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ABSTRACT

Graphene has been extensively investigated after its isolation in 2004 by A.

K. Geim and K. S. Novoselov. Due to its remarkable electronic and transport properties,

it has become a promising candidate to replace silicon in the production of field-effect

transistors (heart of the electronics industry). However, turning off the current via gate

potentials in graphene-based electronic devices can be a challenge due to Klein tunnel-

ing. In recent years, there has been an expressive search for theoretical and experimental

proposals capable of modulating the current, avoiding the limitation imposed by Klein

tunneling. In this sense, three electronic devices based on graphene nanoribbons were in-

vestigated in this Thesis, namely: (i) graphene p-n junction that acts as a Veselago lens,

(ii) three-terminal ballistic junction of graphene (graphene Y-junction), and (iii) graphene

quantum ring in the presence of a perpendicular magnetic field. Numerical simulations

of quantum transport using a tight-binding model were performed in (i) and (ii). In (i),

it was demonstrated that the application of an in-plane electric field or a perpendicular

magnetic field changes the position of the output focus of the Veselago lens, reducing

the conductance between the input and output terminals. In (ii), it was found that a

gate potential applied to one of the graphene Y-junction terminals can properly modulate

the current between the input terminal and the two output terminals. Finally, in (iii),

a numerical approximation using the tight-binding model was compared to an analytical

approach using the continuum model in order to show that the persistent current can be

tuned through a gate potential applied to one of the graphene quantum ring arms. The

electronic devices presented in this Thesis can benefit from the high mobility of charge

carriers in graphene and represent viable theoretical proposals for the development of

low-power field-effect transistors.

Keywords: graphene; electronic device; p-n junction; Y-junction; quantum ring.



RESUMO

O grafeno tem sido extensivamente investigado após seu isolamento em 2004

por A. K. Geim e K. S. Novoselov. Devido às suas notáveis propriedades eletrônicas e

de transporte, tornou-se um candidato promissor para substituir o silício na produção

de transistores de efeito de campo (coração da indústria eletrônica). No entanto, desli-

gar a corrente via potenciais de porta em dispositivos eletrônicos baseados em grafeno

pode ser um desafio devido ao tunelamento de Klein. Nos últimos anos, tem havido uma

busca expressiva por propostas teóricas e experimentais capazes de modular a corrente,

evitando a limitação imposta pelo tunelamento de Klein. Nesse sentido, três dispositivos

eletrônicos baseados em nanofitas de grafeno foram investigados nesta Tese, a saber: (i)

junção p-n de grafeno que atua como uma lente de Veselago, (ii) junção balística de três

terminais de grafeno (junção Y de grafeno), e (iii) anel quântico de grafeno na presença

de um campo magnético perpendicular. Simulações numéricas de transporte quântico

usando um modelo tight-binding foram realizadas em (i) e (ii). Em (i), foi demonstrado

que a aplicação de um campo elétrico no plano ou de um campo magnético perpendicular

altera a posição do foco de saída da lente de Veselago, reduzindo a condutância entre

os terminais de entrada e de saída. Em (ii), foi encontrado que um potencial de porta

aplicado a um dos terminais da junção Y de grafeno pode modular adequadamente a

corrente entre o terminal de entrada e os dois terminais de saída. Por fim, em (iii), uma

aproximação numérica usando o modelo tight-binding foi comparada a uma abordagem

analítica usando o modelo contínuo, a fim de mostrar que a corrente persistente pode ser

sintonizada através de um potencial de porta aplicado a um dos braços do anel quântico de

grafeno. Os dispositivos eletrônicos apresentados nesta Tese podem se beneficiar da alta

mobilidade dos portadores de carga no grafeno e representam propostas teóricas viáveis

para o desenvolvimento de transistores de efeito de campo de baixa potência.

Palavras-chave: grafeno; dispositivo eletrônico; junção p-n; junção Y; anel quântico.
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1 INTRODUCTION

New and unusual biological, physical and chemical properties presented by

nanostructured materials are important scientific discoveries that point to possible ad-

vances in science and technology in the near future. The area that investigates these new

materials has been given the name of nanoscience or, more commonly, nanotechnology.

However, the difference between nanoscience and nanotechnology is equally comparable

to the difference between science and technology. Around the world, both academic and

applied research institutes are creating new paths for research in nanotechnology. The

main topics currently investigated are materials science, electronics, optoelectronics, and

biomedical science[4].

Actually, the material most used in the production of field-effect transistors

(the heart of the electronics industry) is silicon. Despite its great efficiency and versatility,

its use in electronics should reach the limit in less than a decade due to problems that arise

when the size scale is in the order of magnitude of the nanometer[5]. Thus, researchers

and scientists are looking for other ways to develop field-effect transistors or similar,

with even better performance at reduced costs. Some suggest the replacement of silicon

by nanostructured materials, from graphene and phosphorene to molybdenum disulfide

(MoS2) and tungsten diselenide (WSe2)[6].

Graphene consists of a layer of carbon atoms arranged in a honeycomb crystal

structure. It is considered an essentially two-dimensional material as it is only one carbon

atom thick. A few decades ago, L. D. Landau and R. E. Peierls argued that strictly two-

dimensional crystals were thermodynamically unstable and should not exist[7]. In 2004,

however, Russian physicists A. K. Geim and K. S. Novoselov, both from the University of

Manchester (UK), and others, published an article reporting the isolation of graphene and

also a series of results on some of its physical properties[8]. In addition, in 2010, A. K.

Geim and K. S. Novoselov received the Nobel Prize in Physics for their “groundbreaking

experiments regarding the two-dimensional material graphene”. The technique used by

18
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A. K. Geim and K. S. Novoselov to isolate graphene is quite simple. They extracted some

graphene sheets from the graphite by a technique known as micromechanical cleavage[9,

10]. Graphite consists of stacked graphene sheets. Through this technique, the graphene

samples produced are so good that phenomena such as ballistic electronic transport and

the quantum Hall effect can be easily observed[11]. For application purposes, the most

suitable technique in most cases for obtaining large samples of graphene is chemical vapor

deposition (CVD)[12].

1.1 Graphene

Graphene consists of sp2 hybridized carbon atoms chemically bonded through

covalent bonds, where an s atomic orbital hybridizes with two other p atomic orbitals (px

and py) to form three planar atomic orbitals with angles of 120◦ each other. The unhy-

bridized pz atomic orbital is perpendicular to this plane and is of particular importance in

describing the electronic properties of graphene. The stacking of graphene sheets interact-

ing through van der Waals forces gives rise to graphite. Other allotropic forms of carbon,

obtained from graphene, are fullerenes[13], carbon nanotubes[14], and others[15,16].

1.1.1 Crystal structure and reciprocal lattice

Fig. 1.1(a) schematically illustrates the crystal structure of graphene. Such

structure is not a Bravais lattice, however, it can be represented by a triangular Bravais

lattice with two carbon atoms at the base, formed by the superposition of two triangu-

lar Bravais sublattices, called A and B sublattices. In graphene, the distance between

adjacent carbon atoms is a = 0.142 nm[1] and the primitive translation vectors of the

real lattice can be defined as a1 = (3a/2,
√

3a/2) and a2 = (3a/2,−
√

3a/2). The primi-

tive translation vectors of the reciprocal lattice are thus b1 = [2π/(3a), 2π
√

3/(3a)] and

b2 = [2π/(3a),−2π
√

3/(3a)]. In Fig. 1.1(a), the unit cell of the real lattice is highlighted

in grey. Likewise, in Fig. 1.1(b), the first Brillouin zone is highlighted in yellow. A

detailed description of the crystal structure, reciprocal lattice, and elementary electronic

properties of graphene is performed in Chapter 2.
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Figure 1.1: Schematic illustration of the (a) crystal structure and (b) reciprocal lattice of graphene. Panel

(a) shows that the crystal structure of graphene can be represented by a triangular Bravais lattice with

two carbon atoms at the base. The unit cell is highlighted in grey in panel (a), and the first Brillouin

zone is highlighted in yellow in panel (b).

1.1.2 Elementary electronic properties

The tight-binding model provides a categorical description of the elementary

electronic properties of graphene. The Hamiltonian considering that electrons can only

hop to the first and second neighbors of a carbon atom has the form (taking ~ = 1):

H = −t
∑
〈i,j〉,σ

(a†σ,ibσ,j + H.c.)− t′
∑
〈〈i,j〉〉,σ

(a†σ,iaσ,j + b†σ,ibσ,j + H.c.), (1.1)

where t = 2.8 eV (t′ = 0.1 eV) is the hopping parameter between carbon atoms that

are first (second) neighbors[1] and aσ,i (a†σ,i) is an operator that annihilates (creates) an

electron with spin σ = ↑ or ↓ at site Ri of sublattice A, the equivalent being valid for bσ,j

(b†σ,j). H.c. means Hermitian conjugation. The energy bands, in turn, have the form:

E±(k) = st

√
3 + 2 cos(

√
3kya) + 4 cos(

√
3kya/2) cos(3kxa/2)−

−t′[2 cos(
√

3kya) + 4 cos(
√

3kya/2) cos(3kxa/2)], (1.2)

where s = sgn[E±(k)], that is, s = −1 for E±(k) < 0, s = 0 for E±(k) = 0, and s = +1

for E±(k) > 0. Therefore, s = −1 refers to the valence band and s = +1 refers to the

conduction band. The energy bands are symmetric with respect to the zero energy plane

for t′ = 0, as shown in Fig. 1.2(a). On the other hand, for t′ 6= 0, the energy bands

become asymmetric, resulting in electron-hole symmetry breaking. There are six points

where the energy bands coincide, and of these six points only two (the K and K′ points,

known as Dirac points) are not equivalent [see Fig. 1.2(a)].
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Figure 1.2: (a) energy bands for t = 2.8 eV and t′ = 0. There are six points where the valence and

conduction bands coincide, and of these six points only two are not equivalent. (b) conical aspect of the

energy bands in the vicinity of Dirac points.

1.1.3 Low-energy limit and continuum model

It is noted by Eq. (1.2) and Fig. 1.2(b) that in the vicinity of each of the Dirac

points there is a linearity relation between E±(k) and k. This is explicit when the first-

order Taylor series aroundK (orK′) of f(k) = 2 cos(
√

3kya)+4 cos(
√

3kya/2) cos(3kxa/2)

in Eq. (1.2) is taken, resulting in E±(q) = svF |q|, where q = k −K, with |q| << |K|,
and vF = 3at/2 is the Fermi velocity of the charge carriers in graphene with low energies.

For t = 2.8 eV and a = 0.142 nm, vF ≈ c/300 is obtained, where c is the speed of light in

vacuum. Therefore, charge carriers in graphene do not have relativistic Fermi velocities.

The valence band, known as the lower Dirac cone, include the occupied eigenstates, and

the conduction band, known as the upper Dirac cone, include the unoccupied eigenstates.

In this sense, it is convenient to use the continuum model to write the Hamiltonian (1.1)

as:

−ivFσ · ∇Ψ(r) = EΨ(r), for K, (1.3)

−ivFσ∗ · ∇Ψ(r) = EΨ(r), for K′, (1.4)



22

where σ = (σx, σy) is the Pauli vector. The respective eigenstates, in turn, in momentum

space, are:

Ψ±,K(q) =
1√
2

 e−iθq/2

±e+iθq/2

 , (1.5)

Ψ±,K′(q) =
1√
2

 e+iθq/2

±e−iθq/2

 , (1.6)

where θq = arctan(qx/qy) is the angle in momentum space. Thus, there is a mapping

between the continuum model that describes the charge carriers in graphene, coming

from the tight-binding model, and the Dirac equation that describes relativistic massless

fermions with spin 1/2. This mapping allows an analogy between the behavior of massless

neutrinos and charge carriers in graphene. An example of this analogy is discussed in Ref.

[17]. The authors evaluated the dispersion relation of relativistic massless fermions with

spin 1/2, described by the Dirac equation, and relativistic bosons with spin 0, described

by the Klein-Gordon equation, moving in two dimensions and in the presence of a one-

dimensional periodic potential.

1.1.4 Klein tunneling

In 1929, O. Klein obtained an interesting result when analyzing the transmis-

sion of an electron through a potential barrier using the Dirac equation[18]. Unlike what

happens when the Schrödinger equation is used, it was verified that the eigenstates of the

electrons were not dampened by the potential barrier under certain circumstances. As

seen, charge carriers in graphene can be described by the Dirac equation. Thus, several

works on the Klein paradox in graphene, both theoretical[19, 20] and experimental[21],

were reported.

Figure 1.3: (a) incidence of an electron with energy E through a potential barrier with height V0. (b)

representation of the angles of incidence and refraction.
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Considering the incidence of an electron with energy E through a potential

barrier defined as V (x) = 0 for x ≤ 0 and x ≥ d, and V (x) = V0 for 0 < x < d

[schematically illustrated in Fig. 1.3(a)], the eigenstates in regions 1, 2 and 3 of Fig.

1.3(b) are, respectively:

Ψ1(r) =
1√
2

 1

seiθ

 ei(qxx+qyy) +
r√
2

 1

sei(π−θ)

 ei(−qxx+qyy), (1.7)

Ψ2(r) =
a√
2

 1

s′eiϕ

 ei(κxx+qyy) +
b√
2

 1

s′ei(π−ϕ)

 ei(−κxx+qyy), (1.8)

Ψ3(r) =
t√
2

 1

seiθ

 ei(qxx+qyy), (1.9)

where θ is the angle of incidence, ϕ is the angle of refraction, s = sgn(E), s′ = sgn(E−V0),

qx(y) is the x(y)-component of the wavevector in regions 1 and 3, and κx(y) is the x(y)-

component of the wavevector in region 2. The coefficients a, b, r and t are determined by

the boundary conditions at the interfaces that separate regions 1|2 and 2|3:

Ψ1(0, y) = Ψ2(0, y), (1.10)

Ψ2(d, y) = Ψ3(d, y), (1.11)

for the present purpose, it is sufficient to determine only the coefficient t, so that:

tt∗ = T (θ) =
cos2 ϕ cos2 θ

cos2(κxd) cos2 θ cos2 ϕ+ sin2(κxd)(1− ss′ sin θ sinϕ)2
, (1.12)

for κxd = Nπ, with N an integer, the potential barrier becomes transparent, independent

of θ. Furthermore, the potential barrier is always transparent for θ = 0. This effect is a

unique feature of massless Dirac fermions and is directly related to the Klein paradox of

quantum electrodynamics. The dependence of transmission probability on the angle of

incidence for d = 110 nm [d = 50 nm] is shown in Fig. 1.4(a) [1.4(b)]. Dashed blue (solid

red) line refers to V0 = 200 meV (V0 = 285 meV). E = 80 meV and λF = 50 nm was

taken. Additionally, in the limit where |V0| >> |E|, the angle of refraction approaches

zero, resulting in:

T (θ) =
cos2 θ

1− cos2(κxd) sin2 θ
. (1.13)

It is important to mention that after tunneling the electron through the potential barrier,

its eigenstate acquires a phase φ = V0d/(~vF ), which can be used in the modeling of

electronic devices based on interference phenomena[22].
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Figure 1.4: Dependence of transmission probability on the angle of incidence for (a) d = 110 nm and

(b) d = 50 nm. Dashed blue (solid red) line refers to V0 = 200 meV (V0 = 285 meV). E = 80 meV and

λF = 50 nm was taken. Adapted from Ref. [1].

1.1.5 Veselago lens, negative refraction and p-n junction

Negative refraction is an interesting optical effect that allows the development

of perfect optical lenses that can focus light beams to extremely fine points[23]. In 1968, V.

G. Veselago showed that, under conditions where the electric and magnetic responses are

negative, the group and phase velocities point in opposite directions[24], which is exactly

what happens with the electrons that occupy the valence band of graphene[2]. Accord-

ingly, in 2007, V. V. Cheianov et al. examined the negative refraction at a graphene p-n

junction[2], which can be made by two metal plates almost touching above a graphene

sheet, one polarizing the sample to a positive voltage (n-type), the other polarizing the

sample to a negative voltage (p-type). In general, p-n junctions are basic electronic de-

vices and are usually produced with semiconductor materials. Due to the peculiar band

structure of graphene, considered a zero gap semiconductor[1], an infinitesimal perturba-

tion changes the Fermi level to the upper or lower band, making it a p-type conductor if

the Fermi level is lowered to the valence band, or a n-type conductor if the Fermi level

is raised to the conduction band. The change in Fermi level can be done through a gate

potential[25], as is schematically illustrated in Fig. 1.5(a).

In the context of geometric optics, when a light beam hits an interface that

separates two media with refractive indices n1 and n2, the Snell-Descartes law is valid,

n1 sin θ1 = n2 sin θ2, where θ1 (θ2) is the angle of incidence (refraction). On the other hand,
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Figure 1.5: Schematic representation of a graphene p-n junction. In the upper panel (a), a graphene

sheet is placed over a split gate in order to create n-type (left) and p-type (right) polarizations. Lower

panel (a) shows the change in Fermi level in relation to the touching point between the valence band and

the conduction band. Upper panel (b) illustrates conventional (positive) refraction, while lower panel (b)

illustrates negative refraction. Panel (a) was adapted from Ref. [2].

when the Klein tunneling in graphene was investigated, the angle of incidence in region 1,

with gate potential V1, was defined as tan θ1 = q1y/q1x and the angle of refraction in region

2, with gate potential V2, as tan θ2 = q2y/q2x. Since the wavevector in the y-direction is

conserved, the relation between the angles of incidence and refraction is:

sin θ1

sin θ2

=
q2

q1

=
E − V2

E − V1

, (1.14)

E being the energy of the electron. Therefore, for V1 = 0 and V2 > 0, whenever 0 <

E < V2, the angle of refraction will be negative, just as for V2 = 0 and V1 > 0, whenever

0 < E < V1. A schematic representation of both positive and negative refraction is shown

in Fig. 1.5(b).

1.1.6 Graphene nanoribbons

The presence of edges in graphene gives rise to so-called graphene nanorib-

bons and affects the band structure at the low-energy limit. Graphene nanoribbons can

be synthesized through experiments such as lithographic patterning of graphene sam-

ples[26], chemical methods (solution-dispersion and sonication[27]), and carbon nanotube

cutting[28]. A bottom-up approach can also synthesize linear two-dimensional graphene

nanoribbons with lengths of up to 12 nm[29]. There are two basic types of edges, namely,

armchair and zigzag, schematically illustrated in Figs. 1.6(a) and 1.6(b), respectively.

In Fig. 1.6(a), the width Wa is defined in terms of the number of dimer lines, Na, as

Wa = a[(Na − 3)
√

3/2 +
√

3]. Similarly, in Fig. 1.6(b), the width Wz is defined in terms
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of the number of zigzag lines, Nz, as Wz = a(3Nz/2 − 1). It is assumed that the dan-

gling bonds at the edges are terminated by hydrogen atoms that do not contribute to the

eigenstates near the Fermi level[30].

Figure 1.6: (a) armchair and (b) zigzag type edge. Na and Nz are related, respectively, with the widths

Wa and Wz. Dashed rectangles represent unit cells.

The procedure used in Subsection 1.1.2 to obtain the energy bands of graphene

can be used here to obtain the energy bands of graphene nanoribbons. For the armchair

case:

E±(k) = st
√

1 + 2εp cos(k/2) + ε2p, (1.15)

where εp = 2 cos(p), with p = rπ/(Na+1) (r = 1, 2, ..., Na). It is noted by Eq. (1.15) that

E±(k) = 0 at k = 0 if Na = 3r− 1, resulting in metallic behavior. Otherwise, i.e. if Na 6=
3r− 1, the behavior will be semiconductor, with the band gap decreasing with increasing

width, approaching zero at the limit where Na is very large. Furthermore, one obtains

E±(k) = s(1 + εp) at k = 0 by Eq. (1.15), so that the band gap will be 0 if Na = 3r − 1,

2t{1 + cos[3rπ/(3r+ 1)]} if Na = 3r, or 2t{1 + cos[(3r+ 1)π/(3r+ 2)]} if Na = 3r+ 1[30].

The eigenstates, in turn, are:Ψr,A

Ψr,B

 = Nc

−s√εp + exp(−ik/2)√
εp + exp(ik/2)

 sin(rp), (1.16)

where:

Nc =
1√
|E|

[
Na −

sin(Nap)

sin(p)
cos[(Na + 1)p]

]−1/2

. (1.17)

In contrast to the armchair case, graphene nanoribbons with zigzag edges have localized

edge eigenstates (implying partially flat energy bands) with energies close to the Fermi

level. In this sense, it is convenient to separate the energy bands between localized and

extended eigenstates. Let kc = 2 arccos[±1/(1 + 1/Nz)]. Thus, if E±(k) > 0 and 0 ≤ k

≤ kLc , there are Nz extended eigenstates. On the other hand, if E±(k) > 0 and kLc ≤ k
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≤ π, there are Nz − 1 extended eigenstates and 1 localized eigenstate. The energy bands

for extended eigenstates are:

E±(k) = s
√

1 + g2
k + 2gk cos(p), (1.18)

where gk = 2 cos(k/2) and p is the solution of:

sin(pNz) + gk sin[p(Nz + 1)] = 0. (1.19)

It is noted by Eq. (1.19) that there are Nz solutions if 0 ≤ k ≤ kLc or kRc ≤ k ≤ 2π and

Nz − 1 solutions if kLc < k < kRc . The extended eigenstates, in turn, are:Ψr,A

Ψr,B

 = Nc

−s sin[p(Nz + 1− r)]
sin(rp)

 . (1.20)

Likewise, the energy bands for localized eigenstates are:

E±(k) = s
√

1 + g2
k − 2|gk| cosh(η), (1.21)

where η is the solution of:

sinh(ηNz) + |gk| sinh[η(Nz + 1)] = 0. (1.22)

The localized eigenstates, in turn, are:Ψr,A

Ψr,B

 = Nc exp(iπr)

exp[iπ(Nz + 1)] sinh[η(Nz + 1− r)]
sin(rη)

 . (1.23)

This Subsection was based on Ref. [30], where there is a detailed description of the

electronic properties of graphene nanoribbons.

1.2 Electronic transport and computational method

Numerical simulation of the behavior of charge carriers in a scattering region is

of particular importance in condensed matter physics. In this sense, the Kwant appears

as a significant alternative[31]. Based on the Python programming language, Kwant

is a free open source package for numerical calculations on tight-binding models with a

strong focus on quantum transport. Although it is also suitable for finite physical systems,

its main objective is to describe infinite physical systems, which can be considered as a
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finite scattering region connected to semi-infinite leads. In the context of the Landauer-

Büttiker formalism, leads act as wave guides that transport plane waves into and out of the

scattering region and correspond to the contacts of a quantum transport experiment[31].

The procedure used by Kwant for numerical calculations can be easily understood by

means of a one-dimensional example. Generalization to larger dimensions is immediate.

The one-dimensional example consists of a scattering region connected to only one lead,

as schematically illustrated in Fig. 1.7.

Figure 1.7: Semi-infinite linear chain. tLi,j (tRi,j) is the hopping parameter between adjacent sites of the

lead (scattering region) and tLR
−1,0 is the hopping parameter between sites −1 and 0 in the interface that

separates the lead and the scattering region.

