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A B S T R A C T

Compositional reservoir simulators are important tools for application in enhanced oil recovery processes. These
simulators solve partial differential equations arising from modeling fluid flow in permeable media. Various
algorithms for the solution of such partial differential equations are available, which their application greatly
impacts the computational performance of the simulators. In this work, a new fully implicit approach called PZS
(pressure, overall composition, and water saturation) is proposed and implemented. The new formulation
considers pressure, water saturation, and overall compositions as primary variables, reducing the number of
unknowns by one when compared to other volume balance fully implicit formulations. The new approach is
obtained by a variable change and elimination of a well known volume balance approach. The new approach is
implemented in the UTOMPRS simulator that has been developed at The University of Texas at Austin for
simulation of several multicomponent/multiphase recovery processes. The PZS formulation is compared to the
volume balance based and IMPEC (Implicit Pressure Explicit Composition) formulations in UTCOMPRS. We
observe that the PZS approach is, in general, faster than the other approaches tested.

1. Introduction

Reservoir simulators are tools developed to simulate fluid flow in
porous media. In the oil industry, reservoir simulators are used to
forecast the oil and gas recoveries, perform field optimization and
economic analysis, and assess uncertainties. For such analysis, an ex-
tensive amount of simulation is required, which may result in excessive
computational effort. Therefore, fast and robust algorithms are essen-
tial. In general, fast algorithms are obtained by combining adaptive
implicit methods (AIM) with high-performance computing techniques.
Adaptive implicit methods are obtained by combining a Fully Implicit
(FI) formulation with an IMPEC approach. Therefore, the performance
of an AIM approach is limited by the performance of each formulations.

Many formulations have been proposed for compositional reservoir
simulation using an Equation of State (EOS). Fussell and Fussell (1979)
were the first to propose the use of fugacities and EOS in a reservoir
simulator. Their model was based on an IMPEC formulation and the
primary variable set changed according to the amount of oil and gas in
each gridblock. Coats (1980) proposed a FI method that became well
known as the natural variable formulation. In this formulation, Coats
(1980) considered the pressure, saturations, and phase compositions as
primary variables; therefore, the set of primary variables will also

change as the phases present in a gridblock change. The natural vari-
able formulation has the advantage of requiring the solution of one less
equation per gridblock for the linear system, arising from discretization
of governing partial differential equations modeling fluid flow in the
reservoir, when compared to most of the other FI formulations available
in the literature. However, it requires the use of a Gaussian elimination
to decouple the equilibrium constraints from the flow equations.
Nghiem et al. (1981) developed a new IMPEC-type formulation that
differed from all the previous one by allowing the solution of pressure
and compositions separately. The approach implemented by Nghiem
et al. (1981) is based on the one presented by Kazemi et al. (1978),
differing only on weighting factors for the pressure equation, which,
according to Wong and Aziz (1989), makes the Jacobian strictly diag-
onal dominant and symmetric. Young and Stephenson (1983) proposed
an IMPEC-type formulation by modifying the primary variable set and
the equation ordering proposed by Fussell and Fussell (1979). Chien
et al. (1985) presented another FI approach similar to that proposed by
Coats (1980), but using the equilibrium ratios (K-values) as primary
variables instead of the gas phase mole fractions. Acs et al. (1985)
proposed a new IMPEC-type formulation that had the pressure equation
obtained from a Taylor series expansion of the fluid volume and the
pore volume. This is a powerful one-iteration formulation that controls
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the volume error due to the nature of the derivation of the pressure
equation. The primary variables for this formulation are pressure and
the moles of each component. Watts (1986) presented an IMPSAT
(Implicit Pressure and Saturations) approach based on the formulations
presented by Acs et al. (1985) and Spillette et al. (1973). The for-
mulation proposed by Watts (1986) was a sequential one-iteration ap-
proach where pressure would be solved first and used to calculate a
semi-implicit total velocity that could be used to compute saturations.
However, as indicated by Quandalle and Savary (1989) the scheme
proposed by Watts (1986) have inconsistencies; they proposed a new
set of primary variables and flash calculation for solving the incon-
sistencies and improving the stability of the previous IMPSAT approach.
Collins et al. (1992) presented an Adaptive Implicit Method (AIM) that
considered pressure and the overall mole concentrations as primary
variables that are solved through the material balance equations and a
volume constraint. Branco and Rodriguez (1996) modified the for-
mulation proposed by Coats (1980) into an IMPSAT approach by
treating the compositions explicitly. Wang et al. (1997) presented a
fully implicit, fully coupled approach that solved, in each Newton
iteration, all material balance equations and equilibrium constraints.
They used pressure, overall mole concentrations, and the logarithm of
the equilibrium ratios as primary variables,. Haukas et al. (2007a)
proposed a new IMPSAT formulation based on the formulation of
Quandalle and Savary (1989) by replacing the phase compositions that
were solved explicitly by new variables that were named isochoric
variables, which represented the mass changes introduced at constant
pressure and volume. This IMPSAT formulation was compared with the
IMPSAT implemented in Cao and Aziz (2002) by Haukas et al. (2007b).
Ayala (2004) implemented a fully implicit formulation for composi-
tional reservoir simulation using pressure, water saturation, and overall
compositions as primary variables; the Jacobian matrix in this work is
obtained numerically. The work of Ayala (2004) was used for simu-
lating gas-condensate problems by Ayala et al. (2006). The ideas from
the formulation of Ayala (2004) were extended for linear flow in un-
conventional systems (Zhang and Ayala, 2016) and linear and radial
flow (Zhang and Ayala, 2018) using a semi-analytical solution. In these
works, the derivatives with respect to the overall composition were also
computed numerically. Santos et al. (2013b) implemented several im-
plicit and semi-implicit formulations in GPAS (General Purpose Adap-
tive Simulator), developed by the University of Texas at Austin, in-
cluding a new semi-implicit IMPEC formulation based on the ideas
presented by Branco and Rodriguez (1996) and Lacroix et al. (2000).
Fernandes et al. (2014b) compared the performance of the Acs et al.
(1985) and Watts (1986) formulations for Cartesian grids considering

