ‖θ1‖H1
0 (Ω)‖u1‖H1

0 (Ω)3

)
.

Accordingly, we can choose first T2 close enough of T1 and then α small enough to have

‖fε‖L2(T1,T2;V ′0(Ω)) + ‖gε‖L2(T1,T2;H−1(Ω)) ≤
ε

5
.

• THIRD STEP:
Now, we will work in the interval [T2, T2 + 2/N ], where N > N(δ) and N(δ)

is furnished by Lemma 4.2. The initial data are:

u2 := uε(T2) ∈ V0(Ω) ∩ C∞0 (Ω)3, θ2 := θε(T2) ∈ C∞0 (Ω).

In this step, we will take

uε(x, t) = N2Ũ(x, t) + ỹ(x, t)− ξ(t− T2)W̃ (x, t),

pε(x, t) = −N2(x2 + x3)c(t− T2) + r̃(x, t),

θε(x, t) = N2Θ̃(x, t) + h̃(x, t)

and

fε = −∆ỹ + ((ỹ − W̃ ),∇)(ỹ − W̃ )−N2(Ũ ,∇)W̃ −N2(W̃ ,∇)Ũ − αtW̃ ,

gε = −∆h̃+ (ỹ − W̃ ) · ∇h̃−N2W̃ · ∇Θ̃,
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where Ũ , Θ̃, etc. are respectively U , Θ, etc. written at time t − T2, (U, θ) is the solution
to (111) , (y, h) is the solution to (112) with initial data (y0, h0) = (u2, θ2), (W, r) is the
solution to (121) and ξ ∈ C2([0, 2/N ]) is a cut-off function satisfying

ξ(t) = 1 in t ∈ [0, 1/N ] and ξ(t) = 0 in a neighborhood of 2/N.

From the properties of (y, h) deduced in Lemma 4.2 and the definitions of U
and W , we have the following:

(uε, θε)(T2 + 2/N) = N2(U,Θ)(2/N), ∇ · uε = 0

and
uε(0, x2, x3, t) = 0, θε(0, x2, x3, t) = 0 in (0, 1)2 × (T2, T2 + 2/N).

Our goal is to verify that, for N large enough, we get

‖fε‖L2(T2,T2+2/N ;V ′0(Ω)) + ‖gε‖L2(T2,T2+2/N ;H−1(Ω)) ≤
ε

5
.

First, note that Lemma 4.2 yields

‖∆ỹ‖L2(T2,T2+2/N ;V ′0(Ω)) + ‖∆h̃‖L2(T2,T2+2/N ;H−1(Ω)) ≤
C

N1/2
.

Let us decompose Ω in two parts

Ω1 := (0, δ/2)× (0, 1)2 and Ω2 := (δ/2, 1)× (0, 1)2.

Recall that∇ · y = ∇ ·W in Q2/N and y = 0 in Ω1. Consequently,

‖N2(W̃ · ∇)Ũ‖V ′0(Ω) = sup
b∈V0(Ω),‖b‖V0(Ω)=1

∫
Ω1

N2(W̃ ,∇)Ũb dx

+ sup
b∈V0(Ω),‖b‖V0(Ω)=1

∫
Ω2

N2(W̃ ,∇)Ũb dx

= − sup
b∈V0(Ω),‖b‖V0(Ω)=1

∫
Ω1

N2W̃ · ∇b Ũ dx

+ sup
b∈V0(Ω),‖b‖V0(Ω)=1

∫
Ω2

N2(W̃ ,∇)Ũb dx.

The first term is bounded by C‖NW̃‖L2(Ω)‖NŨ‖L∞(Ω). On the other hand,∫
Ω2

N2(W̃ ,∇)Ũb dx ≤ ‖N∇Ũ‖L∞((δ/2)×R2)‖NW̃‖L2(Ω).
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Thanks to Propositions 4.2 and 4.3, there exists C(δ) > 0 such that

‖N∇Ũ‖L∞(T2,T2+2/N ;L∞((δ/2,1)×R2) ≤ C.

