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Tensor-Based Joint Downlink and Uplink Channel
Estimation in MU-MIMO Communication Systems

Paulo R. B. Gomes and André L. F. de Almeida

Abstract— In this paper, the problem of joint downlink (DL)
and uplink (UL) channel estimation is adressed in a multiuser
multiple-input multiple-output (MIMO) wireless communication
system. We consider that the known training sequence sent by a
multiple-antenna base-station (BS) is received by single-antenna
mobile stations (MSs) and then reported back to the BS over
multiple adjacent subcarriers. For this scenario, the signal
received at the BS is modeled as a third-order tensor that follows
a parallel factors (PARAFAC) decomposition. By exploiting the
tensor structure of the received signal, we propose two semi-blind
receivers for the joint estimation of the DL and UL channels
at the BS. The first one is an iterative estimator based on
the alternating least squares (ALS) principle, while the second
one is a closed-form estimator based on the least squares
Khatri-Rao factorization (LS-KRF) algorithm. The idea of the
proposed receivers is to concentrate most of the processing
burden for channel estimation at the BS, thus avoiding additional
processing with high computational cost at the power-limited
MSs side. Moreover, they allow multiple MSs to share the same
feedback channel and UL-DL channel reciprocity assumption
can be relaxed. Simulation results show that the proposed
receivers achieve performance close to their equivalent minimum
mean square error (MMSE)-based channel estimator, with
the advantage of avoiding additional processing for channel
estimation in each MS as well as dedicated feedback channels.

Keywords— Wireless communication systems, channel
estimation, alternating least squares, least squares Khatri-Rao
factorization, PARAFAC decomposition.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) system is being
applied to many wireless standards because it can increase
the capacity and reliability in wireless communication systems
[1]. In recent years, great attention has been given to multiuser
MIMO systems (MU-MIMO) [2], where a base station (BS)
equipped with multiple antennas simultaneously serves a
set of single-antenna mobile stations (MSs). In contrast to
the point-to-point MIMO systems, the MU-MIMO system
is generally more tolerant to the propagation environment
[1], [3]. Futhermore, it is commercially attractive because
expensive equipment is only needed in the BS while the MSs
can be cheap power-limited single-antenna devices [1].

The performance of MU-MIMO systems strongly depends
on the efficient measurement of the channel state information
(CSI) by the BS. This is possible from a training phase
in which the BS transmits known training signals to the
MSs. According to [4], the BS can learn the CSI from
limited feedback in frequency division duplexing (FDD) [5]
or assuming channel reciprocity in time division duplexing

Paulo R. B. Gomes and André L. F. de Almeida are with the GTEL-Wireless
Telecom Research Group, Federal University of Ceará, Fortaleza-CE, Brazil,
e-mails: {paulo,andre}@gtel.ufc.br. This work was partially supported by
FUNCAP.

(TDD) [3]. However, in practice, the downlink (DL) channel
estimated by the uplink (UL) channel considering channel
reciprocity may not be accurate [6]. Futhermore, the channel
acquisition becomes a challenge if the BS has to transmit long
DL training sequences, and the MS has to report back its large
channel matrix estimates. The amount of overhead in the DL
channel estimation due to the long training sequences and in
the UL channel due to the large matrices to be reported can
severely decrease the spectral efficiency of the system, calling
for novel solutions that enable us to reduce the unnecessary
overhead.

In this paper, we obtain the relationship between DL and
UL signals using a tensor formalism. We consider a novel
training-based scheme for joint DL and UL channel estimation
in MU-MIMO wireless communication systems. By assuming
that a known training sequence sent by multiple-antenna
BS is received by single-antenna MSs and then reported
back to the BS by means of multiple adjacent subcarriers,
the signal received at the BS is modeled as a third-order
parallel factors (PARAFAC) decomposition. Motivated by the
multidimensional structure of the received signal, we develop
two tensor-based semi-blind receivers which offer greater
practical appeal and less systemic limitations comparared to
classical approaches for channel estimation (i.e., when the
DL and UL channels are estimated separately at the MSs
and BS, for instance, through least-squares (LS) or minimum
mean square error (MMSE) estimators). In contrast to such
classical approaches, the proposed tensor-based semi-blind
receivers concentrate most of the processing burden for
channel estimation at the BS side, thus avoiding additional
processing with high computational cost at the power-limited
MSs side. Moreover, they allow multiple MSs to share the
same feedback channel while UL-DL channel reciprocity
assumption can be relaxed.

