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A B S T R A C T

Corner-point is an industry-standard type grid for application in reservoir simulation. The flexible gridding in
corner-point grids provides several advantages over Cartesian grids for the representation of complex geological
features. In this work, an embedded discrete fracture model (EDFM) is extended to corner-point grids with a full-
permeability-tensor formulation to simulate complex fractures in this type of grids. The developed model is
implemented in an IMPEC, compositional reservoir simulator. We first describe the formulations of the full-
permeability-tensor implementation together with the modified governing equations for EDFM simulations.
Then, we present methodologies for computing matrix-fracture intersections and fracture-fracture connections in
the EDFM considering the various block geometries in corner-point grids. Subsequently, case studies are pre-
sented to verify the developed model, where the impacts of grid distortion and cross derivatives on simulation
results are discussed. Three-dimensional case studies are also shown to illustrate the influence of natural frac-
tures on secondary recovery. The results of this study demonstrate the reliability of the developed model, and
they also show the compatibility of the EDFM with different types of numerical solution schemes in existing
simulators.

1. Introduction

Corner-point is widely used in reservoir simulation due to its flex-
ibility to represent geological features, such as faults, and complex
boundaries of hydrocarbon reservoirs. Different from Cartesian grids,
the locations of corner points for each block are defined using co-
ordinate lines and depths (Wadsley, 1980; Ponting, 1989). For each
gridblock, the coordinates of each corner point need to be known to
define the gridblock geometry. Most commercial reservoir simulators
support this type of grid.
Although corner-point grids give a better representation of the re-

servoir geometry, the numerical solution scheme used in conjunction
with the corner-point grids is much more complicated than the one
using Cartesian grids because in general, the grid is non-orthogonal. For
three dimensional problems, this typically results in a 19- or 27-point
stencil (Aavatsmark et al., 1998; Marcondes et al., 2008). To reduce the
computational costs from the use of non-orthogonal grids, most com-
mercial simulators use only two points to evaluate the potential dif-
ference, which is known as two-point flux approximation (TPFA), and
neglect the additional terms in the Jacobian matrix. TPFA speeds up
simulations, but it introduces numerical errors which do not decrease

when grid refinement is performed (Marcondes et al., 2005;
Aavatsmark, 2007). The reason is that when we neglect terms from the
approximate equations, they will not approach the original set of dif-
ferential equations because the approximate equations represent an-
other set of partial differential equations. We can only neglect the error
when using TPFA if the grid is not highly distorted. However, the rule of
thumb for modeling complex reservoirs is the use of highly distorted
grids. Therefore, full-permeability-tensor formulations need to be im-
plemented to improve the accuracy of simulation results (Hegre et al.,
1986; Aavatsmark et al., 1998; Lee et al., 1998; Marcondes et al., 2005,
2008).
Simulation of fractures adds another dimension of complexity to the

numerical formulations. As a traditional type of grid, corner-point grids
are frequently used for simulating different types of reservoirs, in-
cluding naturally fractured reservoirs and hydraulically fractured re-
servoirs. Therefore, it is necessary to develop methods to simulate the
fractures in models using corner-point grids. A traditional method for
the simulation of naturally fractured reservoirs is the dual-porosity
model (Warren and Root, 1963). By treating the fractures and matrix as
two continua, the dual-porosity model separates the reservoir into two
systems, one with high flow capacity and one with high storage

https://doi.org/10.1016/j.petrol.2019.02.024
Received 19 June 2018; Received in revised form 15 January 2019; Accepted 8 February 2019

∗ Corresponding author.
E-mail address: yifei.xu@utexas.edu (Y. Xu).

