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A Q-learning Based Approach to Spectral Efficiency
Maximization in Multiservice Wireless Systems

Juno V. Saraiva∗†, Victor F. Monteiro†, F. Rafael M. Lima∗†, Tarcisio F. Maciel† and F. Rodrigo P. Cavalcanti†

Abstract— In this article, we study Radio Resource Allocation
(RRA) as a non-convex optimization problem, aiming at maxi-
mizing the spectral efficiency subject to satisfaction guarantees in
multiservice wireless systems. This problem has already been pre-
viously investigated and efficient heuristics have been proposed.
However, in order to assess the performance of Machine Learning
(ML) algorithms when solving optimization problems in the
context of RRA, we revisit that problem and propose a solution
based on a Reinforcement Learning (RL) framework. Specifically,
our proposal is based on the Q-learning technique, where an
agent gradually learns a policy by interacting with its local
environment, until reaching convergence. Thus, in this article,
the task of searching for an optimal solution in a combinatorial
optimization problem is transformed into finding an optimal
policy in Q-learning. Lastly, through computational simulations
we compare the state-of-art proposals of the literature with our
approach and we show a near optimal performance of the latter
for a well-trained agent.

Keywords— Radio resource allocation, satisfaction guarantees,
machine learning, reinforcement learning, Q-learning.

I. INTRODUCTION

Due to its importance for mobile networks, RRA has
attracted much interest from industry and academy over past
years [1]. Typically, RRA problems have been proposed
in the literature as optimization problems where objective,
constraints and resource type to be optimized are specified.
In [2] and [3], for example, the authors addressed RRA in
order to maximize the system throughput subject to user
satisfaction constraints in a multiservice scenario. In order
to solve that problem, the authors in [2] and [3] proposed
optimal and heuristic solutions. However, not all optimization
problems are liable to be optimally solved; in general, non-
linear combinatorial problems as in the case of [2] and [3]
are hard to solve. Furthermore, some optimal solutions can
be found only for small or moderate input size due to their
high computational complexity. On the other hand, heuristic
solutions are practical methods/algorithms that can be derived
from previous experience with similar problems and require
much less computational effort than optimal solutions. Nev-
ertheless, heuristics normally do not present any performance
guarantee and are problem specific.

ML is a broad area from artificial intelligence and computer
science where computer systems perform specific tasks such
∗Computer Engineering Dep., Federal University of Ceará, Sobral, Brazil.
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as solving problems. Successful applications of ML can be
found in many areas such as in financial services, marketing,
data security and robotics [4]. A branch of ML called RL has
gained notoriety since the AlphaGo’s victory in the Google
DeepMind challenge match in 2016 [1]. In RL, an agent is
capable of learning how to behave in an unknown environment
so as to achieve a given objective that in general is modeled as
the maximization of an expected reward. By taking advantage
of the high computing and storage capacity available in current
networks, RL is able to deal with many real-world problems
due to its capacity to take decisions in complex environment.

Mobile networks are well known for their heterogeneity.
Different networks have their own dynamic space-time fea-
tures and performance requirements. As previously explained,
conventional approaches for solving RRA have devised op-
timal and heuristic solutions based on optimization theory
that on their turn are tailored to specific network conditions
and user demands. In this sense, the use of ML, and more
specifically of RL solutions, to deal with RRA in mobile
networks has been considered a very fruitful area. According
to [5], RL can efficiently deal with imprecise input data such as
the Channel State Information (CSI) that cannot be accurately
collected due to random fading. Moreover, RL is capable of
processing a huge amount of information and taking good
decisions that are of fundamental importance in RRA for
modern networks.