Notation: Scalars are represented as non-bold lower-case
letters (a), column vectors as lower-case boldface letters (a),
matrices as upper-case boldface letters (A), and tensors as
calligraphic upper-case letters (A). The superscripts {·}T,
{·}*, {·}H and {·}† stand for transpose, conjugate, conjugate
transpose and pseudo-inverse operations, respectively. The
operator ‖ · ‖F denotes the Frobenius norm of a matrix or
tensor. The operator Di (A) forms a diagonal matrix from
the i-th row of A. vec (A) converts A ∈ CI1×R to a column
vector a ∈ CI1R by stacking its columns on top of each other.
As its inverse operation, unvecI1×R (a) reshapes the column
vector a ∈ CI1R into a matrix A ∈ CI1×R. The symbols ◦,
⊗ and � represent the outer product, Kronecker product and
Khatri-Rao product (i.e., the column-wise Kronecker product),
respectively.
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(BS)
Combined DL and UL
Channel Estimation

(u-th MS)
xu

u = 1, . . . , U .

downlink pilot transmission

shared uplink channel

Fig. 1. System model representation. A known training sequence is sent by
the BS and received by each MS. Then, each MS reports its received signal
xu (u = 1, . . . , U ) back to BS without performing any channel estimation
processing.

Due to the space limitation the definitions, operations
involving tensors and details about the PARAFAC
decomposition are referenced for [7]. Throughout this
paper, we shall make use of the following property:

a⊗ b = vec (b ◦ a) . (1)

II. SYSTEM AND CHANNEL MODELS

We consider a MU-MIMO wireless communication system
consisting of a BS and U MSs. The BS is equiped with a
uniform linear array (ULA) of N elements while each MS
is a single-antenna device. The training sequence sent by the
BS is received by each MS and only reported back to the BS,
i.e., no processing to the DL channel estimation is done by the
MSs. Each MS only applies a linear combining on the received
signal before sending it back to the BS. The details of such
an operation will be given in the next section. We assume that
the MSs share the same uplink feedback channel. The BS then
receives the sum of U co-channel signals. Moreover, the DL
and UL channels are possibly different, which means channel
reciprocity may not hold. Figure 1 illustrates this scenario.

The DL and UL channels of each MS are assumed
block-fading narrowband channels and time-invariant during
the training stage. Both are modeled as a combination of Lu
(u = 1, . . . , U) paths per user, each one characterized by
an angle of arrival (AoA) θu,l ∈ [0, 2π] in the uplink, an
angle of departure (AoD) φu,l ∈ [0, 2π] in the downlink and
a complex fading coefficient αl,u for the l-th path of the u-th
MS.1 The DL or UL channel of the the u-th MS, denoted by
h

(dl,ul)
u ∈ CN , can be expressed as2

h(dl,ul)
u =

Lu∑
l=1

α
(dl,ul)
u,l aBS(θu,l), (2)

where αu,l is the fading coefficient associated with the l-th
path of the u-th MS and aBS(θu,l) ∈ CN denotes the BS
antenna array response associated with the l-th path of the

1Since only the fading coefficients vary for the different operating
frequencies in the DL and UL, we have assumed that θu,l = φu,l for
simplicity of representation.