Fig. 1.7 shows a scattering region (finite linear chain at [0, N ]) connected to a

lead (semi-infinite linear chain at ]−∞,−1]). The Hamiltonian has the form:

H = HL +HR +HLR, (1.24)

where HL is the Hamiltonian of the lead, HR is the Hamiltonian of the scattering region,

and HLR is the Hamiltonian of the connection between the lead and the scattering region.

Considering that electrons can only hop to the first neighbors of a site, Hamiltonians HL,

HR, and HLR can be written in terms of creation and annihilation operators as:

HL = tLi,j
∑
〈i,j〉

L†iLj, (1.25)

HR = tRi,j
∑
〈i,j〉

R†iRj, (1.26)

HLR = tLRi,j
∑
〈i,j〉

(R†iLj + H.c.), (1.27)

where tLi,j, tRi,j, and tLRi,j are the hopping parameters between sites that are first neighbors,

respectively, of the lead, the scattering region, and the connection between the lead and

the scattering region. Li (L†i ) is an operator that annihilates (creates) an eigenstate at
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site i of the lead and Ri (R†i ) is an operator that annihilates (creates) an eigenstate at site

i of the scattering region. In second quantization language, the one-particle eigenstates

for the lead and for the scattering region are, respectively:

|ΨL〉 =
∑
n

anL
†
n|0〉, (1.28)

|ΨR〉 =
∑
n

bnR
†
n|0〉, (1.29)

where |0〉 denotes a vacuum eigenstate. Indices of all sums are taken in the same range,

i.e. ]−∞, N ], implying in a0 = a1 = ... = aN = 0 for the coefficients related to the lead,

and b−∞ = ... = b−2 = b−1 = 0 for the coefficients related to the scattering region. Acting

the Hamiltonian (1.24) in |Ψ〉 = |ΨL〉+ |ΨR〉, with the replacement of Eqs. (1.25), (1.26),

and (1.27), the following eigenvalue equation is obtained:∑
〈i,j〉,n

[tLi,jL
†
iLj + tRi,jR

†
iRj + tLRi,j (R†iLj + L†iRj)](anL

†
n + bnR

†
n)|0〉 =

∑
n

E(anL
†
n + bnR

†
n)|0〉,

(1.30)

creation and annihilation operators for fermions satisfy the anticommutation rules:

{c†i , c†j} = {ci, cj} = 0, {ci, c†j} = δij, c = L,R, (1.31)

thus, the left term of Eq. (1.30) can be rewritten as:∑
〈i〉,n

[tLi,nL
†
iLnanL

†
n + tRi,nR

†
iRnbnR

†
n + tLRi,nR

†
iLnanL

†
n + tLRi,nL

†
iRnbnR

†
n]|0〉, (1.32)

let:

Ai =
∑
n

(ant
L
i,n + bnt

LR
i,n ), (1.33)

Bi =
∑
n

(ant
LR
i,n + bnt

R
i,n), (1.34)

thus, Eq. (1.30) can be rewritten as:∑
〈i〉

(AiL
†
i +BiR

†
i )|0〉 =

∑
〈i〉

E(aiL
†
i + biR

†
i )|0〉, (1.35)

therefore:

Eai = aiε
L
i +

∑
n6=i

(ant
L
i,n + bnt

LR
i,n ), (1.36)

Ebi = biε
R
i +

∑
n6=i

(ant
LR
i,n + bnt

R
i,n), (1.37)
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where εL(R)
i = t

L(R)
i,i is the on-site energy. Since only interactions between sites that are

first neighbors are considered, Eqs. (1.36) and (1.37) can be rewritten as:

Eai = aiε
L
i + ai+1t

L
i,i+1 + ai−1t

L
i,i−1 + bi+1t

LR
i,i+1 + bi−1t

LR
i,i−1, (1.38)

Ebi = biε
R
i + bi+1t

R
i,i+1 + bi−1t

R
i,i−1 + ai+1t

LR
i,i+1 + ai−1t

LR
i,i−1, (1.39)

in matrix form, Eqs. (1.38) and (1.39) are:HL VLR

V †LR HR

A
B

 = E

A
B

 , (1.40)

where A = [... a−3 a−2 a−1]T and B = [b0 b1 ... bN ]T . HL, HR, and VLR are,

respectively:

HL =


... ... ...

tL−3,−4 εL−3 tL−3,−2

tL−2,−3 εL−2 tL−2,−1

tL−1,−2 εL−1

 , (1.41)

HR =



εR0 tR0,1

tR1,0 εR1 tR1,2

...
tRN−1,N−2 εRN−1 tRN−1,N

tRN,N−1 εRN


, (1.42)

VLR =



... ...

0 0 ...

tLR−1,0 0 ...

 , (1.43)

in this description, HL represents the lead, HR represents the scattering region, and VLR

represents the connection between them. For two or more dimensions, Eq. (1.40) is

generalized to the following tridiagonal block matrix[31]:

H =


... ... ...

V †L HL VL

V †L HL VLR

V †LR HR

 , (1.44)

where HR is the (typically large) Hamiltonian matrix of the scattering region, HL is the

(typically much smaller than HR) Hamiltonian matrix of one unit cell of the lead, VL is
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the Hamiltonian matrix connecting one unit cell of the lead to the next, and VLR is the

hopping parameter between the scattering region and the lead.

The wave function, in turn, is defined as Ψ = [..., ψ(2)L, ψ(1)L, ψR], where

ψ(i)L corresponds to the solution for the i-th unit cell of the lead and ψR corresponds to

the solution for the scattering region. Assuming a solution φn(j) = (λn)jχn, where χn

is the n-th eigenvector and λn is the n-th eigenvalue, the time-independent Schrödinger

equation has the form:

(V †Lλn + VLλ
−1
n +HL)χn = Eχn, (1.45)

by the requirement of normalization of the wave function, |λn| ≤ 1. Transverse modes

with |λn| < 1 are evanescent, that is, corresponds to the solutions that approach zero

at infinity, and transverse modes with |λn| = 1 are propagating. Thus, the eigenstate

corresponding to the transverse mode n of a unit cell of the lead has the form:

ψn(i) = φn(i)in +
∑
m

Smnφm(i)out +
∑
p

S̃pnφp(i)
ev, (1.46)

where φn(i)in, φm(i)out, and φp(i)ev represent, respectively, the input, output, and evanes-

cent transverse modes. The eigenstate corresponding to the transverse mode n of the

scattering region has the form ψn(0) = φRn . Smn in Eq. (1.46) is called the scattering ma-

trix and gives the transmission probability from transverse mode m to transverse mode

n as Tmn = |Smn|2. From the scattering matrix, the conductance is obtained through the

Landauer formula as[31]:

Gab =
e2

h

∑
n∈a,m∈b

|Snm|2. (1.47)

The importance of the discussion on electronic transport in mesoscopic systems for ballistic

conductors can be justified by the fact that it was reported that 40 nm wide graphene

nanoribbons grown epitaxially on silicon carbide are single channel ballistic conductors

at room temperature in a size scale greater than 10 µm[32].

1.3 Thesis organization

This Thesis is organized as follows. In Chapter 2, we will review the tight-

binding model in first and second quantization and show how it can be used to calculate

the energy spectrum of some crystals. In Chapter 3, we will investigate current modulation
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in graphene p-n junctions using electric and magnetic fields. In Chapter 4, we will study

the ballistic transport of electrons through three-terminal graphene-based devices. In

Chapter 5, we will explore the effect of long-range impurity potentials on the persistent

current of graphene quantum rings in the presence of an uniform perpendicular magnetic

field. Finally, in Chapter 6, we will summarize our main findings and conclusions.



2 TIGHT-BINDING MODEL IN FIRST AND SECOND QUANTIZATION

In this Chapter, we review the tight-binding model in first and second quantiza-

tion and show how it can be used to calculate the energy spectrum of some crystals. From

an approach based on the Schrödinger equation (first quantization), we demonstrate the

procedure for writing a generic Hamiltonian in the second quantization formalism. The

connection between these two formalisms is generally not discussed in technical and ap-

plied works. As application examples, we use both methodologies to calculate the energy

spectrum of a linear chain and a square lattice analytically, initially considering only one

site per unit cell and later taking two sites per unit cell. Next, we apply the tight-binding

model to graphene and compare such description with the brick lattice, showing that

graphene lattice can be mapped as a square lattice with some hopping parameters being

neglected. Finally, we apply the model to the τ3-lattice, a three band system. In all cases,

we present the energy spectrum and the density of states.

2.1 Introduction

Quantum mechanics is rightly seen as one of the greatest triumphs of 20th cen-

tury theoretical physics. The theory explained not only several experimental results that

had baffled researchers at the beginning of the last century, but it also made important

predictions that were later verified and are now recognized as the microscopic basis for

all chemistry and materials science. However, soon after elaborating the first mathemat-

ically consistent formalism of quantum mechanics, it was realized that one would often

face apparently insurmountable difficulties to obtain results from the theory. That first

becomes evident as one tries to apply the theory to the problem of the energy spectrum

of atoms heavier than hydrogen, even disregarding the dynamics of the nucleus. In this

case, the solution of the Schrödinger’s equation is complicated since the wave function

is dependent on 3N variables, with N being the number of electrons in the system, and

the potential involves the electron-electron Coulomb interaction, apart from the coupling

33



34

with the nucleus. Therefore, in order to calculate the properties of atoms and molecules,

one is forced to use analytical approximations and numerical approaches, such as density

functional theory[33], which frequently lead to time-consuming numerical calculations.

Thus, it may come as a surprise that in the case of solids, simple and accurate

approximations have been found, allowing the prediction of several properties of these

systems. This is due to some aspects of the physics of materials that seem to conspire to

allow the calculation of electronic structures in a relatively simple way. The first is that

crystals are characterized by having atoms sitting in a periodic lattice, i.e. the lowest

energy configuration consists of a repeating pattern which, in turn, creates a periodic

electron-ion potential. The periodicity of the potential leads naturally to Bloch’s theorem

and the prediction of energy bands[34]. A second factor is the fermionic character of the

electrons, which means that they must obey Pauli’s exclusion principle. This principle

prevents more than two electrons (allowing for spin degeneracy) from occupying the same

energy levels. Consequently, as more atoms are added to the system the total number of

electrons increases, and those have to occupy even higher energies, up to a certain level,

known as the Fermi energy. Thus, for many properties of interest such as thermal and

electronic transport in crystals, only the highest energy states are relevant, viz. states

with energies close to the Fermi level. It also happens that, for electrons with total

energies in that range, their kinetic energies will usually far surpass the electron-electron

interaction energies. This means that for these electrons, the coupling between electrons

can often be disregarded. Moreover, since the periodic lattice potential is obtained from

atomic potentials, this causes the lower-energy electrons to be more strongly bound to

the host atoms, resulting that the dynamics of the so-called core electrons can often be

neglected in the calculations as well.

Therefore, one is left with a picture of (approximately) independent electrons

moving in a periodic potential generated by the ionic cores. The wave functions of those

independent electrons can be written as linear combinations of the orbitals of isolated

atoms[35], an approximation that can be justified by assuming that each electron is

strongly bound to a single core, with some probability of tunneling to neighboring sites

in the lattice. Such approximation is thus known as a tight-binding (TB) model. An

important property of such models is that they allow the inclusion of additional terms,

such as electron-electron coupling, electron-phonon or spin-orbit interaction terms in a
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systematic way, as corrections to the single-particle picture.

By employing such a model, a fairly comprehensive understanding of solids

can be obtained. In this Chapter, we show a brief introduction of TB models applied to

1D and 2D materials. Quasi-two-dimensional systems contain a single or a few layers of

crystalline atoms and have first been brought to attention due to graphene production

in 2004[8]. Since then, various lamellar crystals have been produced, which have been

modeled using TB models that provide a good description of the energy bands in the

vicinity of the Fermi level.

This Chapter is organized as follows. In Section 2.2 (2.3), we present the

first (second) quantization formalism for the TB model. In Section 2.4, we show the

equivalences between first and second quantization formalisms of the TB model within

the approach used. In Section 2.5, we describe a procedure that can be used to obtain the

band structure of some materials, as done in Section 2.6 for five crystal lattices, namely:

linear chain, square lattice, brick lattice (square lattice model of graphene), graphene and

τ3-lattice. We summarize our main findings and draw some perspectives in Section 2.7.

2.2 First quantization formalism

The TB model consists of writing the electron’s wave function as a linear

combination of atomic orbitals, with procedure name in abbreviated format as LCAO,

taking into account the various sites of a given crystal. Thus, in the TB model, states and

energies in a crystal are determined from localized atomic orbitals. We assume that the

electron is strongly bound to the nucleus in these orbitals, which means that it is confined

to a region of small dimensions compared to internuclear distances. It is an approach

that successfully describes several materials[36–39], making it possible to obtain different

electronic and transport properties[40–44]. Despite being a reasonably simple model, it

can take into account complex phenomena, such as the quantum Hall effect in graphene

with an AC electric field[45].

In the following Subsections, we present a procedure to determine the eigen-

values of the Hamiltonian by the first quantization formalism within the TB model.



36

2.2.1 Linear combination of atomic orbitals

Let us assume that in the vicinity of each lattice site the total Hamiltonian H
can be approximated by the Hamiltonian of the localized atoms, Hat. Additionally, it is

also assumed that atomic orbitals, ϕj(r,k), are well-localized, so that:

Hatϕj(r,k) = εjϕj(r,k), (2.1)

where εj are energy eigenvalues and ϕj(r,k) will be negligible when |r| exceeds a distance

of the order of the lattice parameter. One can improve the approximation by considering

the case where |r| is comparable to the lattice parameter. For this, one can include

an additional term, ∆U(r), to the Hamiltonian of the localized atoms containing all

corrections to the atomic potential necessary to produce the periodic potential of the

crystal:

H = Hat + ∆U(r). (2.2)

In this case, taking an atom localized at the origin, the wave function ϕj(r,k) will be a

good approximation to a steady-state wave function for the total Hamiltonian, with energy

eigenvalues εj[46]. Likewise, the wave functions ϕj(r −R) will be good approximations

for the corresponding sites R of the Bravais lattice.

Since, by assumption, ϕj(r,k) satisfies the Schrödinger equation for the local-

ized atoms [Eq. (2.1)], then it must also satisfy the Schrödinger equation for the total

Hamiltonian [Eq. (2.2)], whenever ∆U(r) is null and ϕj(r,k) is non-null. In this situation,

each level n of the localized atoms gives rise to N levels in the periodic potential of the

crystal, with wave functions ϕj(r − R), since N is the number of unit cells. Thus, one

needs to find the N linear combinations of these states that represent the Bloch function

Φj(r,k) that describe the electrons in the crystal, i.e.:

TRΦj(r,k) = eik·RΦj(r,k), (2.3)

where TR is the translation operation along the lattice vector R. At this point, the main

assumption of the TB method emerges, i.e. to assume that the Bloch function can be

given in terms of the atomic orbitals:

Φj(r,k) =
1√
N

∑
R

eik·Rϕj(r−R), j = 1, 2, ..., n, (2.4)
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where n is the number of atomic wave functions in the unit cell and we have n Bloch

functions in the solid for a given k. For each state j, one takes the contribution of the

N corresponding localized atoms, weighted by a phase factor eik·R in the Bravais lattice,

with the term 1/
√
N being a normalization constant[47].

Although the wave function (2.4) satisfies Bloch’s theorem for a given k, it

represents only the electronic characteristics of localized atoms, requiring modifications

to fully represent the electrons in the crystal. As a first approximation, we consider

that ∆U(r) would be vanish whenever ϕj(r,k) was non-zero. However, a more realistic

assumption is that ϕj(r,k) becomes small but not exactly null before ∆U(r) becomes

appreciable[46]. Thus, the wave function that describes the electrons in the crystal can

be similar to the Bloch function, given by:

Ψj(r,k) =
1√
N

∑
R

eik·Rψj(r−R), j = 1, 2, ..., n, (2.5)

with ψj(r−R) to be determined and being not necessarily an exact atomic steady-state

wave function. Considering ∆U(r)ϕj(r,k) very small, but different from zero, we can

write ψj(r−R) as a linear combination of localized atomic wave functions:

ψj(r−R) =
∑
j′

Cjj′ϕj′(r−R), (2.6)

where Cjj′ are complex coefficients to be found. To better understand that, note from

Eqs. (2.5) and (2.6) that:

Ψj(r,k) =
1√
N

∑
R

eik·R
∑
j′

Cjj′ϕj′(r−R)

=
∑
j′

Cjj′
1√
N

∑
R

eik·Rϕj′(r−R), (2.7)

and using Eq. (2.4), we have[47]:

Ψj(r,k) =
∑
j′

Cjj′Φj′(r,k), (2.8)

therefore, the wave function that describes the electrons in the crystal, Ψj(r,k), is ulti-

mately a linear combination of the atomic orbitals ϕj′(r−R).

2.2.2 Secular equation

The energy eigenvalues Ei = Ei(k) of the total Hamiltonian H are given by:

Ei =
〈Ψi|H|Ψi〉
〈Ψi|Ψi〉

. (2.9)
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Replacing Eq. (2.8) into Eq. (2.9), we obtain:

Ei =

∑
j,j′Hjj′C

∗
ijCij′∑

j,j′ Sjj′C∗ijCij′
, (2.10)

where the integrals over the Bloch orbitals, Hjj′ = Hjj′(k) and Sjj′ = Sjj′(k) are called

the transfer integral matrices and overlap integral matrices[47], or simply transfer1 and

overlap matrices, respectively, and are defined by:

Hjj′ = 〈Φj|H|Φj′〉, j, j′ = 1, 2, ..., n, (2.11)

Sjj′ = 〈Φj|Φj′〉, j, j′ = 1, 2, ..., n. (2.12)

Substituting the Bloch function, Eq. (2.4), into Eq. (2.11), the transfer matrix

elements become:

Hjj′ =
1

N

∑
R,R′

eik·(R
′−R)tR,R′ , (2.13)

where we define:

tR,R′ = 〈ϕj(r−R)|H|ϕj′(r−R′)〉, (2.14)

as the transfer integral or hopping parameter related to the interacting energy between

electrons located on different sites[49] and usually has a negative value[47], i.e. this

energetic term is associated with the energy required for an electron to “hop” from a site

at position R′ to a given site at position R, or vice versa. If the distance between the sites

increases, then the corresponding hopping parameter is reduced in module. In general,

the band structure is initially calculated by means of first principles methods and then a

search is done for the hopping parameters that best fit the energy bands obtained by the

TB method to those obtained by the first principles calculations[47], in a similar way as

done in the Wannierization procedure of density functional theory[50].

Likewise, replacing the Bloch function, Eq. (2.4), into Eq. (2.12), the overlap

matrix elements can be written as:

Sjj′ =
1

N

∑
R,R′

eik·(R
′−R)sR,R′ , (2.15)

where we define:

sR,R′ = 〈ϕj(r−R)|ϕj′(r−R′)〉, (2.16)

1Note that the method’s name referred here as transfer matrix is also given to another method asso-

ciated with scattering problems in quantum mechanics and electromagnetism (see Ref. [48]).
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as the overlap integral or overlap parameter, which represents the overlap between the

atomic orbitals of the R and R′ sites. For instance, if one considers the overlap parameter

corresponding to the atomic orbitals of the R and R′ = R sites, one finds sR,R′ = δjj′ .

In general, it is preferable to consider an orthonormal model, where sR,R′ = δRR′δjj′ . In

this situation, the overlap matrix will be the identity matrix. In a more general case, we

have 0 ≤ sR,R′ ≤ 1. Most of the applications of the TB method found in the literature,

usually one only takes into account the contributions of nearest neighbor (NN) sites for

hopping and overlap parameters. However, a more accurate description must consider

also contributions of more distant neighbors.

Let us now return to the discussion of Eq. (2.10). The complex coefficients

C∗ij are obtained so that the energy eigenvalues Ei are minimized[47], i.e. by doing:

∂Ei
∂C∗ij

=

∑
j′Hjj′Cij′∑

j,j′ Sjj′C∗ijCij′
−

∑
j,j′Hjj′C

∗
ijCij′(∑

j,j′ Sjj′C∗ijCij′
)2

∑
j′

Sjj′Cij′ = 0. (2.17)

Multiplying Eq. (2.17) by
∑

j,j′ Sjj′C∗ijCij′ and substituting Eq. (2.10) into Eq. (2.17),

one obtains: ∑
j′

Hjj′Cij′ = Ei
∑
j′

Sjj′Cij′ . (2.18)

Defining a column vector such as:

Ci =


Ci1
...

C1N

 , (2.19)

one can rewrite Eq. (2.18) as:

HCi = EiSCi ⇒ [H− EiS]Ci = 0. (2.20)

Note that if the inverse of the matrix [H− EiS] exists, then we have:

[H− EiS][H− EiS]−1Ci = 0⇒ Ci = 0, (2.21)

resulting in the trivial solution. However, we are only interested in the case where the

matrix inverse does not exist, that is, in the case where [H − EiS] is a singular matrix,

therefore:

det[H− ES] = 0. (2.22)
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This equation, an important result of the TB method, is known as the secular equation.

Due to the dimensionality n of the matrix H, its solution provides n eigenvalues Ei’s with

i = 1, . . . , n. In the case of an orthonormal TB model, the overlap matrix is the identity

matrix, so that:

det[H− EI] = 0. (2.23)

2.3 Hamiltonian in second quantization

The TB model in first quantization as described above is sufficient to deter-

mine the band structure of crystals of interest. However, in the technical literature, the

Hamiltonian is generally presented in second quantization, that is, in terms of creation

and annihilation operators. In general, it is always possible to describe fermions in terms

of such operators. Unlike bosons, fermions obey the Pauli exclusion principle. Repre-

senting an operator that creates (annihilates) an electron in the s-state by ĉ†s (ĉs) and

defining an unoccupied state by |0〉, the Pauli exclusion principle imposes that ĉ†sĉ†s|0〉 = 0

or equivalently ĉ†s|1〉 = 0. Other relations satisfied by operators ĉ†s and ĉs are ĉ†s|0〉 = |1〉,
ĉs|1〉 = |0〉, and ĉs|0〉 = 0. In addition, the operator ĉ†sĉs provides the occupation of the

s-state, that is, ĉ†sĉs|n〉 = n|n〉, where n = 0, 1. The ĉ†s and ĉs operators satisfy an anti-

commutation rule: {ĉs, ĉ†s} = ĉsĉ
†
s + ĉ†sĉs = 1. In short, all these relations can be obtained

using the following expressions[51]:

{âr, â†s} = δrs, {âr, âs} = 0, and {â†r, â†s} = 0. (2.24)

Therefore, using the operators ĉ†s and ĉs, we must begin our discussion by merely re-

formulating the Schrödinger equation in the language of second quantization. There are

works in the literature that present the development of the second quantization formalism

starting from the first quantization formalism[51, 52]. We call the general Hamiltonian

the one that has not yet been reduced to the TB model, that is, the one that describes

physical systems that do not necessarily obey the assumption of TB approximations dis-

cussed above. For this, one can consider the general Hamiltonian in the language of first

quantization being written as:

H =
∑
k

T (xk) +
1

2

∑
k 6=l

V (xk, xl), (2.25)

where T ≡ T (xk) is the kinetic energy, V ≡ V (xk, xl) is the potential energy, and xk and

xl denote the coordinates of the k-th and l-th particles, respectively, that are linked by
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the interaction V . Using the algebra of the creation and annihilation operators, one can

rewrite the general Hamiltonian (2.25) as[51]:

Ĥ =
∑
ij

ĉ†i〈i|T |j〉ĉj +
1

2

∑
ijkl

ĉ†i ĉ
†
j〈ij|V |kl〉ĉlĉk, (2.26)

where Ĥ is an operator in the abstract occupation-number space and, therefore, it is a

general Hamiltonian in the language of second quantization.