three hydrocarbon flash calculation and a total variation diminishing
(TVD) originally proposed by Liu et al. (1994). Later, Fernandes et al.
(2015b) performed similar study for unstructured grids using the Ele-
ment based Finite Volume Method (EbFVM) (Baliga and Patankar,
1983; Marcondes and Sepehrnoori, 2010). Fernandes (2014) and
Fernandes et al. (2016) presented and implemented a FI version of the
formulation proposed by Acs et al. (1985) and compared it to the for-
mulation of Collins et al. (1992). Also, Fernandes et al. (2017) im-
plemented the Coats formulation in UTCOMPRS.

In this work, a new FI approach is proposed, implemented, and
tested. The new FI is in part based on formulation uses the FI approach
of Collins et al. (1992) as basis. From Collins et al. (1992) approach, a
variable set change is performed, allowing the decoupling of one of the
equations. Therefore, the final set of primary variables of the new fully
implicit approach is based on intensive variables only, and requires the
solution of one less equation per gridblock. Additionally, this approach
can be easily added to a simulator implemented using pressure and total
number of moles as primary variables. The new formulation differs
from that of (Ayala, 2004) not only in its solution procedure, but also in
the fact that no numerical derivatives are computed, which leads to less
number of flash calculation per Newton iteration.

A brief description and classification of some important approaches
in the literature along with the one proposed in this work is presented
in Table 1. Notice that we emphasize that Ayala (2004) uses a quasi-
Newton approach. This is important since the analytical derivatives of
the phase compositions with respect to the total composition is a
complex procedure. Herein, we took advantage of the analytical deri-
vation with respect to the number of moles of each component, already
developed in the literature, and we applied a variable change and
elimination procedure to reduce the number of variables to be solved,
without loss of derivative accuracy and no extra computation of flash
and physical properties.

The new approach is implemented in The University of Texas
Compositional Reservoir Simulator (UTCOMPRS). UTCOMPRS is a
modified version of the UTCOMP simulator, which initially was de-
veloped by Chang (1990), Chang et al. (1990), Perschke (1988),
Perschke et al. (1989a), and Perschke et al. (1989b) that considers up to
four phase flow (water, oil, gas, and a second oleic phase) with rigorous
flash and phase stability calculations. UTCOMP was originally im-
plemented using the Acs et al. (1985) IMPEC approach using Cartesian
grids and since the original implementation has been the subject of
several improvements and the addition of new capabilities such as
unstructured grids (Fernandes et al., 2012; Araújo et al., 2016), corner
point (Fernandes et al., 2014a), TVD schemes for unstructured grids

Table 1
Summary of important formulations for compositional reservoir simulation.

Formulation Implicitness degree Iterative methoda Primary variables

Fussel and Fussel (1979) IMPEC MVNM ∼P N x x{ , , , ..., }g g nc g2 or ∼P N x x{ , , , ..., }o o nc o2

Coats (1980) FI NM P S S x x{ , , , , ..., }g o g g nc g3

Nghiem et al. (1981) IMPEC NM ∼ ∼P N N z z{ , , , , ..., }w h nc1 or ∼P S N z z{ , , , , ..., }w h nc1

Young and Stephenson (1983) IMPEC NM ∼ ∼
−P N N L z z{ , , , , , ..., }w h g nc1 1

Chien et al. (1985) FI NM ∼ ∼ ∼P N N N{ , , , ..., }w nc1

Ács et al. (1985) IMPEC OI ∼ ∼ ∼P N N N{ , , , ..., }w nc1
Watts (1986) IMPSAT SOI ∼ ∼ ∼P S S N N N{ , , , , , ..., }o g w nc1

Quandalle and Savary (1989) IMPSAT SOI −P S S x x{ , , , , ..., }w g o nc o2 1 or −P S S x x{ , , , , ..., }w g g nc g2 1

Collins et al. (1992) AIM/FI/IMPEC NM ∼ ∼ ∼P N N N{ , , , ..., }w nc1

Branco and Rodriguez (1996) IMPSAT NM −P S S x x{ , , , , ..., }w g o nc o1 2

Wang et al. (1997) FI NM ∼ ∼ ∼P N N N K K{ , , , ..., , ln( ), ..., ln( )}w nc nc1 1
Haukas et al. (2007a) IMPSAT SOI −P S S κ κ{ , , , , ..., }w g nc np1

Ayala (2004) FI QNM −P S z z{ , , , ..., }w nc1 1

This work FI NM −P S z z{ , , , ..., }w nc1 1

a NM – Newton's Method; QNM – Quasi-Newton's Method; MVNM – Minimum Variable Newton Method; OI – One-Iteration; SOI – Sequential with One-Iteration.

B.R. Batista Fernandes et al. Journal of Petroleum Science and Engineering 169 (2018) 317–336

318



(Fernandes et al., 2013; (Fernandes et al., 2015a), high performance
computing (Doroh, 2012), to name few improvements in the UTCOM-
PRS simulator. The enhanced simulator is referred to as UTCOMPRS.

