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a b s t r a c t 

In reservoir simulation, compositional modeling is one of the most commonly used ap- 

proaches for enhanced oil recovery processes. The methods used to solve the equations arising 

from the modeling of fluid flow in the reservoirs involve the degree of implicitness and the se- 

lection of the primary and secondary equations; primary and secondary variables have a great 

impact on the computational time. In this work, we implement and compare two fully implicit 

methods based on volume balance approach. The two methods share the same set of primary 

variables: pressure and total number of moles of each component. The total number of moles 

of each component is solved with use its material balance equation, whereas the pressure is 

solved with use of a volume balance equation. The difference between the two methods is in 

the nature of the volume balance equation. Whereas for one of the formulations the volume 

balance equation is the volume constraint and hence the only terms that appear in the Jaco- 

bian matrix are those from the volume in which the volume balance is evaluated, the second 

formulation considers an expanded form of the volume constraint. The main advantage of this 

expanded equation is that the Jacobian matrix involves information from the volume in which 

the balance is performed and from all neighboring volumes. The element-based finite-volume 

method in conjunction with unstructured grids for 2D and 3D reservoirs is used to discretize 

the material and volume balance equations. For two dimensions, quadrilateral and triangular 

elements are considered, whereas for three dimensions, hexahedral, prismatic, tetrahedral, 

and pyramidal elements are considered. The implementations were performed with the UT- 

COMP simulator developed at the University of Texas at Austin. We compare the performance 

of the two above-mentioned fully implicit formulations with the implicit pressure explicit 

composition (IMPEC) formulation of the UTCOMP simulator. The results of several case stud- 

ies are compared in terms of volumetric oil and gas rates and the total CPU time. The results 

show good agreement between the production rates and saturation fields for all formulations. 

Additionally, the performance of the fully implicit methods was superior to that of the IMPEC 

method as a larger number of grid blocks were used in the simulations. 
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1. Introduction 

Petroleum reservoir simulation is an important tool used to forecast the oil and gas production rates as well as the amount

of fluid that resides in the reservoir. In general, the modeling of the oil recovery processes consists of mass, volume, and energy

balances that can reproduce the fluid dynamics inside the reservoir with the desired degree of realism and accuracy. These

material balances form a nonlinear differential set of equations that cannot be solved without the use of numerical approaches

unless several simplifications are made. 

The reservoir simulation has evolved greatly since its introduction, not only in the physical modeling equations used but

also in many other features, such as numerical formulations, gridding, flux approximation schemes, phase behavior calculations,

geomechanics models, fractures and fault models, and linear solvers. Fussel and Fussel [1] were the first authors to develop a

simulator using an equation of state for both phase equilibrium and density calculations. They used the constraint equations

(equilibrium equations and volume constraint) to solve n c +1 primary variables and the flow equations to solve the secondary

variables. Coats [2] presented the first fully implicit (FI) formulation for the isothermal compositional model. He used a Gaussian

elimination to decouple the primary variables from the secondary variables. Nghiem et al. [3] developed an implicit pressure

explicit saturation (IMPES) formulation that differs from the previously mentioned formulations by solving pressure and com-

positions separately. Young and Stephenson [4] developed a new approach based on the formulation proposed in [1] which is

also an implicit pressure explicit composition (IMPEC) approach. The major difference between these two approaches resides in

the selection of the primary variables and in the ordering of the equations. Another FI model was proposed by Chien et al. [5] . In

this model, the primary equations are obtained from the material balance equations of each component. They proposed a set of

primary variables similar to that proposed by Coats [2] , except that gas mole fractions were replaced by the equilibrium ratios

( K values). Ács et al. [6] proposed a new IMPES formulation that shares the primary variables of Kazemi et al. [7] and Nghiem

et al. [3] . Although the pressure equation is based on a volume balance as in the other two models, it is obtained in a special

way that allows the formulation to perform just one flash calculation per time step. Watts [8] combined the one iteration per

time step idea of Ács et al. [6] with the sequential implicit pressure and saturations (IMPSAT) formulation of Spillette et al. [9] to

generate a new IMPSAT formulation. Quandalle and Savary [10] extended the formulation of Watts to solve an inconsistency of

this formulation. They included the solution of n c -2 new variables in the material balance equations. The new variables can be

solved in terms of oil or gas compositions. Collins et al. [11] presented an adaptive implicit approach for an isothermal compo-

sitional formulation. The equations for this formulation are the n c +1 material balances and the volume constraint. The primary

variables are the total number of moles per bulk volume of the n c components and water. Branco and Rodriguez [12] proposed a

new IMPSAT formulation based on the formulation of Coats [2] . Wang et al. [13] proposed a new FI formulation. In this formula-

tion the flow equations and the equilibrium constraints are all assembled into the Jacobian matrix. Haukas et al. [14] improved

the approach of Quandalle and Savary [10] by changing the primary variables. Haukas et al. [15] gave a better interpretation of

these parameters. They called the new parameters “isochoric parameters.” A stability criterion was also given in [15] . Santos et

al. [ 16 , 17 ] implemented and compared the following approaches: the FI formulations of Coats [2] , Collins et al. [11] , and Wang

et al. [13] , the IMPSAT formulation of Branco [12] , and an IMPES formulation. Fernandes et al. [18] compared the formulation of

Ács et al. [6] with the formulation of Watts [8] . 