By comparing Eqs. (2.25) and (2.26), it is seen that in first quantization the

kinetic and potential energies are written in terms of momentum and position operators.

On the other hand, in second quantization the operators of creation and annihilation

are present. The transformation of the general Hamiltonian, initially written in terms of

position and momentum operators, into occupation number representation is often called

the second quantization procedure and is an useful formalism to describe and analyze

quantum many-body systems.

In general, a generic one-body operator:

J =
∑
i

J(xi), (2.27)

written in first-quantized form, has its correspondent second-quantized operator given

by[51]:

Ĵ =
∑
ij

〈i|J |j〉ĉ†i ĉj. (2.28)

Thus, neglecting the electron-electron interaction, we can write the general Hamiltonian

in second quantization admitting J = H in Eq. (2.28), as:

Ĥ =
∑
ij

〈i|H|j〉ĉ†i ĉj, (2.29)

where i and j are generic wave functions. At this point, note that if the term 〈i|H|j〉
is associated with the hopping parameter tij [see Eq. (2.14)], with i and j representing

atomic orbitals, then the general Hamiltonian (2.29) undergoes the TB approximation.

Thus, the TB Hamiltonian in second quantization is given by:

Ĥ =
∑
ij

tij ĉ
†
i ĉj. (2.30)

In principle, the sum runs over all orbitals of all atomic sites that make up the crystal-

lographic lattice. However, the number of neighbors, and consequently the number of
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hopping parameters, can be controlled, being the TB model more accurate as more non-

vanishing hopping energies are taken into account. For example, the TB Hamiltonian that

includes nearest-neighbor (NN) and next-nearest-neighbor (NNN) sites, with one orbital

per site, can generally be written as:

Ĥ =
∑
i

Eiĉ
†
i ĉi +

∑
〈ij〉

tĉ†i ĉj +
∑
〈〈ij〉〉

t′ĉ†i ĉj, (2.31)

where Ei ≡ 〈i|Ĥ|i〉 is the energy of placing an electron at the lattice site i, called on-

site energy[49]. t and t′ are the hopping parameters of the NN-sites (〈ij〉) and NNN-sites

(〈〈ij〉〉), respectively, i.e. they are energy terms 〈i|Ĥ|j〉 for i 6= j regarding site connections

with distances |ri− rj| > |R| greater than the one or more lattice parameters for NN and

NNN case, respectively. In summary, TB models that admit one orbital per site, one has

that: (i) if i = j, then tii = Ei, i.e. the on-site energy, and (ii) if i 6= j, then i and j can

denote either non-equivalent sites in the unit cell, or equivalent sites separated by lattices

vectors.

2.4 Tight-binding model in first and second quantization

In the previous Sections, we presented the formulations for the TB model in

first and second quantization. In this Section, we shall show the equivalence between

these two frameworks within the approach used.

2.4.1 From the second to the first quantization

Let us now demonstrate that the Hamiltonian in second quantization [see Eq.

(2.30)] leads to the transfer integral matrix [Eq. (2.11)]. Aiming to this, consider that

the creation and annihilation operators at site i are ĉ†i and ĉi, respectively. Let us first

Fourier transform these operators, leading them to the momentum space:

ĉi =
1√
N

∑
k

eik·ri ĉik, (2.32)

ĉ†i =
1√
N

∑
k

e−ik·ri ĉi†k . (2.33)

The next step is to replace Eqs. (2.32) and (2.33) into Eq. (2.30) for the crystallographic

lattice. The resulting equation is simplified by the following identity:

δkk′ =
1

N

∑
i

e±i(k−k′)·ri . (2.34)
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Following these steps, and defining the pseudo-spinor in the Nambu representation, such

as:

|Ψk〉 = (ĉ1
k ĉ2

k ... ĉnk)T , (2.35)

one gets the general demonstration as shown below:

Ĥ =
∑
ij

tij ĉ
†
i ĉj

=
1

N

∑
ij

∑
k

tije
−ik·ri ĉi†k

∑
k′

eik
′·rj ĉjk′

=
1

N

∑
ij

∑
kk′

tije
ik′·(rj−ri)e−i(k−k′)·ri ĉi†k ĉ

j
k′

=
1

N

∑
i

∑
kk′

Hij(k′)e−i(k−k′)·ri ĉi†k ĉ
j
k′

=
∑
kk′

δkk′Hij(k′)ĉ
i†
k ĉ

j
k′

=
∑
k

ĉi†kHij(k)ĉjk

=
∑
k

〈Ψ̂k|H|Ψ̂k〉, (2.36)

being used Eq. (2.13) in the above development.

As an example of the path from second to first quantization, consider a lattice

with two non-equivalent sites in the unit cell: A and B. The creation and annihilation

operators at site localized by ri of the A (B) sublattice are respectively â†i (b̂†i ) and âi

(b̂i). Thus, according to the steps indicated before, assuming a null on-site energy and

taking non-null hoppings just between non-equivalent sites, one has the following direct
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demonstration:

Ĥ =
∑
ij

tij ĉ
†
i ĉj

=
1

N

∑
ij

∑
k′

tije
−ik′·rj b̂†k′

∑
k

eik·ri âk +
1

N

∑
ij

∑
k

tije
−ik·ri â†k

∑
k′

eik
′·rj b̂k′

=
1

N

∑
ij

∑
kk′

tije
−ik′·(rj−ri)e−i(k

′−k)·ri b̂†k′ âk +
1

N

∑
ij

∑
kk′

tije
ik′·(rj−ri)e−i(k−k′)·ri â†kb̂k′

=
1

N

∑
i

∑
kk′

H∗AB(k′)e−i(k
′−k)·ri b̂†k′ âk +

1

N

∑
i

∑
kk′

HAB(k′)e−i(k−k′)·ri â†kb̂k′

=
∑
kk′

δkk′

[
H∗AB(k′)b̂†k′ âk +HAB(k′)â†kb̂k′

]
=

∑
k

[
H∗AB(k)b̂†kâk +HAB(k)â†kb̂k

]

=
∑
k

[
â†k b̂†k

] 0 HAB(k)

H∗AB(k) 0

âk

b̂k


=

∑
k

〈Ψ̂k|H|Ψ̂k〉, (2.37)

where H is the TB Hamiltonian in first quantization (transfer integral matrix) and Ĥ is

the corresponding TB Hamiltonian in second quantization.

In comparison with the LCAO, the overlap matrix in the second quantization

language is supposed to always be equal the identity matrix. This restriction does not

greatly reduce the generality of the method, because the TB model is generally used when

in fact there is no overlap between the atomic functions of the sites. It is so true that the

complete set of Bloch functions can be written as linear combinations of the the Wannier

functions, which are orthogonal at different sites (or with different band indices) unlike

TB atomic functions of LCAO. The Wannier functions form a complete orthogonal set,

such that offer an alternative basis for an exact description of the independent electron

levels in a crystal potential[46].

2.4.2 From the first to the second quantization

Starting from the resulting expression in Eq. (2.36) within the first quanti-

zation language, we are able to obtain the representation of the Hamiltonian in second

quantization simply following the opposite path of this derivation. Therefore, after finding

the transfer integral matrix by the first quantization TB model, one acts 〈Ψk| and |Ψk〉
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to the left and to the right of H, respectively. Once done, we add a sum in k′ with the

Kronecker delta δkk′ [see Eq. (2.34)]. This step does not change the Hamiltonian and

ensures that we can identify the Fourier transforms of creation and annihilation operators

[see Eqs. (2.32)-(2.33)]. In summary, these steps lead to:

Ĥ =
∑
k

〈Ψ̂k|H|Ψ̂k〉

=
∑
k

ĉi†kHij(k)ĉjk

=
∑
kk′

δkk′ ĉi†kHij(k′)ĉ
j
k′

=
∑
kk′

1

N

∑
i

e−i(k−k′)·ri ĉi†kHij(k′)ĉ
j
k′

=
∑
ij

∑
kk′

1

N
e−i(k−k′)·ri ĉi†k tije

ik′·(rj−ri)ĉjk′

=
∑
ij

tij
1√
N

∑
k

e−ik·ri ĉi†k
1√
N

∑
k′

eik
′·rj ĉjk′

=
∑
ij

tij ĉ
†
i ĉj, (2.38)

where Hij are the transfer matrix elements, as represented in Eq. (2.11).

In Section 2.6 we compute the energy levels with the both formalisms for

different one- and two-dimensional lattices with: one, two and three non-equivalent sites

within the unit cell. Before that, in Section 2.5 we systematize the steps to obtain the

energy spectrum starting from a real lattice.

2.5 Band structure calculation

In the previous Sections, we described the basic concepts of the TB method in

first and second quantization. Let us now present the steps for applying the method to

the calculation of band structures of crystals.

2.5.1 Analysis of the crystal structure and the Bravais lattice

One starts by identifying the lattice structure of the system. That may not

be necessarily the actual crystal structure of the material, since depending on the level of

precision and the energy range which one wants to describe, one can restrict the relevant

orbitals to regard in the model. It allows in certain circumstances to neglect the hop-

ping between some atomic sites, specially NNN connections. Then, an association of the
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structure with a specific Bravais lattice is made (or with two or more Bravais sublattices).

Taking the crystal structure and its unit cell containing information about the primitive

vectors a1, a2, and a3, the coordinates of the atomic sites that form the unit cell base are

then defined.

2.5.2 Analysis of the reciprocal space and the first Brillouin zone

The energy eigenvalues of the total Hamiltonian are periodic functions in the

reciprocal space, which can be very neatly described within the first Brillouin zone, which

is the Wigner-Seitz cell in the reciprocal space. Thus, the reciprocal lattice and the first

Brillouin zone are built from the Bravais lattice determined in the previous item. The

reciprocal lattice, defined by the primitive vectors b1, b2, and b3, is easily obtained from

the primitive vectors of the Bravais lattice (a1, a2, and a3) by the relations:

b1 = 2π
a2 × a3

a1 · a2 × a3

, (2.39)

b2 = 2π
a3 × a1

a1 · a2 × a3

, (2.40)

b3 = 2π
a1 × a2

a1 · a2 × a3

, (2.41)

where each of the vectors defined by Eqs. (2.39)-(2.41) is perpendicular to two axes of

the Bravais lattice, obeying therefore the following property: bi · aj = 2πδij, being δij the

Kronecker delta[53].

2.5.3 Determination of transfer and overlap matrices

At this point, the calculation of the transfer integral matrix elements is done

using the first or second quantization formalism. On the other hand, the overlap matrix

elements are usually computed via first quantization, since in the second quantization

the overlap matrix is always the identity matrix. The model used must be the one that

provides the energy bands that best fit the results provided by the first principle calcu-

lations, without neglecting the essence of the approximation, which is the assumption of

TB model itself.

Throughout the Chapter, we only consider interactions between NN sites. Due

to the terms
∑

k ĉ
i†
kHij(k)ĉjk in Eqs. (2.36) and (2.38), each Hij element is calculated

admitting that the electron is annihilated (created) at sites of j (i) type. In addition, the
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system coordinate origin for the Hij computing is on a site i and one takes j to run over

the NN sites assumed in the TB model for each investigated case.

2.5.4 Energy eigenvalues

Using the transfer integral and overlap matrices, the energy eigenvalues are

obtained from the secular equation, Eq. (2.22).

2.5.5 Density of states

The evaluation of the density of states (DOS) is then performed by a super-

position of individual energy states which we broaden using a Gaussian function:

f(E) = e−(E−E0)2/γ2

, (2.42)

with a broadening factor γ smaller than the energy levels separations. γ = 0.05 eV was

assumed for all figures from here onward, unless otherwise stated[54].

2.6 Application examples

Let us now use the procedure described in the previous Sections to determine

the energy bands of five crystal lattices, namely: [Figs. 2.1(a) and 2.1(b)] linear chain,

[Figs. 2.1(c) and 2.1(d)] square lattice, [Fig. 2.1(e)] graphene, [Fig. 2.1(f)] brick lattice

and [Fig. 2.1(g)] τ3-lattice. The band structure of each crystal lattice is obtained by

means of the TB method in first and second quantization. We consider only interactions

between NN sites taking only one atomic orbital per site in all the following calculations.

For linear chain and square lattices, two different situations are analyzed: the case of one

and two sites per unit cell.

2.6.1 Linear chain in first quantization

Let us start with the simplest case, that is, the linear chain containing only one

site per unit cell, as shown in Fig. 2.1(a). The primitive vectors of the real lattice and the

reciprocal lattice are, respectively, a1 = (a, 0, 0) and b1 = (2π/a, 0, 0). The first Brillouin

zone is specified by −π/a ≤ k ≤ +π/a, as seen in Fig. 2.2(a). The Bloch function is then

written as:

Φj(r,k) =
1√
N

∑
R

eik·Rϕj(r−R), (2.43)
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Figure 2.1: Crystal structures studied in this Chapter: linear chain with (a) one and (b) two sites in the

unit cell, square lattice with (c) one and (d) two sites in the unit cell, (e) graphene, known as honeycomb

lattice, (f) brick lattice, a square lattice with some neglected hopping parameters being topologically

equivalent to graphene, and (g) τ3-lattice, whose difference from graphene lies in the fact that it has an

atom in the center of each hexagon. In all panels the lattice parameter is a, the primitive vectors are

denoted by ap (p = 1, 2), and the unit cell is highlighted in gray.
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Figure 2.2: Reciprocal lattices of the investigated crystal structures of Fig. 2.1: (a) and (b) linear

chain with one and two sites in the unit cell, respectively, (c) square lattice with one site in the unit

cell, (d) square lattice with two sites in the unit cell and brick lattice, and (e) graphene and τ3-lattice.

Yellow shaded region highlights the first Brillouin zone and the primitive vectors are denoted by bp

(p = 1, 2). For graphene and τ3-lattice, it is a hexagon with vertices K1 = [2π/(3a), 2π/(3
√

3a)],

K2 = [2π/(3a),−2π/(3
√

3a)], K3 = [0,−4π/(3
√

3a)], K4 = [−2π/(3a),−2π/(3
√

3a)], K5 =

[−2π/(3a), 2π/(3
√

3a)], and K6 = [0, 4π/(3
√

3a)]. Of these six points, only two are not equivalent,

which are called Dirac points in the graphene spectrum and are triply degenerate points in the τ3-lattice

spectrum.

so that the transfer integral matrix is:

H =
1

N

(
Nε0 +Nt

2∑
n=1

eik·dn

)
= ε0 + 2t cos(ka), (2.44)

where dn are the NN sites: d1 = (a, 0) and d2 = (−a, 0). Due to the translation symmetry

of this Bravais lattice, instead of taking all N sites in the summation of Eq. (2.44), one

takes only one site and multiply it by N . Likewise, the overlap matrix is given by:

S =
1

N

(
N +Ns

2∑
n=1

eik·dn

)
= 1 + 2s cos(ka). (2.45)

Thus, the solution of Eq. (2.22) for the linear chain containing only one site in the unit

cell is immediate and reads:

E(k) =
ε0 + 2t cos(ka)

1 + 2s cos(ka)
. (2.46)

Fig. 2.3(a) depicts the energy spectrum of a linear chain with one site per unit

cell. Solid and dashed lines correspond to s = 0 and s 6= 0 cases, respectively. The plot

is shown in an interval comprising of a unit cell at positive values of k, 0 ≤ k ≤ 2π/a,

to facilitate comparison with the other investigated cases here, whose energy spectra are

plotted along of the high symmetry points in the region of positive values of k. Notice
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that the nonzero overlap parameter (i.e. s 6= 0) causes a symmetry breaking with respect

to E = 0. The region below (above) the zero level, E = 0, is compressed (extended) in

relation to the energy axis, having its minimum (maximum) value in a smaller (larger)

modulus than the case without overlap.

With two non-equivalent sites, A and B, per unit cell in the linear chain,

as shown in Fig. 2.1(b), the primitive vectors of the real and reciprocal lattices are,

respectively, a1 = (2a, 0, 0) and b1 = (π/a, 0, 0). Therefore, the first Brillouin zone,

shown in Fig. 2.2(b), is specified by −π/(2a) ≤ k ≤ +π/(2a), and the Bloch function,

now consisting of A and B sites, is written as:

Φj(r,k) =
1√
N

∑
Rα

eik·Rαϕj(r−Rα), α = (A,B). (2.47)

Once there are two atomic orbitals in the unit cell, the transfer integral and overlap

matrices, H and S, are both 2 × 2 matrices and given by:

H =

HAA HAB

HBA HBB

 , S =

SAA SAB
SBA SBB

 . (2.48)

In this case, the NN sites are d1 = (a, 0) and d2 = (−a, 0). Thus, HAA = εA, HBB = εB,

and HAB = HBA = 2t cos(ka). Likewise, we have SAA = SBB = 1 and SAB = SBA =

2s cos(ka). Thus, the secular equation is given by:

det

 εA − E±(k) 2[t− sE±(k)] cos(ka)

2[t− sE±(k)] cos(ka) εB − E±(k)

 = 0. (2.49)

If sites A and B are the same constituents, one has εA = εB = ε0, so that the resulting

solution is:

E±(k) =
ε0±2t cos(ka)

1±2s cos(ka)
, (2.50)

where E+(k) and E−(k) are degenerate at ka = ±π/2 and are called bonding and anti-

bonding energy bands[47], respectively. Fig. 2.3(b) shows the linear chain dispersion

relation with two site per unit cell, where solid and dashed lines corresponding to null

(s = 0) and non-null (s 6= 0) overlap cases, and the k interval (0 ≤ k ≤ 2π/a) is taken the

same as in Fig. 2.3(a) to better comparison. Similarly to the case of one site per unit cell

[Fig. 2.3(a)], the overlap breaks the energy symmetry with respect to E = 0 axis. Due to

the existence of two non-equivalent sites, one obtains two energy bands E+ (red lines) and

E− (blue lines), instead of only one as in the case of a single site, that are symmetrical in

energy and momentum and which intersect each other at the zero energy level.
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(a) (b)

Figure 2.3: Energy spectrum of a linear chain with (a) one and (b) two sites per unit cell. Solid and

dashed lines correspond to the cases with zero overlap (s = 0) and non-null overlap (s 6= 0), respectively.

Blue and red lines in panel (b) denote the energy bands E+ and E−, respectively. Inspired by graphene

case, for comparison purposes, we adopted s0 = 0.065 and t = −2.74 eV[3]. The first Brillouin zone is

highlighted by gray dashed line.

2.6.2 Linear chain in second quantization

In second quantization, the Hamiltonian for a linear chain with one site per

unit cell can be written as:

Ĥ =
∑
i

ε0ĉ
†
i ĉi +

∑
i

t
(
ĉ†ici+1 + ĉ†i+1ci

)
, (2.51)

where the creation and annihilation operators act upon a basis of orthogonal states[55],

ε0 = ti,i represents the energy of an electron at site i, and t = ti,i+1 denotes the hopping

energy associated with the sites i to i + 1. ĉi and ĉ†i can be expressed in the momentum

space as:

ĉi =
1√
N

∑
k

eik·ri ĉk, ĉ†i =
1√
N

∑
k

e−ik·ri ĉ†k, (2.52)

resulting, by replacing into Eq. (2.51), in:

Ĥ =
∑
k

ĉ†k
1

N

(
Nε0 +Nt

2∑
n=1

eik·dn

)
ĉk

=
∑
k

[ĉ†kε0ĉk + ĉ†ktf(k)ĉk], (2.53)

where f(k) =
∑2

n=1 e
ik·dn is called the geometric structure factor[46]. Eq. (2.53) can be

rewritten as:

Ĥ =
∑
k

ĉ†k[ε0 + tf(k)]ĉk =
∑
k

ĉ†kHĉk. (2.54)
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H, in turn, is the transfer integral matrix [see Eq. (2.44)] and directly gives us the

dispersion relation [see Fig. 2.3(a)]:

E(k) = ε0 + 2t cos(ka). (2.55)

For the linear chain with two sites in the unit cell, the Hamiltonian reads:

Ĥ =
∑
i

εAa
†
iai +

∑
j

εBb
†
jbj +

∑
i,j

t
(
a†ibj + b†jai

)
, (2.56)

where εA(B) represents the on-site energy of an electron at sublattice A (B) [see Fig.

2.1(b)], and t is the NN hopping parameter connecting the sublattices A and B. Using

Eqs. (2.32)-(2.33) and taking εA = εB = ε0, the Hamiltonian (2.56) can be simplified to:

Ĥ =
∑
k

[a†kε0ak + b†kε0bk + a†ktf(k)bk + b†ktf(k)∗ak], (2.57)

which can be rewritten as:

Ĥ =
∑
k

[
a†k b†k

] ε0 tf(k)

tf(k)∗ ε0

ak

bk

 =
∑
k

〈Ψk|H|Ψk〉. (2.58)

Diagonalizing the matrix form of the Hamiltonian of Eq. (2.58), we obtain the energy

bands [see Fig. 2.3(b)], given by:

E±(k) = ε0±2t cos(ka). (2.59)

2.6.3 Square lattice in first quantization

Now, we present a similar calculation of how to obtain the energy bands for

the square lattice with one and two atoms per unit cell. The former can be obtained

by expanding the linear chain in two dimensions, as shown in Fig. 2.1(c). Its primitive

vectors of the real and reciprocal lattices are a1 = (a, 0, 0) and a2 = (0,−a, 0), and

b1 = (2π/a, 0, 0) and b2 = (0,−2π/a, 0), respectively. The first Brillouin zone, in turn,

is specified by −π/a ≤ kx ≤ +π/a and −π/a ≤ ky ≤ +π/a, as depicted in Fig. 2.2(c).

The distances between NN sites are: d1 = (a, 0), d2 = (−a, 0), d3 = (0, a), d4 = (0,−a).