2. Governing equations

In this work, an isothermal compositional multiphase fluid flow in
porous media is considered. The flow equations are obtained by com-
bining the material balance equations with Darcy's law. The mass
transfer between phases is assumed to be at local equilibria. A summary
of the main assumptions employed in this study is presented below:

1 Isothermal reservoir rock, fluid, and injecting fluids.
2 Local phase equilibrium.
3 Up to three hydrocarbon phases.
4 No hydrocarbon dissolution or solubilization into the aqueous
phase.

5 No water mass transfer between the hydrocarbon phases.
6 Phase velocities evaluated through the modified Darcy's law.
7 No water vaporization.

The material balance equations for each hydrocarbon component
can then be written as
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where Pj is the pressure of phase j, krj, ξj, and μj are the relative per-
meability, the molar density, and viscosity of j-th phase, respectively. K
is the absolute permeability tensor, Vb is the bulk volume, xkj is the
molar fraction of component k in phase j, q̇k is the source/sink term of
component k due to the producing/injecting well, ρj is the mass density
of phase j, g is the gravity acceleration, D is the depth, Sj is the sa-
turation of phase j, ϕ is the porosity, and Λij is the dispersion tensor of
component i in phase j. Herein, the subscript w stands for water com-
ponent or phase, and will be used interchangeably along with the
subscripts 1, for aqueous phase, and nc+1 for the water component.
Similarly, subscripts 2 and o stands for oil phase, 3 and g for gas phase,
and 4 and l stand for a second oleic phase. In UTCOMPRS, the phase
pressures are computed with respect to the oil pressure according to the
capillary relationship

= + =P P P j n1, ...,j cjo p , (3)

where P is the oil pressure (or the next available hydrocarbon phase, in
the absence of oil) and Pcjo is the capillary pressure of phase j with
respect to the reference phase (oil).

The volume constraint is also necessary and is written as
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where nj is the number of moles of phase j.
The porosity is computed as.

= + −ϕ ϕ C P P(1 ( )),f ref
0 (5)

where Pref is a reference pressure, ϕ0 is the reference porosity, and Cf is
the rock compressibility.

The dispersion tensor is computed as the sum of the molecular
diffusion and the mechanical dispersion as
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where uxj, uyj, and uzj are the Cartesian velocity components of phase j,
αℓ is the longitudinal dispersivity, αt is the transversal dispersivity. In
UTCOMPRS, the dispersivities may be considered constant or as a
function of viscosity according to the model originally developed by
Young (1990) for 1D displacement, which was later extended by Ewing
et al. (1989) for 2D, and Gharbi (1989). The model was also applied by
Krueger (1989) for polymer flooding and Santos et al. (2013a) for
miscible gas flooding.

The Peng-Robinson equation of state (EOS) (Peng and Robinson,
1976) is used to compute density and fugacities.

Phase appearance and disappearance is treated using a stability test
calculation. Two phase stability test algorithms are implemented in the
UTCOMPRS simulator: the stationary point location method
(Michelsen, 1982) and the Gibbs free energy minimization algorithm
that is similar to the Trangenstein (1987) method and was modified by
Perschke (1988) to deal with the equilibrium of three hydrocarbon
phases. In general, as commented by Perschke (1988) the stationary
method is faster than Gibbs free energy minimization method.

After the phase stability, a flash calculation to evaluate the mole
fractions and amount of each hydrocarbon phase is performed. The
flash calculation used in UTCOMPRS is a combination of the
Accelerated Successive Substitution (ACSS) method (Mehra et al.,
1983) with the modified version of the Gibbs free energy minimization
method (Perschke, 1988). At the beginning of the flash procedure, the
ACSS method is used in order to provide a reasonable initial estimation,
and then it is switched to the Gibbs free energy minimization method in
order to accelerate the convergence. The switching criteria to change
from one method to another is given by (Chang, 1990).

3. Approximate equations

In the new scheme presented in this work, the original approximate
equations are equal to the ones of the fully implicit model of Collins
et al. (1992). In order to obtain the approximate equations we will use
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the finite volume method in conjunction with Cartesian grids. There-
fore, integrating Eqs. (1) and (2) in time and over a Cartesian control-
volume of Fig. 1, using a fully implicit approximation in time and
moving all terms of the approximate equation to the same side, the
following residual equation is obtained:
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where Fkj,e is the advective mole flux of component k in phase j through
the interface east e and Jkj,e is the dispersive mole flux of component k
in phase j through the interface e. The advective mole fluxes, in each
interface, are written as
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where Te is the transmissivity at the interface e.
The dispersive mole fluxes are computed as
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Fig. 1. Illustration of a Cartesian Control-Volume with indexations according to
Maliska (2004).

Fig. 2. Illustration of the Jacobian obtained using the Collins et al. formulation
a 1D grid with 3 grid-blocks and 2 hydrocarbon components plus water.

Fig. 3. Illustration of the Jacobian obtained using the new formulation for a 1D
grid with 3 grid-blocks and 2 hydrocarbon components plus water.
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The volume constraint equation in its residual form is written, for
each gridblock, as

∑= −
=

+

+
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Fig. 4. Illustration of the Jacobian obtained using the new formulation for a 1D grid with 3 grid-blocks and 2 hydrocarbon components plus water. a) After
elimination and b) after decoupling the pressure equation.

Fig. 5. Absolute permeability field in X and Y directions (× 10−13 m2) - case
study 1.

Table 2
Reservoir data for Case 1.