Journal of Petroleum Science and Engineering 177 (2019) 41–52

Available online 11 February 2019
0920-4105/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09204105
https://www.elsevier.com/locate/petrol
https://doi.org/10.1016/j.petrol.2019.02.024
https://doi.org/10.1016/j.petrol.2019.02.024
mailto:yifei.xu@utexas.edu
https://doi.org/10.1016/j.petrol.2019.02.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petrol.2019.02.024&domain=pdf


capacity. This simplified approach ignores the location or geometry of
individual fractures and assumes a well-connected fracture system.
However, in realistic reservoirs, the connectivity between fractures may
not be guaranteed (Li and Lee, 2008). In such cases, an explicit re-
presentation of the contribution from each fracture is desirable.
Discrete fracture models were developed to explicitly simulate the

impact of individual fractures. To accurately describe the fracture
geometries, unstructured grids were often used in these models
(Matthai et al., 2007; Marcondes et al., 2010; Karimi-Fard and
Durlofsky, 2016). Although these models were able to capture the de-
tailed geometry of each fracture, several disadvantages exist in these
models. The disadvantages include the difficulties of gridding, espe-
cially at fracture intersections for 3D simulations, the low computa-
tional efficiency together with unstructured grids, and the incompat-
ibility with existing simulators and reservoir models (Fumagalli et al.,
2017).
The embedded discrete fracture model (EDFM) was developed as a

solution to these issues. The initial idea of EDFM was proposed by
Hearn et al. (1997). In their work, additional gridblocks were used to
represent the channels, and non-neighboring connections (NNCs) were
added to describe the fluid flow between the matrix and fractures
wherever a grid block was crossed by a fracture. Li and Lee (2008)
further developed the model and proposed the formulations for trans-
missibility calculations in two-dimensional studies. Moinfar et al.
(2014) improved the EDFM and extended it for three-dimensional
studies. The EDFM approach has been applied to several in-house and
commercial simulators (Panfili and Cominelli, 2014; Shakiba and
Sepehrnoori, 2015; Xu, 2015; Xu et al., 2017b; Tang et al., 2017).
Studies have shown that the EDFM can accurately simulate different
geometries of fractures while keeping a relatively high computational
efficiency compared to other methods (Xu et al., 2017a; Du et al.,
2017). Also, the compatibility of EDFM with existing reservoir simu-
lators makes it convenient to apply the EDFM in real-life studies.
As the EDFM combines the advantages of conventional reservoir

simulators and discrete fracture modeling, it is of great importance to
combine the EDFM with different types of grids in reservoir simulation.
Most of the previous works using EDFM have been conducted with
Cartesian grids (Li and Lee, 2008; Moinfar et al., 2014; Cavalcante-Filho
et al., 2015; Du et al., 2017; Cavalcante-Filho and Sepehrnoori, 2017),
due to the simplicity of implementation. However, as corner-point grids
being the industry standard, it is very beneficial to apply the EDFM to
corner-point grids for the study of realistic reservoirs. However, existing
studies mentioning corner-point grids with EDFM (Panfili et al., 2015;
Fumagalli et al., 2016; de Sousa Junior et al., 2016) have not com-
prehensively considered the complexities pertaining to the numerical
formulations and geometrical calculations.
In this work, the EDFM is implemented in UTCOMP-RS, an IMPEC,

multi-phase, multi-component, in-house reservoir simulator (Chang,
1990) with corner-point grids (Fernandes et al., 2014, 2018). Full-
permeability-tensor formulation is used for the flux calculation between
matrix, and non-neighboring connections are constructed to simulate
the fluid flow from the matrix to fractures and from fractures to frac-
tures. The overall objective is to extend the EDFM formulation to
corner-point grids with a full-permeability-tensor implementation. We
first describe the basic equations of the full-permeability-tensor corner-
point grid. After that, the simulator governing equations with the
EDFM, the formulations to calculate EDFM transmissibilities, and the
issues with geometrical calculations are discussed. Then we present
case studies using corner-point grids with different level of distortion to
verify the model and study the influence of grid distortion and cross
derivatives on simulation results. Finally, the EDFM is applied to highly
distorted corner-point grids to simulate the impact of fractures on the
recovery processes in geologically complex reservoirs. This study pro-
vides a convenient approach to fracture simulation in reservoir models
using corner-point grids.

