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3D unstructured grids for heterogeneous and anisotropic compositional reservoir simulation in
conjunction with an element-based finite-volume method (EbFVM) are presented. The approximate
equations of the EbFVM adopted in this work are obtained from integration of the compositional material
balance equations directly to each element type. Using this approach, the final approximation equations
do not impose any limitation on the element shape. The methodology used in this work is suitable for
modeling complex features of reservoirs such as irregular boundaries, fractures, faults, inclined and
distorted wells. The mesh for 3D dimensional domains can be built of hexahedrons, tetrahedrons,
pyramids and prisms, or a combination of these elements. According to the number of vertices, each
element is divided into sub-elements and then mass balance equations for each component are
integrated along each interface of the sub-elements. The finite-volume conservation equations are
assembled from the contribution of all the elements that share a vertex creating a cell vertex approach. It
is expected that the approach employed in this work will have less grid orientation effect than the one
using Cartesian meshes since more gridblocks are used in the approximated equations. The results for
several compositional reservoir simulation case studies are presented to demonstrate the application of
the method.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

From discretization point of view, unstructured grids are more
flexible than most grids employed in petroleum reservoir simula-
tion (Cartesian and regular corner point meshes). The application
of unstructured grids in petroleum reservoir simulation started
about two decades ago by Forsyth (1990), Fung et al. (1991), and
Gottardi and Dall´Olio (1992). The approach used by these authors
is called Control Volume Finite Element Method (CVFEM). In these
works, linear triangle elements were used in order to obtain the
material balance equation for 2D reservoirs. The approximate
equations for single-phase flow were multiplied by the phase
mobilities in order to obtain the approximate equations for multi-
component/multiphase flows. Edwards (2000, 2002) presented
the multipoint-flux approximation for 2D discretization using
triangle and quadrilateral elements. Verma and Aziz (1997) used
the multipoint-flux approximation for the discretization of 3D
geometries in conjunction with tetrahedron element. In the
multipoint-flux approximation, all physical properties including
ll rights reserved.
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the porosity and the absolute permeability tensor are stored at the
vertex of the elements. In this approach, a local linear system
involving the potential at the interfaces and in the vertex of the
elements needs to be solved. Also, using the unstructured mesh,
several authors have employed the finite-element or the mixed
finite element methods in petroleum reservoir simulation. Hegre
et al. (1986) used quadrilateral elements in conjunction with the
finite element method to investigate the grid orientation effect.
Deb et al. (1995) also employed the finite element method for the
solution of water flooding problems in 2D and 3D reservoirs.
Mixed finite element method has been investigated by Durlofsky
and Chien (1993) and Hoteit and Firoozabadi (2005, 2006).

The ideas of Raw (1985) and Baliga and Patankar (1983) were
used by Cordazzo (2004) and Cordazzo et al. (2004a, 2004b) for
solving water flooding problems. Although the final approximate
equations are similar to the ones obtained through the CVFEM
methodology, they derive the approximate equations starting from
the multi-component/multiphase flow. The authors demonstrated
that the equations obtained from a single-phase flow equation and
then multiplied by phase mobilities do not correctly approximate
the equations for multiphase flow. According to Forsyth (1990) and
Fung et al. (1991), the distortion angle of the grid needs to be equal
or less than right angle, in order to avoid negative transmissibilities.
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Cordazzo (2004) and Cordazzo et al. (2004a, 2004b) called their
methodology element-based finite volume method (EbFVM). As
explained by Maliska (2004), we have a methodology that still
follows the conservative principles at the discrete level and only
borrows the idea of elements and shape functions from the finite
element method. Therefore, the term EbFVM seems to be more
appropriate than CVFEM used by other authors and this terminol-
ogy will also be used in the present paper. Cordazzo (2004) applied
an implicit pressure explicit saturation (IMPES) formulation in
conjunction with highly distorted triangular and quadrilateral
elements with EbFVM to simulate two-phase fluid flow (oil and
water) problems. Excellent results were obtained with very little
grid orientation effects. As mentioned by Marcondes and
Sepehrnoori (2007, 2010), this restriction can be difficult to follow
for most reservoirs due mainly to the heterogeneity of the medium,
fractures, faults, or even irregular boundaries of the reservoirs.
These authors applied the EbFVM to simulate compositional, multi-
phase, multi-component fluid-flow problems in conjunction with
anisotropic and heterogeneous reservoirs. Although the meshes
used for most of the investigations presented several elements with
angles equal or bigger than right angles, the results obtained with
triangles and quadrilateral presented a good agreement. Following a
similar approach used by the other EbFVM papers, Paluszny et al.
(2007) presented a fully 3D discretization using hexahedron, tetra-
hedron, prism, and pyramid elements. They applied their approach
to simulate the water flooding problem in naturally fractured
reservoirs.