Property Value

Length, width, and thickness 1865.37 m, 938.78 m, and 121.92m
Porosity 0.30
Initial Water Saturation 0.25
Initial Pressure 20.68MPa
Permeability in z direction 9.87×10−15 m2

Formation Temperature 299.82 K
Gas Injection Rate 4.92m3/s (internal wells), 2.46 m3/s (lateral

wells), 1.23 m3/s (corner wells)
Producer's Bottom Hole Pressure 20.68MPa
Reservoir's initial composition

(CO2, C1, and nC16)
0.01, 0.19, and 0.80

Injection fluid composition (CO2,
C1, and nC16)

0.95, 0.05 and 0.00

Table 3
Relative permeability data for Case 1.

Property Value

Model Stone II
End point relative permeabilities (krw, kro, krg) 1.0, 1.0, and 1.0
Exponents (ew, eow, eog, eg) 1.0, 1.0, 1.0, and 1.0
Residual saturations (Swr, Sowr, Sogr, Sgr) 0.25, 0.0, 0.0, and 0.0

Table 4
Pseudo-component data for Case 1.

Component Pc (Mpa) Tc (K) Vc (m3/mol) Mw (g/mol) Ω

CO2 7.388 304.206 9.395× 10−5 44.010 0.2250
C1 4.600 190.600 9.988× 10−5 16.043 0.0225
nC10 1.738 734.684 8.170× 10−4 222.000 0.6837
Binary Interaction Coefficients
CO2/C1 0.1
CO2/nC10 0.125
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4. Well model

In UTCOMPRS, wells can be controlled by either total constant flow
rate or constant bottom hole pressure. For the scope of this work, in-
jector wells are controlled by total constant flow rate and producer
wells are controlled by constant bottom hole.

Injector wells controlled by constant total flow rate have the mole
rate computed at each gridblock it intercepts as

=
∑

∑ ⎡⎣ ∑ ⎤⎦

+ =
+

= =
+

q q
WI λ

WI λ
˙ ˙ ,k r

n
Tk

r j
n

j r
n

v
n

v j
n

j v
n,

1 1 ,
1

1 1 ,
1

p

seg p
(28)

where nseg is the number of segments of the well, qTk is the total mole
rate of component k, qkr is the mole rate of component k in segment r.
and WIr is the productivity index of the r-th segment of the well, which
is computed assuming Peaceman's model (Peaceman, 1978, 1983).

The mole rate for constant bottom hole pressure producer wells are

Fig. 6. Production rates for case study 1. a) Oil and b) gas.

Fig. 7. Time-step profile comparison against IMPEC - case study 1. a) Collins (uncoupled), b) Collins (coupled), c) PZS (uncoupled) and d) PZS (coupled).
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computed as
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where +Pwf r
n

,
1 is the well pressure of segment r and +Pr

n 1 is the pressure of
the gridblock at which the well segment r is intercepted.

5. The new algorithm

It is important to present a brief description of intensive and ex-
tensive variables as defined in thermodynamics. An extensive variable
depends of the amount of mass or size of the system as opposed to
intensive variables. Examples of extensive variables are volume, mass,
and enthalpy, while mole fractions, density, and specific enthalpy are
examples of intensive variables.

The main idea of the formulation proposed here is to change the set
of variables considered by Collins et al. (1992), which was based on
extensive variables to a set of only intensive variables. This is ad-
vantageous because we need to solve one less unknown per gridblock to
determine the intensive state. The amount of moles/mass in the system
can then be determined with the intensive variables using the equation
that is eliminated from the linear system. Herein, the set of primary
variables are first changed from pressure and number of moles {P, Nk}
to pressure, overall hydrocarbon composition, total hydrocarbon moles,
and water saturation {P, Zi, Nt, Sw}. The total hydrocarbon moles is then
decoupled from the system in order to reduce one unknown {P, Zi, Sw}.
Therefore, the number of primary variables is reduced from nc+2 to
nc+1. First in this algorithm, the Newton Raphson method is used
considering the primary variables proposed by Collins et al. (1992),

→ = −→+ + +
J Δx r ,k

n
k
n

k
n1 1 1

(30)

where → +
Δx k

n 1
are the changes in the primary variables at iteration k,

→ +
r k

n 1
are the residues of the volume balance and material balances at

iteration k, and
+J k

n 1
is the Jacobian matrix at iteration k. For better

illustration, Eq. (30) is written for a 1D grid using a blocked Jacobian,
blocked unknowns vector, and blocked residues vector below:
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where, using Collins et al. (1992) formulation we have
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Fig. 8. Maximum condition number per time-step profile comparison against IMPEC - case study 1. a) Collins (uncoupled), b) Collins (coupled), c) PZS (uncoupled)
and d) PZS (coupled).
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The Jacobian for Collins et al. (1992) formulation considering a 1D
discretization with 2 hydrocarbon components plus water is shown in

Fig. 2. From the figure, it can be observed that the first equation de-
pends only of the variables of the gridblock itself.

The Jacobian of Eq. (30) and Fig. 2 is changed to the new variable
set by changing the derivatives, which are given by the following ex-
pressions:

Fig. 9. Gas saturation field - case study 1 at 2190 days. a) Collins et al. with uncoupled wells; b) Collins et al. with wells coupled; c) PZS with wells uncoupled; d) PZS
with wells coupled; and e) IMPEC.

Table 5
CPU Time and number of Newton iterations for Case 1.