Thus, the transfer integral matrix can be calculated as:

H =
1

N

(
Nε0 +Nt

4∑
n=1

eik·dn

)
= ε0 + 2t[cos(kxa) + cos(kya)], (2.60)
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and likewise, the overlap matrix is written as:

S =
1

N

(
N +Ns

4∑
n=1

eik·dn

)
= 1 + 2s[cos(kxa) + cos(kya)]. (2.61)

Using H and S of Eqs. (2.60) and (2.61) into the secular equation (2.22), one obtains the

energy band for the square lattice containing only one site in the unit cell, such as:

E(k) =
ε0 + 2t[cos(kxa) + cos(kya)]

1 + 2s[cos(kxa) + cos(kya)]
. (2.62)

Fig. 2.4(a) shows the energy spectrum by taking the overlap parameter s = 0

(solid line) and s 6= 0 (dashed line), along the high symmetry points Γ = (0, 0), X =

(π/a, 0), and M = (π/a, π/a) as labeled in right contour plot panel, and the DOS for

the square lattice with one site per unit cell. Right panels in Fig. 2.4(a) present contour

plots of the bands for s = 0 and s 6= 0 cases, exhibiting an energy shift to high energy

values, especially on the borders of the Γ−X and M− Γ directions, as also clearly seen

in the left panel. Notice a symmetry breaking in the energy band and, consequently, in

the DOS, with respect to zero energy when one regards a nonzero overlap contribution,

similarly to the one observed in Fig. 2.3 for a non-null overlap energy in the linear chain.

This electron-hole symmetry breaking caused by the overlap energy effect leads to a DOS

imbalance around the large peak in E = 0.

Let us now consider the case of two, A and B, non-equivalent sites per unit cell

for the square lattice, as illustrated in Fig. 2.1(d). The primitive real and reciprocal vec-

tors are a1 = (a, a, 0) and a2 = (a,−a, 0), and b1 = (π/a, π/a, 0) and b2 = (π/a,−π/a, 0),

respectively, and the distances between the NN atomic sites are the same as the previous

case: d1 = (a, 0), d2 = (−a, 0), d3 = (0, a), d4 = (0,−a). The first Brillouin zone is de-

fined in the following k-interval: kx,y ∈ [−π/a, π/a], as seen in Fig. 2.2(d). Thus, taking

εA = εB = ε0, the resulting secular equation (2.22) is:

det

Π ∆

∆ Π

 = 0, (2.63)

where ∆ = 2[t−sE±(k)][cos(kxa)+cos(kya)] and Π = ε0−E±(k), leading to the following

solution:

E±(k) =
ε0±2t[cos(kxa) + cos(kya)]

1±2s[cos(kxa) + cos(kya)]
. (2.64)
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Figure 2.4: Energy spectrum and DOS for: square lattice with (a) one and (b) two atoms per unit cell,

(c) brick lattice, (d) graphene, and (e) τ3-lattice. Solid and dashed lines correspond to the cases with

zero overlap (s = 0) and non-null overlap (s 6= 0), respectively. Blue, red, and green lines denote the

energy bands E+, E−, and E0, respectively. Inspired by graphene case, for comparison purposes, we

adopted s0 = 0.065 and t = −2.74 eV[3]. Right panels correspond to the contour plots of the conduction

bands for s = 0 and s 6= 0, emphasizing the first Brillouin zone, highlighted by gray dashed line, the high

symmetry points, and the paths taken for the energy plots in k-space.
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Since the lattice has two atoms per unit cell, similarly to a two-level system, one obtains

two bands E+ and E−, where + and − signs in Eq. (2.64) denote to electron and hole

bands. The energy spectrum and DOS are shown in Figs. 2.4(b), where red and blue

solid (dashed) lines correspond to s = 0 (s 6= 0) case for E+ and E− bands, respectively.

The k-space direction is along the high symmetry points Γ = (0, 0), M = (π/a, 0),

Y = (0, π/a), as indicated on the corresponding contour plot panel by the triangle along

Γ −M − Y − Γ. As already discussed for the linear chain and square lattice with one

site per unit cell, s 6= 0 parameter shifts non-equivalently the energy spectrum along the

whole Brillouin zone breaking the electron-hole symmetry and causes an unbalance in

the area under the DOS curve for positive and negative energy values. By the chosen k-

space direction, the M−Γ-path has a flat band with both conduction and valence bands

touching themselves at E = 0. In order to analyze the emergence of the second band

in comparison to the square lattice case with one atom per unit cell, we depict in Fig.

2.5(a) the energy spectrum along the high symmetry points of square lattice with one site

[see inset triangles in Figs. 2.4(a) and 2.5(a)]. It can be seen that the consideration of

two non-equivalent sites brings up a second band (red line, E−) obeying the electron-hole

symmetry with respect to the one site already existing band, i.e. E+ = −E−.

(a) (b)

Γ X

M
K

Γ M

Figure 2.5: Energy spectrum of (a) the square lattice with two sites per unit cell, and (b) the brick lattice.

The assumed k-space paths in (a) and (b) are illustrated in the inset of each panel, being similar to the

ones for the square lattice with one site per unit cell and graphene, respectively, as shown in Figs. 2.4(a)

and 2.4(e). It was adopted the same parameters as in Fig. 2.4.
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2.6.4 Square lattice in second quantization

The Hamiltonian in second quantization for the square lattice with one site

per unit cell can be written as:

Ĥ =
∑
i

ε0ĉ
†
i ĉi +

∑
i,j

tĉ†i ĉj. (2.65)

For square lattice regarding only NN sites, each site i is connected to four other sites j

[see Fig. 2.1(c)] with hopping energy t. The first term in Eq. (2.65) is associated with

the on-site. Using Eqs. (2.32)-(2.33), the Hamiltonian (2.65) can be simplified to:

Ĥ =
∑
k

[ĉ†kε0ĉk + ĉ†ktf(k)ĉk], (2.66)

with the geometric structure factor being f(k) =
∑4

n=1 e
ik·dn . Eq. (2.66) can be rewritten

as:

Ĥ =
∑
k

ĉ†kHĉk, (2.67)

where it directly gives us the dispersion relation [see Fig. 2.4(a)]:

E(k) = ε0 + 2t[cos(kxa) + cos(kya)]. (2.68)

In the same way, for two-site square lattice, the Hamiltonian in second quan-

tization formalism reads:

Ĥ =
∑
i

εAa
†
iai +

∑
j

εBb
†
jbj +

∑
i,j

t
(
a†ibj + b†jai

)
, (2.69)

where εA,B and t have the same definitions as in Eq. (2.56). Again, using Eqs. (2.32)-

(2.33) and taking εA = εB = ε0, the Hamiltonian (2.69) can be simplified to:

Ĥ =
∑
k

〈Ψk|H|Ψk〉. (2.70)

Diagonalizing Eq. (2.70), one gets the energy bands H as depicted in Figs. 2.4(b) and

2.5(a) and given by:

E±(k) = ε0±2t[cos(kxa) + cos(kya)]. (2.71)

2.6.5 Brick lattice in first quantization

Let us now describe a square lattice topologically similar to graphene that is

defined with some hopping parameters being neglected, called brick lattice[56, 57]. As
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we shall present, the energy spectra of both graphene and brick lattices are similar due

to the equivalent topological lattice mapping between them within the TB model with

interactions only between NN sites. Models for more general honeycomb crystal struc-

tures were investigated in Refs. [58] and [59]. To illustrate more examples of such similar

lattice mapping, a square lattice model topologically equivalent to phosphorene (a puck-

ered monolayer black phosphorus lattice with a highly anisotropic band structure) was

investigated in Ref. [60], where different NN hopping values were assumed to simulate

the phosphorene lattice anisotropy. Notice by assuming three non-vanishing NN hopping

parameters in Fig. 2.1(d), that the brick lattice shown in Fig. 2.1(f) is topologically equiv-

alent to the crystal structure of graphene shown in Fig. 2.1(e). Therefore, the theoretical

development described in Subsection 2.6.3 for two-sites square lattice can be also adopted

here. In this sense, the NN-sites with non-null hopping are: d1 = (a, 0), d2 = (0, a),

d3 = (0,−a). Thus, the transfer integral matrix elements are HAA = εA, HBB = εB, and:

HAB =
1

N

(
Nt

3∑
n=1

eik·dn

)
= t

[
eikxa + 2 cos(kya)

]
= H∗BA, (2.72)

and the overlap matrix elements are SAA = 1, SBB = 1, and:

SAB =
1

N

(
Ns

3∑
n=1

eik·dn

)
= s

[
eikxa + 2 cos(kya)

]
= S∗BA. (2.73)

Diagonalizing the secular equation (2.22) for the brick lattice by using Eqs. (2.72) and

(2.73) and taking εA = εB = ε0, it results:

E±(k) =
ε0±|HAB|
1±|SAB|

, (2.74)

where:

|HAB|
t

=
√

3 + 2 cos(2kya) + 4 cos(kya) cos(kxa)

=
|SAB|
s

. (2.75)

Figs. 2.4(c) and 2.5(b) present the energy spectrum of brick lattice along the

high symmetry points of square lattice with two sites per unit cell [as in Fig. 2.4(b)],
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adding K′ = [0, 2π/(3a)], i.e. it is shown along the Γ −M − Y − K′ − Γ-path, and

displayed along high symmetry points Γ = (0, 0), M = (π/a, 0), and K = [π/a, π/(3a)],

i.e. it is plotted along the Γ−M−K−Γ-path, which allows us to highlight the similarities

with the two-site square lattice energy spectrum [Fig. 2.4(b)] and the graphene energy

spectrum [Fig. 2.4(d)], respectively, as for instance, a non-dispersive behavior between M

and Y points in a similar way to the square lattice case. Right panels in Fig. 2.4(c) show

the contour plots of the conduction band for overlap parameter s = 0 and s 6= 0. Dashed

gray and black lines denote the first Brillouin zone and k-space direction adopted to the

2D plot in the left panel of Fig. 2.4(c), respectively. Comparing the energy levels and DOS

of brick lattice [Fig. 2.4(c)] and graphene [Fig. 2.4(d)], it is clear to note the existence of

the two Dirac cones within the first Brillouin zone, two peaks in DOS associated with the

van Hove singularities, and a null DOS value at E = 0. The main difference is that the

energy spectrum of brick lattice is strained in comparison to the graphene spectrum, such

that the positions of the high symmetry points in k-space for brick lattice are not the

same as the graphene ones, leading for instance a short distance between M −K points

on brick lattice than in graphene, but in general the qualitative shape of both spectra are

equivalent. Analyzing the role of the nonzero overlap parameter into the energy spectrum

and DOS shown in Figs. 2.4(c) and 2.5(b), one can verify, similarly to the previous

discussed lattice cases here, that s 6= 0 leads to a electron-hole symmetry breaking and

an unbalance between the amount of positive and negative energy states.

2.6.6 Brick lattice in second quantization

The second quantization Hamiltonian for the crystallographic structure of brick

lattice can be read as:

Ĥ =
∑
i

εAa
†
iai +

∑
j

εBb
†
jbj +

∑
i,j

t
(
a†ibj + b†jai

)
, (2.76)

where εA(B) and t are the on-site energy at A(B) sublattice and the NN hopping energy,

respectively, as similarly defined in Eq. (2.56). To obtain the energy bands of this crystal

structure, one can apply the discrete Fourier transforms (2.32)-(2.33) to write Eq. (2.76)

in k-space, such as:

Ĥ =
∑
k

[ε0

(
a†kak + b†kbk

)
+ t
(
a†kf(k)bk + b†kf(k)∗ak

)
], (2.77)
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where we assumed εA = εB = ε0. f(k) is the geometric structure factor given by:

f(k) =
[
eikxa + 2 cos(kya)

]
. (2.78)

Thus, Eq. (2.77) can be rewritten as:

Ĥ =
∑
k

〈Ψk|H|Ψk〉, (2.79)

and the energy bands is obtained by diagonalizing H in Eq. (2.79), resulting the following

expression:

E±(k) = ε0±t
√

3 + 2 cos(2kya) + 4 cos(kya) cos(kxa), (2.80)

with the energy spectrum being depicted in Figs. 2.4(c) and 2.5(b).

2.6.7 Graphene in first quantization

After discussed in Subsection 2.6.5 the brick lattice, a topological equivalent

lattice to graphene, let us now calculate the energy bands of the honeycomb lattice struc-

ture describing a monolayer graphite, i.e. a 2D crystal named graphene, by means

the first and second quantization formalism. The honeycomb structure of graphene is

not a Bravais lattice. However, it can be described as two interpenetrating triangu-

lar Bravais sublattices, namely: A and B sublattices, as seen in Fig. 2.1(e), i.e. it

has two sites (A and B) per unit cell. Each carbon atom of sublattice A (B) has

three NN carbon atoms of sublattice B (A). The NNN sites of a carbon atom of a

given sublattice, in turn, are six carbon atoms of the same sublattice. The hopping pa-

rameter between NN sites is approximately an order of magnitude greater than that

between NNN sites[1]. In that sense, we can safely neglect the interactions beyond

NNN sites. The primitive vectors of graphene real lattice are a1 = (3a/2,
√

3a/2) and

a2 = (3a/2,−
√

3a/2), so that the primitive vectors of the reciprocal lattice, shown in

Fig. 2.2(e), are b1 = [2π/(3a), 2π
√

3/(3a)] and b2 = [2π/(3a),−2π
√

3/(3a)]. The first

Brillouin zone [highlighted by the yellow region in Fig. 2.2(e)] is a hexagon limited

by K1 = [2π/(3a), 2π/(3
√

3a)], K2 = [2π/(3a),−2π/(3
√

3a)], K3 = [0,−4π/(3
√

3a)],

K4 = [−2π/(3a),−2π/(3
√

3a)], K5 = [−2π/(3a), 2π/(3
√

3a)], and K6 = [0, 4π/(3
√

3a)].

Of these six points, only two are not equivalent, and are called Dirac points. Thus, the

Bloch function consisting of A and B sites is written as:

Φj(r,k) =
1√
N

∑
Rα

eik·Rαϕj(r−Rα), α = (A,B). (2.81)
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The transfer integral and overlap matrices are given by:

H =

HAA HAB

HBA HBB

 , and S =

SAA SAB
SBA SBB

 , (2.82)

with the H elements being HAA = εA, HBB = εB, and:

HAB =
1

N

(
Nt

3∑
n=1

eik·dn

)
= t

[
eikxa + 2e−ikxa/2 cos(kya

√
3/2)

]
= H∗BA, (2.83)

with NN sites localized by the vectors d1 = (a, 0), d2 = (−a/2, a
√

3/2) and d3 =

(−a/2,−a
√

3/2). Likewise, the overlap matrix elements are SAA = 1, SBB = 1, and:

SAB =
1

N

(
Ns

3∑
n=1

eik·dn

)
= s

[
eikxa + 2e−ikxa/2 cos(kya

√
3/2)

]
= S∗BA. (2.84)

Since A and B sites are identical carbon atoms, then εA = εB = ε0, and the secular

equation (2.22) for graphene can be written as:

det

 ε0 − E±(k) HAB − E±(k)SAB
H∗AB − E±(k)S∗AB ε0 − E±(k)

 = 0, (2.85)

resulting in the following dispersion relation:

E±(k) =
ε0±|HAB|
1±|SAB|

, (2.86)

where:√√√√3 + 2 cos
(√

3kya
)

+ 4 cos

(√
3kya

2

)
cos

(
3kxa

2

)
=
|HAB|
t

=
|SAB|
s

, (2.87)

where E−(k) and E+(k) refer to the valence and conduction bands of graphene, respec-

tively. By comparing Eqs. (2.74)-(2.75) with Eqs. (2.86)-(2.87), one realizes the strong

similarity between the obtained dispersion relations for brick lattice and graphene, respec-

tively, such that these lattices can be mapped one in the other by the following k-space

transformation:
(
kb
x, k

b
y

)
−→

(
3kg

x/2,
√

3kg
y/2
)
, with the superscripts g and b referring to
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brick and graphene lattices. Consequently, the position of the high symmetry points in

the reciprocal space is changed by a factor of
√

3/2 and 3/2 along the y and x directions,

respectively, with respect to the graphene case, as discussed in Subsection 2.6.5, and the

energy spectrum of the brick lattice looks anisotropic whereas the graphene bands are

isotropic [see contour plots shown in Figs. 2.4(c) and 2.4(d)]. The graphene energy spec-

trum is shown in Fig. 2.4(d) along the Γ−M−K−Γ-path, as illustrated by the dashed

black line in the inset of the contour plot on the right panel of Fig. 2.4(d). Note that there

are six points where conduction and valence bands touch (see red spots in the contour

plot), of these six points only two are non-equivalent, which are called as Dirac points

(K and K′). This gapless band structure feature of graphene leads to its characteriza-

tion as a semimetal. Low-energy charge carriers in graphene behave like massless Dirac

fermions near the Fermi level[61], where the energy-wavevector dispersion relationship is

linear, i.e. E(k) ∝ k. That is demonstrated by expanding the TB Hamiltonian around

the Dirac points[1], obtaining a continuum Hamiltonian within the long-wavelength ap-

proximation. As before, the nonzero overlap parameter causes electron-hole symmetry

breaking on energy spectrum and an energy unbalance in the DOS with respect to zero

energy.

2.6.8 Graphene in second quantization

The procedure below is very similar to the one described in Subsection 2.6.6 for

brick lattice, due to the topological equivalence between the graphene and brick lattices.

The Hamiltonian of graphene in second quantization is the same as Eq. (2.76), such as:

Ĥ =
∑
i

εAa
†
iai +

∑
j

εBb
†
jbj +

∑
i,j

t
(
a†ibj + b†jai

)
, (2.88)

where εA, εB and t have the same definitions as Eq. (2.56), refering to the on-site energies

in the sublattices A and B, and the NN hopping energy between A − B sublattices,

respectively. To obtain the energy bands of graphene, we can apply the discrete Fourier

transforms (2.32)-(2.33) to rewrite Ĥ of Eq. (2.88) as:

Ĥ =
∑
k

[a†kε0ak + b†kε0bk + a†ktf(k)bk + b†ktf(k)∗ak], (2.89)
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where it was taken εA = εB = ε0. The geometric structure factor f(k) =
∑3

n=1 e
ik·dn can

be explicitly written as:

f(k) =
[
eikxa + 2e−ikxa/2 cos(kya

√
3/2)

]
. (2.90)

In matrix format, Eq. (2.89) reads as:

Ĥ =
∑
k

[
a†k b†k

] ε0 tf(k)

tf(k)∗ ε0

ak

bk


=

∑
k

〈Ψk|H|Ψk〉. (2.91)

Note that the wavefunction |Ψ〉 = [ΨA ΨB]T is a two-component pseudospinor, i.e. a 1

× 2 column matrix, where ΨA(B) are the envelop functions associated with the electron

probabilities in A(B) sublattices. DiagonalizingH in Eq. (2.91), one obtains the graphene

dispersion relation:

E±(k) = ε0±t

√√√√3 + 2 cos
(√

3kya
)

+ 4 cos

(√
3kya

2

)
cos

(
3kxa

2

)
, (2.92)

depicted in Fig. 2.4(d) and discussed in the previous Subsection 2.6.7.

2.6.9 τ3-lattice in first quantization

Starting from the honeycomb lattice with two sites (A and B) per unit cell, the

τ3-lattice or dice lattice[62] is obtained by connecting additional (C) sites at the center of

each hexagon to the B sites [see Fig. 2.1(g)]. The τ3-lattice is thus a triangular Bravais

lattice with three sites per unit cell, i.e. it can be described as three interpenetrating

triangular Bravais sublattices, namely: A, B and C sublattices. Each site of A (B)

sublattice has three NN sites of B (A) sublattice, and each site of B (C) sublattice has

three NN sites of C (B) sublattice. The hopping between A and C sites is disregarded

because they are not connected. The primitive vectors of the real lattice are the same as

the ones for graphene: a1 = (3a/2,
√

3a/2) and a2 = (3a/2,−
√

3a/2), so that the primitive

vectors of the reciprocal lattice, shown in Fig. 2.2(e), are b1 = [2π/(3a), 2π
√

3/(3a)]

and b2 = [2π/(3a),−2π
√

3/(3a)]. The first Brillouin zone is equal to that of graphene

discussed in Subsection 2.6.7 [see Fig. 2.2(e)]. Thus, the Bloch function consisting of A,

B and C sites is written as:

Φj(r,k) =
1√
N

∑
Rα

eik·Rαϕj(r−Rα), α = (A,B,C). (2.93)
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So that the transfer integral and overlap matrices are given by:

H =


HAA HAB HAC

HBA HBB HBC

HCA HCB HCC

 , S =


SAA SAB SAC
SBA SBB SBC
SCA SCB SCC

 , (2.94)

where the transfer integral matrix elements are HAA = εA, HBB = εB, HCC = εC ,

HBC = HAB, HCB = H∗AB, and:

HAB =
1

N

(
Nt

3∑
n=1

eik·dn

)
= t

[
eikxa + 2e−ikxa/2 cos(kya

√
3/2)

]
= H∗BA, (2.95)

with NN sites being localized by the vectors d1 = (a, 0), d2 = (−a/2, a
√

3/2) and d3 =

(−a/2,−a
√

3/2). Likewise, the overlap matrix elements are SAA = 1, SBB = 1, SCC = 1,

SBC = SAB, SCB = S∗AB, and:

SAB =
1

N

(
Ns

3∑
n=1

eik·dn

)
= s

[
eikxa + 2e−ikxa/2 cos(kya

√
3/2)

]
= S∗BA. (2.96)

For simplicity, let us admit that εA = εB = εC = ε0. Therefore, the secular equation

(2.22) with the use of the transfer integral and overlap matrices given by Eqs. (2.95) and

(2.96), results in:

det


ε0 − Ei(k) HAB − Ei(k)SAB 0

H∗AB − Ei(k)S∗AB ε0 − Ei(k) HAB − Ei(k)SAB
0 H∗AB − Ei(k)S∗AB ε0 − Ei(k)

 = 0, (2.97)

whose solution is given by:

E0 = 0, (2.98)

E±(k) =
ε0±
√

2|HAB|
1±
√

2|SAB|
, (2.99)

where:√√√√3 + 2 cos
(√

3kya
)

+ 4 cos

(√
3kya

2

)
cos

(
3kxa

2

)
=
|HAB|
t

=
|SAB|
s

. (2.100)
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Since τ3-lattice consists of a crystallographic structure with three sites per unit cell, its

energy spectrum is composed by three energy bands: E+(k), E0 and E−(k), referring

to the bottom, middle and top bands, respectively. Note that the terms |HAB|/t and

|SAB|/s in Eq. (2.87) for graphene and in Eq. (2.100) for τ3-lattice are exactly the same,

whereas the E±(k) bands for graphene in Eq. (2.86) and for τ3-lattice in Eq. (2.99) differ

by the presence of a
√

2 term multiplying |HAB| in the numerator and multiplying |SAB|
in the denominator. In additional to the two bands [E±(k)] similar to the graphene ones,

the particularity of the τ3-lattice energy spectrum is the flat band E0 = 0. Fig. 2.4(e)

shows the energy spectrum and DOS of τ3-lattice along the same k-space direction as in

the graphene case to a better comparison between them, and as also illustrated by the

dashed black line in the inset of the contour plot in the right panel of Fig. 2.4(e). As in

graphene, there are six points where the valence and conduction bands touch, which are

triply degenerate due to the presence of the flat band. Owing this non-dispersive band,

the DOS for τ3-lattice exhibits an extra peak at E = 0 in comparison to graphene that

has two peaks associated with the van Hove singularities. Furthermore, again one can

realize that the nonzero overlap parameter causes electron-hole symmetry breaking and

the energy spectrum seems to be shifted up.