2. Governing equations of UTCOMP-RS

One of the most important equation in the simulator is the material
balance equation. Material balance equations describe the mole con-
servation across the reservoir domain. In UTCOMP-RS, the fluid flow in
the porous media is modeled using Darcy's law. Local phase equilibrium
is assumed for the hydrocarbon phases, while no mass transfer between
the water phase and hydrocarbon phases is considered. Therefore, the
material balance equation for each component without considering
fractures is given by Eq. (1), where the advective and dispersion fluxes
are given by Eqs. (2) and (3), respectively.
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where Fk is the molar flow rate of component k due to convection, Dk is
the molar flow rate of component k due to physical dispersion, qk is the
injection/production molar rate of component k from wells, Vb is the
bulk volume, Nk is the number of moles of component k, t is the time, np
is the number of fluid phases, xkj is the mole fraction of component k in
phase j, j is the molar density of phase j, krj is the relative permeability

of phase j, µj is the viscosity of phase j, K is the permeability tensor,
Pj is the pressure of phase j, j is the mass density of phase j, g is the
gravity acceleration, D is the depth, Sj is the saturation of phase j, is

the porosity, kj is the dispersion tensor of component k in phase j, and
nc is the number of hydrocarbon components. Component +n 1c de-
notes the water component. The phase pressure is computed using the
capillary relationships (Eq. (4)) and assuming oil phase as the reference

= + =P P P j n, 1, ..., ,j cjo p (4)

where P is the pressure of the oil phase (or any other reference phase in
the absence of oil) and Pcjr is the capillary pressure between the re-
ference phase and phase j. In this work, the oil phase is labeled as phase
2.
The Peng-Robinson equation of state (Peng and Robinson, 1976) is

used to compute densities and fugacities. Phase stability analysis is used
to determine phase appearance and disappearance. The stationary point
location method (Michelsen, 1982) and the Gibbs free energy mini-
mization method (Trangenstein, 1987; Perschke, 1988) are im-
plemented in UTCOMP-RS for phase stability calculation. The de-
termination of phase composition and amount is performed through a
flash calculation. In UTCOMP-RS, the Accelerated Successive Substitu-
tion (ACSS) (Mehra et al., 1983) and the modified Gibbs free energy
minimization (Perschke, 1988) are combined to achieve a better con-
vergence rate.

3. Full-permeability-tensor formulation

3.1. Transformed matrix material balance equation

The non-orthogonal boundary fitted approach (Chu, 1971;
Thompson et al., 1974) is used to obtain the approximate equations for
the matrix using the finite-volume method. The corner-point approach
presented here is based on the work of Marcondes et al. (2005) and
Marcondes et al. (2008) but applied to an IMPEC formulation. The first
step in this approach is to transform the partial differential equations
from the physical domain (x , y,z) to a computational domain ( , , )
where the calculations can be performed in a regular domain. The co-
ordinates of the transformed plane are all functions of the (x, y, z)

Y. Xu, et al. Journal of Petroleum Science and Engineering 177 (2019) 41–52

42



coordinates and are designed in such a way that the grid lines are al-
ways tangent to , , and , as shown in Fig. 1.
Neglecting the physical dispersion terms for simplification purpose

only, the material balance equations in the computational domain for
hydrocarbon components in the matrix medium are given by
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where j is the flow potential of phase j, which is given by

= P gD.j j j (6)

The coefficients of the D tensor involve the direct metrices of the
transformation and the absolute permeabilities components, which are
given by
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x , y, z, x , y, z, x , y, and z are the direct metrics of the trans-
formation and are evaluated numerically. Jt is the Jacobian of the
transformation, which is computed as

= +J x y z y z x y z y z x y z y z{ ( ) ( ) ( )} .t
1 (8)

If we set the volume of each control volume in the computational
domain as a unity, the equivalent volume in the physical domain (Vb) is
given by

=V
J
1 .b
t (9)

On the right-hand side of Eq. (5), the terms with D11, D22, and D33
are direct derivative terms, and the terms with D12, D13, D21, D23, D31,
and D32 are cross-derivative terms.

3.2. Approximated equations for the matrix

The approximate equation for the matrix can be obtained by in-
tegrating the material balance equation (Eq. (5)) in time and space
(Fig. 2). For the time integration, we select pressure as an implicit
variable while the other variables are treated explicitly. The discretized
material balance is then written as

Fig. 1. Transformation from the physical domain (x , y,z) to the computational
domain ( , , ). (a) Physical domain. (b) Computational domain.