Formulation CPU Time (s) Normalized CPU Time Total number of Newton
iterations

Average Highest Condition
Number

Total Number of Solver
Iterations

IMPEC 3640 1.00 – – –
Collins et al. with uncoupled wells 4007 1.11 646 577 8194
Collins et al. with coupled wells 3758 1.03 632 631 8663
PZS with uncoupled wells 2060 0.56 383 779 8662
PZS with coupled wells 2673 0.73 371 958 10,746
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Table 6
Pseudo-component data - case study 2 (Killough and Kossack, 1987).

Component Pc (MPa) Tc (K) Vc (m3/mol) Mw (g/mol) ω

C1 4.60 190.56 9.98× 10−5 16.00 0.0130
C3 4.25 369.83 2.00× 10−4 44.10 0.1520
C6 3.01 507.45 3.70× 10−4 86.20 0.3010
C10 2.10 617.67 6.30× 10−4 142.30 0.4880
C15 1.38 705.56 1.04× 10−3 206.00 0.6500
C20 1.12 766.67 1.34× 10−3 282.00 0.8500
Binary Interaction Coefficients
C1/C15 0.05
C1/C20 0.05
C3/C15 0.005
C3/C20 0.005

Fig. 10. Permeability distribution (× 10−13 m2) - case study 2. a) X and Y directions and b) Z directions.

Table 7
Reservoir data - case study 2.

Property Value

Length, width, and thickness 170.688m, 170.688m, and
30.48m

Porosity 0.35
Initial Water Saturation 0.30
Initial Pressure 10.34MPa
Formation Temperature 344.26 K
Longitudinal Dispersivity 4.74m
Transverse Dispersivity 0.47m
Longitudinal parameter for Young's

Dispersion
0.91

Transverse parameter for Young's Dispersion 0.91
Gas Injection Rate 0.328m3/s
Producer's Bottom Hole Pressure 8.96MPa
Reservoir's initial composition (C1, C3, C6, C10,

C15, and C20)
0.50, 0.03, 0.07, 0.20, 0.15, and
0.05

Injection fluid composition (C1, C3, C6, C10,
C15, and C20)

0.77, 0.20, 0.01, 0.01, 0.005 and
0.005

Table 8
Relative permeability data - case study 2.

Property Value

Model Stone II
End point relative permeabilities (krw, kro, krg) 0.4, 0.9, and 0.9
Exponents (ew, eow, eog, eg) 3.0, 2.0, 2.0, and 3.0
Residual saturations (Swr, Sowr, Sogr, Sgr) 0.3, 0.1, 0.1, and 0.0

Fig. 11. Production rates for case study 2. a) Oil and b) gas.
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Fig. 12. Gas saturation field - case study 2 at 1000 days. a) Collins et al. with wells uncoupled; b) Collins et al. with wells coupled; c) PZS with wells uncoupled; d)
PZS with wells coupled; and e) IMPEC.
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Despite of the variable change, one might notice that in the new
variable set only Nt is an extensive variable. This is important, since the
flux terms (Eq. (15) through (26)) are function of intensive variables
only. Therefore, the derivatives of flux term with respect to the total
number of moles is zero in the off-diagonal gridblocks.

The Jacobian illustrated in Fig. 2, after applying Eq. (35) through
(42), is now illustrated in Fig. 3. From Fig. 3, it can be observed that the
pressure equation can be used to eliminate the dependence with the
total number of moles from the individual material balance equations.
This elimination leads to the new Jacobian shown in Fsig. 4a. From the
Jacobian in Fig. 4a, it is possible to obtain pressure and the overall
compositions without the need of the pressure equation (first line of
each block). The Jacobian used by the new system of equations is then
illustrated in Fig. 4b, where it can be observed that one less equation is
solved per grid-block. After solving the linear system for pressure,
overall composition, and water saturation the total number of moles is
obtained by inserting these variables in the first equation that was re-
moved from the Jacobian presented in Fig. 4a.

Additionally, the wells can be considered coupled or decoupled. In
the decoupled approach, a gridblock is assumed to consider only the
segment that intercepts itself in the calculation of the Jacobian. The

contribution of the other segments are transferred to the residues. On
the other hand, in the coupled approach, it is considered extra equa-
tions for each component in each segment, similar to the approach
presented by Cao (2002). Such approach is beneficial when a well in-
tercepts several gridblocks because it improves the convergence of the
method. Both cases are considered in this work, and the results con-
cerning these two approaches will be presented in the next section.

As it may be noted, the derivatives of properties such as viscosity
and density with respect to the primary variables are not simple to be
obtained, once these properties are function of the phase composition.
Therefore, the derivatives of phase composition with respect to the
primary variables must be obtained. The procedure to obtain these
derivatives is presented in Appendix A. Since we only perform the
variable change after the Jacobian for the P and N (Pressure and
number of moles) is already obtained, we just need to obtain these
derivatives with respect to pressure and the total number of moles as in
the original P and N approach.

6. Results and discussion

For all cases presented in this section, the linear systems were solved
by the GMRES method (Saad and Schultz, 1986) with restart option and
the ILU preconditioner using the PETSc package (Balay et al., 2013).
The post-processing of the fields' properties (saturations, compositions,
permeability, etc) was performed using the S3Graf package from Sci-
enceSoft.