Most of the formulations presented previously used Cartesian grids in conjunction with the finite-volume method (FVM).

However, all the formulations can be implemented for any spatial discretization since their derivations are independent of

the grid discretization. However, as the Cartesian grid is the simplest way to discretize the domain, the complexity of the

implementation of a given formulation for other types of grids will increase sharply. The unstructured grids are more gen-

eral in terms of modeling important features of the reservoirs. The unstructured grids are usually related to the concept

of elements. However, for many years this concept was used only in the finite-element method (FEM) until the pioneer

work of Baliga and Patankar [19] that combined the conservative approach of the FVM with the idea of elements and shape

functions of the FEM, creating a new method that they named the “control volume finite-element method” (CVFEM). Later,

Maliska [20] suggested that the CVFEM denomination is unsuitable, since the CVFEM gives the wrong idea that we have a

finite-element approach that is based on material balance. Maliska [20] suggested that “element-based finite-volume method”

(EbFVM) is a more appropriate denomination since we still have an approach that locally respects the material balance of the

physical property being transported. For this reason, in the rest of this article, we will always refer to this approach as the

EbFVM. 

The first use of unstructured grids in reservoir simulation was by Heinemann and Brand [21] and Heinemann et al. [22] in

conjunction with perpendicular bisector (PEBI) grids. These grids are also called “Voronoi grids.” Like the Cartesian grids, the

PEBI are cell-center grids and therefore are used for isotropic media, and it is possible to evaluate fluxes with use of only two

grid points. The first use of the EbFVM in reservoir simulation was by Rozon [23] ; he used it to solve a single-phase flow using

quadrilateral elements. Rozon [23] also presented a comparison of the truncation errors between the EbFVM and the Cartesian

grids, showing that for regular grids composed of quadrilateral elements the EbFVM is more accurate. Fung et al. [24] used PEBI

grids based on triangular elements in a thermal general-purpose simulator. Cordazzo [25] solved the two-phase flow (water and

oil) in conjunction with the EbFVM using triangular and quadrilateral elements. Marcondes and Sepehrnoori [26] used the EbFVM

for the FI isothermal compositional simulation in conjunction with triangular and quadrilateral elements. Recently, Marcondes

et al. [27] and Santos et al. [28] implemented the EbFVM for 3D isothermal compositional reservoir simulation using four element

types: hexahedron, tetrahedron, pyramid, and prism. Also, using the EbFVM approach, Fernandes et al. [29] has investigated the

use of several interpolation functions in conjunction with 2D compositional reservoir simulation. More recently, Fernandes et al.
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[30] adapted the total variation diminishing scheme for the cell-center approach of Darwish and Moukaled [31] to the 3D EbFVM

in conjunction with hexahedral elements using the MINMOD [32] and Koren [33] flux limiters. 

In this work, the FI formulation of Collins et al. [11] and an FI version of the formulation of Ács et al. [6] are implemented

in the UTCOMP simulator. The UTCOMP simulator is a multicomponent/multiphase simulator that takes into account up to four

phases that was developed at the University of Texas at Austin. The two FI approaches implemented in this work are compared

with the original IMPEC formulation of Ács et al. [6] originally implemented in the UTCOMP simulator with use of Cartesian

grids [34] and the EbFVM [35,36,37] . These implementations can be further improved by parallel processing using, for instance,

a message passing interface as was done by Doroh [38] , who extended the UTCOMP simulator’s IMPEC serial formulation into

a parallel framework, and by Wang et al. [39] , who implemented and tested a framework to run the GPAS simulator in parallel

was developed, an FI reservoir simulator. Effort s are currently being devoted to the parallelization of the UTCOMP simulator in

conjunction with unstructured grids. 

2. Physical model 

The flow equations of all formulations implemented here consist of material balance equations and one volume balance

equation. Additionally, all formulations considered here share the same set of primary variables: oil pressure and total number

of moles of each component. 

The volume balance equation used to compute pressure for the formulation of Ács et al. [6] is as follows: (
φ0 C f −

1 

V b 

∂ V T 

∂P 

)
∂P 

∂t 
= V̄ T w 

�
 ∇ ·

(
ξw 

k rw 

μw 

¯̄K · � ∇ �w 

)
+ 

n c ∑ 

k =1 

V̄ T k 

n p ∑ 

j=2 

�
 ∇ ·

(
x k j ξ j 

k r j 

μ j 

¯̄K · � ∇ � j 

)
−

n c +1 ∑ 

k =1 

V̄ T k 

˙ q k 
V b 

, (1)

where P is the oil pressure, V T is the total fluid volume, C f is the formation compressibility, and k rj , ξ j , , and μj are the relative

permeability, the molar density, and the viscosity of the j th phase, respectively. ¯̄K is the absolute permeability tensor, .. is the

partial derivative of the total fluid volume with respect to the total number of moles of component k, V b is the bulk volume,

x kj is the molar fraction of component k in phase j, φ is the porosity, ˙ q k is the source/sink term of component k due to the

producing/injecting well, and �j is the hydraulic potential of phase j defined as follows: 

� j = P + P c jo − ρ j gD j = 1 , . . . , n p , (2)

where P cjo is the capillary pressure of phase j related to the oil phase, g is the gravitational acceleration, D is the depth, which is

positive in a downward direction, and ρ j is the mass density of phase j . 