In this study, we investigated the EbFVM in conjunction with
3D heterogeneous and anisotropic reservoirs using hexahedron,
tetrahedron, prism, and pyramid elements. Except for absolute
permeability tensor and porosity, all the physical parameters are
evaluated at the vertices of each element rendering a cell vertex
approach. We also assume that each element has constant porosity
and permeability tensors, but the values of these properties can
change from element to element. As each element has a constant
permeability tensor, all the fluxes along each integration point
employ the same absolute permeability. General Purpose Adaptive
Simulator (GPAS) was developed at the Center for Petroleum and
Geosystems Engineering at The University of Texas at Austin for
the simulation of enhanced recovery processes. GPAS is a fully
implicit, multiphase/multi-component simulator which can han-
dle the simulation of several enhanced oil recovery processes. This
simulator is divided into two main modules: Framework and
EOScomp. Framework is responsible for input/output and memory
allocation, while EOScomp handles the computations for flash
calculation and solution of non-linear equations arising from the
discretization of the governing equations. Details for EOScomp and
Framework modules can be found in Wang et al. (1997) and
Parashar et al. (1997), respectively.
2. Governing equations

Isothermal, multi-component, multiphase fluid flow in a por-
ous medium can be described using three types of equations: the
component-material balance equation, the phase equilibrium
equation, and the equation for constraining phase saturations
and component concentrations (Wang et al., 1997).

The material balance equation for the i-th component for a full
symmetric permeability tensor using the Einstein notation can be
written as

∂ðϕNiÞ
∂t

−∇⋅ ∑
np

j ¼ 1
ξjxijλjK⋅∇Φj

" #
−

qi
Vb

¼ 0; i¼ 1; 2; ::; ncþ1: ð1Þ

In Eq. (1), nc+1 denotes the number of hydrocarbon components
plus the water component, np is the number of phases present in
the reservoir, ϕ is the porosity, Ni is the moles of the i-th
component per unit of pore volume, ξj and λj are the molar density
and the relative mobility of the j-th phase respectively, xij is the
molar fraction of the i-th component in the j-th phase, K is the
absolute permeability tensor, and Vb is the volume of control-
volume that contains a well. Φj is the potential of the j-th phase
and is given by

Φj ¼ Pj−γjZ; ð2Þ
where Pj denotes the pressure of the j-th phase and Z is the depth,
which is positive in the downward direction.

The first partial derivative of the total Gibbs free energy with
respect to the independent variables gives the equality of compo-
nent fugacities among all phases,

f gi −f
o
i ¼ 0; i¼ 1; ::::; nc

f L2i −f oi ¼ 0; i¼ 1; ::::; nc: ð3Þ
In Eq. (3), f ji ¼ lnðxijϕijÞ, where ϕij is the fugacity coefficient of
component i in the j-th phase, L2 denotes the second liquid phase,
and nc is the number of components excluding the water. The
restriction of the molar fraction is used to obtain the solution of
Eq. (3),

∑
nc

i ¼ 1
xij−1¼ 0; j¼ 2; ::; np; ∑

nc

i ¼ 1

ziðKi−1Þ
1þ νðKi−1Þ

¼ 0; ð4Þ

where zi is the overall molar fraction of the i-th component, Ki is
the equilibrium ratio for the i-th component, and ν is the mole
fraction of the gas phase in the absence of water. The closure
equation comes from the volume constraint, i.e., the available pore
volume of each cell must be filled by all phases present in the
reservoir. This constraint gives rise to the following equation:

Vb ∑
ncþ1

i ¼ 1
ðϕNiÞ ∑

np

j ¼ 1
Ljνj−Vp ¼ 0; ð5Þ

where Vp is the pore volume, νj and Lj are the molar volume of and
the amount of the j-th phase, respectively. In GPAS the unknown
primary variables are water pressure Pw, N1,…, Nnc, ln K1,…, ln Knc.
It is important to mention that in GPAS simulator water is always
assumed to be present in the reservoir which is in agreement with
the field cases.
3. Approximate equation

In the EbFVM, each element is divided into sub-elements. These
sub-elements will be called sub-control volumes. The conservation
equation, Eq. (1), needs to be integrated for each one of these sub-
control volumes. Fig. 1 presents the four elements employed and the
sub-control volumes associated with each element. Fig. 1 shows that
except for pyramid, each element has three quadrilateral integration
surfaces associated with each sub-control volume. For the pyramid
element, the sub-control volumes associated with the base have two
triangular integration surfaces and one quadrangular integration
surface, and the sub-control volume associated with the apex has
four quadrilateral integration surfaces. It is worthwhile to mention
that in general, due to the shape functions, the hexahedron element
should be used for most parts of the reservoir. Due to the largest
number of vertices of hexahedron element, the final approximate
equation of this element will involve much more vertices than any
one of the-other elements. In general, if a regular hexahedron mesh
is employed the stencil for the internal vertices will involve 27
vertices, which is much larger than the seven vertices when
Cartesian meshes are employed. For areas needing a local grid
refinement, tetrahedron element is the most indicated. For areas
between hexahedron and tetrahedron elements, transition elements
like pyramids or prisms are necessary in order to match the



Fig. 1. 3D elements and their respective sub-control volumes: (a) hexahedron, (b) tetrahedron, (c) prism, and (d) pyramid.
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triangular surfaces of tetrahedron and quadrilateral surfaces of the
hexahedrons. Integrating Eq. (1) in time and for each one of the sub-
control volumes and applying the Gauss theorem for the advective
term we obtainZ
V

∂ðϕNiÞ
∂t

dV−
Z
A

∑
np

j ¼ 1
ξjxijλjK⋅∇Φj⋅ dA

�!
−
Z
V

qi
Vb

¼ 0; i¼ 1; 2; ::; ncþ1:

ð6Þ
To evaluate the first and second terms of Eq. (6), it is necessary

to define the shape functions. The shape functions used for
hexahedron, tetrahedron, prism, and pyramid elements are corre-
spondingly defined by Eqs. (7)–(10).

N1ðs; t;pÞ ¼
ð1þ sÞð1−tÞð1þ pÞ

8
; N2ðs; t; pÞ ¼

ð1þ sÞð1−tÞð1−pÞ
8

N3ðs; t;pÞ ¼
ð1−sÞð1−tÞð1−pÞ

8
; N4ðs; t; pÞ ¼

ð1−sÞð1−tÞð1þ pÞ
8

N5ðs; t;pÞ ¼
ð1þ sÞð1þ tÞð1þ pÞ

8
; N6ðs; t; pÞ ¼

ð1þ sÞð1þ tÞð1−pÞ
8

N7ðs; t;pÞ ¼
ð1−sÞð1þ tÞð1−pÞ

8
; N8ðs; t;pÞ ¼

ð1−sÞð1þ tÞð1þ pÞ
8

;

ð7Þ

N1ðs; t; pÞ ¼ 1−s−t−p; N2ðs; t; pÞ ¼ s

N3ðs; t; pÞ ¼ t; N4ðs; t; pÞ ¼ p
; ð8Þ

N1ðs; t; pÞ ¼ ð1−s−tÞð1−pÞ; N2ðs; t; pÞ ¼ sð1−pÞ
N3ðs; t; pÞ ¼ tð1−pÞ; N4ðs; t; pÞ ¼ pð1−s−tÞ
N5ðs; t; pÞ ¼ sp; N6ðs; t; pÞ ¼ tp