2This model is a particular case of the general geometric channel model
Hu =

∑Lu
l=1 αu,laBS(θu,l)a

H
MS(φu,l) when single-antenna devices are

considered.

u-th MS. Since ULA is assumed, we have aBS(θu,l) =[
1, e−j(2π/λ)d sin (θu,l), . . . , e−j(2π/λ)(N−1)d sin (θu,l)

]T
.

Let S ∈ CT×N be a known training sequence sent by the
BS. The signal xu ∈ CT received by the u-th MS is given by

xu = Sh(dl)
u + v(dl)

u , (3)

where v(dl)
u ∈ CT denotes the additive white Gaussian noise

term at the u-th MS.
The signal xu of each MS is then reported back to the

BS, i.e., no additional processing for channel estimation is
performed at the MSs side. The matrix Y ∈ CN×T that
represents the sum of U co-channel signals received at the
BS can be written as

Y =
U∑
u=1

h(ul)
u xT

u + V (ul) = H(ul)XT + V , (4)

where X =
[
Sh

(dl)
1 , . . . ,Sh

(dl)
U

]
∈ CT×U is given by

X = SH(dl), (5)

and collects the signals from the U MSs, H(ul) =[
h

(ul)
1 , . . . ,h

(ul)
U

]
∈ CN×U and H(dl) =

[
h

(dl)
1 , . . . ,h

(dl)
U

]
∈

CN×U are the UL and DL channel matrices, respectively. The
overall noise at the BS is given by

V =

U∑
u=1

h(ul)
u v(dl)T

u + V (ul) ∈ CN×T , (6)

which takes into account the contribuitions of the additive
white Gaussian noise at the BS and MSs.

III. PROPOSED TENSOR-BASED SEMI-BLIND RECEIVERS

In this section, we initially propose a novel
multicarrier-based training scheme that concentrates
computational burden associated with channel estimation
at the BS. Then, we propose two tensor-based semi-blind
receivers for joint DL and UL multiuser channel estimation.

A. Novel multicarrier-based training scheme

Let us consider that the signal xu, u = 1, . . . , U , received
at the u-th MS is spread in the frequency-domain across K
adjacent subcarriers over which the channel is considered to be
constant, i.e. affected by the same fading coefficient αl,u. The
u-th MS loads the received pilots into the k-th subcarrier using
the weight factor fk,u. Then, the coded multicarrier uplink
pilots are fed back to the BS by the multiple MSs. We can
write the received signal at the BS as

Yk =
U∑
u=1

fk,uh
(ul)
u xT

u + V
(ul)
k

= H(ul)Dk (F )XT + Vk ∈ CN×T , k = 1, . . . ,K (7)

where fk,u is the (k, u)-th entry of the so called spreading
matrix F = [f1, , . . . ,fU ] ∈ CK×U assumed here as a DFT
matrix. The u-th column of F contains the set of spreading
coefficients, f1,u, . . . , fK,u, used by the u-th MS.

According to [7], the received closed-loop signal Yk denotes
the k-th frontal slice of the PARAFAC tensor Y ∈ CN×T×K

2
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that admits the following factorizations in terms of its
unfolding (or flattening) and factor matrices:

[Y ](1) = H(ul) (F �X)
T ∈ CN×TK , (8)

[Y ](2) = X
(
F �H(ul)

)T
∈ CT×NK , (9)

[Y ](3) = F
(
X �H(ul)

)T
∈ CK×NT . (10)

Our aim is to jointly estimate the channel matrices H(dl)

and H(ul) at the BS from the received signal tensor Y in
(7). For this purpose, we formulate in the following two
PARAFAC-based semi-blind receivers based on the alternating
least squares (ALS) and least squares Khatri-Rao factorization
(LS-KRF) algorithms, respectively.