The volume balance equation used to compute pressure for the formulation of Collins et al. [11] is as follows: 

φ = 

1 

V b 

n p ∑ 

j=1 

n j 

ξ j 

, (3)

where n j is the number of moles of phase j . 

The formulations of Ács et al. [6] and Collins et al. [11] share the same material balance equations for determination of the

total number of moles of each component. The hydrocarbon and water mole balance equations are as follows: 

1 

V b 

∂ N k 

∂t 
= 

n p ∑ 

j=2 

�
 ∇ ·

(
x k j ξ j 

k r j 

μ j 

¯̄K · � ∇ � j 

)
− ˙ q k 

V b 

, k = 1 , . . . , n c (4)

and 

1 

V b 

∂ N w 

∂t 
= 

�
 ∇ ·

(
ξw 

k rw 

μw 

¯̄K · � ∇ �w 

)
− ˙ q w 

V b 

, (5)

respectively, where N k is the total number of moles of component k . 

The Peng–Robinson equation of state [40] is used to compute density and fugacities. 

The phase appearance and disappearance is treated by means of a stability test calculation. Two phase stability test algorithms

are implemented in the UTCOMP simulator: the stationary point location method [41] and the Gibbs free energy minimization

algorithm, which is similar to the method of Trangenstein [42] and was modified by Perschke [43] to deal with the equilibrium of

three hydrocarbon phases. In general, as mentioned by Perschke [43] , the stationary method is faster than the Gibbs free energy

minimization method. 

After the phase stability calculation to evaluate the mole fractions and amount of each hydrocarbon phase is performed.

The flash calculation used in the UTCOMP simulator is a combination of the accelerated successive substitution method [44]

and the modified version of the Gibbs free energy minimization method [43] . At the beginning of the flash procedure, we use

the accelerated successive substitution method to provide a reasonable initial estimation, and then we switch to the Gibbs free

energy minimization method to accelerate the convergence. The switching criterion to change from one method to another is

given by [34] following: 

max 
∣∣ln f i j − ln f ir 

∣∣ ≤ ε swi , i = 1 , . . . , n c , j = 2 , . . . , n p ( j � = r), (6)

where r is a reference phase, generally assumed to be the oil phase. The switching criterion ( ε swi ) suggested in [34] is equal to

0.01. 
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Fig. 1. Two-dimensional elements in the physical and computational planes: (a) triangular element; (b) quadrilateral element. 

 

 

 

3. Approximate equations 

In the EbFVM the domain is divided into elements. The elements used to discretize 2D reservoirs are triangular and quadri-

lateral, and hexahedral, tetrahedra, prismatic, and pyramidal elements are used to discretize 3D reservoirs, as shown in Figs. 1

and 2 , respectively. 

The physical properties are easily approximated inside each element with use of shape functions. The shape functions for

each element are not shown in this work but can be found in the literature [20,27,45] . 

The gradient inside any element is evaluated with use of the shape functions as follows: 

∂φ

∂x 
= 

n v ∑ 

i =1 

∂ N i 

∂x 
�i ;

∂φ

∂y 
= 

n v ∑ 

i =1 

∂ N i 

∂y 
�i ;

∂φ

∂z 
= 

n v ∑ 

i =1 

∂ N i 

∂z 
�i , (7) 

where N is the shape function and � is an arbitrary property evaluated at the vertex of the element. 

The derivatives of the shape functions with respect to x, y , and z are obtained for 3D elements as follows: 

∂ N i 

∂x 
= 

1 

det (J t )

[(
∂y 

∂η

∂z 

∂γ
− ∂y 

∂γ

∂z 

∂η

)
∂ N i 

∂ξ
−

(
∂y 

∂ξ

∂z 

∂γ
− ∂y 

∂γ

∂z 

∂ξ

)
∂ N i 

∂η
+ 

(
∂y 

∂ξ

∂z 

∂η
− ∂y 

∂η

∂z 

∂ξ

)
∂ N i 

∂γ

]
;

∂ N i 

∂y 
= 

1 

det (J t )

[(
∂x 

∂η

∂z 

∂γ
− ∂x 

∂γ

∂z 

∂η

)
∂ N i 

∂ξ
+ 

(
∂x 

∂ξ

∂z 

∂γ
− ∂x 

∂γ

∂z 

∂ξ

)
∂ N i 

∂η
−

(
∂x 

∂ξ

∂z 

∂η
− ∂x 

∂η

∂z 

∂ξ

)
∂ N i 

∂γ

]
;

∂ N i 

∂z 
= 

1 

det (J t )

[(
∂x 

∂η

∂y 

∂γ
− ∂x 

∂γ

∂y 

∂η

)
∂ N i 

∂ξ
−

(
∂x 

∂ξ

∂z 

∂γ
− ∂x 

∂γ

∂y 

∂ξ

)
∂ N i 

∂η
+ 

(
∂x 

∂ξ

∂y 

∂η
− ∂x 

∂η

∂y 

∂ξ

)
∂ N i 

∂γ

]
, (8) 

where, 

det (J t ) = 

∂x 

∂ξ

(
∂y 

∂η

∂z 

∂γ
− ∂y 

∂γ

∂z 

∂η

)
− ∂x 

∂η

(
∂y 

∂ξ

∂z 

∂γ
− ∂y 

∂γ

∂z 

∂ξ

)
+ 

∂x 

∂γ

(
∂y 

∂ξ

∂z 

∂η
− ∂y 

∂η

∂z 

∂ξ

)
. (9) 

For 2D elements, a similar expression is obtained: 

∂ N i 

∂x 
= 

1 

det (J t )

(
∂y 

∂η

∂ N i 

∂ξ
− ∂y 

∂ξ

∂ N i 

∂η

)
; ∂ N i 

∂y 
= 

1 

det (J t )

(
∂x 

∂ξ

∂ N i 

∂η
− ∂x 

∂η

∂ N i 

∂ξ

)
, (10) 
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Fig. 2. Three-dimensional elements: (a) hexahedral element; (b) tetrahedral element; (c) prismatic element; (d) pyramidal element. 