Therefore, we see from (108) that

‖N2(W̃ ,∇)Ũ‖Lr(T2,T2+2/N ;V ′0(Ω)) ≤ C

(∫ T2+2/N

T2

‖NW‖rL2(Ω) dt

)1/r

≤ CN3/4−1/r.

Similarly, the following estimate can be obtained:

‖N2W̃ · ∇Θ‖Lr(T2,T2+2/N ;H−1(Ω)) + ‖N2(Ũ · ∇)W̃‖Lr(T2,T2+2/N ;V ′0(Ω))

≤ CN3/4−1/r.

Next, using (107), we deduce that

‖αtW‖Lr(T2,T2+2/N ;L2(Ω)3)≤‖W‖Lr(T2,T2+2/N ;L2(Ω))≤C(r)N−1/r‖u2‖C1(Ω).

From Lemma 4.2 and (107), the following is found:

‖((ỹ − W̃ ) · ∇)(ỹ − W̃ )‖L2(T2,T2+2/N ;V ′0) ≤ C‖ỹ − W̃‖2
L4(T2,T2+2/N ;L4(Ω)3) → 0

and
‖(ỹ − W̃ ) · ∇h‖L2(T2,T2+2/N ;H−1)

≤ C‖h̃‖L4(T2,T2+2/N ;L∞(Ω))‖ỹ − W̃‖L4(T2,T2+2/N ;L2(Ω)3) → 0

as N → +∞. This concludes the step.

• FOURTH STEP:
Finally, we set T3 := T2 + 2/N and we work in the interval [T3, T ]. Note that

(uε, pε, θε) arrives to time T3 with the structure

uε(x, T3) = (0, N2z2(x1, 2/N), N2z3(x1, 2/N)) ,

θε(x, T3) = N2(∂tz3 + ∆z3)(x1, 2/N),

which leads to a heat equation and a system of two coupled one-dimensional parabolic
equations. The second component of uε can be driven to zero at time t = T by solving
a standard null controllability problem for a linear heat equation. On the other hand,
the third component and θε can be driven to zero by solving a (less standard) null
controllability problem for a system of two coupled 1D parabolic PDEs.

Indeed, in the interval [T3, T ], we take fε = 0 and gε = 0. It is well-known
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that the boundary null controllability holds for the linear equation, see (IMANUVILOV,
1995). Hence, there exists ρ = ρ(t) ∈ L∞(0, T − T3) such that the solution to

∂tz − ∂2
x1x1

z = 0, in (0, 1)× (0, T − T3)

z(0, t) = 0, z(1, t) = ρ(t), in (0, T − T3)

z(x1, 0) = N2z2(x1, 2/N) in (0, 1)

satisfies
z(x1, T − T3) = 0 in (0, 1).

On the other hand, it is proved in (FERNÁNDEZ-CARA, GONZÁLEZ-
BURGOS, and de TERESA, 2010) that, if A ∈ L(R2) and B ∈ R2, µ1 and µ2 are the
eigenvalues of A, rank[B|AB] = 2, (T/π)(µ1 − µ2) is not a integer of the form 4(m + 1)

or 2m+ 1 with m ≥ 1 and y0 ∈ H−1(0, 1)2, there exists a control v = v(t) ∈ L2(0, T −T3)

such that the associated solution to the system
∂ty − ∂2

x1x1
y = Ay, in (0, 1)× (0, T − T3)

y(0, t) = 0, y(1, t) = Bv, in (0, T − T3)

y(x1, 0) = y0(x1) in (0, 1)

(122)

satisfies
y(x1, T − T3) = 0 in (0, 1). (123)

Then, it suffices to define uε and θε in (T3, T ) as follows:{
uε(x, t) = (0, z(x1, t− T3), y1(x1, t− T3))

θε(x, t) = y2(x1, t− T3),

where (y1, y2) is, together with some v, a solution to the problem (122)–(123) with

A =

(
0 1

0 0

)
, B =

(
1

0

)
and y0 = N2(z3, ∂tz3 + ∆z3)(x1, 2/N).