B. ALS-PARAFAC semi-blind receiver

From Y described in (7), estimates of H(ul), X and F can
be obtained by solving the following quadratic optimization
problem:

min
Ĥ(ul),X̂,F̂

∥∥∥∥∥Y −
U∑
u=1

ĥ(ul)
u ◦ x̂u ◦ f̂u

∥∥∥∥∥
2

F

. (11)

This problem can be solved by means of the ALS algorithm
[8]. It consists of estimating in an alternating way the factor
matrices from the unfolding matrices [Y ](n), n = 1, . . . , 3 by
solving the following three linear LS problems:

argmin
H(ul)

∥∥∥[Y ](1) −H
(ul) (F �X)

T
∥∥∥2

F
, (12)

argmin
X

∥∥∥∥[Y ](2) −X
(
F �H(ul)

)T
∥∥∥∥2

F
, (13)

argmin
F

∥∥∥∥[Y ](3) − F
(
X �H(ul)

)T
∥∥∥∥2

F
. (14)

The analytic solutions of which are given by

Ĥ(ul) = [Y ](1)

[
(F �X)

T
]†

, X̂ = [Y ](2)

[(
F �H(ul)

)T
]†

and F̂ = [Y ](3)

[(
X �H(ul)

)T
]†

, respectively.

Each interation of the ALS-PARAFAC receiver has
three LS updating steps. At each step, one factor matrix is
updated while the remaining factor matrices are assumed
fixed to their values obtained in the previous steps. This
procedure is repeated until the convergence of the algorithm.
Denoting by

ε(i) =
∥∥∥[Y ](1) − [Ŷ ](1)

∥∥∥2

F
(15)

the residual error between the received signal tensor and
the reconstructed signal tensor at the i-th iteration, defined

as [Ŷ ](1) = Ĥ(ul)
(
F̂ � X̂

)T
, the convergence at the i-th

iteration is declared when |ε(i) − ε(i−1)| 6 10−6.
Remark: By assuming a coordinated scenario in which the

frequency spreading matrix F is known at the BS, only column
scaling ambiguity in the estimated factor matrices Ĥ(ul) and
X̂ exists. It can be eliminated with a simple normalization
procedure by assuming knowledge of the first row of H(ul).
In practice, the knowledge of the first row of H(ul) can

Algorithm 1: Proposed ALS-PARAFAC Semi-Blind Receiver
for Joint DL and UL Channel Estimation

1. Set i = 0;
Randomly initialize X̂(i=0);
2. i = i+ 1;
3. Using [Y](1), find an LS estimate of Ĥ(ul)

(i) :

Ĥ
(ul)

(i) = [Y](1)

[(
F � X̂(i−1)

)T
]†

;

4. Using [Y](2), find an LS estimate of X̂(i):

X̂(i) = [Y](2)

[(
F � Ĥ(ul)

(i)

)T
]†

;

5. Repeat steps 2-4 until convergence.
6. From X̂ obtain an LS or MMSE estimate for Ĥ(ul).

be obtained using a simple supervised procedure in which a
known pilot symbol is sent to the BS by each MS [9]. We
assume that before transmission, each MS send a known pilot
sequence to estimate its link between the first receive antenna
at the BS. This “pre-phase” is essential for the receiver to
remove the scaling ambiguity in the estimated matrices. Note
that, after the convergence of the ALS-PARAFAC receiver, an
estimate for the DL channel matrix Ĥ(dl) can be obtained
from the output matrix X̂ = SĤ(dl) through a classical
training-based LS or MMSE channel estimator. The proposed
ALS-PARAFAC semi-blind receiver for joint estimation of the
DL and UL channels is summarized in Algorithm 1.

C. LS-KRF semi-blind receiver

The proposed tensor-based LS-KRF semi-blind receiver is a
closed-form solution that operates on the received UL signal
after frequency-domain combining. The idea is to filter the
received signal tensor by exploiting the knowledge of the
frequency spreading matrix F at the BS, and then solve a
set of rank-1 approximation problems.