Fig. 2. Illustration of the control volume in the computational domain.
Different faces of the control volume (“f”, “b”, “e”, “w”, “n”, “s”) are shown in
different colors. (For interpretation of the references to color in this figure le-
gend, the reader is referred to the Web version of this article.)
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where the superscript n denotes the previous time level, superscript

+n 1 denotes the next time level, and subscripts “f,” “b,” “e,” “w,” “n,”
and “s” denote faces shown in Fig. 2. It should be noted that to reduce
the complexity of the resulting linear system, the cross-derivative terms
are treated explicitly in this work.
As it can be noted from the above equations, for every gridblock, there

are nc+ 1 number of moles and one pressure to be computed at time level
+n 1, which results in nc+ 2 unknowns. However, there are only nc+ 1
material balance equations to determine these unknowns, meaning that
another equation is required. In this work, the IMPEC formulation proposed
by Acs et al. (1985) is used, which uses a volume balance equation for
determining the pressure at each gridblock. The pressure equation is ob-
tained through the volume constraint equation at the next time level:

=+ +V V ,n
b T

n1 1 (11)

where +VT
n 1 is the total fluid volume of the gridblock at time level +n 1.

Assuming that the porosity is a function of the pressure and the total fluid
volume is a function of both the pressure and the number of moles of each
component, one can approximate Eq. (11) by Taylor series expansion
truncated in the first order derivatives as
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Assuming the rock is slightly compressible with compressibility cf ,
plugging Eq. (10) into Eq. (12), and rearranging the terms yields

Fig. 3. An example 2×4 corner-point grid with different
types of block geometries.

Fig. 4. Illustration of the geometrical calculation of matrix-fracture intersection. The final intersection polygon contains three types of points, as shown in different
colors. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 5. 2D simulation grids used for the water flooding simulation. (a) A regular
Cartesian grid. (b) A slightly distorted corner-point grid. (c) A highly distorted
corner-point grid. The red lines represent fractures. The locations of the injector
(“Inj”) and the producer (“Prod”) are also indicated. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web
version of this article.)

Table 1
Simulation parameters for Case 1.

Parameter Value Unit

Matrix permeability 200 md
Reservoir porosity 25% –
Rock compressibility 5×10−5 psi−1

Reservoir temperature 120
Initial reservoir pressure 4,925 psi
Initial water saturation 0.3 –
Residual water saturation 0.24 –
Residual oil saturation 0.42 –
Water rel. perm. endpoint 0.20 –
Oil rel. perm. endpoint 0.60 –
Water rel. perm. exponent 1.5 –
Oil rel. perm. exponent 3.0 –
Water viscosity 0.79 cp
Producer bottomhole pressure 4,000 psi
Water injection rate 500 STB/day
Wellbore radius 0.5 ft
Simulation time 1,500 day

Fig. 6. Comparison of oil production rates for the three simulation grids.
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where 0 is the porosity at reference pressure.
In this work, the matrix pressure is obtained by Eq. (13). After that,

the obtained pressure is substituted into Eq. (10) to calculate the
number of moles of all components at the new time level.

4. The embedded discrete fracture model (EDFM)

4.1. Numerical formulations

The EDFM discretizes the fractures into fracture segments using the
matrix cell boundaries. In the simulator, similar to the matrix, each
fracture segment is represented as a control volume. The introduction
of new control volumes brings a new term Fk nnc, in the material balance
equation. These new terms consider:

1. Flow between a fracture segment and the matrix gridblock it in-
tersects (matrix-fracture flow)

2. Flow between fracture segments that are connected with each other
or intersect each other (fracture-fracture flow)

Both types of flow are represented in the simulator using NNCs.
After considering the flow through NNCs, Eq. (1) can be rewritten as

= + + + = +N
t

F D q F k n, 1, ..., 1,k
k k k k nnc c, (14)

where Fk nnc, represents the molar flow rate of component k due to
convection through NNCs.
In the EDFM, two-point flux approximation is used to approximate

the flow between matrix control volumes and fracture control volumes,
or the flow between fracture control volumes. For a matrix or fracture
control volume p,
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where n is the number of NNCs for p, subscript L represents the control
volume L that is connected to p via a NNC, subscript l represents the
interface between p and L, and Tp L, is the interblock transmissibility
factor for the flow across the interface l between p and L.
In the EDFM, the general formulation to evaluate the transmissi-