2.6.10 τ3-lattice in second quantization

The Hamiltonian of τ3-lattice in second quantization can be written as:

Ĥ =
∑
i

εAa
†
iai +

∑
j

εBb
†
jbj +

∑
k

εCc
†
kck

+
∑
i,j

t
(
b†jai + a†ibj

)
+
∑
j,k

t
(
b†jck + c†kbj

)
, (2.101)

where εA, εB, and εC represent the on-site energies on sites of type A, B and C, respec-

tively. t is defined as the hopping parameter between NN sites A − B and B − C. To

obtain the energy bands of τ3-lattice, we repeat the same procedure done for the previous

investigated lattices, applying the discrete Fourier transforms (2.32)-(2.33) and taking

εA = εB = εC = ε0 to rewrite Eq. (2.101) as:

Ĥ =
∑
k

[a†kε0ak + b†kε0bk + c†kε0ck + a†ktf(k)bk

+ b†ktf(k)∗ak + b†ktf(k)ck + c†ktf(k)∗bk], (2.102)
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with the geometric structure factor being f(k) =
∑3

n=1 e
ik·dn or, explicitly:

f(k) =
[
eikxa + 2e−ikxa/2 cos(kya

√
3/2)

]
. (2.103)

Rewriting Eq. (2.102) in a matrix form, one gets:

Ĥ =
∑
k

[
a†k b†k c†k

]
ε0 tf(k) 0

tf(k)∗ ε0 tf(k)

0 tf(k)∗ ε0



ak

bk

ck


=

∑
k

〈Ψk|H|Ψk〉. (2.104)

The corresponding energy bands of τ3-lattice are calculated by diagonalizing H in Eq.

(2.104) [see Fig. 2.4(e)], resulting in:

E0 = 0, (2.105)

E±(k) = ε0±t

√√√√3 + 2 cos
(√

3kya
)

+ 4 cos

(√
3kya

2

)
cos

(
3kxa

2

)
. (2.106)

2.7 Conclusion

We have shown how the TB model can be applied to the study of the electronic

band structure of several periodic structures. The model can be applied to a wide range

of systems, such as molecules, polymers, nanotubes and 2D and 3D crystals, and we

presented calculations for the energy spectrum for 2D systems with one, two and three

bands of energy. A nonzero overlap parameter showed to cause electron-hole symmetry

breaking of the energy spectrum and an energetic unbalance in the DOS with respect to

zero energy.

Furthermore, the results highlighted the fact that many of the distinct proper-

ties of these systems, such as the linear dispersion of electrons close to the Fermi level in

graphene and the flat band of τ3-lattice are mainly a consequence of the geometry of the

lattice and the number of non-equivalent sublattices. However, these spectra can be signif-

icantly modified by the inclusion of additional effects such as electron-electron interaction,

which can be introduced in a first approximation by the addition of a mean-field Hubbard

term in the Hamiltonian. Another possible addition to the model is the inclusion of the

spin-orbit coupling, which can lead to the formation of a gap in the spectrum. Moreover,

the model can be easily modified to deal with the presence of surfaces and edges. In
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that case, as the system loses translation symmetry along one direction, and also due to

possible on-site energies or hopping modifications due the absence of bonds, the model

may give rise to surface or edge localized states. These states have been intensively inves-

tigated in connection with topological effects in materials. A further modification is the

addition of lattice defects or impurities, which cause the formation of non-propagating

localized states. Each addition to the model increases the complexity of the calculations

necessary for obtaining the spectra, which can then be tackled by numerical approaches.



3 CURRENT MODULATION IN GRAPHENE P-N JUNCTIONS WITH

EXTERNAL FIELDS

In this Chapter, we describe a proposal for a graphene-based nanostructure

that modulates electric current even in the absence of a gap in the band structure. The

device consists of a graphene p-n junction that acts as a Veselago lens that focuses ballistic

electrons on the output lead. Applying external (electric and magnetic) fields changes the

position of the output focus, reducing the transmission. Such a device can be applied

to low power field effect transistors, which can benefit from graphene’s high electronic

mobility.

3.1 Introduction

The production of high-quality samples of graphene has allowed the investiga-

tion of charge transport in the ballistic regime at length scales much larger than in other

materials[11]. This fact has permitted the observation of effects such as Klein tunnel-

ing[19,20,63] and Fabry-Pérot oscillations[64–66] that point towards a striking similarity

between light propagation in waveguides and electronic transport in graphene. Due to

Klein tunneling, i.e. the perfect transmission through potential barriers, the confine-

ment of charge carriers in graphene can become a challenge. That fact limits the use

of graphene on logical device applications, due to the fact that one cannot in general

“turn off” the current. Some ways to circumvent that limitation are the use of graphene

nanoribbons[30,67–72], in which the geometry of the sample induces a lateral confinement

that can create a gap in the band structure. Other possibilities involve the use of graphene

bilayers, or the application of strain which can also give rise to a band gap[1].

It has been recently shown that an additional mechanism for controlling the

propagation of electrons in graphene without the creation of a band gap can be developed

in analogy with an optical counterpart, namely, phase modulation[73]. Optical phase

modulators make use of the electro-optical effect, in which a voltage can change the

67
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refractive index of a given medium. In the case of graphene, a similar effect can be

obtained by means of p-n junctions[2, 25, 74, 75]. Another similarity between electronic

transport in graphene and optics is the negative refraction of electrons incident on a p-n

junction[25, 75]. In photonic systems, a medium with a negative refraction index would

allow the development of devices such as superlenses which can focus light beams beyond

the diffraction limit[76]. The prospect of an optical superlens was first raised by V. G.

Veselago[24], who showed that in conditions where the electric and magnetic responses are

negative, the group and phase velocities presented opposite directions. For electrons in

graphene, theoretical[2, 63, 75, 77–84] and experimental works[21, 85–88] have shown this

effect, which can also be exploited to focus electron beams with high precision.

The ability to focus an electron beam on a small region of a graphene sample

suggests that a Veselago lens may allow the development of a current switch that can

be operated by properly applying an external (electric or magnetic) field. Thus, in this

Chapter we theoretically investigate a graphene-based device in which electrons emitted

from an input lead are focused by a p-n junction on an output lead, so that the overall

transmission amplitude and therefore the conductance of the device are increased. Ap-

plying an in-plane electric field or a perpendicular magnetic field acts to shift the position

of the focal point, increasing reflectance and thus significantly decreasing transmission.

The device bears some resemblance to the optical technique for imaging fluids known as

Schlieren photography[89], in which light from a collimated sourced is focused on a knife

edge that blocks half the incoming light, such that small changes in fluid density result

in large variations in image contrast.

This Chapter is organized as follows. In Section 3.2, we present the theoretical

framework used to describe the transport properties of the graphene-based current mod-

ulator as well as its operating characteristics. In Section 3.3, we discuss the numerical

results and analyze it within a semiclassical picture. Finally, in Section 3.4, we summarize

our main findings.

3.2 Model

Before describing the proposed nanostructure, let us briefly recall the propaga-

tion of an electronic plane wave through a potential step in graphene in order to elucidate

how a graphene p-n junction acts as focusing lens for electrons[2, 25,75].
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Figure 3.1: (a) Sketch of focusing effect of electrons in graphene across a potential step due to negative

refraction index. In region I (II) is applied a bias potential UI (UII). The incident and transmitted

electronic waves have momentum kI and kII and angles θI and θII formed with x-axis, respectively. (b)

Refraction index, given by Eq. (3.1), as a function of the electrostatic potential strength U0 and Fermi

energy εF , taking UI = 0 and UII = U0 for the bias potential in each junction region. (c) Schematic

representation of the proposed current modulator. In the region II at the right-half of the sample, a bias

potential with amplitude U0, an in-plane electric field F and a perpendicular magnetic field are inserted.

The electrons are injected into the scattering region by lead 0 in region I and can be collected by leads

1, 2 or 3. The square system length is W and the lead width is assumed as W/4.

Let us consider the system shown in Fig. 3.1(a) with different charge densities

on regions I (x < 0) and II (x > 0) induced by two gates that shift the Dirac cones

by UI and by UII , respectively. An electron approaching the junction from region I

reaches the interface with an incident angle θI and is transmitted to region II with

a transmission angle θII , where kI and kII are the respective wavevectors. Since the

system has translational symmetry along the y-direction, the transverse momentum (ky)

is conserved at the interface, such that |kI | sin θI = |kII | sin θII . From the Dirac equation

for biased graphene, we have the shifted dispersion relation εF (k) = s~vFk + Ui, where

s = +/− correspond to electrons/holes, respectively, i denotes the region index I and II,

and vF is the Fermi velocity. Connecting both equations, it implies in a similar Snell’s

law to ray optics where the energies here play the role of the refractive index:

n =
sin θI
sin θII

=
kII
kI

=
εF − UII
εF − UI

. (3.1)
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Note that when (εF − UII) (εF − UI) < 0, or equivalently when θI and θII have opposite

signs, one obtains a negative refractive index impling that the sign of the tangential

momentum component of the propagating electron changes while the normal component

remains the same. As a consequence, the incident electrons will converge into a focal

point on region II, as it happens in Veselago lens medium[2,25,75]. The refractive index

is shown in Fig. 3.1(b) as a function of the electrostatic potential strength U0 and Fermi

energy εF , for the system parameter ranges investigated along this Chapter and taking

UI = 0 and UII = U0 for the bias potential in regions I and II, respectively. It is easy to

see from Eq. (3.1) for UI = 0 and UII = U0 that: the negative (positive) refraction index

n < 0 (n > 0) happens when U0 > εF (U0 < εF ) such that the electron semiclassical

trajectories are expected to (converge) diverge with the p-n junction interface acting

as (convex) concave lens, while for U0 = εF one gets the n = 0 situation where the

transmission angle is zero and the electrons are perfect collimated. The blue, red and

white colors denote n < 0, n > 0 and n = 0 cases in Fig. 3.1(b). Therefore, there is

a direct analogy between propagated charge carriers through graphene p-n junction and

the light focusing observed in Veselago lens due to negative refraction index medium.

Motivated by this negative refractive effect on a graphene p-n junction, we

propose the nanostructure schematically illustrated in Fig. 3.1(c) as a current modula-

tor, as will be justified by the results discussed in Section 3.3. For this, we investigate

the transmission of these electrons through an abrupt biased graphene p-n junction, i.e.

graphene in the presence of a potential step created by electrostatic gates, and in addition

to that we include an in-plane electric field and a perpendicular magnetic field to tune the

electron focus and consequently to modulate the conductance. The energy spectrum for

this system was analytically studied in detail in Ref. [90], the transmission probability and

conductance in the absence of magnetic field for graphene p-n junction has been shown in

Refs. [2, 63, 74, 77, 80, 81, 84, 85], and in the presence of magnetic field has been reported

in Refs. [21, 77–79, 82, 83, 88]. Although in a more realistic experimental set-up the p-n

junction has a finite width, it has been shown[75] that smooth graphene p-n junctions

exhibit negative refraction and lensing similar to a sharp junction, as considered in the

current Chapter.

The system consists of a square graphene sample with lengthW . The in-plane

electric and magnetic fields are just applied in region II, i.e. on the right-half of the



71

sample (x > 0). For the sake of simplicity, we consider only nanoribbons with armchair-

type edges, although one expects the results are not qualitatively distinct from the zigzag

case, since we are not concerned with edge states for the transport properties. Indeed,

it has been shown in Ref. [74] that zigzag interface and armchair interface graphene

p-n junction exhibits qualitatively similar results. Moreover, the actual sample studied

throughout the Chapter is large enough such that the qualitative behaviors here reported

and the proof-of-concept of the proposed system as a current modulator, which are the

main goals of this Chapter, would still hold, since they are based on more fundamental

physical properties regarding the negative refractive effect of the proposed structure, as

we discuss bellow.

Four ballistic leads are added to the scattering region with two of them parallel

to the x-axis (leads 2 and 3 that cover the entire top and bottom boundaries), while the

other two leads are perpendicular to that direction (leads 0 and 1 that are narrow with

respect to the total system size in order to represent a point source and a focal point,

respectively). In this configuration, the electrons are injected into the scattering region

by lead 0 (left side of the sample) and can be collected by leads 1, 2 or 3, as shown in

Fig. 3.1(c). Leads 2 and 3 are included to prevent interference from electrons that do not

reach the region II of Fig. 3.1(c) and due to unintended reflections from the edges of the

sample.

In order to show that the proposed system works as a current modulator, we

shall calculate and discuss the probability current density and conductance as a function

of several parameters, such as: Fermi energy, potential step height, magnetic and electric

field amplitudes, and different widths of the scattering region. Our theoretical frame-

work is based on the Landauer-Büttiker formalism where the transport properties are

computed within the wave function approach[31] and by using the tight-binding model

within the nearest-neighbor approximation to describe the charge carriers in graphene.

The corresponding Hamiltonian can be written as:

HTB =
∑
i

(εi + Ui + Fi)c
†
ici +

∑
i 6=j

(τijc
†
icj + H.c.), (3.2)

where ci (c†i ) annihilates (creates) an electron in site i with on-site energy εi. τij = t =

−2.8 eV is the nearest-neighbor hopping parameter between the atoms in the A and B

sublattices. Ui and Fi are on-site potentials that are used here to simulate the p-n junction
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and to apply the in-plane electric field, respectively. The gate potential Ui consists of a

single step at x = 0: Ui = U0Θ(x), where Θ(x) is the Heaviside step function and U0

is the potential height. The in-plane electric field is applied along the y-direction, i.e.

F = (0,−Fy, 0), and is perpendicular to the propagation direction between leads 0 and

1. The effect of an external magnetic field is incorporated in the tight-binding model via

the Peierls substitution, as:

τij → τij exp

(
i
e

~

∫ i

j

A·dl
)
, (3.3)

where A is the vector potential associated with an external magnetic field B, that we

assume here to be perpendicular to the graphene flake, B = Bẑ.

All the transport calculations presented in this Chapter were performed using

the Kwant code, which is a free (open source) Python package for numerical calculations

on tight-binding models[31].

3.3 Results

In order to verify that the system works as a Veselago lens, we first calculate

the probability current density as shown in Fig. 3.2 for the graphene p-n junction system

sketched in Fig. 3.1(c) and show that the focal point moves by applying external fields:

perpendicular magnetic field in Figs. 3.2(b)-3.2(c) and in-plane electric field in Figs.

3.2(d)-3.2(e). Without loss of generality, we consider a symmetric junction with respect

to the scattering region size such that the injected and collecting leads are placed W/2

away from the interface at x = 0, and the Fermi energy as εF = U0/2 = 0.4 eV. We

assume the injected lead to be narrow enough in order to mimic a source point, whereas

the collecting lead here for these results was made larger to avoid backscattering and thus

a misleading understanding of the lensing process.

For the non-perturbed case [Fig. 3.2(a) for Fy = 0 and Bz = 0], the propagated

wave is focused symmetrically such that the focus spot is at the same height y as the source

lead. By applying a perpendicular magnetic field the current density vectors are seen to be

deflected (downwards since B points into the page) due to the Lorentz force, shifting the

focal point position, as depicted in Figs. 3.2(b) and 3.2(c) for magnetic field amplitudes

Bz = 0.2 T and Bz = 0.4 T, respectively. By comparing Figs. 3.2(b) and 3.2(c), one

can notice the focal position shift is larger the higher the magnetic field amplitude. This
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Figure 3.2: Probability current densities for the system shown in Fig. 3.1(c) for (a) the non-perturbed

case with Bz = 0 and Fy = 0, and under the effect of perpendicular magnetic field [with (b) Bz = 0.2 T

and (c) Bz = 0.4 T] and in-plane electric field [with (d) Fy = 0.25 mV/nm and (e) Fy = 0.5 mV/nm].

Plots are made using a very narrow input and a large output leads in order to mimic a source point and

to avoid backscattering when the focus position changes.

can be easily understood by the following semiclassical picture: from Lorentz force ma =

−ev×B, where e is the elementary charge, a and v are the acceleration and velocity of

electron, respectively, and knowing that the cyclotron effective mass depends on the band

structure via the derivative of this area in energy[91,92] such that for an isotropic energy

spectrum one has:

m =
~2

2π

d2A(ε)

dε2
, (3.4)

where A(ε) denotes the k-space area enclosed by a constant energy contour ε, one can

find the cyclotron radius as rc = |ε/(evFB)|. This shows that the cyclotron radius is

inversely proportional to the magnetic field and therefore the larger |B| the smaller is rc

and consequently the (x,y)-coordinates of the focal point vary more. A similar effect can

be achieved when an in-plane electric field is applied in the region II of the system, as

shown in Figs. 3.2(d) and 3.2(e) for F = (0,−Fy, 0) with Fy = 0.25 mV/nm and Fy = 0.5

mV/nm, respectively, such that the negative charge carriers are pushed upwards and the

focal point moved up along y-direction.

In both external electric and magnetic field cases discussed in Fig. 3.2, as

high the amplitude of the external field more further away the focal point is from the

output lead and consequently a decreasing in the conductance is expected. In order to

quantify how the conductance changes due to the external fields, we perform numerical
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calculations of the conductance between leads 0 and 1 as a function the electric [Fig.

3.3(a)] and magnetic [Fig. 3.3(b)] field amplitudes by considering the symmetric Veselago

lens case that means the focal spot is placed at the same distance from the p-n interface

as the injector. It corresponds to θI = −θII case, or equivalently the situation where the

Fermi energy must be half value of the potential step height, i.e. εF = U0/2, that means

n = −1 in Eq. (3.1). This symmetrical p-n junction implies that the number of electrons

injected by lead 0 and captured by lead 1 is the maximum that can be achieved for this

setup. The results shown in Fig. 3.3 were obtained for three different sample widths W ,

viz. 50, 100 and 150 nm, and taking εF = U0/2 = 0.4 eV.
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Figure 3.3: Conductance as a function of the electric (a) and magnetic (b) field amplitudes between leads

0 and 1 for sample width (blue curve)W = 50 nm, (yellow curve)W = 100 nm, and (red curve)W = 150

nm. It is taken εF = U0/2 = 0.4 eV, and for panel (a) Bz = 0 and for panel (b) Fy = 0.

In Fig. 3.3, one can notice that the conductance between leads 0 and 1 is

significantly reduced by the application of the external in-plane electric [Fig. 3.3(a)] and

perpendicular magnetic [Fig. 3.3(b)] fields, as expected based on the fact that focal spot in

region II of the sample is shifted in the y-direction a way from the collector (lead 1). As a

consequence, the electron beams are then scattered by the right boundary of the graphene

p-n junction and collected by the bottom and top leads 2 and 3, respectively, leading to a

current reduction between leads 0 and 1. Furthermore, one can verify from Fig. 3.3 that

the external field required to control the conductance depends on the system widthW , and

the larger the width considered the smaller the external field needed to obtain a significant

change on G0→1, as for instance in Fig. 3.3(a) G0→1 ≈ 0 for W = 150 nm with Fy ≈ 10

mV/mm, for W = 100 nm with Fy ≈ 15 mV/mm, and for W = 50 nm with Fy ≈ 20

mV/mm. Let us now understand this W dependence on the conductance. Note that: (i)

for the non-perturbed case with Bz = 0 and Fy = 0, the conductance is larger the wider the
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system, i.e. G0→1(W = 150 nm) > G0→1(W = 100 nm) > G0→1(W = 50 nm); (ii) due to

the finite system along y-direction the sample can be seen as a large armchair nanoribbon

with ribbon width W which in turn resembles a potential well in y-direction; and (iii)

for graphene nanoribbons[30, 67–70], as the width W increases there are more localized

states for a fixed energy range and the energy levels become closer. Therefore in general

for larger systems there are more transverse electronic modes available to contribute to

transport and thus the conductance is larger the wider the width W . Although the

qualitative behavior of conductance as a function of external electric and magnetic fields

are similar, in the case of non-zero magnetic field the minimal conductance obtained is

larger than the minimal conductance for the electric field case. For instance the minimal

conductance in units of e2/~ for W = 150 nm and W = 100 nm in the presence of electric

field [panel (a)] are 0.113 and 0.098, respectively, while for non-zero magnetic field [panel

(b)] are 0.483 and 0.284, respectively.

Let us now analyze the influence of the potential step height on the conduc-

tance between leads 0 and 1. Fig. 3.4 shows the conductance as function of U0 for the

same three different sample widths described above: [Fig. 3.4(a)] W = 50 nm, [Fig.

3.4(b)] W = 100 nm, and [Fig. 3.4(c)] W = 150 nm, in the absence of any external field

(black curve for Bz = 0 and Fy = 0), and in the presence of an in-plane electric field

(magenta curve for Fy 6= 0) and an out-of-plane magnetic field (orange curve for Bz 6=
0). In particular, for non-zero external field it was assumed the approximated values of

the electric and magnetic field amplitudes associated to the minimal conductance shown

in Fig. 3.3, such as, e.g. for finite electric (magnetic) field and for W = 50 nm the value

Fy = 20 mV/nm (Bz = 1.5 T), for W = 100 we use Fy = 15 mV/nm (Bz = 1.0 T) and

for W = 150 nm, Fy = 10 mV/nm (Bz = 0.5 T).

One can notice from Fig. 3.4 that the conductance exhibits an asymmetric

behavior with respect to (U0 = εF )-axis, i.e. there are two different trends: for U0 < εF

and U0 > εF , where it was taken εF = 0.4 eV. From Eq. (3.1) and its analysis discussed in

Section 3.2, the nature of the two different conductance regimes is related to the different

signs of the refraction index, being positive and negative for U0 < εF and U0 > εF ,

respectively. In the negative (positive) refraction index regime, one can observe an increase

(a decrease) of conductance with the gate potential increase in Fig. 3.4. This, in turn, is

related to the fact that the value of the refraction index will dictate the focal spot position,
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Figure 3.4: Conductance between leads 0 and 1 as a function of the potential step height U0 in the absence

of any external field (black curve for Bz = 0 and Fy = 0), and in the presence of an in-plane electric field

(magenta curve for Fy 6= 0) and an out-of-plane magnetic field (orange curve for Bz 6= 0). Panels (a),

(b) and (c) correspond to sample width W = 50 nm, W = 100 nm, and W = 150 nm, respectively. It is

taken εF = 0.4 eV.

since depending on its value the electron beams will be perfectly collimated, or converge

or diverge after reaching the interface, and therefore a portion of the injected electrons will

be captured or not by the output lead and also determinating the conductance amplitude.

From Eq. (3.1) and by a simple geometry analisis of electronic trajectory sketched in Fig.

3.1[74], one can predict the x-position of the focal spot, as:

xfocal =
W

2

∣∣∣∣ tan θI
tan θII

∣∣∣∣ , (3.5)

where the transmitted angle for investigated potential step with UI = 0 and UII = U0 is

given by:

θII = arcsin

[(
εF

εF − U0

)
sin θI

]
. (3.6)

As expected for the symmetric case, one has θI = −θII and thus one can find xfocal =

W/2. From Eqs. (3.5) and (3.6), one can realize that: the position of the focal spot

depends on the gate potential value, the Fermi energy and the incident angle; and the

transmission increases as xfocal approaches the output lead. Moreover, once that we

assumed a symmetrical graphene p-n junction, the maximum G0→1 value in the absence

of any external field (black curves in Fig. 3.4) is achieved for U0 ≈ 2εF = 0.8 eV, i.e. for

n = −1, while for the range εF < U0 < 2εF one has −1 < n < 0 with the focal x-position
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not being diametrically opposite to input lead but it will be tending to the symmetric

position as n tends to −1, and thus explaining the G0→1 increasing up to its maximum

value at U0 ≈ 2εF .