One of the most popular RL algorithms is the Q-learning
which is a powerful and efficient technique for agents to
learn how to act optimally in controlled Markovian domains.
This algorithm has been applied in RRA [6]–[8] due to its
flexibility and adaptability which are essential features for
resource management in current and future mobile networks.
The works [6] and [7] addressed Device-to-Device (D2D)
communications in heterogeneous networks where the basic
purpose was to obtain efficient solutions from the perspective
of energy consumption employing Q-learning. Particularly, in
[6] the main objective was to minimize the total transmit
power, optimizing the connection of the user to the base
station. Meanwhile, in [7] Q-learning was used to reduce the
total system transmission power by choosing the best user
of the system to act as a relay. Both articles showed that
their proposals are capable of achieving gains in performance
and complexity reduction. Finally, in [8] a self-organizing
algorithm was proposed to maximize the sum capacity in
a dense mmWave network while providing users with their
required Quality of Service (QoS). The results in [8] showed
that the proposed algorithm reduces complexity by using a
distributed clustering method, and provides adaptability in
power allocation by using Q-learning.
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Motivated by the fact that ML based approaches have been
employed successfully to solve optimization problems in order
to achieve improved RRA in mobile networks and by the rapid
advances in this area, we provide a Q-learning algorithm for
RRA mobile networks and compare it with the algorithms
in [2] and [3]. The RRA problem involves the optimization
of Resource Block (RB) assignment under QoS and user
satisfaction constraints.

II. SYSTEM MODELING

We admit a Single Input Single Output (SISO) downlink
cellular system composed of a number of sectored cells so
that in a given sector there are J User Equipments (UEs)
connected to an Evolved Node B (eNB). UEs are grouped in
set J = {1, . . . , J}.

We combine Orthogonal Frequency Division Multiple Ac-
cess (OFDMA) and Time Division Multiple Access (TDMA)
where its resources are arranged in a frequency-time resource
grid such that, in the frequency domain, a RB consists of
a group of adjacent subcarriers, while, in the time domain, a
slot consists in a number of consecutive Orthogonal Frequency
Division Multiplexing (OFDM) symbols. The time duration of
a slot corresponds to one Transmission Time Interval (TTI).
We consider that an RB and a slot are the minimum scheduling
units in the frequency and time domain, respectively. RBs
grouped in set N = {1, . . . , N}.

Regarding intra-cell interference, in a given cell sector, each
RB n ∈ N is assigned to only one UE, therefore, there
is no intra-cell interference. Furthermore, regarding inter-cell
interference, we assume that it is added to the thermal noise
in the Signal to Noise Ratio (SNR) expression, defined later.

In this work, we also assume a multiservice scenario with
L service plans contained in the set L = {1, . . . , L} and
supported by the system operator. In each TTI, the J UEs
compete for the available RBs in order to meet their throughput
requirements, which are defined by their service plans. Each
service plan l ∈ L requires a minimum number of UEs that
should be satisfied. The set of all UEs from service l ∈ L is
Jl with |Jl| = Jl, where | · | denotes the cardinality of a set
and Jl is the set of UEs from service l ∈ L. Besides, each UE
subscribes to only a single service plan, i.e., Jl1 ∩ Jl2 = ∅,
∀l1, l2 ∈ J and l1 6= l2.

The SNR γj,n of UE j ∈ J in RB n ∈ N is γj,n = (pn ·αj ·
|hj,n|2)/(σRB)2, where pn is the transmit power allocated to
the UE j on RB n; αj models the joint effect of the path loss
and shadowing of the link between the eNB and UE j; |hj,n|
represents the magnitude of the complex frequency response
(fast fading) of RB n when assigned to UE j; and, finally,
(σRB)2 is the noise power at the receiver in the bandwidth of
a given RB.

Similar to [2] and [3], power allocation is not optimized
herein and we employ Equal Power Allocation (EPA) among
RBs, which is the most basic and common power allocation
scheme. Hence, the power pn allocated to each RB n is fixed
and equal to P/N , where P is the available power at the eNB.

We assume f(·) as the link adaptation function responsible
for mapping the achieved SNR to the transmit rate. It is a
discrete and monotonic increasing function that models the
Modulation and Coding Scheme (MCS) levels so that the

transmission parameters at the physical layer are adapted
according to the current channel state. Thus, we consider that
the transmit rate when the RB n is assigned to UE j is rj,n
such that rj,n = f(γj,n).