bility factor Tp L, is
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where kp and kl are the permeabilities of p and L, respectively, dp l and
dL l are the equivalent distances from the centroids of p and L to the
interface l, respectively, and Al is the area of interface l.
For matrix-fracture flow,
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where Km is the permeability tensor of the matrix gridblock, n is the
normal vector of the fracture plane, df m is the average normal distance
from the matrix gridblock to the fracture segments, and Af is the area of
the fracture segment. =A A2l f considering the flow on both sides of the
fracture segments. The assumption involved in the derivation of Eq.
(17) is a linear pressure distribution in the matrix block intersected by
the fracture (Xu et al., 2017a).
For fracture-fracture flow,
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where kf 1 and kf 2 are the permeability of the fracture segments f1 and f2,
respectively, df l1 and df l1 are the average distances from each fracture

segment to the interface between the fracture segments, and is Al is the
area for flow. Al can be calculated as the product of fracture width and
the length of the connection or intersection line between the fracture
segments. Please see Moinfar et al. (2014) and Xu et al. (2017a) for
more details.
For a fracture control volume, Eq. (14) can be simplified as

= + = +N
t

q F k n, 1, ..., 1.k
k k nnc c, (19)

Only the flow through NNCs and the flow between the fracture and
wellbores are considered. When evaluating qk , a well index is calculated
for the fracture segment as (Moinfar et al., 2013)
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where kf is the fracture permeability, wf is the fracture width, Ls is the
length of the fracture segment, and Hs is the height of the fracture
segment. Eq. (20) has a similar form as Peaceman's well model.
After the transmissibility factors and well indices are calculated, the

terms pertaining to NNCs are also added to the pressure equation (Eq.
(13)) in a similar way as in Eq. (14).

4.2. Geometrical calculation

A challenge for the EDFM in corner-point grids is the geometrical
calculation. The calculation of matrix-fracture intersection, fracture-
fracture connection, fracture-fracture intersection, and fracture-well
intersection requires knowledge of computational geometry. In the
literature, the EDFM approach has mainly been applied in Cartesian
grids, which has a relatively simple gridblock geometry. The gridblock
geometry of corner-point grids might be much more irregular, where
the gridblock cannot be represented as a cuboid. In addition, since the
eight vertices of a gridblock is defined individually, there is a possibility
that two vertices of the gridblock have the same location (degeneracy).
The gridblocks may also be pinched-out when they have close-to-zero
thickness. Fig. 3 shows a 2×4 corner-point grid with the block geome-
tries mentioned above. It can be observed that the block geometry of
corner-point grids is much more complicated compared to that of
Cartesian grids, and this pose challenges for the EDFM geometrical
calculation.
We first discuss the methodology for the calculation of intersections

between matrix gridblocks and fractures. In this work, considering the
irregular block geometries and degeneracy, we treat each gridblock as a
general polyhedron represented using vertices, edges, and faces, and
each fracture as a general polygon represented using vertices and edges.
The intersection between the polyhedron and the polygon is also a
polygon, and the vertices of the intersection polygon can be found by
calculating three types of points:

1. The vertex of the fracture polygon that is inside the polyhedron
2. The intersection point between an edge of the fracture polygon and
a face of the polyhedron

3. The intersection point between an edge of the polyhedron and the
fracture polygon

The three types of points are shown in Fig. 4. The intersection
polygon can be obtained by connecting the three types of points.
The pinch-outs of gridblocks are also considered in the EDFM. When

a gridblock is pinched-out, no matrix-fracture intersection is calculated
for this gridblock. In addition, in the vertical direction, the fracture
segments above and below this gridblock are connected to remain the
connectivity of the fractures.
The geometrical calculation is performed in an EDFM Preprocessor

developed in this work. After the calculation, the EDFM Preprocessor
exports NNC pairs, transmissibilities factors, and well indices calculated
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by Eqs. (17), (18) and (20). The simulator reads these outputs and adds
the corresponding terms in the material balance equation and pressure
equation.

5. Results and discussion

To illustrate the applicability of the developed model, several syn-
thetic case studies are simulated. Both 2D and 3D corner-point grids are
used in these studies.