In addition, from Fig. 3.4, one can note that although there is a significant re-

duction in conductance with the application of the in-plane electric field (magenta curves),

with the application of the perpendicular magnetic field (orange curves) there is a less

significant reduction. Most importantly for our purpose of an efficient device operating

on the negative refraction index regime, is that regardless of the sample width or even the

kind of the applied external field (electric or magnetic) the conductance G0→1 is reduced.

Although not shown, it is easy to see that as the conductance between leads 0 and 1

increases, the conductance between leads 0 and 2 and between leads 0 and 3 decreases

proportionally. It is important to emphasize that the interplay between the external mag-

netic field in region II (x > 0) and the bias gate induced by the p-n junction will favor

a high conductance for a certain small energy range when U0 < εF as a consequence of a

maximized focusing of the divergent beam due to n > 0 and the circular orbit due to B

field, that brings the focal point closer to the output spot[93]. Such behavior can be seen

by orange curves in Figs. 3.4(a), 3.4(b) and 3.4(c) for U0 ∈ [0.05, 0.1] eV that exhibits

conductance peaks higher than those ones for null magnetic field case.

Next, we study the dependence of the conductance on the Fermi energy for a

fixed potential step height U0 = 0.8 eV and under the influence of external fields regarding

three different sample widths. The results are shown in Fig. 3.5 for the same parameters

as in Fig. 3.4.

For Bz = 0 and Fy = 0 (black curves), a pronounced peak arises in the

conductance at the same position εF = U0/2 = 0.4 eV regardless of the sample width

[see the same behavior in three panels 3.5(a)-3.5(c)]. This is a direct consequence of the

negative refraction induced by the Veselago lens property in graphene p-n junction. Let

us examine the symmetric nature of the conductance with respect to the (εF = U0/2)-

axis. In the investigated Fermi energy range 0 ≤ εF ≤ U0 in the plots of Fig. 3.5,

one has by Eq. (3.1) that n < 0. One can split the energy range as follows: for 0

≤ εF ≤ U0/2, the refractive index is n ≤ −1, whereas for U0/2 < εF ≤ U0, one has

that −1 < n ≤ 0. It is interesting to mention that for n < −1 and −1 < n ≤ 0 the

semiclassical electronic trajectories are caustics, which are the envelope of the classical
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Figure 3.5: Conductance between leads 0 and 1 as a function of the Fermi energy εF in the absence of

any external field (black curve for Bz = 0 and Fy = 0), and in the presence of an in-plane electric field

(magenta curve for Fy 6= 0) and an out-of-plane magnetic field (orange curve for Bz 6= 0). Panels (a),

(b) and (c) correspond to sample width W = 50 nm, W = 100 nm, and W = 150 nm, respectively. It is

taken U0 = 0.8 eV.

trajectories, with cusp points shifted in x-direction for left and the right with respect

to the symmetric case where n = −1[84]. Thus, based on this classical picture, it is

evident that the displacement of the focal spot in x-direction will cause a reduction in

the conductance. As discussed previously, the maximum conductance is obtained in the

symmetric situation when εF = U0/2 or equivalently when θI = −θII and n = −1. Thus,

for lower or higher Fermi energies than U0/2 the conductance is lower than its maximum

value. Other relevant case to analyze is when εF = U0. By replacing εF = U0 in Eq.

(3.1), one obtains that θII = 0, that means the electron beams are perfected collimated

in region II. If instead of a finite focal spot, one considers a focal point for the output

lead, thus, in this case where εF = U0, just the electrons with normal incidence would

be captured by the output lead, explaining the lowest conductance value at εF = 0.8 eV

in Fig. 3.5. Based on these statements, it suggests that the conductance curve should

decrease between the symmetric situation (εF = U0/2) that is a maximum point and the

perfected collimation situation (εF = U0) that corresponds to a minimum.

With the application of an in-plane electric field (magenta curves in Fig. 3.5),

the conductance is strongly reduced and its maximum is pushed to the energetic range 0 ≤
εF ≤ U0/2, while the conductance is almost zero and unchanged by increasing the Fermi
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energy within the range U0/2 < εF ≤ U0. For instance, in Fig. 3.5(c) for W = 150 nm,

the conductance is reduced of approximately ten times as compared to the zero in-plane

electric field case. On the other hand, by applying a perpendicular magnetic field (orange

curves in Fig. 3.5) there is a slight reduction in conductance but not so pronounced as

for non-zero electric field case. This is in agreement with the discussion made in Fig. 3.4

about the influence and robustness of the electric and magnetic field on the conductance.

Moreover, by comparing the orange curves in Figs. 3.5(a), 3.5(b) and 3.5(c), one can see

that the region of the pronounced conductance reduction goes to higher energies for larger

samples. This is due to the fact that the thinner the nanoribbon, fewer lower energy states

will have an orbit that fits in the sample and thus be deflected towards the focus point,

since in the presence of a magnetic field the electron beam is bent with a cyclotron radius

that is (in)directly proportional to the Fermi energy (the magnitude of the magnetic field

B). On the other hand, the electronic orbits for high energy values will be reflected at

the edges and interfere themselves, and thus resulting in a reduction of the conductance

G0→1.

3.4 Conclusion

We proposed a current modulator-like device model based on the Veselago

lensing effect in graphene p-n junction. The operating principle of this device is connected

to the fact that Dirac electrons passing through graphene p-n junction at specific energy

are transmitted with a negative angle and thus converge on the other sample side at

the focal point. This is due to the negative refraction index merged from the energy

difference ratio between the Fermi energy and bias potential in the two regions of this

junction and therefore the optic-like Dirac electron behavior in a graphene p-n junction

is analog of a Veselago lens. We demonstrated that an in-plane electric field or an out-

of-plane magnetic field move the electronic focal spot further way from the output lead

and consequently tune the current transmission between the input and output leads. For

the proof-of-concept that the proposed device can work as a current modulator and for

its transport properties quantification, we investigated the behavior of the probability

current density and conductance, by using the Landauer-Büttiker formalism within the

tight-binding approach, as a function of the electric and magnetic field amplitudes, the

Fermi energy, the system size, and the potential step height. Our findings show that the
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application of the external fields to this system can reduce significantly its conductance

even for low power fields. Finally, we hope that our results and the proposed nanostructure

will prove useful for designing graphene-based current modulator like optical devices that

works even in the absence of a gap in the graphene band structure and in low power field

regime.



4 GATE POTENTIAL-CONTROLLED CURRENT SWITCHING IN GRAPHENE

Y-JUNCTIONS

In this Chapter, we investigate the ballistic transport of electrons through

three-terminal graphene-based devices. The system consists of a Y-shaped junction

formed by three armchair-edged graphene nanoribbons with a rectangular gate poten-

tial applied to one of the output branches, whereby current control can be established by

the controlling of the refractive index in graphene p-n junctions. Transport properties are

obtained by using the Landauer-Büttiker formalism and the tight-binding model within

the nearest-neighbor approximation, which allows the calculation of the conductance as

function of the Fermi energy, the applied potential, and the system size, as well as the cur-

rent density. The results demonstrate that the applied electric field can tune the current

transmission between the input and two output leads and, consequently, the proposed

system acts as a current switch.

4.1 Introduction

Semiconductor materials are widely used in the production of several electronic

devices, being the basis of the microelectronics industry. When first introduced, these

electronic devices provided advantages in comparison with previous technologies, such as

reasonable performance, energy-saving, low cost of manufacturing, compacting electronic

components, as well as the possibility of large scale integration. However, the silicon-

based semiconductor technology is close to reach its limit in miniaturization[94], which

has led many researches to search for alternatives beyond the standard semiconductors to

develop novel and more efficient quantum devices.

The past two decades, since the experimental isolation in 2004 by Novoselov

et al.[8], graphene has been shown to be a promising material due to its exceptional

electronic and transport properties and therefore graphene-based structures have been a

subject of growing interest of the scientific community. Graphene has peculiar electronic

81
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properties, exhibiting a linear energy dispersion with charge carriers that can be described

by the 2D Dirac equation for massless fermions. In particular, unusual behaviors such

as: semi-integer quantum Hall effect[61], ballistic electrons propagation[32,95], and Klein

tunneling[19] (a perfect transmission of normally incident electrons through gate potential

barriers) are observed in graphene structures. There have been efforts to circumvent the

Klein tunneling phenomenon to possibly manufacture a field-effect transistor for logic ap-

plications such as manipulation in the energy gap[26] or design new types of circuits[22],

that promises to overcome the limitation of the current semiconducting materials. A rele-

vant feature of graphene for technological applications in electronic devices is its ultrahigh

electronic mobility that can significantly improve the performance of electronics including

various transistors and detectors, providing a performance advantage in comparison to

standard semiconductors, as for instance it allows the production of transistors operating

in a scale of less than 10 nm, considered the operation limit of silicon-based devices[96,97].

Quantum transport with phase coherence in low-dimensional multi-terminal

structures has been subject of experimental[98–103] and theoretical[43, 104–106] studies.

Three-terminals ballistic junctions are well-known examples of ballistic devices[107–112],

as for instance, electronic rectifications in Y-shaped carbon nanotubes that have been ex-

perimentally[113–115] and theoretically[116] demonstrated, as well as based on graphene

junctions[117, 118]. These structures have demonstrated a great potential towards the

development of electronic nanodevices with properties such as voltage rectification and

frequency multiplication[119], logic gates[120], switches[121], and others[91]. Based on

studies that demonstrate the ballistic nature of the electronic transport in graphene nanos-

tructures, we have considered a Y-shaped three-terminal ballistic junction structure made

of armchair-edged nanoribbons in order to analyze the electronic transport properties, and

to demonstrate its possible application in high-performance switches. The physical system

has a rectangular gate potential in the output branch which is applied to obtain steering

and collimation of the current. Recently, an experimental study was conducted[122] for

a similar three-terminal quantum switch based on tunable Dirac fermion optics and that

utilizes explicitly the angle dependence of Klein tunneling to build tunable collimators

and reflectors for the quantum wave function of Dirac fermions.

This Chapter is organized as follows. In Section 4.2, we briefly present the

theoretical framework used to describe the transport properties as well as the operating
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characteristic of the proposed graphene-based electronic device. In Section 4.3, we discuss

the numerical results in the context of a semiclassical picture based on the quantum-optic-

like analogy of the refractive index. Finally, we summarize our main findings and draw

some perspectives in Section 4.4.

4.2 Model

Let us now describe the system and the theoretical framework used to com-

pute the electronic transport properties. Motivated by the possibility of adjusting the

refractive index in graphene p-n-p junctions by applying a gate potential, we propose the

nanostructure schematically illustrated in Fig. 4.1 as a current switch.

Figure 4.1: Schematic representation of the proposed three terminal graphene-based current switch.

The Y-shaped device is formed by three armchair-edged graphene nanoribbons with width W and an

electrostatic barrier with length L in one of the output branches. In yellow region I (gray region II) is

applied a gate potential UI = 0 (UII = U). The electrons are injected into the scattering region by lead

0 and can be collected by leads 1 and 2. The black arrows represent the classical trajectories of electrons

with incident and transmitted electronic momenta kI and kII and angles θI and θII , respectively.

To demonstrate it, we investigate the transmission of electrons through the

two output branches and verify the current modulation by the application of a potential

barrier in one of the output branches. The physical system consists of a three terminal

junction in which the three branches are formed by graphene nanoribbons with width W .

For the sake of simplicity, most of the results discussed in this work is shown for the system

composed by graphene nanoribbons with armchair-type edges. As we shall demonstrate

later in the next Section and also already expected, the results here obtained for armchair
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edges are not qualitatively distinct from the zigzag case. Similarly, it has been reported

in Ref. [74] that zigzag interface and armchair interface graphene p-n junctions exhibit

qualitatively similar results for the cases of two-terminal and four-terminal devices. In

addition to the setup, a gate potential is applied in the region II with barrier length L

(shaded gray box region in Fig. 4.1), in the branch connected to lead 1. As shown in

Fig. 4.1, the system has three ballistic leads attached to the scattering region, and the

electrons are injected into the scattering region by lead 0 (left side of the sample) and

can be collected by leads 1 and 2 (right side of the sample). Since both the leads and

the scattering region are made out of graphene and also for the conductance calculations

the size of the leads is the same as the sample, thus the contact resistance is null in this

case[123]. Due to the recent achieved high experimental engineering control in microscopic

scale, which in turn allows to design more and more complicated quantum device such

as the three-terminal system reported in Ref. [122] formed by several local gates with

predetermined shapes, one expects the simple theoretical scheme investigated here with

one gate potential in one of its branches is feasible for experimental realization.

In order to show current switching, we shall calculate the probability current

density, the conductance (G) as a function of the following parameters: Fermi energy

(εF ), gate potential height (U), and gate potential length (L), and the drain current

(ID) as a function of the gate voltage (V ). The theoretical framework is based on the

Landauer-Büttiker’s formalism where the transport properties are computed within the

wave function approach[31] and by using the tight-binding model with nearest-neighbor

approximation to describe the charge carriers in graphene. The corresponding Hamilto-

nian can be written as:

HTB =
∑
i

(εi + Ui)c
†
ici +

∑
i 6=j

(τijc
†
icj + H.c.), (4.1)

where ci (c†i ) annihilates (creates) an electron in site i with on-site energy εi. τij = t =

−2.8 eV is the nearest-neighbor hopping parameter between the atoms in the A and B

sublattices and Ui is the on-site potential that represents the p-n-p junction, which will

be non-zero only for the atomic sites in region II in Fig. 4.1.

It is worth mentioning that the assumed lattice structure is undeformed with

the same interatomic distance a = 0.142 nm between all the carbon-carbon bonds and

no previous molecular dynamics simulations and relaxation analysis were performed be-
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fore the transport calculations showed here, i.e. the monolayer graphene lattice structure

considered here is a periodic unstrained thermalized structure. Some works reported in

literature[124–127] show thermomechanical properties and phonon spectrum of monolayer

graphene sheet via molecular dynamics simulation. Concerning the proposed system under

investigation, it is also important to mention that it is formed by graphene nanoribbons

with unpassivated edges. Wang et al.[128] in 2007 investigated the effects of chemical

edge modification in graphene nanoribbons by a phenomenological hopping parameter

for nearest-neighbor hopping to represent various chemical edge modifications and Lu et

al.[129] in 2009 studied the hydrogen passivation of edges of armchair graphene nanorib-

bons. Both works analyzed the consequences of the chemical changes of the edges in

graphene nanoribbons on their electronic properties using first-principles method. Struc-

tural lattice modification induced by chemical passivation results in increments of the

carbon-carbon bonds and bonding angles for the atomic sites at the nanoribbon edges

and consequently one expects changes in the graphene nanoribbon band structure. They

showed that, in fact, the energy spectra and the band gap of graphene nanoribbons are

modified and even a metal-to-insulator transition can be observed in armchair graphene

nanoribbons.

From the hopping matrix and the eigenfunctions calculated numerically by

diagonalizing Eq. (4.1), one can obtain the probability current density within the tight-

binding model. It is obtained using the method developed in Refs. [130–133], where

one defines the probability current J in terms of the continuity equation and, after some

calculations, one obtains the current components in x and y directions for each site, which

is defined by its line (i) and column (j) position in the lattice, as:

Jx(i, j) = ±a
~

[2Im(Ψi,jΨ
∗
i,j±1τi,j±1)− Im(Ψi,jΨ

∗
i−1,jτi−1,j)− Im(Ψi,jΨ

∗
i+1,jτi+1,j)], (4.2)

and:

Jy(i, j) =

√
3a

~
[Im(Ψi,jΨ

∗
i+1,jτi+1,j)− Im(Ψi,jΨ

∗
i−1,jτi−1,j)], (4.3)

where the ± sign in Jx will be positive (negative) if the (i, j)-site belongs to the sublattice

A (B).

All the transport calculations presented in this Chapter were performed using

the Kwant code, which is a free (open source) Python package for numerical calcu-

lations on tight-binding models[31], and in which has the mentioned functions already

implemented on its internal code.
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The operating principle of the device is connected with the optic-like analogy

of Dirac electrons in a graphene p-n junction[2,43,74,75]. Let us briefly recall an electronic

plane wave propagation through a potential step in graphene, i.e. a graphene p-n junction

with different charge densities. For this, let us assume that the regions I and II are

induced by two gate potentials that shift the Dirac cones by UI and UII , respectively, and

such that an electron incident at the interface with angle θI is transmitted with angle

θII , where kI and kII are the respective wavevectors (see Ref. [43]). Since the system

has translational symmetry along the direction parallel to the interface, the transverse

momentum is conserved at the interface, such that kI sin θI = kII sin θII . From Dirac

equation for biased graphene, we have the shifted dispersion relation εF (k) = s~vFk+Ui,

where s = +/− correspond to electrons/holes, respectively, i denotes the region index I

and II, and vF is the Fermi velocity. Connecting both equations, it implies a relation

similar to Snell’s law to ray optics where Fermi energies are equivalent to the refractive

indices in each region[2, 19]:

n =
sin θI
sin θII

=
εF − UII
εF − UI

. (4.4)

Depending on the ratio between the Fermi energy and the applied potentials, one can

get configurations in which the p-n junction interface acts as a convex or a concave lens,

such that the electron semiclassical trajectories are expected to converge or diverge by

passing the gate potential interface, respectively. It happens when the refraction index is

negative (n < 0) or positive (n > 0), that for the case where UI = 0 and UII = U one

easily sees from Eq. (4.1) that it corresponds to U > εF and U < εF , respectively. On the

other hand, for U = εF one gets the n = 0 situation where the transmission angle is zero

and the electrons are perfect collimated. Moreover, note from Fig. 4.1 that the negative

refractive index is obtained when θI and θII have opposite signs, or equivalently when

the sign of the tangential momentum component of the propagating electron changes

while the normal component remains the same. As a consequence, the incident electrons

will converge into a focal point in a similar way as it happens in a Veselago lens for ray

optics[2, 75]. This optic-like direct analogy between propagated charge carriers through

graphene p-n-p junction and the light trajectory is behind the operating principle of our

proposed device that, in turn, is linked to the refractive index medium controlled by a

gate potential, as will be discussed more in next Section.
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4.3 Results

We start by assuming the symmetric case in which all the branches of the

three-terminal device are exactly the same. Later, we shall consider the asymmetric case

and demonstrate that the main qualitative features of the results do still hold, as one

expects since it is based on the fundamental physical property regarding the negative

refractive effect of the proposed structure, as we discuss next. The proposed device acts

as a gate potential-controlled current switch, as discussed in Section 4.2. The probability

current density of the nanostructure is shown in Fig. 4.2. We use graphene nanoribbons

with widths W = 50 nm, where lead 0 is the electron injector, with appropriately chosen

Fermi energies, and leads 1 and 2 are collectors. For the non-perturbed case, i.e., without

external fields, the current is symmetrically divided in both output branches, as seen in

Fig. 4.2(a). This is expected because the physical system is symmetrical in relation to

x-axis. Three regimes of deflection are observed when we take a rectangular potential

barrier (by adjusting the height as U = 0.5 eV and length as L = 44 nm) in one of the

output branches, taking different values for the Fermi energy, as seen in Figs. 4.2(b)-

4.2(d). When the refractive index is negative (εF < U), it is possible to observe a partial

reflection regime, as in Fig. 4.2(b). However, when εF = U , a null refractive index is

achieved, and we have a total reflection regime [see Fig. 4.2(c)]. A partial reflection

regime is also observed when the refractive index is positive (εF > U), as shown in Fig.

4.2(d).

As seen in Fig. 4.2, one can control the number of Dirac electrons that pass

through the two output branches using a gate potential forming a p-n-p junction. To

quantify the switching of electron flow between the two output branches for the same

system parameters as in Fig. 4.2, we show in Fig. 4.3 the dependence of the conductance,

[panel 4.3(a)] G01 between the input lead 0 and output lead 1 and [panel 4.3(b)] G02

between the input lead 0 and output lead 2, on the Fermi energy for fixed potential

barrier amplitudes. As expected for the symmetric system with U = 0, one has G01(εF ) =

G02(εF ), as shown by the blue curves in Figs. 4.3(a) and 4.3(b). For U 6= 0, one observes

three different conductance regimes for G01(εF ) and G02(εF ) with respect to the energy

ranges 0 ≤ εF ≤ U/2, U/2 < εF ≤ U and U < εF , that are linked to the refractive

index of the n-p-n junction to be n ≤ −1, −1 < n ≤ 0, and n > 0, respectively. Such

nature of the conductance G01(εF ) related to the different signs of the refraction index
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Figure 4.2: Probability current densities for the system shown in Fig. 4.1 for (a) the non-perturbed case

(U = 0), and under the effect of a gate potential U = 0.5 eV for Fermi energy values (b) εF = 0.25 eV,

(c) εF = 0.5 eV, and (d) εF = 0.75 eV. It is taken W = 50 nm and L = 44 nm. The shaded gray region

in bottom output lead represents the potential barrier with barrier high U .

will be discussed later in detail in this Section. Note that for εF = U (i.e. n = 0),

regardless the potential value U > 0, the conductance G01 has a minimum, being in

accordance to the fact that this situation represents the maximum deflection as shown in

Fig. 4.2(c). As a consequence of these three different regimes with respect to the Fermi

energy ranges, the conductance G02 displays approximately increasing monotonic curves

with three different slopes, being the higher the G02 value the lower the conductance G01,

as intuitively expected. Therefore, the ratio G02/G01 depicted in Fig. 4.3(c) shows peaks

at εF = U for each fixed potential configuration.

Hereafter, we shall discuss only the conductance G01, since it can be easily

seen that the portion of the injected electrons not collected by lead 1 will be captured by

the output lead 2 or back-scattered to the input lead 0. In order to verify the validity and

robustness of the finding results with respect to the edge-type, we depict in the bottom

panels of Fig. 4.3 the conductance plots for (d) G01, (e) G02, and (f) G02/G01 for the

same system parameters as in panels (a), (b) and (c), respectively, by considering now the

device composed by graphene nanoribbons with zigzag edges, instead of armchair ones as

assumed along the entire work. By comparing the results for the armchair (top panels)
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Figure 4.3: Conductance (a, d) G01 between leads 0 and 1, (b, e) G02 between leads 0 and 2, and (c,

f) ratio G02/G01, as a function of the Fermi energy εF for the same system parameters as in Fig. 4.2

and taking different gate potential heights: U = 0 (blue curve), U = 0.25 eV (yellow curve), U = 0.5 eV

(black curve), and U = 0.75 eV (magenta curve). Top and bottom panels correspond to results for the

system composed by three (a, b, c) armchair and (d, e, f) zigzag graphene nanoribbons.

and zigzag (bottom panels) cases, one notices that there is a good qualitative agreement

between them, showing that the device proposal brought up here is independent of the

type of edge chosen for the nanoribbons.