Three case studies are presented for testing and validating of the
new fully implicit formulation proposed in this work. The first case
study considers a CO2 injection in a high pressure heterogeneous re-
servoir. The second case study considers a gas flooding in a hetero-
geneous reservoir with a gas cap. Finally, the last case study simulates a

Fig. 13. Time-step profile comparison against IMPEC - case study 2. a) Collins (uncoupled), b) Collins (coupled), c) PZS (uncoupled) and d) PZS (coupled).
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Fig. 14. Maximum condition number per time-step profile comparison against IMPEC - case study 2. a) Collins (uncoupled), b) Collins (coupled), c) PZS (uncoupled)
and d) PZS (coupled).

Table 9
CPU Time and number of Newton iterations – case study 2.

Formulation CPU Time (s) Normalized CPU Time Total number of Newton
iterations

Average Highest Condition
Number

Total Number of Solver
Iterations

IMPEC 673,463 1.00 – – –
Collins et al. with uncoupled wells 27,016 0.040 229 12,145 12,929
Collins et al. with coupled wells 24,540 0.036 218 12,237 12,324
PZS with uncoupled wells 24,337 0.036 263 11,960 14,902
PZS with coupled wells 22,562 0.033 242 5375 13,635

Table 10
Pseudo-component data - case study 3 (Khan et al., 1992).

Component Pc (MPa) Tc (K) Vc (m3/mol) Mw (g/mol) Ω

CO2 7.38 304.20 9.40× 10−5 44.01 0.225
C1 4.60 190.60 9.90× 10−5 16.04 0.008
C2-3 4.50 344.21 1.81× 10−4 37.20 0.131
C4-6 3.40 463.22 3.07× 10−4 69.50 0.240
C7-15 2.17 605.75 5.99× 10−4 140.96 0.618
C16-27 1.65 751.02 1.13× 10−3 280.99 0.957
C28+ 1.64 942.48 2.09× 10−3 519.62 1.268
Binary Interaction Coefficients
CO2/C1 0.055
CO2/C2-3 0.055
CO2/C4-6 0.055
CO2/C7-15 0.105
CO2/C16-27 0.105
CO2/C28+ 0.105

Table 11
Reservoir data - case study 3.

Property Value

Length, width, and thickness 1219.2 m, 1219.2 m, and 60.96m
Initial Water Saturation 0.25
Initial Pressure 7.58MPa
Formation Temperature 313.706 K
Longitudinal Dispersivity 4.74m
Transverse Dispersivity 0.47m
Longitudinal parameter for Young's

Dispersion
9.1

Transverse parameter for Young's
Dispersion

9.1

Injector's Bottom Hole Pressure 8.62MPa (all injectors)
Producer's Bottom Hole Pressure 7.58MPa (all producers)
Reservoir's initial composition (CO2, C1, C2-

3, C4-6, C7-15, C16-27, and C28+)
0.0337, 0.0861, 0.1503, 0.1671,
0.3304, 0.1611, and 0.0713

Injection fluid composition (CO2 and C1) 0.95, 0.05
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CO2 injection in a heterogeneous reservoir with inactive cells and a
three-phase hydrocarbon flash calculation. The results will be com-
pared in terms of the production rates, time-step profile, property fields,
CPU times, and Newton iterations. The new PZS formulation im-
plemented in this work is tested for both coupled and uncoupled wells
and is compared to the formulations of Acs et al. (1985) and Collins
et al. (1992).

In the first case study a reservoir with heterogeneity in the X and Y
permeabilities is considered. Twenty-three wells are considered in a
153×77×10 grid. The permeability field is presented in Fig. 5.

The reservoir data is presented in Table 2. The relative permeability
model used for this case was the Stone II (Stone, 1973). Data for the
relative permeabilities used in this case are presented in Table 3. Ad-
ditionally, no dispersion was considered for this case study. The simu-
lation is run for up to 2190 days (about 0.22 PVI). The properties for
each component are given in Table 4.

A comparison of the oil and gas production rates is presented in
Fig. 6 in semi-log plots, where it can be observed a good agreement of
the production curves obtained with all the formulations. The choice for
semi-log plot was taken here since there could be observed no differ-
ence in the normal plot. Differences between the IMPEC and the FI
approaches can be observed in the early stages of production, which are
caused by the larger difference in time-step size. However, any differ-
ence between the FI approaches cannot be observed.

Table 12
Relative permeability data - case study 3.

Property Value

Model Corey
End point relative permeabilities (krw, kro, krg, kr2l) 0.21, 0.7, 0.35, and 0.35
Exponents (ew, eow, eog, eg, e2lw, e2lg) 1.5, 2.5, 2.5, 2.5, 2.5, and

2.5
Residual saturations (Swr, Sowr, Sogr, Sgr, S2lr, S2lr) 0.25, 0.2, 0.2, 0.05, 0.2 and

0.2

Fig. 15. Reservoir depth (m) from the top and bottom of the reservoir - case study 3. a) top view and b) bottom view.

Fig. 16. Permeability distribution (× 10−13 m2) - case study 3. a) X and Y directions and b) Z direction.

Fig. 17. Reservoir porosity - case study 3.
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The time-step profiles are presented in Fig. 7, where it can be ob-
served that the FI approaches used, in average, a time-step twenty times
bigger than the IMPEC approach. In fact, the FI approaches could use
even larger time-steps, but it would reduce the solution accuracy in
time. We can also verify that the two PZS formulations did not present
cuts in time-steps as it is verified for Collins et al. (1992) formulation.
The time-step cuts takes place when the Newton's method does not
reduce the material balance residues enough or the changes in the
primary variables do not converge. In this work, the maximum number
of iterations per time-step is set to twenty. Once twenty Newton itera-
tions are performed without successful convergence, the time-step is
halved and restarted as a new time-step. This procedure is done until a
time-step can achieve convergence. For this study, the time-step for the
FI approaches was limited to 20 days, while the time-step for the IMPEC
was limited to 1 day, in order to avoid the appearance of spurious os-
cillations.