Finally,
uε(·, T ) = 0, θε(·, T ) = 0

and we clearly have

‖f − fε‖Lr(0,T ;V ′0(Ω)) + ‖g − gε‖Lr(0,T ;H−1(Ω)) ≤ ε.
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4.4 Proofs of Theorems 4.2 and 4.3

The proof of Theorem 4.2 is similar. Again, it is composed of several steps,
each of them related to a time subinterval and, for brevity, we will only give an idea of
what is actually different from the proof of Theorem 4.1.

The first and second steps are almost identical (of course, there is no θε now).
In the third step, we take again T3 = T2 + 2/N and we introduce

uε(x, t) = N2U(x, t− T2) + y(x, t− T2) + θ(t− T2)W (x, t− T2),

pε(x, t) = N2x2c(x, t− T2)− r(x, t− T2),

where the functions U , y, θ, W , r and c are as in Subsection 4.2.
It is easy to check that (uε, pε) solves

uε,t −∆uε + (uε,∇)uε = fε, in Ω× (T2, T3)

∇ · uε = 0, in Ω× (T2, T3)

uε(0, x2, x3, t) = uε(1, x2, x3, t) = uε(x1, x2, 0, t) = 0 on (0, 1)2 × (T2, T3)

uε(x, 0) = u0(T2), in Ω,

where we have set T3 = T2 + 2/N , with

fε(x, t) = (−∆y +N2(U,∇)θW +N2(θW,∇)U + θtW )(x, t− T2)

+ ((y + θW ),∇)(y + θW ))(x, t− T2).

From (101), Lemma 4.1 and Proposition 4.1, we can verify that, for N large enough, we
have

‖fε‖L2(T2,T2+2/N ;V ′(Ω)) ≤
ε

5

and
uε(x, T2 + 2/N) = N2U(x, 2/N).

In the fourth step, we take T3 := T2 + 2/N and we note that uε possesses at
time T3 the structure

uε(x, T2 + 2/N) = (0, N2z(x1, x3, 2/N), 0).

The second coordinate of uε can be driven to zero at time t = T by solving a null
controllability problem for a linear 2D heat equation. More precisely, let us take fε = 0

in [T3, T ]. It is well-known that there exist controls ρ = ρ(x1, t) in L∞((0, 1)×(0, T −T3))
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such that the associated solution to
zt − (zx1x1 + zx3x3) = c(t), (x1, x3, t) ∈ (0, 1)2 × (0, T − T3)

z(0, x3, t) = z(1, x3, t) = z(x1, 0, t) = 0, t,∈ (0, T − T3), x1, x3 ∈ (0, 1)

z(x1, 1, t) = ρ(x1, t), (x1, t) ∈ (0, 1)× (0, T − T3)

z(x1, x3, 0) = N2z(x1, x3, 2/N), (x1, x3) ∈ (0, 1)2

satisfies
z(x1, T − T3) = 0 in (0, 1)

(see IMANUVILOV (1995)). Then, it is sufficient to take in (T3, T )

uε(x, t) = (0, z(x1, x3, t− T3), 0).

This way, we get
uε(·, T ) = 0

and
‖f − fε‖Lr(0,T ;V ′0(Ω)) ≤ ε.