 

 

 

 

 

 

 

 

 

 

where, 

det (J t ) = 

(
∂x 

∂ξ

∂y 

∂η
− ∂x 

∂η

∂y 

∂ξ

)
. (11)

The interface areas for 3D elements are computed as follows: 

d � A = 

(
∂y 

∂m 

∂z 

∂n 

− ∂y 

∂n 

∂z 

∂m 

)
d md n ̂

 i −
(

∂x 

∂n 

∂z 

∂m 

− ∂x 

∂m 

∂z 

∂n 

)
d md n ̂

 j + 

(
∂x 

∂m 

∂y 

∂n 

− ∂x 

∂n 

∂y 

∂m 

)
d md n ̂

 k , (12)

where m and n are any of the coordinates ξ , η, or γ . For 2D elements, the area of each interface, reading counterclockwise, is

given by following: 

d � A = h 

(
d y ̂ i − d x ̂  j 

)
, (13)

where h is the thickness of the reservoir. Further details on the above expressions can be found in [20,26] . 

Each element is divided into subelements according to the number of vertices. Next, the conservative equations are integrated

for each of these subelements. These subelements are called “sub–control volumes” (SCVs). After the conservative equations have

been integrated for each of these SCVs, we assemble the control volume equations by obtaining the contributions of all SCVs that

share the same vertex of the grid. This feature is called “dual mesh” and gives rise to a cell-vertex approach. The great advantage of

this approach is that all calculations are based on only the elements of the grid. The dual mesh is illustrated in Fig. 3 . As presented

in Fig. 3 , the blue labels represent the elements and the black labels represent the control volumes. The control volume associated

with vertex 5 of the grid shown in Fig. 3 is given by the green area. 
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Fig. 3. A dual mesh for the EbFVM approach. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

As previously mentioned, for the EbFVM each term of the conservation equation is integrated for each SCV. Then, the con-

tribution of each SCV is summed to obtain the closure of each control volume associated with each vertex of the grid. These

calculations are computed at an element level. For the mole balance equations, for instance, the integration in space and time,

for the SCVs of each element of the grid, can be written as follows: 

A 

N k 
c c i 

− F 
N k 

ad v i 
− S 

N k 
i 

= 0 , k = 1 , . . . , n c + 1 ; i = 1 , . . . , n v , (14)

where n v is the number of vertices of the element, A 

N k 
c c i 

denotes the accumulation term of component k in SCV i , F 
N k 

ad v i 
denotes the

advective net flux of component k across the SCV i interfaces, and S 
N k 
i 

denotes the source/sink (wells) term of component k in

SCV i . These terms for the hydrocarbon components and water are given below: 

A 

N k 
c c i 

= 

(
N 

n +1 
k,i 

− N 

n 
k,i 

V b,i 

)
V scv i , k = 1 , . . . , n c + 1 ; i = 1 , . . . , n v , (15)

F 
N k 

ad v i 
= 
t 

n p ∑ 

j=2 

n ip ∑ 

l=1 

[ ( 

x n +1 
k j 

ξ n +1 
j 

k n +1 
r j 

μn +1 
j 

n v ∑ 

m =1 

ϒiml 

(
P n +1 

m 

+ P n +1 
c jr,m 

− ρn +1 
j,elem 

g D m 

)) ] 

l 

, 

k = 1 , . . . , n c ; i = 1 , . . . , n v . (16) 

F 
N n c +1 

ad v i 
= 
t 

n ip ∑ 

l=1 

[ ( 

ξ n +1 
j 

k n +1 
r j 

μn +1 
j 

n v ∑ 

m =1 

ϒiml 

(
P n +1 

m 

+ P n +1 
c jr,m 

− ρn +1 
j,elem 

g D m 

)) ] 

l 

, 

i = 1 , . . . , n v . (17) 

and 

S 
N k 
i 

= −
t 
V SC V i 

V b,i 

˙ q n +1 
k,i 

, k = 1 , . . . , n c + 1 ; i = 1 , . . . , n v , (18)

where n c +1 denotes the water component, V SC V i 
is the volume of SCV i , and n ip is the number of integration points of SCV i .

For 2D elements (triangles and quadrilaterals), the number of integration points is always two. For 3D elements, the number of

integration points of a given SCV is usually three, except for the SCV associated with the apex of the pyramid, which has four

integration points; see Fig. 2 d. The ϒ term in Eqs. (16) and ( 17 ) involves only geometric and absolute permeability tensors and is

defined by following: 

ϒiml = 

¯̄K l · � ∇ N m,l · 
�
 A l , (19) 

where ϒiml is the ϒ term associated with SCV i and is evaluated at integration point l . 