; ð9Þ
N1ðs; t; pÞ ¼
1
4

ð1−sÞð1−tÞ−pþ stp=ð1−pÞ� �
N2ðs; t; pÞ ¼

1
4

ð1þ sÞð1−tÞ−p−stp=ð1−pÞ� �
N3ðs; t; pÞ ¼

1
4

ð1þ sÞð1þ tÞ−p−stp=ð1−pÞ� �
N4ðs; t; pÞ ¼ ½ð1−sÞð1þ tÞ−p−stp=ð1−pÞ�
N5ðs; t; pÞ ¼ p ð10Þ

In Eqs. (7)–(10) s, t, and p denote the local axes in the transformed
domain. For the hexahedron element each of these axes varies
from −1 to 1. For the other elements the variation is from 0 to 1. In
order to obtain the shape functions for the hexahedron element,
we assumed a tri-linear variation of the physical properties with x,
y, and z. Similar approach can be performed for the other three
elements. Each deformed element of the mesh (physical domain)
can be represented by its regular element in the transformed
domain presented in Fig. 1.

Using the shape functions, any physical properties or positions
can be evaluated inside an element as

xðs; t; pÞ ¼ ∑
Nv

i ¼ 1
Nixi; yðs; t;pÞ ¼ ∑

Nv

i ¼ 1
Niyi;

zðs; t; pÞ ¼ ∑
Nv

i ¼ 1
Nizi; Φjðs; t; pÞ ¼ ∑

Nv

i ¼ 1
NiΦji; ð11Þ

where Nv denotes the number of vertex for each element, and Ni

are the shape functions of each element. Elements using the same
shape function for coordinates and physical properties are known
as isoparametric elements (Hughes, 1987). Using the shape
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functions, gradients of potentials can be easily evaluated as

∂Φj

∂x
¼ ∑
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i ¼ 1

∂Ni

∂x
Φji;
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i ¼ 1

∂Ni

∂y
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∂Φj

∂z
¼ ∑
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i ¼ 1

∂Ni

∂z
Φji ð12Þ

To evaluate the gradients, it is necessary to obtain the deriva-
tives of the shape functions relative to x, y, and z. These derivatives
are given by

∂Ni
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where det(Jt) is the Jacobian determinant of the transformation
and it is given by

detðJtÞ ¼
∂x
∂s

∂y
∂t

∂z
∂p

−
∂y
∂p

∂z
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� �
−
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∂t
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∂s

� �
: ð14Þ

Further details of the expressions given by Eq. (13) can be
found in Maliska (2004). To perform the integral of Eq. (6), it is
necessary to define the volumes of each sub-control volume and
the area of each interface. The volumes of each sub-control volume
for hexahedron, tetrahedron, prism, and pyramid elements are
given by

Hexahedron:

Vscvi ¼ detðJtÞ; ð15Þ
Tetrahedron:

Vscvi ¼ detðJtÞ=6; ð16Þ
Prism:

Vscvi ¼ detðJtÞ=12; ð17Þ
Pyramid:

Vscvi ¼
2detðJtÞ=9 for i¼ 1; :::; 4 ðbaseÞ
4detðJtÞ=9 for i¼ 5 ðapexÞ

(
ð18Þ

It is important to mention that det(Jt) needs to be evaluated at
the center of each sub-control volume. The area of each interface
for the hexahedron element is evaluated by

d A
!¼ ∂y

∂m
∂z
∂n

−
∂y
∂n

∂z
∂m

� �
dm dn i

!
−

∂x
∂n

∂z
∂m

−
∂x
∂m

∂z
∂n

� �
dm dn j

!

þ ∂x
∂m

∂y
∂n

−
∂x
∂n

∂y
∂m

� �
dm dn k

!
; ð19Þ

where m and n denote the local system s, t, or p. For the other
elements, the interfaces can be evaluated using a similar proce-
dure. We just need to define the local vectors for each interface.
Finally, it is important to mention that only half of the cross
product is used for the triangular interfaces of the pyramid
element.