III. PROBLEM FORMULATION AND OPTIMAL SOLUTION

As discussed previously, the problem investigated herein is
the one from [2] and [3], whose aim is to maximize the system
throughput constrained by a per-service minimum number of
satisfied UEs in a given TTI. For that problem, we define xj,n
as the binary decision variable that assumes the value 1 when
RB n is assigned to UE j and 0, otherwise. Furthermore, let
Rj be the total throughput allocated to a UE j, i.e., Rj =∑

n∈N rj,nxj,n, ∀j ∈ J . Therefore, the resource assignment
problem can be formulated as:

max
x

∑
j∈J

Rj , (1a)

s.t.
∑
j∈J

xj,n = 1, ∀n ∈ N , (1b)∑
j∈Jl

u(Rj , ξj) ≥ ηl, ∀l ∈ L, (1c)

xj,n ∈ {0, 1}, ∀j ∈ J and ∀n ∈ N , (1d)

where x is the vector of optimization variables and u(x, b) in
(1c) denotes the Heaviside step function, which assumes the
value 1 if x ≥ b and 0, otherwise. With this, ηl is the minimum
number of UEs from service l that should be satisfied and ξj
represents the required throughput for a UE to be considered
satisfied, i.e., ξj consists of a QoS requirement for each UE j
in terms of throughput. Regarding constraints (1b) and (1d),
they guarantee that each RB is assigned to a single UE.
Notice that (1) is a combinatorial optimization problem with
a non-convex constraint (1c). In order to simplify the optimal
solution analyses, we linearize equation (1c) by introducing
some new variables. Let ρj be a binary selection variable that
assumes the value 1 if UE j is selected to be satisfied and 0,
otherwise. Thus, (1c) can be replaced by (2c) and (2d), where
ρj = 1 in (2d) implies that UE j is satisfied and (2d) means
that for all service l there are at least ηl satisfied UEs. Hence,
problem (1) can be equivalently reformulated as shown in (2).

max
x,ρ

∑
j∈J

Rj , (2a)

s.t.
∑
j∈J

xj,n = 1, ∀n ∈ N , (2b)

Rj ≥ ξj · ρj , ∀j ∈ J , (2c)∑
j∈Jl

ρj ≥ ηl, ∀l ∈ L, (2d)

xj,n, ρj ∈ {0, 1}, ∀j ∈ J and ∀n ∈ N . (2e)

Thus, we have transformed (1) into an Integer Linear
Problem (ILP), which can be solved by standard methods such
as the Branch and Bound (BB) algorithm [2], [3].
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IV. PROPOSED SOLUTION

In this section, we first present an overview of the Q-
learning technique and, after that, we present our proposed
solution to problem (1).

A. An Overview of Q-Learning

In general, the Q-learning model consists of an agent, a set
of states S and a set of actions per state A(s), s ∈ S . By
performing actions and, consequently, transitions from state
to state, the agent aims to learn an optimal policy or an
optimal path to a given goal. Each of these states can be
defined as a tuple of values that characterizes the environment
for the agent, while each action represents the change that
the agent applies to this environment. Thereby, the idea is
that the agent perceives the environment state and selects an
action according to a particular strategy or decision policy
[4]. This strategy or policy can be implemented using a
variety of techniques such as the ε-greedy decision policy.
It is simple, but very efficient: the agent explores or exploits
its environment taking random (non-greedy) or greedy actions
according to a given probability distribution, respectively.
Normally, for this decision policy, a random action can be
chosen with probability ε ∈ (0, 1), while a greedy action is
taken with a probability 1−ε. In this way, when greedy actions
are taken, the objective is to exploit the acquired knowledge
to improve performance. However, generally, for a (partially-
)unknown environment, these actions lead to locally optimal
solutions. On the other hand, when the agent decides to take
random actions it explores its environment for the sake of
acquiring experience and knowledge about the environment
and, therefore, there is no concern with the immediate effects
of these actions. However, random actions allow the agent to
neglect the locally optimal policies, and to acheive the globally
optimal one, instead. Consequently, one of the challenges that
arise in RL techniques is the trade-off between exploration
and exploitation and it should be carefully balanced so that
the benefits of both can be properly harnessed [4].