5.1. Case 1: study on influence of grid distortion

A conventional reservoir with dimensions of 1,000×1,000×50 ft is
studied. Three 100×100×1 matrix grids with different levels of distor-
tion are used for this reservoir, as shown in Fig. 5. The grid coordinates
for these three grids are provided with this paper. Six hydrocarbon
components (C1, C2, C3, C7, C10, and C20) are considered, with their

Fig. 7. Comparison of oil production rate for the case with and without frac-
tures (simulated using the highly distorted grid).

A

B

Fig. 8. Comparison of oil production rate for the cases with and without cross
derivatives. (a) The simulation results on the grid in Fig. 5b. (b) The simulation
results on the grid in Fig. 5c.

Fig. 9. Simulation grid and the location of fractures for the 3D study with the
highly distorted grid.

Fig. 10. Comparison of oil production rates for the three-dimensional simula-
tion study.
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Fig. 11. Water saturation profiles at 400 days. (a) The top layer of the matrix. (b) The bottom layer of the matrix. The top row shows the results using the Cartesian
grid, the middle row shows the results using the slightly distorted grid, and the bottom row shows the results using the highly distorted grid.
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initial composition as 0.1, 0.1, 0.1, 0.1, 0.2, and 0.4, respectively. Some
important simulation parameters are summarized in Table 1. For the
water-oil two-phase relative permeability, Corey's model is used, and
the model parameters are also given in Table 1. The capillary pressure
effect is ignored in this study. Nine large-scale vertical fractures are
placed inside the reservoir using the EDFM approach, as shown in
Fig. 5. The fracture conductivities are 10,000 md-ft. For all three matrix
grids, the fracture locations and parameters are the same. The total
number of fracture segments are 846, 843, and 834, respectively. An
injector with a constant injection rate and a producer with a constant
bottom hole pressure are placed at two corners of the grids.
Fig. 6 shows the predicted oil rates by EDFM on three different

grids. With the full-permeability-tensor formulation and the EDFM
method, the model obtains similar results on different grids. As the
accuracy of the EDFM with Cartesian matrix grid has been verified in
the literature (Moinfar et al., 2014; Shakiba and Sepehrnoori, 2015; Xu

et al., 2017a,b; Flemisch et al., 2018), the results confirm the accuracy
of the developed model in corner-point grids. Furthermore, the agree-
ment between different simulations also indicates that the accuracy of
the EDFM approach is not greatly influenced by matrix gridding when
similar numbers of gridblocks are used.
To investigate the influence of fractures on water flooding, Fig. 7

compares the oil rate curves for the cases with and without fractures,
using the matrix grid in Fig. 5c. An observation is that the existence of
fractures lowers the oil rate after 500 days of injection. The reason is
that the highly conductive fractures speed up the movement of the
injected fluid (water) from the injector to the producer. Hence the
sweep efficiency of the water flooding process is lower when the in-
fluence of fractures is taken into account.
The use of full-tensor permeability is of great importance in the

simulation of this process if a distorted grid is used. Fig. 8 compares the
simulation results with and without considering cross derivatives. For

Fig. 12. Reservoir model used for simulation study. The simulation grid is colored by depth. The length in the z-direction is shown five times the real size.

Fig. 13. Fracture segments obtained from EDFM preprocessing. Different sets of fractures are represented using different colors. The length in the z-direction is shown
five times the real size. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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the slightly distorted grid (Fig. 5b), there is a small error resulting from
the non-orthogonality of the grid. For the highly distorted grid (Fig. 5c),
the error caused by the ignorance of cross-derivative terms can be
clearly seen. As discussed before, the error will not disappear even
when grid refining is performed. Therefore, although the reliability of
the EDFM is not significantly impacted by the discretization of the
matrix, careful selection of formulations is required when the grid is not
orthogonal.

5.2. Case 2: 3D matrix grids with inclined fractures

In this case, the three 2D grids used in Case 1 are extended to 3D,
and the reservoir is uniformly discretized into five layers in the vertical
direction, as shown in Fig. 9. In addition, inclined fractures instead of
vertical fractures are placed inside the reservoir, and the dip angles of
fractures are 70°, 60°, 90°, 77°, 82°, 55°, 45°, 82°, and 73°, respectively.
The matrix permeability in the x-, y-, and z-directions are 200 md, 100
md, and 20 md, respectively. Other simulation parameters and the well-
operating conditions are the same as in Case 1.
Fig. 10 shows the predicted oil rates using three different grids. For

the 3D cases, the EDFM still renders similar results for the three grids,
which again shows the insensitivity of the EDFM to matrix gridding.
Fig. 11 gives the water saturation profiles in the matrix at 400 days,
where the waterfront in the top and the bottom layers can be easily
observed. The gravitational effect can also be clearly seen as the loca-
tions of waterfront in different layers are different. Therefore, the re-
servoir needs to be carefully discretized in the vertical direction when
simulating such processes to accurately predict the movement of wa-
terfront under the influence of gravity.