Substituting Eqs. (15) through (18) for the accumulation term;
and (19) and similar ones for the other elements of the advective
flux into Eq. (6); and evaluating the fluid properties through a fully
implicit procedure, the following equations for the accumulation
(Acc) term and the advective flux (F) are obtained:

Accm;i ¼ Vscvm;i
ϕNm

Δt

� �
i
−

ϕNm

Δt

� �o

i

� �
; m¼ 1; :::; Nv;

i¼ 1; ::; nc; nw; ð20Þ

Fm;i ¼
Z
A

∑
np

j ¼ 1
ξjxijλjK⋅∇Φj⋅ dA

�!¼
Z
A

∑
np

j ¼ 1
ξjxijλjKnl

∂Φj

∂xl
dAn;

m¼ 1; :::; Nv; n; l¼ 1; ::; 3; ð21Þ
where the superscript o denotes values from the previous time-

step. By inspecting Eq. (21), it can be inferred that it is necessary to
evaluate molar densities, molar fractions, and mobilities in three
interfaces of each sub-control volume. To evaluate these proper-
ties, an upwind scheme based on Cordazzo et al. (2004) will be
used. The mobilities and other fluid properties are evaluated at the
integration point 1 of Fig. 1a, for instance, by

λj1 ¼ λj2 if K⋅∇Φj⋅ dA
�!jip1 ≤0

λj1 ¼ λj1 if K⋅∇Φj⋅ dA
�!jip140 ð22Þ

Inserting Eqs. (20) and (21) into Eq. (6), the following equation for
each element is obtained:

Accm;i þ Fm;i þ qi ¼ 0; m¼ 1; :::; Nv; i¼ 1; :::; nc þ 1 ð23Þ
Eq. (23) denotes the conservation for each sub-control volume

of each element. Now, it is necessary to assemble the equation of
each control volume obtaining the contribution of each sub-
control volume that shares the same vertex. This process is similar
to the assembling of the stiffness global matrix in the finite
element method. Further details can be found in Cordazzo
(2004) and Marcondes and Sepehrnoori (2010). Finalizing this
section, it is important to mention that each element can have
different permeabilities and porosities, allowing in this way, the
simulation of high anisotropic reservoirs.
4. Test problems

This section presents four simulation case studies using the
EbFVM approach. The first case study was used to validate the
implementation of each one of the four element types used to
model the reservoir geometry. The results of this case study are
validated with the GPAS simulator using Cartesian meshes. Case
1 is the simulation of six-component gas injection in a quarter-of-
five spot with the simultaneous flow of gas and oil. Fig. 2 presents
the four-refined grid configurations used for this case. It is
worthwhile to mention that although the meshes presented in
Fig. 1 look alike, they are completely different. In Fig. 2a each block
is a hexahedron element, in ‘b’ each hexahedron is divided in six
tetrahedrons, in ‘c’ each hexahedron is divided in two prisms, and
in ‘d’ each hexahedron is divided in six pyramids, with the apex
located at the center of the block. Table 1 presents the fluid and
physical properties. As we can see from Table 1, an isotropic and
homogeneous reservoir was considered. The relative permeability
data for Corey's model is given in Table 2.

The second case study also refers to gas injection in a quarter-
of-five spot, but now an anisotropic and heterogeneous reservoir
has been considered. Except for the porosity and absolute perme-
ability field, all of the previous data presented for Case 1 were
used. The Kyy component of the absolute permeability and porosity
is presented in Fig. 3. The Kxx component was set equal to Kyy

component, Kzz component was set equal to one-tenth of the Kxx

component, and the other components were set to zero.
In order to present the three hydrocarbon phase capabilities of

GPAS simulator, the third case study refers to a fluid flow
simulation of three hydrocarbon phases in equilibrium (two liquid



Fig. 2. Grid configurations for Case study 1: (a) hexahedron (14,400 elements; 16,337 vertices), (b) tetrahedron (375,000 elements; 67,626 vertices), (c) prism (64,000
elements; 35,301 vertices), and (d) pyramid (153,600 elements; 54,177 vertices).

Table 1
Input data for Case 1.