We now give the proof of Theorem 4.3.
In fact, Theorem 4.3 can be viewed as a Corollary of Theorem 1 in GUER-

RERO, IMANUVILOV, and PUEL (2012). Indeed, let R ∈ R3 be a cube, with edges
not necessarily parallel to the axes and let us denote by Γ0 one of its faces. It is
clear that, after appropriate rotation and tranlation, we can construct right hand sides
fε ∈ L2(R× (0, T )) satisfying

fε → f in Lr(0, T ;H−1(R)),

for all r ∈ (1, 4/3) and solutions (vε, pε) to the corresponding Navier-Stokes systems
vε,t −∆vε + (vε,∇)vε +∇pε = fε, in R× (0, T )

∇ · vε = 0, in R× (0, T )

vε = 0, on Γ0 × (0, T )

vε(x, 0) = u0(x) in R

that satisfy
uε(x, T ) = 0 in R.

Let R be such that ΩΠ ⊂ R. Then, we just take

uε := vε
∣∣
ΩΠ×(0,T )
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and we immediately conclude.
Remark 4.1. Let us set Γ1 = ∂Ω \ ({0} × (0, 1)2) and let O be a neighborhood of Γ1

in Ω. It is not difficult to obtain from Theorem 1 in (GUERRERO, IMANUVILOV,
and PUEL, 2012) a global controllability result of the same kind for the Navier-Stokes
system with distributed controls, supported by O × (0, T ). However, a similar result
for the Boussinesq system is, to our knowledge, unknown. 2

4.5 Final comments and questions

The previous results do not imply actually global approximate controllabil-
ity, since the right hand sides f and g to be modified slightly (the same can be said on
the results in (GUERRERO, IMANUVILOV, and PUEL, 2012)). What we would need
is a uniform bound of the controls in some Banach space B allowing to take limits as ε
to 0. But, at present, this is missing.

Thus, it would be interesting to be able to modify the constructions of uε
and θε paying special attention to the behavior of their traces.

Another possible approach relies on the following idea:
1. Solve the exremal problems{

Minimize Jε(h) = ‖h‖B
Subject to h ∈ B

where B is the family of boundary null controls for the Boussinesq system with f
replaced by fε that belong to B.

2. Then, prove that the solutions satisfy

‖h̃ε‖B ≤ C.

Observe that, with a suitable choice of B, all these problems are solvable.
Therefore, one can probably use an optimality characterization to get some informa-
tion.
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APPENDIX

For completeness, let us sketch the proof of Theorem 3.4. We will closely follow the
arguments in (DOUBOVA and FERNÁNDEZ-CARA, 2005)

Let (ϕ,m′) ∈ C2(Ql)× C1([0, T ]) be such that
−ϕt − ϕxx = g(x, t), (x, t) ∈ Q`

ϕ(0, t) = 0, ϕ(`(t), t) = m′(t), t ∈ (0, T )

ϕx(`(t), t) = m′′(t)− y(`(t), t)m′(t) t ∈ (0, T )

(124)

and s > 1. Let us introduce
ψ = e−sαϕ.

Notice that
ψ(x, 0) = ψ(x, T ) ≡ 0, ψ(0, t) ≡ 0 (125)

and
ψ(l(t), t) = e−sα(`(t),t)m′(t). (126)

We have the following equality:

ψt + ψxx − 2sληxξψx + s2λ2η2
xξ

2ψ − sλ(ηxξ)xψ + sαtψ = e−sαg.

We can rewrite in the form
M1ψ +M2ψ = gsψ (127)

where 
M1ψ = ψxx + s2λ2η2

xξ
2ψ + sαtψ

M2ψ = ψt − 2sληxξψx

gsψ = e−sαg + sλ(ηxξ)xψ

We have fron (127) that

‖M1ψ‖2
2 + ‖M2ψ‖2

2 + 2(M1ψ,M2ψ)2 = ‖gsψ‖2
2, (128)

where ‖ · ‖2 and ((·, ·))2 denote the usual norm and scalar product in L2(Ql),
respectively.

Let us compute the scalar product on the left-hand side of (128). We can write

(M1ψ,M2ψ)2 = I11 + I12 + I21 + I22 + I31 + I32,
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where Iij denote the scalar products of the terms of M1ψ and M2ψ.