For the formulation of Ács et al. [6] , the accumulation, advection, and well terms for the pressure equation are written as

follows: 

A 

P 
c c i 

= 

[
V scv i φ

0 
elem 

C f −
V scv i 
V b,i 

∂V 

n 
T,i 

∂P 

](
P n +1 

i 
− P n i 

)
− V scv i 

V b,i 

(
V 

n 
T,i − V 

n 
p,i 

)
, i = 1 , . . . , n v , (20) 
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F P ad v i = 
t ̄V 

n 
T w,i 

n ip ∑ 

l=1 

[ ( 

ξ n +1 
w 

k n +1 
rw 

μn +1 
w 

n v ∑ 

m =1 

ϒiml 

(
P n +1 

m 

+ P n +1 
cwr,m 

− ρn +1 
w,elem 

g D m 

)) ] 

l 

+ 
t 

n c ∑ 

k =1 

V̄ 

n 
T k,i 

n p ∑ 

j=2 

n ip ∑ 

l=1 

[ ( 

x n +1 
k j 

ξ n +1 
j 

k n +1 
r j 

μn +1 
j 

n v ∑ 

m =1 

ϒiml 

(
P n +1 

m 

+ P n +1 
c jr,m 

− ρn +1 
j,elem 

g D m 

)) ] 

l 

, 

i = 1 , . . . , n v , (21)

S P i = 
t 

n c +1 ∑ 

k =1 

V̄ 

n 
T k,i 

V SC V i 

V b,i 

˙ q n +1 
k,i 

, i = 1 , . . . , n v , (22)

respectively. 

For the formulation of Collins et al. [11] , the terms for the pressure equation are given by 

A 

P 
c c i 

= V scv i φ
n +1 
i 

− V scv i 
V b,i 

n p ∑ 

j=1 

n 

n +1 
j,i 

ξ n +1 
j,i 

, i = 1 , . . . , n v , (23)

F P ad v i = 0 , i = 1 , . . . , n v , (24)

S P i = 0 , i = 1 , . . . , n v . (25)

From Eqs. (23) –( 25 ), we can see that there is no coupling between the control volume and its neighbors, as we have for the

pressure equation in the formulation of Ács et al. [6] . For simplicity, we will refer to the FI formulation of Collins et al. [11] as FI-0,

and we will refer to the FI formulation proposed in this work derived from the formulation of Ács et al. [6] as FI-1. 

The discretized equations for both FI-0 and FI-1 are strongly nonlinear in the primary variables. Hence, an exact Newton

method is used to solve the set of nonlinear equations for both FI approaches. The linear system of equations that arises for each

Newton linearization is solved with use of the default options in the PETSC library [46] , which uses GMRES [47] preconditioned

on the left with an ILU(0) as the default solver. 

4. Results and discussion 

Three case studies for testing and verification of the FI formulations implemented in this work in conjunction with Cartesian

and unstructured grids are presented. The results will be compared in terms of oil and gas production rates, time-step profiles,

phase saturation fields, and overall CPU time. We validate all the new formulations with the original IMPEC formulation of the

UTCOMP simulator, since it was severely tested and compared with several commercial simulators [48] . The field profiles are

visualized with the ESSS Kraken 

® postprocessor. 

In contrast to the IMPEC formulation, FI formulations can theoretically use large time steps. However, the use of large time

steps can lead to loss of accuracy. Therefore, a time refinement needs to be performed to ensure that a time-independent solution

is obtained. For this reason, all results presented in this section were obtained after a time refinement had been performed.

Furthermore, all runs used a time-step control based on variations in pressure, saturations, and rate of change in the number

of moles of each component as described in [34] . The time-step size is also allowed to vary within a range of minimum and

maximum time steps. For most of the simulations, both FI formulations used the maximum time step for most periods of the

simulations. 

All fluid properties used in the equation of state and the relative permeability parameters of the modified Stone II model [49]

are shown in the tables in Appendix A . Capillary pressure is not considered in any of the case studies, but it was implemented

and tested for both FI formulations. 

Case study 1 consists of production, in a quarter-of-a five-spot configuration, of a heavy oil characterized by three compo-

nents: CO 2 , C 1 , and n C 16 . The reservoir initially contains only water and oil phases. A fluid rich in CO 2 is injected, which creates

a new phase in the reservoir. Only immobile water exists in the reservoir during the whole simulation. Table 1 presents the

reservoir data used for this case. The equation of state parameters used for this case study is shown in Tables A1 and A3 , and the

relative permeability parameters are presented in Table A5 . 

Two-dimensional and three-dimensional reservoirs with unstructured grids are considered for this case study. When one is

using unstructured grids, it is important to see if the grid distortion has any impact on the performance of the formulations.

Therefore, for this case study, the formulations are first run for regular grids of quadrilateral elements, and are then run for

nonuniform grids of quadrilateral and triangular elements. Fig. 4 presents the finest grids used for each of these element types. 

The oil and gas production rates obtained with the FI approaches and the IMPEC formulation for the grid shown in Fig. 4 a are

presented in Fig. 5 . From this figure, one can see there is good agreement between the production rate curves. The production

rates for the other grids are not displayed because they are very similar to the ones presented in Fig. 5. 

The gas saturation field at 500 days obtained with all the grids presented in Fig. 4 is presented in Fig. 6 . From this figure, one

can see there is good agreement between the saturation fields obtained with all formulations. 
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Table 1 

Reservoir data for cases 1 and 2. 