Reservoir data Initial conditions Physical properties and well conditions

Reservoir dimension (Lx¼Ly¼170.69 m,
Lz¼30.48 m)

Water saturation Swi¼0.17 Water viscosity¼1�10−3 Pa s
Gas injection rate¼0.32774 m3/s (106 ft3/d)

Absolute permeability (Kxx¼Kyy¼Kzz)¼
1.0�10−14 m2 (10 mD)

Reservoir pressure¼10.34 MPa (1500 psi) Bottom hole pressure¼8.96 MPa (1300 psi)

Porosity¼0.35 Overall fraction of hydrocarbon components (C1, C3, C6, C10, C15,
C20)¼0.5, 0.03, 0.07, 0.2, 0.15, 0.05

Injected mole fraction (C1, C3, C6, C10, C15, C20)¼0.77,
0.20, 0.01, 0.01, 0.005, 0.005

Table 2
Corey's model relative permeability data.

Water Oil Gas

End point relative permeability 0.4 0.9 0.9
Residual saturation 0.3 0.1 0.0
Exponent of relative permeability 3.0 2.0 2.0
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phases and a gas phase). The reservoir again refers to a gas
injection in a quarter-of-five spot. Tables 3 and 4 present the fluid
and physical properties, and the relative permeability data for
Corey's model, respectively.
The last case study refers to a simulation of a gas injection in an
irregular reservoir. Except for the reservoir dimension and absolute
permeabilities, we used the same properties shown in Tables 1 and 2.
Fig. 4 shows two grid-configurations employed for this reservoir. The
first mesh, Fig. 4a, is composed only of hexahedrons, while the other
one, Fig. 4b, is a hybrid mesh composed of tetrahedron, pyramid and
hexahedron elements. In Fig. 4a and b, we show the reservoir top
and bottom topologies, respectively. From these figures, we can see
that this reservoir is irregularly shaped in all directions. The absolute
permeabilities in the x and y directions were 1.0�10−13 m2

(100 mD), and the absolute permeability in the z direction was
1.0�10−14 m2 (10 mD). For each injection well, we used the volu-
metric rate presented in Table 1.



Fig. 3. Absolute permeability and porosity data used for Case 2.

Table 3
Input data for Case 3.

Reservoir data Initial conditions Physical properties and well conditions

Reservoir dimension (Lx¼Ly¼170.69 m, Lz¼30.48 m) Water saturation Swi¼0.25 Water viscosity¼1�10−3 Pa s
Gas injection rate¼0.32774 m3/s (106 ft3/d)

Absolute permeability (Kxx¼Kyy¼Kzz)¼1.0�10−13 m2

(100 mD)
Reservoir pressure¼6.21 MPa (900 psi) Bottom hole pressure¼6.21 MPa (900 psi)

Porosity¼0.30 Overall fraction of hydrocarbon components (CO2, C1, NC16)¼
0.01, 0.19, 0.80

Injected mole fraction (CO2, C1, NC16)¼0.95,
0.05, 0.00

Table 4
Corey's model relative permeability data for Case 3.

Water Oil Gas Second oil

End point relative permeability 0.3 0.75 0.9 0.9
Residual saturation 0.25 0.2 0.0 0.0
Exponent of relative permeability 3.0 2.0 2.0 2.0
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5. Results

Fig. 5 presents the results in terms of volumetric rate at
standard conditions for oil, and gas phases for case 1 using all
the four implemented elements. The results of this simulation
using the GPAS simulator in conjunction with Cartesian grids are
also shown. Fig. 5 shows that the results of the present work using
a Hexahedron (30�30�16—14,400 elements; 16,337 vertices), a
tetrahedron (50�50�25—375,000 elements; 67,626 vertices), a
prism (40�40�20—64,000 elements; 35,301 vertices), and pyr-
amid (40�40�16—153,600 elements; 54,177 vertices) mesh are
very close for both oil and gas rates. We can also infer that the
number of vertices of pyramid and tetrahedron elements is much
larger compared to the hexahedron and prism elements. It is
important to mention that the number of vertices is equal to the
number of control volumes. The number of vertices of tetrahedron
mesh is about 3.16 times larger than the number of vertices of
hexahedron mesh. As mentioned by Maliska (2012), the numerical
errors mainly of tetrahedron, prism, and pyramids elements
cannot be classified as grid orientation effect, since these elements
are randomly orientated along the domain. The errors exist, but
they cannot be classified as grid orientation errors. We also can
verify that the number of control volumes of the coarse Cartesian
mesh is about 5.5 times larger than the hexahedron grid.