After some manipulation, we get

‖M1ψ‖2
2 + ‖M2ψ‖2

2 + 2sλ2

∫∫
Q`

η2
xξ|ψx|2 dx dt

+6s3λ4

∫∫
Q`

η4
xξ

3|ψ|2 dx dt

+2sλ

∫ T

0

1

`(t)− b
ξ(`(t), t)|ψx(`(t), t)|2 dt

+2s3λ3

∫ T

0

1

(`(t)− b)3
e−2sα(`(t),t)ξ(`(t), t)3|m′(t)|2 dt

+2

∫ T

0

ψx(`(t), t)ψt(`(t), t) dt

= −2s2λ

∫ T

0

1

`(t)− b
e−2sα(`(t),t)ξ(`(t), t)αt(`(t), t)|m′(t)|2 dt

+2s2λ2

∫∫
Q`

ηxξ(ηxξ)t|ψ|2 dx dt− 2s2λ2

∫∫
Q`

η2
xξαt|ψ|2 dx dt

−2s2λ

∫∫
Q`

ηxξαxt|ψ|2 dx dt+ s

∫∫
Q`

αtt|ψ|2 dx dt

−2sλ

∫∫
Q`

ηxxξ|ψx|2 dx dt+ ‖gsψ‖2
2

−2s2λ

∫∫
Q`

ηxxξαt|ψ|2 dx dt

−6s3λ3

∫∫
Q`

η2
xηxxξ

3|ψ|2 dx dt

(129)

On the other hand, it is easy to verify that

|ξt| ≤ λC(|`′|∞, `∗, ω, T )ξ2, (130)
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|αt| ≤ ληtξ + Tξ2

≤ λC(|`′|∞, `∗, ω, T )ξ2,
(131)

|αt(`(t), t)| ≤ λC(|`′|∞, `∗, T )ξ(`(t), t)2, (132)

|αtt| ≤ λ2C(|`′|∞, `∗, ω, T )ξ3 (133)

and
|αxt| ≤ λ2C(|`′|∞, `∗, ω, T )ξ2. (134)

Remember that gsψ = e−sαg + sλ(ηxξ)xψ. Then, we can obtain:

‖gsψ‖2
2 ≤ 2‖e−sαg‖2

2 + 2s2λ2

∫∫
Q`

|(ηxξ)x|2|ψ|2 dx dt

≤ 2‖e−sαg‖2
2 + Cs2λ4

∫∫
Q`

|ξ|2|ψ|2 dx dt,
(135)

where C = C(`∗, ω, B).
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From the previous estimates and (129), the following is found:

‖M1ψ‖2
2 + ‖M2ψ‖2

2 + 2sλ2

∫∫
Q`

η2
xξ|ψx|2 dx dt

+6s3λ4

∫∫
Q`

η4
xξ

3|ψ|2dxdt

+2sλ

∫ T

0

1

`(t)− b
ξ(`(t), t)|ψx(`(t), t)|2 dt

+2s3λ3

∫ T

0

1

(`(t)− b)3
e−2sα(`(t),t)ξ(`(t), t)3|m′(t)|2 dt

+2

∫ T

0

ψx(`(t), t)ψt(`(t), t) dt

≤ 2C(|`′|∞, `∗, T )s2λ2

∫ T

0

e−2sα(`(t),t)ξ(`(t), t)3|m′(t)|2 dt

−2sλ

∫∫
Q`

ηxxξ|ψx|2 dx dt+ 2‖e−sαg‖2
2

+Cs3λ4

∫∫
Q`

ξ3|ψ|2 dx dt

(136)

with C = C(‖`′‖∞, `∗, ω, T,B).