5.3. Case 3: water flooding in a naturally fractured reservoir

This study simulates water flooding in a reservoir with irregular
boundary. A 60×20×20 corner-point grid is used for matrix gridding, as
shown in Fig. 12. The reservoir thickness ranges from 73 ft to 220 ft.
Four injectors (“Inj1”, “Inj2”, “Inj3”, and “Inj4”) and one producer
(“Prod”) are placed inside the reservoir. The injection rate of each in-
jector is 1000 STB/day. The producer bottom hole pressure is 4,000 psi.
All injectors are perforated in the lower ten layers, and the producer is
perforated in the upper ten layers. Other simulation parameters are the
same as in Case 2.

A

B

Fig. 14. (a) Cumulative oil production (at surface condition) curve. (b)
Cumulative water production (at surface condition) curve.

Fig. 15. Water saturation profiles at 3600 days. From top to bottom, the water saturation in four layers (Layers 1, 5, 11, and 18) is shown. The length in the z-
direction is shown five times the real size.
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Three sets of natural fractures with different orientations are placed
inside the reservoir. The total number of fractures is 128. The con-
ductivity of fractures is 100,000 md-ft. In naturally fractured reservoirs,
the formation of different sets of natural fractures might be related to
geological activities at different times. Therefore, the three sets of
fractures are restricted in different layers in this study. The first set of
fractures only penetrates Layers 1–10, the second set only penetrates
Layers 11–20, and the third set penetrates the whole formation in the
vertical direction. The fracture segments obtained from EDFM pre-
processing are shown in Fig. 13.
The cumulative oil and water production rate curves predicted by

the simulation are shown in Fig. 14. To illustrate the effect of gravity,
water saturation in four different layers at 3600 days are shown in
Fig. 15. It can be observed that the sweeping efficiency in different
layers is quite different. In addition, the variation of depth within each
layer also has a great impact on the water saturation distribution.

6. Conclusions

In this study, an Embedded Discrete Fracture Model was extended to
matrix grids with corner-point geometry to simulate complex fractures
in geologically complex reservoirs. The model was implemented in an
IMPEC, compositional reservoir simulator with a full-tensor-perme-
ability formulation. Modifications in the simulator governing equations
and key points for geometrical calculations were presented in this work.
Several case studies were presented for verification and application

of the developed model. It was found that the accuracy of the EDFM
approach is not greatly influenced by matrix gridding when similar
numbers of gridblocks are used. With the full-permeability-tensor si-
mulation, similar simulation results were obtained on grids with dif-
ferent levels of distortion. The inclusion of cross derivatives in the
governing equation was also found to be of great importance when the
matrix grid is highly distorted. Therefore, although the EDFM result is
not sensitive to grid distortion, numerical solution schemes should be
carefully selected when the grid is not orthogonal.
The impact of natural fractures on water-flooding efficiency was

also investigated. Serving as high-speed channels, the highly conductive
fractures might speed up the movement of the injected fluid from the
injector to the producer, lowering the flooding efficiency. The gravity is
also playing a significant role in the simulation of water-oil system, and
care should be taken for the discretization of simulation grid in the
vertical direction to accurately simulate the movement of waterfront
through the fracture network in different layers.
This study illustrates the compatibility of the EDFM approach with

different types of grids widely used in reservoir simulation, including
both Cartesian grid and corner-point grids. As the EDFM requires no
special treatment of the matrix grid around fractures, it makes it easy
and convenient to place complex fractures in existing reservoir simu-
lation models using these types of grid.

Abbreviations

ACCS Accelerated Successive Substitution
EDFM Embedded Discrete Fracture Model
NNC Non-Neighboring Connection
TPFA Two-Point Flux Approximation
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