By assuming K ≥ U , and multiplying both sides of [Y ]
T
(3)

in (10) by the pseudo-inverse of F T from the right hand side,
we obtain

X �H(ul) = [Y ]
T
(3)

(
F T)†

=
[
x1 ⊗ h(ul)

1 , . . . ,xU ⊗ h(ul)
U

]
∈ CNT×U . (16)

In accordance with property in (1), the u-th column of (16)
can be rewritten as

xu ⊗ h(ul)
u = vec

(
h(ul)
u ◦ xu

)
, (17)

that denotes the vectorization operation of the rank-one matrix
Wu = h

(ul)
u ◦ xu ∈ CN×T . Being UuΣuV

H
u the singular

value decomposition (SVD) of Wu, estimates for h(ul)
u and

xu, u = 1, . . . , U , can be obtained by truncating this SVD to
a rank-one approximation as follows [10]:

ĥ(ul)
u =

√
σ1u1 and x̂u =

√
σ1v

∗
1 , (18)

where u1 ∈ CN×1 and v1 ∈ CT×1 are the first left and right
singular vectors of Uu and Vu, respectively, and σ1 is the
largest singular value. Final estimates for the matrices X and
H(ul) are obtained by repeating this process for u = 1, . . . , U .
The proposed LS-KRF semi-blind receiver is summarized in
Algorithm 2.

3
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Algorithm 2: Proposed LS-KRF Semi-Blind Receiver for Joint
DL and UL Channel Estimation

for u = 1, . . . , U
1. Apply the unvecN×T operator in the u-th

column of (16) and obtain the rank-one
matrix Wu ∈ CN×T ;

2. Compute the SVD of Wu = UuΣuV
H
u , then

obtain the estimates for the u-th column of the
matrices Ĥ(ul) and X̂ as follows:

ĥ
(ul)
u =

√
σ1u1 and x̂u =

√
σ1v

∗
1 ,

where u1 ∈ CN×1 and v1 ∈ CT×1 are the first
left and right singular vectors of Uu and Vu,
respectively, and σ1 is the largest singular value.

end
3. From X̂ , obtain an LS or MMSE estimate for Ĥ(ul).

IV. IDENTIFIABILITY ISSUES

In this section, we examine the identifiability issues
under which the downlink H(dl) and uplink H(ul) channel
matrices can be jointly and uniquely recovered using
the proposed tensor-based ALS-PARAFAC and LS-KRF
semi-blind receivers.

A. ALS-PARAFAC semi-blind receiver

According to [11], the PARAFAC decomposition of Y is
essentially unique if the following Kruskal’s condition, that is
based in the Kruskal-rank concept (please see [11] for more
details), is satisfied:

κH(ul) + κX + κF ≥ 2U + 2. (19)

We assume the following: (i) the antenna array response
aBS(θu,l) has a Vandermonde structure; (ii) the multipaths
have different AoAs, AoDs and fading coefficients and (iii) the
factor matrix S is randomly generated and follow a uniform
distribution, while F is a DFT matrix. Under the assumptions
(i) and (ii), the UL channel matrix H(ul) has full rank
with probability one, i.e., κH(ul) = min(N,U). Assumption
(iii) implies that the matrices S and F have full rank, and
consequently κX = min(T,U) and κF = min(K,U). From
this analysis, the Kruskal’s condition (19) can be equivalently
written as follows:

min(N,U) + min(T,U) + min(K,U) ≥ 2U + 2. (20)

Since the assumption that the number of antennas at the BS is
greater than the number of MSs is reasonable in MU-MIMO
scenarios, the identifiability condition (20) simplifies to

min(T,U) + min(K,U) ≥ U + 2. (21)

From condition (21), we can analyze the following scenarios:
1) Considering T ≥ U , only K = 2 subcarriers are required

to estimate the DL and UL channels of U MSs. Otherwise
stated, the ALS-PARAFAC receiver requires a reduced number
of frequency resources (subcarriers).

2) Considering K ≥ U , a training sequence of length T =
2 pilots is enough to estimate the DL and UL channels of
U MSs. Due to the small size of the training sequence, the
ALS-PARAFAC receiver has a reduced training overhead.