Property Value 

Length, width, and thickness 243.83 m, 243.83 m, and 60.96 m 

Porosity 0.30 

Initial water saturation 0.25 

Initial pressure 20.65 MPa 

Permeability in x, y , and z directions 1.97 ×10 −13 m 

2 , 1.97 ×10 −13 m 

2 , and 1.97 ×10 −14 m 

2 

Formation temperature 299.82 K 

Gas injection rate 5.66 ×10 5 m 

3 /day 

Producer’s bottom hole pressure 20.65 MPa 

Reservoir’s initial composition (CO 2 , C 1 , and n C 16 ) 0.01, 0.19, and 0.80 

Injection fluid composition (CO 2 , C 1 , and n C 16 ) 0.95, 0.05 and 0.00 

Fig. 4. Finest grids—case 1: (a) 60 × 60 grid; (b) quadrilateral unstructured grid with 3387 vertices (3282 elements); (c) triangular unstructured grid with 3329 

vertices (64 4 4 elements). 

 

 

 

 

 

 

 

 

 

 

The CPU times for all formulations, the total number of Newton iterations, and the total number of time steps for the FI

approaches using regular quadrilateral grids are presented in Table 2 . The same information is presented for the unstructured

quadrilateral and triangular grids in Tables 3 and 4 , respectively. As one can observe, for coarse grids, the performances of the

FI approaches are worse than the performance for the IMPEC formulation owing to the small Courant-Friedrichs-Lewy number.

When the grids are refined, the FI approaches outperform the IMPEC approach in terms of CPU time. Additionally, in general,

FI-1 was faster than FI-0 for this case. From the tables, it can also be seen that the FI-1 approach requires slightly more Newton

iterations than the FI-0 approach, but requires less CPU time because it seems that the linear system of the FI-1 approach is better

conditioned owing to the tighter coupling between the equations. 

In case 2, the same fluid and reservoir configuration used in case 1 is used. The main difference here is that now the reservoir

domain is discretized with use of 3D elements and gravity is now considered. In this analysis, four sets of 3D unstructured

grids composed only of hexahedrons, tetrahedrons, prisms, and pyramids, respectively, were used. The finest grid of each set is

presented in Fig. 7. 
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Fig. 5. Production rates—case 1 using 2D regular quadrilateral grids: (a) IMPEC versus FI-0, oil; (b) IMPEC versus FI-0, gas; (c) IMPEC versus FI-1, oil; (d) IMPEC 

versus FI-1, gas. 

Table 2 

CPU times, number of Newton iterations, and number of time steps. Two- 

dimensional regular quadrilateral grids—case 1. 

Result 20 × 20 40 × 40 60 × 60 

IMPEC CPU time (s) 15 .2 272 .6 1540 .7 

FI-0 CPU time (s) 18 .6 179 .3 797 .4 

FI-1 CPU time (s) 18 .7 184 .6 732 .5 

Number of Newton iterations for FI-0 1124 1286 1429 

Number of Newton iterations for FI-1 1133 1297 1434 

Number of time steps for FI-0 540 523 525 

Number of time steps for FI-1 540 523 525 
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Fig. 6. Gas saturation field at 500 days—case 1: (a) quadrilateral, 60 × 60, IMPEC; (b) quadrilateral, 60 × 60, FI-0; (c) quadrilateral, 60 × 60, FI-1; (d) quadrilateral, 

3387 vertices, IMPEC; (e) quadrilateral, 3387 vertices, FI-0; (f) quadrilateral, 3387 vertices, FI-1; (g) triangular, 3329 vertices, IMPEC; (h) triangular, 3329 vertices, 

FI-0; (i) triangular, 3329 vertices, FI-1. 
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Table 3 

CPU times, number of Newton iterations, and number of time steps. Two-dimensional un- 

structured quadrilateral grids—case 1. 

Result 1199 vertices 2661 vertices 3387 vertices 

IMPEC CPU time (s) 113 .8 699 .2 954 .6 

FI-0 CPU time (s) 110 470 .3 463 .3 

FI-1 CPU time (s) 108 .6 402 .5 420 .1 

Number of Newton iterations for FI-0 1271 1421 1448 

Number of Newton iterations for FI-1 1272 1425 1449 

Number of time steps for FI-0 512 522 514 

Number of time steps for FI-1 512 522 514 

Table 4 

CPU times, number of Newton iterations, and number of time steps. Two-dimensional unstruc- 

tured triangular grids—case 1. 

Result 1220 vertices 2330 vertices 3329 vertices 

IMPEC CPU time (s) 109 .6 649 .2 1354 .4 

FI-0 CPU time (s) 89 .1 301 .2 582 .8 

FI-1 CPU time (s) 85 .9 269 .6 566 

Number of Newton iterations for FI-0 1277 1390 1446 

Number of Newton iterations for FI-1 1281 1397 1446 

Number of time steps for FI-0 520 525 525 

Number of time steps for FI-1 520 525 525 

Table 5 

CPU times, number of Newton iterations, and number of time steps. Three-dimensional hexa- 

hedral grids—case 2. 