Let us next analyze the conductance G01 as a function of the gate potential

height to different widths (W ) at length (L) fixed, and distinct lengths (L) at width (W )

fixed, as shown in Figs. 4.4(a) and 4.4(b), respectively. Taking a fixed Fermi energy εF =

0.5 eV and varying the gate potential height from 0.0 to 2εF , it is possible to observe that

the minimum conductance increases to large W [see Fig. 4.4(a)], and decreases to large

L [see Fig. 4.4(b)]. This behavior can be understood by a simple quantum confinement

picture for a scattering problem of electrons passing through/back a rectangular potential

barrier: (i) as the width W increases, i.e. for larger systems since here it corresponds to

larger Y-junction branches widths, there are more transverse electronic modes available

to contribute to transport and thus the conductance is larger the wider the width W ;
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and (ii) as L increases, it is well-known from basic quantum mechanics that transmission

becomes smaller, decaying exponentially as function of the barrier length when the barrier

length exceeds the tunneling length that is, in turn, associated with the inverse of the

wavelength of the states within the barrier.
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Figure 4.4: Conductance between leads 0 and 1 as a function of the gate potential height for (a) different

sample width: W = 25 nm (magenta curve), W = 50 nm (yellow curve), and W = 75 nm (black curve),

with a fixed barrier length L = 44 nm, and for (b) different potential barrier lengths: L = 22 nm (magenta

curve), L = 44 nm (yellow curve), and L = 88 nm (black curve), with a fixed ribbon width W = 50 nm.

It is taken εF = 0.5 eV.

This understanding of the minimum conductance G01 behavior as a function

of W and L is relevant in order to achieve a maximum efficiency of the proposed device

operating as a current switch, such that the ideal situation is G01(U = εF ) → 0 that

happens when L is large andW is small. In addition, one could also associate its increasing

and decreasing with the W and L increasing, respectively, with the standard Landauer

conductance relation for large ballistic conductors that recovers the familiar Ohm’s law

that says thatG∝W andG∝ 1/L[123]. Far from the (εF = U)-value, one can notice from

Fig. 4.4 that the conductance G01 increases, and consequently more and more electrons

pass through the barrier and are collected by the lead 1. Such conductance presents an

asymmetric behavior in relation to (U = εF )-axis (see Ref. [43]), where two different

trends are observed for U < εF and U > εF . From Eq. (4.4), the nature of those two

different conductance regimes is related to the different signs of the refractive index, being

positive and negative for U < εF and U > εF , respectively. In the negative (positive)

refractive index regime, a decreasing (an increasing) tendency of the conductance G01 with

the gate potential height is observed, and consequently an opposite regime is expected

to occur for the conductance G02. For a positive refractive index regime (U < εF ),
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it is possible to see a smoother shape of the conductance, in contrast with the large

oscillations that occur in the negative refractive index regime (U > εF ). The amplitude

of these oscillations (see U > 0.6 eV) is greater the larger as L increases. This can be

explained by simple geometry analysis of the semiclassical electronic trajectories, since as

L increases there are more reflections by the boundaries into the barrier region, leading

to more interference, and thus oscillations similar to Fabry-Pérot resonances are seen (see

more details in Ref. [134]).

Let us now consider the conductance G01 as a function of Fermi energy (εF )

for three different gate potential widths (W ) at a fixed length L = 44 nm [being the same

parameter assumed in Figs. 4.1, 4.3 and 4.2(a)], as well as a function of the potential

barrier length (L) for three distinct Fermi energies at a fixed width W = 50 nm, as

depicted in Figs. 4.5(a) and 4.5(b), respectively. As already discussed for Fig. 4.3(a),

the results of Fig. 4.5(a) for the conductance as a function of εF show: (i) three different

regimes for G01(εF ) with respect to the energy ranges 0 ≤ εF ≤ U/2, U/2 < εF ≤ U

and U < εF , corresponding to the refractive index regimes n ≤ −1, −1 < n ≤ 0, and

n > 0, respectively; (ii) a pronounced peak in the conductance at the same position

εF = U/2 = 0.25 eV, or equivalently when θI = −θII and thus n = −1, regardless of

the sample width, being a consequence of the negative refraction induced by Veselago

lens property in a graphene p-n-p junction[43] that makes the electronic trajectories to

be convergent in the electrostatic junction and thus reducing the reflection at branch

boundary; (iii) a minimum in the conductance G01 at εF = U = 0.5 eV, regardless of

the sample width. Notice that, by replacing εF = U in Eq. (4.1), we obtain θII = 0

and n = 0, which means that the electron beams have almost completely deviated to

the branch connected to lead 2; (iv) an almost monotonic increasing behavior of the

conductance with Fermi energy for εF greater than the minimum conductance.

For the analysis of the conductance dependence on the gate potential length

shown in Fig. 4.5(b), we assumed a gate potential height U = 0.5 eV and width W = 50

nm. One observes a pronounced reduction in the conductance already for small values

of L with its minimum being dependent on the chosen Fermi energy. For εF = U = 0.5

eV [yellow curve in Fig. 4.5(b)] that corresponds to the n = 0 case, the conductance

in units of e2/h scales as ≈ A/(L + B), with the fitting constants being A ≈ 0.9912

and B ≈ −0.9293, and it tends to zero the larger the potential barrier length L. As
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Figure 4.5: Conductance between leads 0 and 1 as a function of (a) Fermi energy and (b) potential barrier

length. In panel (a) it is assumed three different system widths: W = 25 nm (magenta curve), W = 50

nm (yellow curve), and W = 75 nm (black curve), with a fixed potential barrier length L = 44 nm. In

panel (b) it is considered three different Fermi energies: εF = 0.25 eV (magenta curve), εF = 0.50 eV

(yellow curve), and εF = 0.75 eV (black curve), with a fixed system width W = 50 nm. It is taken

U = 0.5 eV.

previously discussed for Fig. 4.4(b), the larger L the more efficient the device, since it

will be able to completely turn off the current between the leads 0 and 1. Therefore, Fig.

4.5(b) emphasizes that the most favorable configuration of the device is for large potential

barrier length L. This decaying tendency for G(εF = U) → 0 does not occur for εF > U

or εF < U . Note, by the black (magenta) curve for εF = 0.75 eV > U (εF = 0.25 eV < U)

corresponding to the positive (negative) regime in the refractive index, that for L > 10

nm the conductance reaches an approximately constant non-zero average value, being

this threshold greater for εF > U (see black curve) case than for εF < U (see magenta

curve). As shown in Figs. 4.1(b) and 4.1(d) for εF = 0.25 eV < U and εF = 0.75 eV > U ,

respectively, both situations for n < 0 and n > 0 lead to a partial reflection regime and

thus the conductance G01 is larger than for the case n = 0.

In order to determine the change between drain current regimes, that is, to

estimate how fast the physical system changes from one regime to another related to

U < εF , U = εF and U > εF energy ranges, we calculate the logarithm of the drain

current as a function of gate voltage for different potential barrier widths and lengths, as

shown in Figs. 4.6(a) and 4.6(b), respectively, by taking the same system parameters as

in Fig. 4.4. The calculation is performed by taking the linear response formula limit that

allows to write log(ID/I0) = log(V ) + log(G), where I0 = 2e2/h[22].

Figs. 4.6(a) and 4.6(b) exhibit a distinct approximate linear slope of the drain
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Figure 4.6: Logarithm of the drain current (in units of I0 = 2e2/h) as a function of the gate voltage

for (a) different system widths: W = 25 nm (magenta curve), W = 50 nm (yellow curve), and W = 75

nm (black curve), with a fixed potential barrier length L = 44 nm, and (b) different potential barrier

lengths: L = 22 nm (magenta curve), L = 44 nm (yellow curve), and L = 88 nm (black curve), with a

fixed system width W = 50 nm. It is taken εF = 0.5 eV.

current for V < εF/e and V > εF/e. By comparing Fig. 4.6 with Fig. 4.4, one can notice

that the slope for U < εF and U > εF energy regimes switches places in Fig. 4.4 related to

Fig. 4.6, and moreover, the minimum conductance dependence (i.e., at V = εF/e = 0.5

V) on W and L is more evident in Fig. 4.6.

Next, we study the robustness of conductance modulation on the symmetry

of the proposed setup. For this, we assume asymmetric situations in which the output

branches widths are different. It is done in a systematic way by moving the bifurcation

point on the corner of the two output graphene nanoribbons, but keeping the angle be-

tween two adjacent terminals fixed by 120◦, such that the type of the edge termination is

preserved as armchair ones. The asymmetric three-terminal junction is displayed in Fig.

4.7. As seen, the bifurcation point (indicated by a black dot) is located away from the

dashed black line which denotes the axis of the injector lead. By moving the bifurcation

point up (down) with respect to the symmetric position, one increases (decreases) the

nanoribbon width of the bottom output lead. For the system size parameters adopted in

Fig. 4.7, one has that W i
1 > W ii

1 > W iii
1 > W iv

1 . For a better analysis of the asymmetry

effect on the conductance, one should compare the conductance dependence on the gate

potential height (left panel in Fig. 4.7) with the symmetric case shown in Fig. 4.4(a).

One can notice similarly to the symmetric case, the conductance amplitude decreases the

larger is W j
1 . However, in contrast to Fig. 4.4(a) here the conductance exhibits more

pronounced modulations by varying the potential barrier height. Such noise in the con-
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ductance is due to the interplay effect of the changes on the potential barrier width and

length, as well as the incident angles of the injected electrons. Note that as W j
1 decreases,

the p-n junction interface between the central scattering region and the bottom branch

becomes more and more aligned with the boundary of terminal 0 which, in turn, implies

to injected electrons almost parallel to the p-n interface and, consequently, increasing the

reflectance and thus significantly decreasing transmission.

Figure 4.7: Conductance between leads 0 and 1 as a function of the gate potential height similarly to Fig.

4.4, but now for asymmetric setups composed by three graphene nanoribbons with different widths. Red,

blue, black and green curves correspond to the system setup (i), (ii), (iii), and (iv), respectively. The width

of the output branch with the potential barrier increases (decreases) as the connection spot (denotes by

the black dot) moves up (down) away from the symmetric position, such that W i
1 > W ii

1 > W iii
1 > W iv

1 .

It is taken εF = 0.5 eV.

Therefore, the conductance variation here is a combination of geometric and

quantum effects, being the former owing to the increasing of backscattering electronic

modes by the walls of the system and the latter related to the decreases in the number

of accessible electronic states for a fixed energy range when one decreases the output

nanoribbon width. Moreover, our results show that the calculated conductance is quali-

tatively the same regardless the symmetry of the system, i.e. the proposed system seems

to be robust against different geometrical parameters of the terminals.

4.4 Conclusion

We proposed a current switch-like electronic device model based on a graphene

p-n-p junction with three terminals in Y-shape. Using Landauer-Büttiker’s formalism

within the tight-binding approach to describe the electronic transport, we explained the
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operating principle of the nanostructure. In the absence of a gate potential, the electron

beam is equally divided between the two output branches. On the other hand, when a gate

potential is applied in the branch connected to one of leads, it is possible to deviate the

current to the other. As a proof-of-concept that the proposed device can act as a current

switch, we initially investigated the behavior of the probability current density. Next,

we calculated the conductance as a function of three parameters (Fermi energy, potential

barrier height, and potential barrier length), and finally, we investigated the drain current

as a function of the gate voltage. The results showed that the device efficiency as a switch

increases for narrower the Y-junction branches and for larger potential barrier lengths L.

Moreover, we demonstrated that these results are robust in regard to the asymmetry that

may arise in the construction of the connections of the system. We expect these results

will prove useful for designing of graphene-based current switches that work even in the

absence of a gap in the graphene band structure. Moreover, due to the absence of the

contact resistance in the investigated system here, since both the leads and the scattering

region are made out of graphene and the size of the leads is the same as the sample,

our theoretical findings can be viewed as a scenario of an optimum experimental device

performance.



5 MODULATION OF PERSISTENT CURRENT IN GRAPHENE QUAN-

TUM RINGS

In this Chapter, we investigate the effect of long-range impurity potentials on

the persistent current of graphene quantum rings in the presence of an uniform perpen-

dicular magnetic field. The impurity potentials are modeled as finite regions of the ring

with a definite length. We show that, due to the relativistic and massless character of

the charge carriers in graphene, the effect of such non-uniform potentials on the energy

spectrum and on the persistent current of the rings can be reliably modeled by assuming a

non-perturbed ring and including an additional phase due to the interaction of the charge

carriers with the potential. In addition, the results show the presence of localized states

in the impurity regions. Moreover, we show that for the case of a potential created by a

p-n-p junction, the persistent current can be modulated by controlling the voltage at the

junction.

5.1 Introduction

Persistent currents in conducting rings are electric currents found in normal

metals even in the absence of external bias[135, 136]. The existence of such currents is

an example of a mesoscopic-scale quantum phenomenon, and is related to the Aharonov-

Bohm phase induced in the eigenstates of electrons of a ring-shaped conductor in the

presence of a magnetic field[137]. They have been observed experimentally at low tem-

peratures and for ring sizes that are small compared to the phase relaxation length of the

sample[138–140]. It was found that the sign and magnitude of the persistent currents are

influenced by the external magnetic field, as well as by scattering from impurities and

vacancies[141,142].

Recent studies have obtained the energy spectra and persistent currents for

graphene quantum rings[131, 142–153]. These are found to be strongly influenced by the

ring geometry and by the microscopic details of the edges. On the other hand, for some

96
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ring geometries, the energy spectra can be obtained by a simple one-dimensional model

within the continuum approximation by solving the Dirac equation for a zero width ring

geometry by freezing out the carrier radial motion[131, 143]. The comparatively large

phase coherence length of electrons in graphene is expected to allow the observation of

persistent currents at larger scales than in normal metals. One important point that must

be taken into account in the analysis of these structures is the effect of impurities. In

the case of graphene, the presence of impurities can lead to unexpected results due to

the massless Dirac fermion character of its charge carriers. Among the unusual properties

of graphene, one can mention the perfect transmission of electrons and holes through

potential barriers, also known as Klein tunneling, which is a consequence of its gapless

electronic spectrum and the chiral nature of carriers in the system[11,20]. That property

leads to the absence of backscattering caused by long-range potentials, as well as to

an analogy between the transport of Dirac fermions in graphene p-n junctions and the

propagation of light in media with negative refraction indices[2, 25, 43,44,88].

Apart from the perfect transmission through a potential barrier, the linearity

of the dispersion of carriers in graphene causes the wavefunction of an incident charge

carrier to undergo a phase shift that is energy-independent, being simply a function of

the geometry of the potential. In the case of the square potential created by a gate voltage,

the phase shift is a function of the product of the potential height and the length of the

barrier. That effect has been previously investigated for time-dependent barriers[154] and

as a way to obtain a graphene-based electron interferometer[22]. In this Chapter, we

consider the effect of the gate-induced phase shift on the persistent current in a graphene

quantum ring and how that, in turn, depends on the parameters of the potential barrier.

This Chapter is organized as follows. We describe a theoretical approach for

quantum rings in single-layer graphene using a simplified continuum model in Subsection

5.2.1 and present the numerical method based on the tight-binding model in Subsection

5.2.2. The analytical and numerical results are presented and compared in Section 5.3.

Section 5.4 contains a summary of the main results and the conclusions.

5.2 Theoretical framework

The nanostructure investigated here consists of a hexagonal ring made of

graphene nanoribbons, as shown in Fig. 5.1. The ring is defined by the side lengths
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L1 and L2, properly chosen so that the corners of the external and internal hexagons are

both armchair, respectively. We define the average radius R in terms of L1 and L2 as

R = [(3
√

3)/(8π)]1/2(L1 + L2). We assumed L1 ≈ 50 nm and L2 ≈ 33 nm (resulting an

average radius of R ≈ 38 nm), corresponding to N1 = 176 and N2 = 115 carbon hexagons

at the outer and inner edges, respectively, in all figures from here onwards, unless oth-

erwise stated. A uniform magnetic field B is applied perpendicularly to the ring plane,

and a potential barrier of height V and length W is inserted in the lower arm of the ring.

Results for charge persistent currents in graphene quantum rings have been reported in

the literature by considering circular geometry[131, 143, 153] and hexagonal shape with

armchair[142, 144] and zigzag[148] edges. da Costa et al. demonstrated that a simplified

model describing an infinitely thin circular Dirac ring show good agreement with those

obtained for hexagonal and rhombus armchair graphene rings within the tight-binding

model[131]. Based on that and owning to avoid the influence of edge states, the bound-

aries of the system are assumed to be terminated by armchair-type edges. It allows us

to directly compare the tight-binding results with the analytical simplified solution for

an one-dimensional circular Dirac quantum ring. The theoretical framework used in each

of the two aforementioned models are shown below: the continuum model in Subsection

5.2.1 and the tight-binding model in Subsection 5.2.2.

Figure 5.1: Schematic illustration of the nanostructure investigated in this Chapter. The hexagonal-

shaped ring is characterized by the inner L1 and outer L2 ring lengths, and is subjected to a perpendicular

magnetic field B. A potential barrier of height V and length W is applied in one of the ring arms, as

highlighted in yellow region. The black polygon figure and the one-dimensional ring represented by the red

circle with average radius R = [(3
√

3)/(8π)]1/2(L1 + L2) are, respectively, the configurations considered

in the tight-binding model and the simplified continuum model.
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5.2.1 Continuum model

Graphene consists of carbon atoms arranged in a honeycomb crystal structure.

Its energy spectrum in the absence of external fields can be easily obtained through the

diagonalization of the Hamiltonian within the tight-binding model[1,37,155] and exhibits

no bandgap at two non-equivalent points in reciprocal space (K and K′). Within a first-

order Taylor series expansion in the vicinity of K and K′, the energy is found to depend

linearly on the wavevector, and the electron is seen to behave like a massless Dirac fermion

described by the following Dirac Hamiltonian:

HD = vFσ · (p + eA) + V I, (5.1)

for K valley states and when considering states in the K′ valley one should replace σ by

its complex conjugate σ∗. vF = (3at)/(2~) is the Fermi velocity, σ = (σx, σy, σz) denotes

the Pauli vector, p is the in-plane momentum operator, −e is the electron charge, A

is the magnetic vector potential, V is the electric scalar potential, and I is the identity

matrix. The eigenstates of the Hamiltonian (5.1) are the two-component pseudospinor

wavefunction Ψ = [ψA ψB]T , where ψA and ψB are the envelope functions referring to

the probability amplitudes at A and B Bravais sublattices, respectively.

Within the continuum approach, we consider a simplified circular graphene

quantum ring that is obtained by freezing the radial motion. It results in an effective

Dirac Hamiltonian describing electrons confined in an one-dimensional graphene quantum

ring, such that this angular confinement problem can be solved analytically. Following

the approximation reported in Refs. [131, 143], it is convenient to write the Hamiltonian

(5.1) in polar coordinates. To do this, firstly, we write the Pauli matrices σx and σy as:

σr =

 0 e−iϕ

eiϕ 0

 , σϕ = i

 0 −e−iϕ

eiϕ 0

 , (5.2)

where ϕ is the polar angle associated with the momentum vector. Thus, the Hamiltonian

(5.1) in the absence of external potential (V = 0), in the presence of an perpendicular

magnetic field (B = Bẑ), and around the K Dirac point is given by:

HD = −i~vF

 0
(

Π∗r + e−iϕ πrB
Φ0

)
(

Πr − eiϕ πrBΦ0

)
0

 , (5.3)

where it was assumed the symmetric gauge A = r×B/2 = (1/2)rBϕ̂, Πr = eiϕ[(∂/∂r) +

(i/r)(∂/∂ϕ)] is the radial momentum operator, and Φ0 = h/e is the magnetic quantum
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flux. By assuming that the ring width approaches zero, the momentum operator must

be frozen in the radial direction[131], so that there will be no explicit radial dependence

in our model and the persistent current will flow only in the angular direction[143]. The

radial momentum operator in cylindrical coordinates arises through quantization of the

classical radial momentum[156]:

pr =
1

2
(p · r̂ + r̂ · p), (5.4)

and it has the following form:

pr = −i~
( ∂
∂r

+
1

2r

)
. (5.5)

Taking pr → 0 and r → R, we obtain:

∂

∂r
→ − 1

2R
, (5.6)

being R the one-dimensional ring radius. Thus, the simplified Hamiltonian becomes:

HD =
~vF
R

 0 e−iϕ
(
i
2
−Θ

)
eiϕ
(
i
2

+ Θ
)

0

 , (5.7)

where Θ = d/dϕ + iΦR/Φ0 and ΦR = πR2B is the magnetic flux through the graphene

quantum ring.

The eigenstates of the simplified Hamiltonian (5.7) are two-component pseu-

dospinors which, in plane polar coordinates, are given by:

Ψ(ϕ) =
1√
2

 eimϕ

±iei(m+1)ϕ

 , (5.8)

where m ∈ Z is the angular momentum index and radial parts of the spinors are constant

where the + (−) sign refers to electrons (holes). The eigenenergies, in turn, are given by:

E0,± = ±~vF
R

(
m+

ΦR

Φ0

+
1

2

)
. (5.9)

Considering the system described in Fig. 5.1, the phase acquired by the elec-

trons as they propagate along the nanostructure can be written in terms of the total

magnetic flux ΦR enclosed by the graphene quantum ring as:

ei
e
~
∮
P A·dl = ei

e
~
∫
S B·da = e

2πi
ΦR
Φ0 . (5.10)
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However, if a potential barrier is introduced across one of the arms of the ring, although it

will not cause reflections, due to Klein tunneling, it will nevertheless add an extra phase φ

to the wavefunction, which is proportional to the height V and length W of the potential

barrier[22,154]:

φ =
VW

~vF
, (5.11)

thus, the phase term becomes:

ei
e
~
∮
P A·dl±iφ = e

2πi
ΦR
Φ0
±iφ
. (5.12)

Therefore, it can be seen that the presence of the potential barrier acts as an extra

magnetic flux:

Φ′ = ΦR±
Φ0φ

2π
, (5.13)

and, consequently, the resulting energy spectrum for one-dimensional graphene quantum

ring can be obtained by replacing this new magnetic flux into Eq. (5.9), that reads:

E = E0,± +
W

2πR
V. (5.14)

Note that the energy spectrum (5.14) is composed by two terms, being the first one,

E0,±, related to the energy spectrum in the absence of the potential barrier and the other

one is the bias energy contribution. Moreover, one notices that the energy spectrum

shows a linear dependence on the potential barrier height and width, with slopes equal

to W/(2πR) and V/(2πR), respectively.

If we now assume the existence of N potential barriers, with possibly different

lengths and heights, the energy spectrum of the graphene ring can be easily obtained by

taking the phase substitution φ → ∑N
i φi into Eq. (5.13), resulting in a sum of terms

in Eq. (5.14) given by the products of the heights and lengths of each potential barrier,

such as:

E = E0,± +
1

2πR

N∑
n=1

VnWn, (5.15)

and the corresponding wavefunctions of the eigenstates can be obtained by a piece-wise

function using Eq. (5.8) with coefficients obtained through matching the wavefunctions.