Notice that |ηx| ≥ γ in Q` \ (ω0 × (0, T )), where

1

γ
= max

0≤t≤T
{a, `(t)− b}.
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With this in mind, we get from (136) that

‖M1ψ‖2
2 + ‖M2ψ‖2

2 + s3λ4

∫∫
Q`

ξ3|ψ|2 dx dt

+
sλ

B − b

∫ T

0

ξ(`(t), t)|ψx(`(t), t)|2 dt

+s3λ3

∫ T

0

e−2sα(`(t),t)ξ(`(t), t)3|m′(t)|2 dt

+2

∫ T

0

ψx(`(t), t)ψt(`(t), t) dt

≤ 2‖e−sαg‖2
2 − 2sλ

∫∫
Q`

ηxxξ|ψx|2 dx dt

+Cs3λ4

∫∫
ω×(0,T )

ξ3|ψ|2 dx dt,

(137)

with C = C(‖`′‖∞, `∗, ω, T,B), s and λ sufficiently large.

Using the fact that M1ψ = ψxx + s2λ2η2
xξ

2ψ + sαtψ, we obtain∫∫
Q`

1

sξ
|ψxx|2 dx dt ≤ 4‖M1ψ‖2

2 + Cs3λ3

∫∫
Q`

ξ3|ψ|2 dx dt (138)

On the other hand, by integrating by parts, we see that

sλ2

∫∫
Q`

ξ|ψx|2 dx dt = −sλ2

∫∫
Q`

ξψxxψ dx dt− sλ3

∫∫
Q`

ηxξψxψ dx dt

+sλ2

∫∫
Q`

ξ(`(t), t)ψx(`(t), t)ψ(`(t), t) dt.
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We deduce that

sλ2

∫∫
Q`

ξ|ψx|2 dx dt ≤
∫∫

Q`

1

sξ
|ψxx|2 dx dt+ s3λ4

∫∫
Q`

ξ2|ψ|2 dx dt

+sλ4

∫∫
Q`

η2
xξ|ψ|2 dx dt

+sλ

∫∫
Q`

ξ(`(t), t)|ψx(`(t), t)|2 dt

+sλ3

∫∫
Q`

ξ(`(t), t)|ψ(`(t), t)|2 dt

(139)

and

‖M2ψ‖2
2 +

∫∫
Q`

(
1

sξ
ψxx + sλ2ξ|ψx|2 + s3λ4ξ3|ψ|2

)
dx dt

+sλ

∫ T

0

ξ(`(t), t)|ψx(`(t), t)|2 dt

+s3λ3

∫ T

0

e−2sα(`(t),t)ξ(`(t), t)3|m′(t)|2 dt

+2

∫ T

0

ψx(`(t), t)ψt(`(t), t) dt

≤ C

(
‖e−sαg‖2

2 + s3λ4

∫∫
ω×(0,T )

ξ3|ψ|2 dx dt
)
,

(140)

with C = C(‖`′‖∞, `∗, ω, T,B).

Using the fact that M2ψ = ψt − 2sληxξψx, we find∫∫
Q`

1

sξ
|ψt|2 dx dt ≤ 2‖M2ψ‖2

2 + Csλ2

∫∫
Q`

ξ|ψx|2 dx dt. (141)
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Consequently, ∫∫
Q`

(
1

sξ
(ψt + ψxx) + sλ2ξ|ψx|2 + s3λ4ξ3|ψ|2

)
dx dt

+sλ

∫ T

0

ξ(`(t), t)|ψx(`(t), t)|2 dt

+s3λ3

∫ T

0

e−2sα(`(t),t)ξ(`(t), t)3|m′(t)|2 dt

+2

∫ T

0

ψx(`(t), t)ψt(`(t), t) dt

≤ C

(
‖e−sαg‖2

2 + s3λ4

∫∫
ω×(0,T )

ξ3|ψ|2 dx dt
)

(142)

fo some C = C(‖l′‖∞, `∗, ω, T,B).

Returning to the original variables, it is not difficult to deduce (83) and conclude.
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