Result 1024 vertices 6480 vertices 11,767 vertices 

IMPEC CPU time (s) 36 .1 1325 .7 3590 .8 

FI-0 CPU time (s) 170 .4 1525 .5 3191 .2 

FI-1 CPU time (s) 179 .9 1335 .7 3188 .6 

Number of Newton iterations for FI-0 1086 1535 1565 

Number of Newton iterations for FI-1 1125 1567 1608 

Number of time steps for FI-0 522 519 520 

Number of time steps for FI-1 522 519 520 

Table 6 

CPU times, number of Newton iterations, and number of time steps. Three-dimensional tetrahe- 

dral grids—case 2. 

Result 1024 vertices 4056 vertices 16,810 vertices 

IMPEC CPU time (s) 57 .4 769 .6 6395 .2 

FI-0 CPU time (s) 115 .7 532 .5 2915 .7 

FI-1 CPU time (s) 114 .7 504 .3 3025 .1 

Number of Newton iterations for FI-0 658 651 798 

Number of Newton iterations for FI-1 684 709 838 

Number of time steps for FI-0 272 207 231 

Number of time steps for FI-1 272 208 231 

 

 

 

 

 

 

 

 

 

 

A comparison of the production rates between the IMPEC and FI formulations is presented in Fig. 8 for the finest (hexahedral)

grid. Since the results for the other elements are exactly the same, they are not shown. From Fig. 8 , one can see there is a good

agreement between the production rates obtained with the two FI approaches and the original IMPEC formulation of the UTCOMP

simulator. We also present the saturation field at 700 days for the hexahedral grid in Fig. 9 . Once again, from this figure, we can

observe good agreement between the gas saturation fronts. 

The CPU times, number of Newton iterations, and number of time steps for each formulation for the hexahedral, tetrahedral,

prismatic, and pyramidal grids are presented in Tables 5–8 , respectively. Again from these tables, one can see that the perfor-

mance of the FI approaches improves as the grids are refined. The performances of the FI-0 and FI-1 approaches are very similar

to each other. Once again, from Tables 5–8 , one can see that the FI-1 approach required more Newton’s iterations than the FI-0

approach, whereas both formulations used the same number of time steps, as expected. 

Case study 3 refers to a gas flooding in a 2D irregular reservoir characterized by the following hydrocarbon components:

C , C , C , C , C , and C . The reservoir initially contains oil, gas, and immobile water. The reservoir data used for this case
1 3 6 10 15 20 
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Fig. 7. Finest grids—case 2: (a) hexahedral, 11,767 vertices; (b) tetrahedral, 16,810 vertices; (c) prismatic, 13,448 vertices; (d) pyramidal, 24,648 vertices. 

Table 7 

CPU times, number of Newton iterations, and number of time steps. Three-dimensional pris- 

matic grids—case 2. 

Result 1024 vertices 4056 vertices 13,448 vertices 

IMPEC CPU time (s) 32 .4 437 .5 3762 .6 

FI-0 CPU time (s) 65 .1 359 .7 2071 .3 

FI-1 CPU time (s) 65 .7 391 .4 2395 .0 

Number of Newton iterations for FI-0 544 584 684 

Number of Newton iterations for FI-1 565 609 710 

Number of time steps for FI-0 191 188 191 

Number of time steps for FI-1 191 188 191 

 

 

 

 

 

 

 

 

are shown in Table 9 . The parameters of the equation of state for this case are shown in Tables A2 and A4, and the relative

permeability parameters are presented in Table A6. 

The grid used for this case is shown in Fig. 10 . Two injector and six producer wells are considered for this case. All injectors

are operated under constant gas injection and the producers are operated under constant bottom hole pressure. To reduce the

grid orientation effect, a radial mesh is used around all the wells. 

Fig. 11 presents a comparison of the production rates obtained with the two FI approaches and the IMPEC formulation. From

this figures, one can observe good agreement of the production rates obtained with the three formulations. 

The gas saturation fields at 60 0 0 days of simulation for the IMPEC formulation, FI-0, and FI-1 are presented in Fig. 12 . From

this figure, one can observe a good agreement between the saturation fronts obtained with the three formulations. 

The CPU times for all formulations are presented in Table 10 . From this table, we can verify that FI-0 was faster than FI-1. One

possible reason for such behavior is the increase in the number of connections of control volumes that are located between the

triangular and quadrilateral elements. Once again, FI-1 used more Newton iterations than FI-0. This time, the difference in the

number of Newton iterations resulted in a greater CPU time for the FI-1 approach. 
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Fig. 8. Production rates—case 2 using a hexahedron grid: (a) IMPEC versus FI-0, oil; (b) IMPEC versus FI-0, gas; (c) IMPEC versus FI-1, oil; (d) IMPEC versus FI-1, 

gas. 

Table 8 

CPU times, number of Newton iterations, and number of time steps. Three-dimensional pyrami- 

dal grids—case 2. 

Result 1699 vertices 7181 vertices 24,648 vertices 

IMPEC CPU time (s) 98 .5 1796 .2 20546 .0 

FI-0 CPU time (s) 149 .0 1169 .9 5839 .4 

FI-1 CPU time (s) 153 .9 1224 .4 6137 .3 

Number of Newton iterations for FI-0 588 662 802 

Number of Newton iterations for FI-1 600 715 891 

Number of time steps for FI-0 190 191 192 

Number of time steps for FI-1 190 191 192 
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Fig. 9. Gas saturation field at 700 days—case 2 using a 3D hexahedral grid with 11767 vertices: (a) IMPEC; (b) FI-0; (c) FI-1. 

Table 9 

Reservoir data for case 3. 