The results in terms of volumetric rates of oil and gas rates at
standard conditions obtained for Case 2 are shown in Fig. 6. This case
again refers to a characterization of six hydrocarbon components into
a quarter of a five-spot. However, an anisotropic and heterogeneous
reservoir has been taken into account. Again, the results obtained in
conjunction with the EbFVM for each one of the four types of
elements are very close to each other for both oil and gas rates. The
gas saturation obtained with the hexahedron element in two
simulation times is presented in Fig. 7. Due to the heterogeneity in
porosity and permeability, the saturation field is completely asym-
metric at the initial stage of the injection process. Later on, that effect
disappears due to the increase of saturation field.

The results for Case 3, the three hydrocarbon phase, homo-
geneous, and isotropic reservoir, in terms of volumetric rates at
standard conditions of oil and gas obtained in conjunction with
hexahedron element are shown in Fig. 8. The results obtained with
GPAS in conjunction with Cartesian are also shown. From Fig. 8, we
can observe the volumetric rates of the hexahedron mesh are close
to the ones obtained with the Cartesian meshes, specially the more
refined one. The spikes present in the curves are due to the phase
change along the reservoir associated with the phase composition
and pressure changes.

Fig. 9 presents the results, in terms of oil and gas volumetric rates
at standard condition, for the last case study in conjunction with the
two meshes shown in Fig. 4. Although the two grid configurations
are different, the results in terms of oil and gas rates for both grids
are in good agreement. The gas saturation field, during two simula-
tion times, is shown in Fig. 10, for the two grid configurations. From
this figure, it is possible to observe a good agreement of the
saturation field for both grid configurations investigated.
6. Conclusions

An element-based finite volume approach for 3D compositional
reservoir simulation using unstructured grids based on tetrahedron,



Fig. 5. Results for Case 1: (a) oil production rate vs. time and (b) gas production rate vs. time.

0

20

40

60

80

100

120

140

Time (Days)

Tetrahedron - 30x30x12
Hexahedron - 18x18x12
Prism - 28x28x14
Pyramid - 28x28x16

0

10000

20000

30000

40000

50000

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Tetrahedron - 30x30x12
Hexahedron - 18x18x12
Prism - 28x28x14
Pyramid - 28x28x16

Time (Days)

O
il 

pr
od

uc
tio

n 
ra

te
 (m

3/
d)

G
as

 p
ro

du
ct

io
n 

ra
te

 (m
3/

d)

60000160

Fig. 6. Results for Case 2: (a) oil production rate vs. time and (b) gas production rate vs. time.

Fig. 4. Grid configurations used for Case 4: (a) hexahedron mesh (3087 vertices; 2400 elements) and (b) hybrid mesh (3475 vertices; 3086 tetrahedrons; 1632 hexahedron;
1925 pyramids).
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prism, pyramid, and hexahedron elements was presented. The
results for the gas flooding simulation using the mentioned elements
were compared to the results of the original formulation of the GPAS
simulator in conjunction with Cartesian meshes. The results of GPAS
using fine Cartesian meshes were close to that obtained using the
EbFVM approach implemented and tested in the present work. Based
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Fig. 9. Results for Case 4: (a) oil production rate vs. time and (b) gas production rate vs. time.

Fig. 7. Gas saturation field—hexahedron grid: (a) 80 days and (b) 1001 days.
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on the results presented in this work, the EbFVM method was less
prone to the grid orientation effect, but according to the results
presented, it can be verified that the numerical error produced by
tetrahedron and pyramid elements is larger than by the hexahedron
and prism elements. When these results were compared to the ones
obtained using GPAS Cartesian grids, it was observed that the
simulation using Cartesian grids requires many more gridblocks than
the EbFVM approach. In conclusion, the EbFVM approach was tested
for several complex reservoir simulation problems and based on the
results presented the method was shown to be an excellent method
for solving such problems.
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