Fig. 8 presents the highest Jacobian's condition number for each
time-step obtained for each of the FI approaches. Such condition
number is approximated computed using the options available in the
PETSc package (Balay et al., 2013). From Fig. 8, we can verify that
although the condition number for PZS formulation was larger than the
Collins et al. (1992) formulation, it did not present large variation in
the time-step history, and as it was verified before, the time-step for PZS
was constant for most of the simulation. On the other hand, when the
Collins et al. (1992) formulation presented a smaller condition number,
the time-step was clearly reduced. At least for this first case study, such
a behavior is a clear indication that the PZS has a better-condition

Jacobian.
The gas saturation field at 2190 days of simulation is presented in

Fig. 9. From this figure, it can be observed a good agreement between
the fields obtained with all the different approaches.

The number of Newton iterations and the CPU times are presented
in Table 5. It can be observed that the PZS approaches (coupled and
uncoupled wells) are faster than both Collins et al. and the IMPEC
formulation. It is possibly a result of the reduced number of Newton
iterations required by the new formulation, the smaller size of linear
system that is solved in each Newton iteration, a better - conditioned
system. The average condition number and the number of iterations
used by the solver are also presented in Table 5. We can verify from the
results that in average the FI formulations presented similar number of
iterations to solve the linear systems and the Collins et al. (1992)
showed the smallest condition number, but is was due to the reduction
in time-step that occurred several times during the simulation as it can
be verified in Fig. 7.

The second case study refers to a gas/solvent injection performed by
Killough and Kossack (1987). The fluid data is presented in Table 6. The
reservoir permeability is heterogeneous in X, Y, and Z directions. The
permeability field is presented in Fig. 10. For this study, only two wells
are considered: one injector and one producer. Physical dispersion is
also considered for this case. A 160× 160×10 Cartesian grid is used
for simulation of this case study. The reservoir data is presented in
Table 7. Once again, the Stone II is used to model the relative perme-
ability curves, with parameters given in Table 8.

The production rates are presented in a semi-log plot in Fig. 11.

Fig. 18. Production rates - case study 3. a) Oil and b) gas.

Fig. 19. CO2 mole fraction field - case study 3 at 2000 days a) Collins et al. uncoupled with wells; b) Collins et al. with coupled wells; c) PZS with uncoupled wells;
and d) PZS with coupled wells.
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From this figure, we can observe a good agreement for the production
curves. It is worth to note that the PZS approach with coupled wells had
a better match with the IMPEC solution. It is important to stress that
due to time-step limitation of the IMPEC approach, the IMPEC solution
is expected to be less prone to numerical dispersion. Therefore, from all
FI solutions we may conclude that the PZS with coupled wells produced
a more accurate solution for this case study.

A comparison of the gas saturation field at 1000 days is presented in
Fig. 12, where a good agreement can be observed between all for-
mulations tested.

As shown in Fig. 13, the time-step profile was very smooth, and
reached the maximum value of 20 days; in order to be conservative and
do not reduce the accuracy in time, the maximum time-step was fixed
for all FI formulations. The maximum time-step for the IMPEC for-
mulation was set to 0.005 days in order to avoid spurious oscillations in
the production curves and simulation crash. Therefore, one can verify
that the ratio between the time-step of the FI approaches compared to
IMPEC approach was about 4000 times for this case study.

Fig. 14 presents the highest Jacobian's condition number for each
time-step obtained for each of the FI approaches versus time. It can be
observed that in general the PZS with coupled wells provided a smaller
condition number. This is quite interesting since its results were also

more accurate in time (closer to the IMPEC approach).
From Table 9, it can be observed that the FI formulations had a

similar CPU time, but the fastest formulation was the PZS with coupled
wells, although it produced more Newton iterations. The IMPEC for-
mulation was about 27 times more expensive than the FI approaches
presented here and it is not suitable for this case. It is worthwhile to
mention that when dispersion is not considered, the time-steps obtained
for the IMPEC formulation are largely increased, which allows a rea-
sonable CPU time. The addition of dispersion, however, cut-down the
time-steps and the CPU time is largely increased. The average max-
imum condition number and the total number of iterations performed
by the solver are also presented in Table 9. Although, the difference
between the average condition number were not large, the PZS pre-
sented the smallest condition number that was followed also by a
smaller CPU time.

For the last case study, a grid with several inactive cells is presented.
Herein, only the FI approaches are compared, once the IMPEC approach
was not able to simulate this case. A 200× 200×10 grid is used with
only 99,816 active cells. Thirteen wells are considered with 6 producers
and 7 injectors. The absolute permeability, porosity and the grid shape
is synthetic and was developed for testing the inactive cell approach for
UTCOMPRS. Also, a second liquid hydrocarbon phase is formed in this

Fig. 20. Gas saturation field - case study 3 at 2000 days. a) Collins et al. with uncoupled wells; b) Collins et al. with coupled wells; c) PZS with uncoupled wells; and
d) PZS with coupled wells.
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case. Therefore, a three phase flash calculation is used and a four phase
flow takes place in some parts of the reservoir. This is also an important
feature that is tested in this case with the new formulation. The data for
the BSB west Texas Oil (Khan et al., 1992) is used, and it is presented in
Table 10. The reservoir data is provided in Table 11. The Corey model
(Corey, 1986) is used for the relative permeabilities and the parameters
are presented in Table 12.