5.2.2 Tight-binding model

Our analytical results obtained via the effective one-dimensional Dirac ap-

proach, described in Subsection 5.2.1, are validated by comparison with energy levels cal-
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culated with the nearest-neighbor tight-binding Hamiltonian for π electrons in graphene,

which reads:

HTB =
∑
i

(εi + Vi)c
†
ici +

∑
i 6=j

(τijc
†
icj + H.c.), (5.16)

where ci (c†i ) annihilates (creates) an electron in site i with on-site energy εi, τij = −2.7

eV is the nearest-neighbor hopping parameter between the carbon atoms in the A and

B Bravais sublattices, and Vi is the on-site potential used here to modeled impurity

potentials in a finite region with a definite length, that can be similarly simulated by

top/bottom gates influence creating a p-n-p junction in one of the ring arms. As de-

picted in Fig. 5.1, the gate potential is defined in the lower arm of the graphene quantum

ring, being characterized by its barrier height V and width W . The effect of an external

magnetic field is introduced in this model by using the Peierls substitution for the hop-

ping energies with the phase transformation given by Eq. (5.10), i.e. by taking τij →
τij exp [ie/~

∫ i
j
A · dl][157,158]. Here we choose the Landau gauge A = −Byx̂, so that the

hopping parameter becomes:

τij → τije
i 2π

√
3

9a2
Φ
Φ0

(y2+y1)(x2−x1)
, (5.17)

where a = 0.142 nm is the lattice parameter of graphene and Φ = 3
√

3Ba2/2 is the

magnetic flux through a hexagon of carbon atoms.

Once we have the hopping matrix and tight-binding eigenfunctions already

computed, it is possible to obtain the probability current density from the method devel-

oped in Refs. [131–133,159]. It is based on the finite difference scheme for the probability

density that, in turn, obeys the continuity relation. The discretized continuity relation

reads as:

Jn − Jn+1 = a
∂ρn,n
∂t

, (5.18)

where ρn,n = 〈n|ρ|n〉 are the matrix elements of the density matrix operator ρ = |Ψ〉〈Ψ|
and the time derivative in Eq. (5.18) is determined by the equation of motion for ρ:

∂ρn
∂t

=
i

~
〈Ψn|[ρ,HTB]|Ψn〉, (5.19)

where |Ψn〉 = 〈n|Ψ〉, resulting, for the case of nearest-neighbor hopping approach, in:

Jn =
2a

~
Im(Ψ∗nΨn−1H

TB
n,n−1). (5.20)
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The components of the probability current density in the x and y directions for each

lattice site of graphene, which is defined by its line (i) and column (j) positions in the

lattice, are:

Jx(i, j) = ±a
~

[2Im(Ψi,jΨ
†
i,j±1τi,j±1)− Im(Ψi,jΨ

†
i−1,jτi−1,j)− Im(Ψi,jΨ

†
i+1,jτi+1,j)], (5.21)

and:

Jy(i, j) =

√
3a

~
[Im(Ψi,jΨ

†
i+1,jτi+1,j)− Im(Ψi,jΨ

†
i−1,jτi−1,j)], (5.22)

where the − (+) sign in Jx will be positive (negative) if the (i, j)-site belongs to the

sublattice A (B) and the presence of a magnetic field, in turn, is included by the Peierls

substitution in the hopping parameters[160]. Ψi,j in Eqs. (5.21) and (5.22) represents

the wave function amplitude in the (i, j) lattice index position within the finite difference

scheme.

The numerical calculations presented in this Chapter were performed using

the Kwant code[31], which is a open source Python package for numerical calculations

on tight-binding models and in which has the mentioned functions already implemented

on its internal code.

5.3 Results

Previous studies reported that energy levels in graphene quantum rings in the

presence of a uniform magnetic field are strongly affected by their geometry and the

types of their edges[131,142–153]. In addition, it has been shown[131] that the analytical

results of a simplified continuum model agree with the tight-binding results only for

specific combinations of geometry and edge types. Specifically, the analytical results

of an infinitely thin circular ring show good agreement with the numerical results of

hexagonal and rhombus-like rings with armchair edges[131]. In this sense, we use this

combination of analytical and numerical methods to investigate the effect of long-range

impurity potentials on the persistent current of graphene quantum rings in the presence

of a uniform magnetic field. The impurity potentials are modeled as finite regions of the

ring with a defined length, simulated here by a p-n-p junction in one of the ring arms.

For this, we compare the analytical results from the simplified continuum model described

in Subsection 5.2.1 with the numerical results from the tight-binding model presented in

Subsection 5.2.2. As seen in Subsection 5.2.1, the effect of such non-uniform potentials



104

on the energy spectrum and on the persistent current of the rings can be modeled by

assuming a non-perturbed ring and including an additional phase due to the interaction

of charge carriers with the potential.

First, we investigate the dependence of energy levels on the magnetic flux

through a single carbon hexagon in the absence [Fig. 5.2(a)] and in the presence [Figs.

5.2(b)-5.2(e)] of a gate potential in one of the arms of the ring. Tight-binding and sim-

plified Dirac results are depicted in red dashed and black solid lines, respectively. In

Figs. 5.2(b) and 5.2(d) [5.2(c) and 5.2(e)], the gate potential was taken as V = 0.1 eV

[V = 0.2 eV], and the gate potential length was assumed as W ≈ 30 nm [W ≈ 15 nm]

in Figs. 5.2(b) and 5.2(c) [5.2(d) and 5.2(e)]. Fig. 5.2 shows that the results from the

continuum and tight-binding models exhibit better agreement for lower energy values and

lower magnetic flux values, due to the effects of the energy band curvature at high energy

and the finite width of the tight-binding sample to be less relevant in low-energy range.

In Subsection 5.2.1 we determined the expression (5.14) for the effect of the

potential barrier in the energy spectrum, which consists of increasing the value of the

energies by WV/(2πR). For the assumed values of L1 ≈ 50 nm, L2 ≈ 33 nm, the average

radius is R ≈ 38 nm, and then the Fermi energy increment in Fig. 5.2(b) [5.2(c)] for

W ≈ 30 nm and V = 0.1 eV [V = 0.2 eV] is 0.0125 eV [0.0251 eV], and in Fig. 5.2(d)

[5.2(e)] for W ≈ 15 nm and V = 0.1 eV [V = 0.2 eV] is 0.0064 eV [0.0128 eV]. This effect

is particularly important because the persistent current of the lower-energy states can be

modulated by adjusting the potential barrier height, as it will become clearer with the

discussions of Figs. 5.4 and 5.5. This is due to the Fermi energy shift and, consequently,

the breaking of the electron-hole symmetry with respect to E = 0. It is also evident

to note that, for a given energy value, states are available only for specific values of

magnetic flux (almost equally spaced). This is reminiscent of the energy spectrum of the

electrons, described by Schrödinger equation, confined in semiconductor quantum rings

in the presence of perpendicular magnetic fields, where the energies oscillate periodically

with the magnetic flux due to the Aharonov-Bohm effect[131,161]. For a finite potential,

we can also see the presence of localized states, due to confinement inside the barrier

region. Those states are beyond the simplified continuum model [Eq. (5.7)] and will be

discussed in detail later.

Similar to the Aharonov-Bohm effect in semiconductor quantum rings, oscil-
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Figure 5.2: Energy levels of the hexagonal rings investigated in this Chapter, obtained from tight-binding

(red dashed lines) and simplified continuum (black solid lines) models, as a function of the magnetic

flux through a hexagon of carbon atoms in the absence [panel (a)] and in the presence [panels (b)-(e)]

of electrical bias applied in one of the arms of the ring, as sketched in Fig. 5.1. The gate potential was

taken in panels (b) and (d) as V = 0.1 eV and in panels (c) and (e) as V = 0.2 eV. Panels (b) and (c)

[(d) and (e)] correspond to gate potential length W ≈ 30 nm [W ≈ 15 nm]. An enlargement of the yellow

region in panel (b) is shown to emphasize the behavior almost non-dispersive of the states around E ≈
−0.03 eV.

lations of energy eigenvalues can also be associated with transitions between states with

persistent currents in clockwise and counterclockwise directions, as seen in the probability

current densities of Fig. 5.3. At Φ/Φ0 = 0, the persistent current of the lower energy

state represented in Fig. 5.2(a) by the blue rhombus symbol has increasing energy trend

with the increase of the magnetic flux and is clockwise, as shown in Fig. 5.3(d). Likewise,

the persistent current of the state represented in Fig. 5.2(a) by the green cross symbol,

also at Φ/Φ0 = 0, has decreasing energy trend with the increase of the magnetic flux

and, as shown in Fig. 5.3(a), is counterclockwise. In addition, even for non-null magnetic

flux and in the absence of a potential barrier the persistent currents for the lower energy

states exhibit the same enclosing current density profile, as shown for Φ/Φ0 = 0 and

Φ/Φ0 = 0.09×10−4 and discussed in Ref. [131]. This is due to the derivative of the energy
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in relation to the magnetic flux, and therefore the persistent current, for the same states, is

the same for the magnetic flux values considered. At high energies and high magnetic flux

ranges, anti-crossings are observed in the energy spectrum and, consequently, the current

flow pattern for these states are altered, seeming to mix different enclosing currents[133].

Figure 5.3: Probability current densities of the system shown in Fig. 5.1 for (a, d) null electrical bias

(V = 0), and (b, c, e, f) under the effect of a gate potential V = 0.1 eV, taking (b, e) Φ/Φ0 = 0 and (c,

f) Φ/Φ0 = 0.09×10−4. Top panels (a, b, c) [bottom panels (d, e, f)] correspond to the states labeled by

a rhombus-like symbol [cross-like symbol] in Figs. 5.2(a) and 5.2(b).

An interesting feature present in the tight-binding results and not captured

by the simplified continuum model is the appearance of quasi-localized states within the

potential barrier region. Such states have been studied for both graphene[19,162] and its

nanoribbons with armchair-like edges[163]. In these nanostructures, the localized states

depend on barrier parameters, such as its height, length, and width. Since we keep the

potential barrier width constant, that in turn is the same ring width, the number of

quasi-localized states for a fixed energy range depends directly on the potential height

and length, as shown in Fig. 5.2 and discussed next for Fig. 5.4. As observed in Figs.

5.2(b)-5.2(e), such quasi-localized states are weakly magnetic field dependent. Fixing the

potential barrier length at W ≈ 30 nm [W ≈ 15 nm], more quasi-localized states appear

for a fixed energy range as the potential barrier height increases, as shown in Figs. 5.2(b)

and 5.2(c) for V = 0.1 eV and V = 0.2 eV [Figs. 5.2(d) and 5.2(e)], respectively. Likewise,

fixing the potential barrier height at V = 0.1 eV [V = 0.2 eV] and increasing the potential
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barrier length from W ≈ 15 nm to W ≈ 30 nm, more quasi-localized states also occur, as

verified by comparing Fig. 5.2(b) with Fig. 5.2(d) [Fig. 5.2(c) with Fig. 5.2(e)]. These

quasi-non-dispersive states imply a vanishing of the persistent current.

To investigate this in more detail, we enlarged the yellow shaded region of

the states around E ≈ −0.03 eV (at low magnetic fluxes) in Fig. 5.2(b). We can notice

that two successive states [the same ones considered in Fig. 5.2(a)] have completely

different behavior. The one with the highest energy, at Φ/Φ0 = 0 or Φ/Φ0 = 0.09×10−4,

represented by green cross-like symbols, is dispersive, as shown in Figs. 5.3(e) and 5.3(f).

On the other hand, the one with the lowest energy, also at Φ/Φ0 = 0 or Φ/Φ0 = 0.09×10−4,

represented by blue rhombus-like symbols, has a quasi-localized character, implying a

vanishing of the persistent current, as shown in Figs. 5.3(b) and 5.3(c). As discussed in

Ref. [163], these localized states are a consequence of the mixing of K and K′ states due

to the armchair edges, reason why it is not captured in the continuum model of a single

K Dirac valley as presented here. Therefore, such non-dispersive states are linked to the

finite width of the hexagonal ring composed by armchair nanoribbons.

Next, we investigate the dependence of energy levels on the potential barrier

height V for B = 0 [Figs. 5.4(a) and 5.4(c)] and B 6= 0 [Figs. 5.4(b) and 5.4(d)]. In Figs.

5.4(a) and 5.4(b) [5.4(c) and 5.4(d)], the potential barrier length was taken as W ≈ 30

nm [W ≈ 15 nm].

Similarly to Fig. 5.2, the results obtained in Fig. 5.4 show that the simpli-

fied continuum model (solid black lines) satisfactorily describes the tight-binding results

(dashed red lines). From Eq. (5.14) and for R ≈ 38 nm, one obtains an energy level

spacing of ∆E = 0.0152 eV that is independent of the magnetic flux and the potential

barrier length, as seen in Fig. 5.4. Additionally, the partial derivative of E with respect

to V gives us the energy slope of 0.0042W . For Figs. 5.4(a) and 5.4(b) [Figs. 5.4(c)

and 5.4(d)] its value is ≈ 0.1246 [≈ 0.0638]. Note that the quasi-localized states manifest

in the energy versus V plot as additional states with a greater slope than the dispersive

states. Another uncaptured feature by the simplified Dirac model is the existence of a

mix of crossing and anti-crossing states, as depicted in Figs. 5.2 and 5.4. As can be

seen by comparing Figs. 5.4(a) and 5.4(c) with Figs. 5.4(b) and 5.4(d), respectively,

and also discussed before, that the quasi-localized states are practically unaffected by the

magnetic flux, and the number of the quasi-non-dispersive states depends only on the
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Figure 5.4: Energy levels of the hexagonal rings, obtained from tight-binding (red dashed lines) and

simplified continuum (black solid lines) models, as a function of the electrical bias applied in one of the

arms of the ring in the absence [Φ/Φ0 = 0, panels (a) and (c)] and in the presence [Φ/Φ0 = 0.09×10−4,

panels (b) and (d)] of an external magnetic field. Panels (a) and (b) [(c) and (d)] correspond to gate

potential length W ≈ 30 nm [W ≈ 15 nm].

potential barrier length.

Lastly, we analyze the dependence of the energy levels on the potential barrier

length W in the absence [Φ/Φ0 = 0, Fig. 5.5(a)] and in the presence [Φ/Φ0 = 0.09×10−4,

Fig. 5.5(b)] of a uniform perpendicularly applied magnetic field. As predicted by Eq.

(5.14) and easily realized by Fig. 5.5, the dispersive energy levels have a linear dependence

on W , i.e. E ∝ W , with slope ≈ 0.0042V . For the assumed value of the gate potential

height as V = 0.15 eV, one gets E ≈ 6.3×10−4W . From Fig. 5.5 it is explicit noticed that

the non-dispersive states within the potential barrier arise as the potential barrier length

W increases. In accordance with what was previously discussed, these quasi-localized
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states seem qualitatively to be only weakly affected by the magnetic flux, as verified by

comparison between Fig. 5.5(a) and Fig. 5.5(b).

Figure 5.5: Energy levels of the hexagonal rings, obtained from tight-binding (red dashed lines) and

simplified continuum (black solid lines) models, as a function of the length of the gate potential applied

in one of the arms of the ring in (a) the absence (Φ/Φ0 = 0) and in (b) the presence (Φ/Φ0 = 0.09×10−4)

of a uniform magnetic field. The gate potential height was taken as V = 0.15 eV.

Therefore, the persistent current modulation can be achieved by adjusting V

at fixed Φ/Φ0 and W , or by adjusting Φ/Φ0 at fixed V and W .

5.4 Conclusion

We have presented results for the electronic spectrum of graphene-based quan-

tum rings in the presence of a localized potential in one of the ring arms. We employed

the tight-binding model to take into account the microscopic aspect of the structure, and

showed that these results can display qualitative as well as quantitative agreement with a

simplified one-dimensional Dirac model that includes the effect of the localized potential

as a phase shift of the electronic states of the otherwise unperturbed ring. The tight-

binding spectra also show the presence of quasi-localized states in the perturbed region

that are weakly dependent on the magnetic field. The gapless nature of the electronic

spectrum in graphene allows for an overlap between these quasi-localized and the extended

ring states, which can be tuned by varying the barrier height or by the magnetic field.



6 FINAL CONSIDERATIONS

Due to the lack of scientific papers presenting in a didactic way the tight-

binding model in first and second quantization formalisms and theirs equivalence to

calculate the electronic properties of one and two-dimensional (2D) lattice crystals, in

Chapter 2 we reviewed the basic concepts of the aforementioned framework in the solid

state physics for a generic Hamiltonian and then we applied both methodologies to some

examples: a linear chain and a square lattice with one and two sites per unit cell, brick

lattice, graphene (honeycomb) lattice, and τ3-lattice. With that, we present the obtaining

development of the dispersion relation for lattices with different number of sites in the

unit cell: one, two, and three, and consequently, energy spectra with different number of

bands: one, two, and three, respectively. In addition, we discussed the role of the over-

lap parameter on the electronic spectrum and density of states, showing that a nonzero

overlap parameter leads to an electron-hole symmetry breaking and, consequently, to an

energetic unbalance in the DOS with respect to the Fermi energy. Since the tight-binding

method is a well-known atomistic technique with enormous computational advantageous

due to its simplicity and large scalability with reasonable computational cost in compar-

ison to first-principle methods, it has been widely used in the semiconductor scientific

community, especially nowadays for researchers and students that are investigating the

2D nano-world composed by hundreds of 2D materials, such as graphene and the broad

family of the transition metal dichalcogenides. Moreover, this method allows to include

additional effects, such as electron-electron interaction, defects, impurities, and deforma-

tions. Motivated by these facts, we believe that Chapter 2 will prove useful for those

who seek a didactic explanation of the method with the discussion of relevant examples

of 2D crystals that are currently being investigated for the development of future 2D

material-based technologies.

The fact that charge carriers propagating through a graphene p-n junction at a

specific energy exhibit a lensing effect which focus the transmitted electron beams, due to

110
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the negative refraction index created by the p-n junction, suggests that the Dirac electron

behavior in a graphene p-n junction is analog of light beams in a Veselago lens. Based

on that it may be possible to exploit this lensing effect in quantum optic-like systems. In

Chapter 3, we propose a graphene-based current modulator-like system. We show that

an in-plane electric field or an out-of-plane magnetic field changes the electronic focal

spot away from the output lead and consequently tune the current transmission between

the input and output leads. By using the Landauer-Büttiker formalism within the tight-

binding approach, we present the proof-of-concept that such proposed device model allows

the modulation of the current by the proper application of a weak in-plane electric field or

a perpendicular magnetic field, investigating the external field effects on the probability

current density and conductance of the system for different system parameters, such as the

Fermi energy, the system size, and the potential step height. Motivated by the fact that

graphene p-n junctions are one of the most basic building blocks of the variety proposed

device models in the recent literature, being therefore relevant to the development of

future graphene-based technology, and, in addition to that, once Chapter 3 brings up

a simple way to manipulate the transport properties of graphene p-n junction, showing

significant results by applying electric and/or magnetic fields, with no need to induce a

band gap in the sample, we believe that the graphene-based nanostructured device model

proposed in Chapter 3 contributes to a basic understanding of the transport physics in

graphene p-n junctions.

Charge carriers propagating through a graphene p-n junction display behavior

analogous to light rays across an optical boundary. Such optic-like propagation of 2D

Dirac fermions is due to the interplay between the effective negative refraction of p-n

junctions in graphene together with the angle dependence of the Klein tunneling. Based

on that analogy, different theoretical and experimental proposals for manipulating elec-

tron beams in graphene have emerged, such as beams splitters, wave guides, collimators,

reflectors, rectifiers, modulators and switches. In Chapter 4, we propose a three-terminal

Y-shaped graphene-based switch. The operating principle of the system consists of cur-

rent controlling by tuning the refractive index established by a gate potential applied in

one of the output branches. By means of the Landauer-Büttiker formalism within the

tight-binding approach, we initially show the proof-of-concept that the system act as a

gate potential-controlled current switch. Next we present transport results to analyze
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the conductance as a function of the system parameters (Fermi energy, system size, and

the potential height and length) and thus to characterize the best setup configuration to

achieve a maximum efficiency. Motivated by the fact that graphene p-n junctions are one

of the most basic building blocks of the device models in the literature, being therefore

relevant to the development of future graphene-based technology, and, in addition Chap-

ter 4 brings up a simple way to control the current in a three-terminal graphene device,

we expect that our findings will prove useful for the designing of graphene-based current

switches despite in the absence of a gap in the graphene band structure.

The comparatively large phase coherence length of electrons in graphene is

expected to allow the observation of persistent currents at larger scales than in normal

metals. One important point that must be taken into account in the analysis of these

structures is the effect of impurities. In the case of graphene, the presence of impurities

can lead to unexpected results due to the massless Dirac fermion character of its charge

carriers. In addition to the aforementioned property, it is known that charge carriers

traveling through a potential barrier in graphene undergo a phase shift that is energy-

independent, being simply a function of the geometry of the potential, due to the linearity

of its dispersion relation. For the square potential case created by a gate voltage, for

instance, the phase shift is a function of the product of the potential height and the length

of the barrier. Based on these features, in Chapter 5, we investigate the effect of gate-

induced phase shift on the persistent current in a graphene quantum ring and how that,

in turn, depends on the parameters of the potential barrier. Our analysis is analytically

developed for a simplified model describing an infinitely thin circular Dirac ring, in which

it is assumed that the ring width approaches zero so that there will be no explicit radial

dependence in our model and the persistent current will flow only in the angular direction.

By including the additional phase, raising from potential barrier interaction with the

charge carriers, into the obtained energy spectrum we show the existence of localized

states in the non-null potential regions and that the persistent current can be modulated

by controlling the gate voltage. Moreover, our simplified continuum results are compared

with the tight-binding ones exhibiting a good agreement and capturing the main physics

of the gate-current-control in the graphene quantum ring. Motivated by the fact that

graphene has been shown to be a relevant 2D material and widely promising candidate to

the development of future technological applications, and, in addition, Chapter 5 brings
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up a simple way to control the persistent current in graphene-based quantum ring device,

we expect that our findings will prove useful for the designing of graphene-based current

interferometer.

The theoretical proposals of graphene-based electronic devices presented in

this Thesis can be extended to anisotropic two-dimensional materials such as phospho-

rene. In a phosphorene p-n junction, electrons behave in the armchair direction as massive

Dirac fermions and in the zigzag direction as Schrödinger electrons[164,165]. Due to the

anisotropy in the phosphorene band structure, electron optics strongly depends on the

orientation of the p-n junction in relation to the sublattice. Negative and anomalous re-

flection are observed for tilted junctions, and omni-directional total reflection, called anti-

super-Klein tunneling, is verified if the p-n junction is parallel to the armchair edge[166].

Therefore, as a perspective to proceed with the ideas of this Thesis, we intend to investi-

gate the electronic transport in phosphorene-based nanostructures with different number

of layers subjected to external fields.
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