Once taken an action a ∈ A(s), the system state changes
from s to s′ and this change generates a signal or indicator
that evaluates the effect of the taken action. This feedback
or message from the environment is called reward, φ, which
is a numerical score and it is used to estimate the expected
value of taking an action a in a particular state s, also known
as Q-value of a state/action (s, a). In detail, the Q-value
is calculated by a Q-function such that Q : S × A → R
and, for a given state/action pair (s, a), it can be estimated
according to Bellman equation: Q̂(s, a) = (1 − α)Q̂(s, a) +
α(φ + γmaxa Q̂(s′, a)), where 0 < α ≤ 1, 0 ≤ γ < 1 are
constants called learning rate and discount factor, respectively,
and maxa Q̂(s′, a) is the best estimated Q-value given the next
state s′ and all possible actions at s′. Basically, α determines
how quickly the learning process occurs, while γ controls the
value placed on future Q-values. Then, over several iterations
the state/action pairs are defined and their respective Q-values
are estimated and updated by Bellman equation. A set of
these iterations from an initial state so to a final state sf
is called an episode. Thereby, each state/action pair and its
respective performed action allow the agent to interact with

Algorithm 1 Q-learning Based Resource Assignment
1: ε← 1; Q-table← ∅; . initialization
2: loop over the episodes . learning process
3: s← so and Ω← ∅; . where so is an initial state
4: while s 6= sf do . where sf is a final state
5: Generate a random number υ between 0 and 1;
6: if υ > ε then
7: choose action a← arg maxa∈A(s)Q(s, a); . exploitation
8: else
9: choose action a ∈ A(s) randomly; . exploration

10: end if
11: Define the pair (s, a) (state/action);
12: Execute a, i.e., s← s′ (next state);
13: if (s, a) /∈ Q-table then
14: Ω← Ω ∪ {(s, a)}; . (s, a) is a new pair
15: end if
16: end while
17: Set Q(sf, ·) using Alg. 2;
18: for (s, a) ∈ Ω do
19: if (s, a) /∈ Q-table then
20: Q(s, a)← Q(sf, ·);
21: else
22: Q(s, a)← max{Q(s, a), Q(sf, ·)};
23: end if
24: end for
25: Update ε-greedy decision policy; . ε value is decreased
26: end loop; return s;

Algorithm 2 Set Q-value
Require: (s, a) and Rj , ∀j ∈ J ;
1: Q(s, a)←

∑
j∈J Rj and ϑ← 0;

2: for l ∈ L do
3: if

∑
j∈Jl

u(Rj , ξj) < ηl then
4: for j ∈ Jl do
5: if Rj < ξj then
6: ϑ← ϑ+ (Rj − ξj)/ξj ;
7: end if
8: end for
9: end if

10: end for
11: if ϑ < 0 then
12: Q(s, a)← ϑ/Q(s, a);
13: end if; return Q(s, a);

the environment and this interaction after several episodes
produces precious information about the consequences of
actions, mainly about what to do or not in order to achieve
goals. This information are precisely represented in the Q-
values and the set of all of them is stored in the Q-table,
which is where all the experience or knowledge acquired by
the agent is concentrated.

Therefore, the basic idea in Q-learning is that the agent
finds and learns an optimal policy for the desired problem
by benefiting from the experience gathered in the Q-table.
However, when the space of states and actions is large,
building an efficient Q-table would require many iterations
or a lot of training time, as well as a high amount of memory.
Nevertheless, learning from interaction is a paramount concept
and it is present in almost all the techniques of learning [4].

B. Proposed Q-Learning Solution
Our proposed solution based on Q-learning for problem (1)

is depicted in Alg. 1. The agent, the states and the actions
associated with our Q-learning model are defined as:
• Agent: defined as an entity located in the eNB which is able

to sense the state of its environment and to take actions that
affect this state.

• State: defined as an N -tuple where the n-th element, sn,
defines the UE j ∈ J that will get assigned RB n ∈ N .

3
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In other words, if sn = j and j 6= 0, then xj,n = 1 and
xi,n = 0, ∀j 6= i. We assume that if sn = 0 it means
that RB n is available to be allocated. Our initial state is
defined as sn = 0, ∀n ∈ N . Meanwhile, we assume as
a final state sf any state where all RBs are allocated, i.e.,
sn ∈ J , ∀n ∈ N .