B. LS-KRF semi-blind receiver

The LS-KRF receiver requires that the necessary and
sufficient uniqueness condition K ≥ U be satisfied. Note
that this condition represents a particular case of (21), which
indicates that the application of the LS-KRF receiver requires
a more restricted scenario compared to the ALS-PARAFAC
receiver, since the number of used frequency resources
(subcarriers) increases with the number of active MSs. On
the other hand, the LS-KRF receiver is a closed-form solution
that allows parallel (user-wise) channel estimation and symbol
detection, in contrast to the ALS-PARAFAC one, where all
users are processed jointly.

V. COMPUTATIONAL COMPLEXITY

A. ALS-PARAFAC semi-blind receiver

We approximate the computational complexity of the
proposed ALS-PARAFAC receiver, in terms of flops,
considering only the cost associated with the SVD used to
calculate the matrix pseudo-inverses in the LS solutions (12)
and (13). Since N > U , N > T and K > U are acceptable
assumptions, each iteration of the ALS-PARAFAC requires
approximately O(U2KT + U2KN) flops.

B. LS-KRF semi-blind receiver

The computational complexity of the LS-KRF receiver can
be approximated as the cost to obtain the product X �H(ul)

from (10) added with the cost to calculate U SVD-based
rank-one approximations to estimate Ĥ(ul) and X̂ from the
previous Khatri-Rao product. Therefore, the LS-KRF receiver
requires approximately O(U2K + UNT ) flops.

VI. SIMULATION RESULTS

In this section, we present some simulation results to
evaluate the performance of the proposed tensor-based
ALS-PARAFAC and LS-KRF semi-blind receivers. We
evaluate the performance in DL and UL channel estimations
in terms of the normalized mean square error (NMSE) of the
estimated matrices compared to the actual channel matrices.
We consider a ULA with N = 32 antennas at the BS.
The channel matrices are generated in accordance with (2).
The results are averaged over 2000 independent Monte Carlo
runs. At each run, we assume a cluster with Lu multipath
components between the u-th MS and the BS, in which Lu is
set randomly between one and five for each MS. Equal AoAs
and AoDs (θu,l = φu,l) to the l-th path of the u-th MS are
generated in the interval θu,l = [θu ± ∆θu

2 ] for l = 1, . . . , Lu,
while the nominal angles θu for u = 1, . . . , U are randomly
distributed in the interval [0, 2π] and the angular spread ∆θu
are in the interval [0, π12 ]. The complex gains α(dl,ul)

u,l follow a
complex-valued Gaussian distribution with zero-mean and unit
variance. We also assume that the known training sequence S
is BPSK modulated.

In Fig. 2, the performance is evaluated as a function of
the number K of subcarriers. The parameters T and U are
fixed to T = 16 and U = 4, respectively. The SNR in
the DL and UL are set equal to 10 dB. This experiment
shows that the accuracy in the DL channel estimate is not
affected by the number of subcarriers used. In contrast, when

4
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Fig. 2. NMSE (DL and UL Channels) vs. number of subcarriers (K)
for N = 32, T = 16, U = 4 and SNR = 10 dB.

the number of subcarriers increases, the proposed receivers
get better performance in the UL channel estimation. We also
observe a strong proximity between the proposed methods and
the MMSE-based approach (in which each MS estimates its
DL channel individually).

In Fig. 3, we plot the NMSE as a function of the length
T of the training sequence. We consider K = 4, U = 4 and
the same SNR as the previous experiment. We can see that
the performance of all methods improves when T increases.
In the important case of T < N we can notice that the
proposed receivers present a performance very close to the
MMSE estimator. For a massive scenario, this result implies
in a satisfactory performance of the proposed methods even
when a reduced length training sequence is used. In this
case, the proposed tensor-based semi-blind receivers achieve
a substancial training overhead reduction.