Property Value 

Superficial reservoir area and thickness 1134826.24 m 

2 , 30.48 m 

Porosity at reference pressure 0.35 

Initial water saturation 0.17 

Initial pressure 10.34 MPa 

Permeability in x, y , and z directions 1.97 ×10 −14 m 

2 , 1.97 ×10 −14 m 

2 , and 1.97 ×10 −14 m 

2 

Formation temperature 344.26 K 

Gas injection rate 2.83 ×10 5 m 

3 /day 

Producer’s bottom hole pressure 8.96 MPa 

Reservoir’s initial composition (C 1 , C 3 , C 6 , C 10 , C 15 , and C 20 ) 0.05, 0.03, 0.07, 0.20, 0.15, and 0.05 

Injection fluid composition (C 1 , C 3 , C 6 , C 10 , C 15 , and C 20 ) 0.77, 0.20, 0.01, 0.01, 0.005, and 0.005 

Fig. 10. Hybrid grid—case 3: 20,298 vertices; 3254 triangular and 18,195 quadrilateral elements. 
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Fig. 11. Production rates—case 3: (a) IMPEC versus FI-0, oil; (b) IMPEC versus FI-0, gas; (c) IMPEC versus FI-1, oil; (d) IMPEC versus FI-1, gas. 

Table 10 

CPU times, number of Newton iterations, and number 

of time steps—case 3. 

Result Value 

IMPEC CPU time (s) 6450 .64 

FI-0 CPU time (s) 4234 .84 

FI-1 CPU time (s) 4566 .00 

Number of Newton iterations for FI-0 1702 

Number of Newton iterations for FI-1 1773 

Number of time steps for FI-0 728 

Number of time steps for FI-1 728 
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Fig. 12. Gas saturation field at 60 0 0 days of simulation—case 3: (a) IMPEC; (b) FI-0; (c) FI-1. 

 

 

 

 

 

 

 

 

 

5. Conclusions 

In this work, two FI formulations were implemented in the UTCOMP simulator in conjunction with unstructured grids with

use of the EbFVM. The new formulations were validated and compared with the IMPEC formulation originally implemented in

the UTCOMP simulator. 

The FI formulations have better performance when refined grids are used. However, it could not be determined which FI

formulation is faster, since for some cases FI-0 was faster and for others FI-1 was faster, although we confirmed that FI-1 always

required a slightly higher total number of Newton iterations. However, FI-1 has a better configuration for the UTCOMP simulator,

since it shares the same set of equations as the original IMPEC formulation, which makes it easier to combine the IMPEC and FI

approaches. 
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Tables A1–A6 
Table A1 

Molar mass, acentric factor, and critical properties—cases 1 and 2. 

Component P c (MPa) T c (K) V c (m 

3 /mol) Molar Mass (g/mol) Acentric factor 

CO 2 7 .38 304 .21 9.39 × 10 −5 44 .01 0 .225 

C 1 4 .60 190 .60 9.99 × 10 −5 16 .04 0 .0225 

C 10 1 .74 734 .68 8.17 × 10 −4 222 .00 0 .6837 

Table A2 

Molar mass, acentric factor, and critical properties—case 3. 

Component P c (MPa) T c (K) V c (m 

3 /mol) Molar Mass (g/mol) Acentric factor 

C 1 4 .60 190 .60 9.99 × 10 −5 16 .04 0 .013 

C 3 4 .25 369 .83 2.00 × 10 −4 44 .1 0 .0152 

C 6 3 .01 507 .44 3.70 × 10 −4 86 .2 0 .301 

C 10 2 .10 617 .67 6.29 × 10 −4 142 .3 0 .488 

C 15 1 .38 705 .56 1.04 × 10 −3 206 .0 0 .650 

C 20 1 .12 766 .67 1.34 × 10 −3 282 .0 0 .850 
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Table A3 

Binary iteration coefficients—cases 1 and 2. 

Component CO 2 C 1 C 10 

CO 2 0.12 0.12 

C 1 0.12 0 

C 10 0.12 0 

Table A4 

Binary iteration coefficients—case 3. 

Component C 1 C 3 C 6 C 10 C 15 C 20 

C 1 0 0 0 0 .05 0 .05 

C 3 0 0 0 0 .005 0 .005 

C 6 0 0 0 0 0 

C 10 0 0 0 0 0 

C 15 0 .05 0 .005 0 0 0 

C 20 0 .05 0 .005 0 0 0 

Table A5 

Relative permeability parameters—cases 1 and 2. 

Property Value 

Residual water saturation 0.3 

Residual oil saturation to waterflood 0.1 

Residual oil Saturation to gasflood 0.1 

Residual gas saturation 0 

Water relative permeability end point 0.4 

Oil relative permeability end point 0.9 

Gas relative permeability end point 0.9 

Water exponent 3 

Water exponent to waterflood 2 

Oil exponent to gasflood 2 

Gas exponent 2 

Table A6 

Relative permeability parameters—case 3. 

Property Value 

Residual water saturation 0.25 

Residual oil saturation to waterflood 0 

Residual oil saturation to gasflood 0 

Residual gas saturation 0 

Water relative permeability end point 1 

Oil relative permeability end point 1 

Gas relative permeability end point 1 

Water exponent 1 

Water exponent to waterflood 1 

Oil exponent to gasflood 1 

Gas exponent 1 
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