The reservoir depth from the top of the reservoir is presented in
Fig. 15, where a view from the top is presented, as well as a view from
the bottom of the reservoir. The permeability fields are presented in
Fig. 16 and the porosity in Fig. 17.

The production curves are presented in Fig. 18. Once again, good
match between the production curves is observed. The CO2 mole frac-
tion field, gas saturation field, and second liquid hydrocarbon satura-
tion field at 2000 days are presented in Figs. 19–21, respectively. From
these figures, we can verify a very good agreement between fields ob-
tained with all the formulations tested.

The time-step profile for each formulation is presented in Fig. 22.
The formulations have a very similar time-step profile. It is important to
notice the large changes in time-step toward the end of simulation. This
is believed to be caused by phase flipping close to the mixture critical
point, which may cause issues on the time-step selection algorithm.

However, such issue did not affect the production curves. Due to the
complexity of this case, the condition number analysis will be omitted
since approximating it was too challenging and the obtained values for
condition number had no correlation at all with any performance
parameter.

The CPU times and number of Newton iterations are presented in
Table 13. We can observe that the PZS without coupled wells was the
fastest approach for this case followed by Collins et al. formulation
which was about 3% more expensive.

7. Conclusions

In this work, a new fully implicit formulation was proposed. The
new formulation used pressure, water saturation, and overall compo-
sition as primary variables, all intensive variables. A procedure was
presented to obtain the Jacobian for the new set of intensive variables
using a formulation that was based on extensive primary variables.

The new formulation was tested and compared with the extensive
formulation, which the new formulation derives from, and with the
original IMPEC approach from UTCOMPRS simulator that has been
benchmarked with commercial and in-house simulators along the past
years. The case studies presented here show that the new formulation

Fig. 21. Second liquid hydrocarbon saturation field - case study 3 at 2000 days. a) Collins et al. with uncoupled wells; b) Collins et al. with coupled wells; c) PZS with
uncoupled wells; and d) PZS with coupled wells.
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is, in general faster, than the other mentioned approaches. Better per-
formance was also observed for several other test cases that are not
presented in this paper. Additionally, the new approach requires less

storage than the previous original Collins et al. (1992) formulation. The
new approach was also successful in simulating reservoirs with irre-
gular geometries through the use of the inactive cells approach.

We can conclude that the formulation presented here is a powerful
approach to speed up reservoir simulators, but more study is needed in
order to determine what processes and features affect the performance
of the implemented and tested formulations.
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Appendix A. Derivatives of phase compositions and phase mole fraction

We notice that several properties such as density, saturations, and viscosity are function of the phase composition and the phase mole fractions.
Therefore, derivatives of the phase composition and phase mole fraction with respect to the number of moles of each component and pressure are
required. The procedure that follows is based on the works of Subramanian et al. (1987) and Wong et al. (1987) and has been implemented by
Fernandes (2014) and Fernandes et al. (2016).

The derivative of phase composition with respect to a primary variable X, pressure or total number of moles in this case, of a given component is
written as
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and the phase mole fraction is obtained as

Fig. 22. Time-step profile - case study 3. a) Collins (uncoupled), b) Collins (coupled), c) PZS (uncoupled) and d) PZS (coupled).

Table 13
CPU Time and number of Newton iterations - Case 3.

Formulation CPU Time (s) Normalized CPU
Time

Total number of
Newton iterations

Collins et al. with
uncoupled wells

100,353 1.03 4317

Collins et al. with
coupled wells

113,146 1.16 4556

PZS with uncoupled
wells

97,403 1.000 5065

PZS with coupled wells 104,747. 1.08 4964
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Therefore, obtaining the derivatives of the number of moles of each component in each phase with respect with the primary variables is essential.
For two hydrocarbon phase equilibrium (i.e. oil-gas), the derivatives of nij with respect to pressure can be obtained by solving the following nc×nc

linear system:
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where fij is the fugacity of component i in phase j and the subscripts r and j refer to the two hydrocarbon phases existent in a given grid-block; herein
in this work, it could be oil-gas, oil-second liquid, and gas-second liquid. Observe that the solution of the system in Eq. (A.4) provides the derivatives
of mole components in phase r. The derivatives for phase j are obtained as
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For the derivatives with respect to the number of moles, nc system of equations with nc unknowns need to be solved. All the systems have the form
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Once again, the solution of the nc systems only provide solution for phase r, whereas the solution for phase j is obtained as follows:
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where δsk is unity if s=k and zero otherwise.
Similar procedure is performed for the three-phase equilibrium (oil-gas-second liquid). The derivatives with respect to pressure require a solution

of a system with 2×nc unknowns.
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Herein, we obtain the derivatives of the moles of oil and second liquid phases. For the gas phase, the derivatives can be obtained as
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Similarly, the derivatives with respect to the total number of moles of each component require the solution of nc systems with 2×nc unknowns.
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Notice that the coefficient matrix does not change no matter if we are trying to obtain the derivatives with respect to pressure or moles. Again, the
solution of the system provides the derivatives for the oil and second-liquid phases. For the gas phase, the derivatives can be obtained as

B.R. Batista Fernandes et al. Journal of Petroleum Science and Engineering 169 (2018) 317–336

334



∂
∂

= − ∂
∂

− ∂
∂

= =
n
N

δ n
N

n
N

s n k n, 1, ..., ; 1, ..., .sg

k
sk

so

k

sl

k
c c (A.13)

The linear systems are solved using the Cholesky's decomposition. See Fernandes (2014) for details on how these equations are obtained.
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