From these simulation results, we can notice that the
proposed receivers present a performance close to the
competing MMSE estimator. However, the latter requires
independent estimation at the MSs and BS sides. Futhermore,
assumptions such as channel reciprocity and limited feedback
control signaling for each MS must be guaranteed when the
MMSE channel estimator is used. In contrast, the proposed
receivers concentrate the processing burden for joint DL and
UL channel estimation at the BS avoiding, such previously
mentioned, practical limitations as well as high complexity
processing for channel estimation at each power-limited
MS. Despite the same performance between the proposed
tensor-based receivers, the LS-KRF receiver is more limited
due to its more restrictive identifiability condition.

VII. CONCLUSION

We have adressed the joint DL and UL channel estimation
problem for MU-MIMO wireless communication systems. We
first propose a novel multicarrier-based training scheme able
to concentrate the processing burden for channel estimation at
the BS. Then, we have proposed the iterative ALS-PARAFAC
and closed-form LS-KRF tensor-based receivers for joint
DL and UL channel estimation. The proposed methods
provide accurate DL and UL estimates and dispenses
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Fig. 3. NMSE (DL and UL Channels) vs. length of the training
sequence (T ) for N = 32, K = 4, U = 4 and SNR = 10 dB.

assumptions such as channel reciprocity and dedicated
channels, which are common in classical TDD and FDD
systems, respectively. Additionally, the proposed receivers
achieve channel estimation accuracy close to their equivalent
MMSE channel estimator.
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REFERÊNCIAS

[1] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An
overview of massive MIMO: benefits and challenges,” IEEE Journal of
Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742-758, Oct.
2014.

[2] D. Gesbert, M. Kountouris, R. W. Heath. Jr., C. Chae, and T. Salzer,
“From single user to multiuser communications: shifting the MIMO
paradigm,” IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 36-46,
Sep. 2007.

[3] T. L. Marzeta, “Noncooperative cellular wireless with unlimited
numbers of base station antennas,” IEEE Transactions on Wireless
Communication, vol. 9, no. 11, pp. 3590-3600, Nov. 2010.

[4] J. Choi, D. J. Love, and P. Bidigare, “Downlink training techniques for
FDD massive MIMO systems: open-loop and closed-loop training with
memory,” IEEE Journal of Selected Topics in Signal Processing, vol. 8,
no. 5, pp. 802-814, Oct. 2014.

[5] D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao
and M. Andrews, “An overview of limited feedbak in wireless
communication systems,” IEEE Journal of Selected Topics in Signal
Processing, vol. 26, no. 8, pp. 1341-1365, Oct. 2008.

[6] J. Guey and L. D. Larsson, “Modeling and evaluation of MIMO systems
exploiting channel reciprocity in TDD systems,” in Proc. IEEE Veh.
Technol. Conf., Los Angeles, USA, Sep. 2004, pp. 4265-4269.

[7] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
Society for Industrial and Applied Mathematics, vol. 51, no. 3, pp.
455-500, Aug. 2009.

[8] A. Smilde, R. Bro and P. Geladi, “Multi-way analysis: applications in
the chemical sciences,” John Wiley and Sons, Chichester, U.K., 2004.

[9] C. A. R. Fernandes, G. Favier and J. C. M. Mota, “PARAFAC-based
channel estimation and data recovery in nonlinear MIMO spread
spectrum communication systems,” Signal Processing, vol. 91, pp.
311-322, 2011.

[10] F. Roemer and M. Haardt, “Tensor-based channel estimation and
iterative refinements for two-way relaying with multiple antennas and
spatial reuse,” IEEE Transactions on Signal Processing, vol. 58, no. 11,
pp. 5720-5735, Nov. 2010.

[11] J. B. Kruskal, “Three-way arrays: rank and uniqueness of trilinear
decompositions, with application to arithmetic complexity and statistics,”
Society for Industrial and Applied Mathematics, vol. 51, no. 3, pp.
455-500, Aug. 2009.

5