• Action: consists of choosing a UE j and a not yet allocated
RB n to be assigned to the selected UE, i.e., to set sn = j.

Thereby, in Alg. 1 the basic idea is that through the main
loop from lines 2 to 26 the agent learns an optimal policy for
RRA problem in (1). This loop corresponds to the learning
process and each iteration of it we define as our episode.
Therefore, in each of these episodes, the while loop from lines
4 to 16 runs until the initial state so becomes any state that
is considered a final state sf, i.e., the while loop runs until
all RBs are allocated. This change of state is iteratively done
by taking actions. The actions are chosen in lines 5 to 10
following an ε-greed policy.

Once decided which RB should be allocated to a UE or
given that an action was chosen, the state/action pair is defined
in line 11 and that action is executed in line 12, enjoining the
change of state. Thereafter, if the state/action pair in line 11
has been defined for the first time, i.e., if it is not stored in
Q-table yet, then it is stored in Ω, which stores all of these
new pairs for each episode. Next, in line 17, the Q-value for
the last state/action pair of the current episode is calculated.
This procedure is executed by Alg. 2.

The main idea in Alg. 2 is to define a Q-function capable
of reporting what is possible to achieve in terms of satisfac-
tion and system throughput for a given pair (s, a). The Q-
function tries to measure how close one is from meeting the
requirements of (1), without forgetting its objective function.
If all constraints of problem (1) are met, meaning that s is a
feasible solution of problem (1), then the Q-function is equal
to

∑
j∈J Rj , which is the objective function (1a). Otherwise,

the Q-function is equal to ϑ/
∑

j∈J Rj . The variable ϑ is
responsible for quantifying how close the current state s is to
a feasible solution of problem (1). Notice that if any contraint
is not met, then ϑ is negative, and the Q-function as well.

Continuing Alg. 1 from line 18, before ending the current
episode, we run the for loop from lines 18 to 24, where back-
propagation is used to set the Q-values of all new state/action
pairs defined in the current episode. Its main idea is to inform
the agent, when visiting an already known state/action pair,
what is the maximum Q-value that one can get from that state
in the end of the episode. This avoids having to set the values
of φ, α and γ present in Bellman equation. In addition, this
procedure speeds-up the learning process.

In line 25, the ε value is decreased and, consequently, greedy
actions will be chosen with a higher probability in the next
episodes. The main idea is to explore more in the initial
episodes and exploit more in the final ones. Thus, we adapt the
traditional ε-greedy decision policy by appropriately reducing
ε value during the learning process. The main advantage of this
is to avoid loss of performance of Alg. 1 due to the constant
exploration probability. Lastly, in line 26 the current episode
ends and another starts, but with an agent interacting with a
less uncertain environment.

V. SIMULATION RESULTS

In this section, we evaluate our proposed solution and
compare it with the optimal solution and with the solutions of
[2] and [3]. We firstly present the main simulations parameters
and, after that, the results and their discussion.

A. Simulation Parameters
We consider N = 6, J = 4, L = 2 and we admit that UEs

from service 2 demand a throughput of 150 kbps higher than
the UEs from the service 1. In both services, we consider only
two UEs, where η1 = 2 and η2 = 1. We assume 11 QoS levels
in kbps such that ξj∈J1

= (150, 220, . . . , 850).
Important parameter related to the adopted channel model

are presented in Table I. Due to the limit of space here, please
refer to [2] for further details regarding the adopted simulation
models.

To perform qualitative comparisons with our proposed algo-
rithm (PROP), we simulate the optimal algorithm of problem
(1) (OPT) as well as Reallocation-based Assignment for
Improved Spectral Efficiency and Satisfaction (RAISES) [2]
and Rate Maximization under Experience Constraints (RMEC)
[3] algorithms.

Regarding the performance metrics, we consider the system
throughput and the outage rate, i.e., percentage of cases in
which (1c) was not satisfied for at least one of the services.

The results were obtained by running 8, 000 feasible in-
stances of problem (1) in order to get valid results in a
statistical sense and the channel realizations were the same
for all the simulated algorithms to get fair comparisons.

TABLE I
SIMULATION PARAMETERS [2]

Parameter Value

Cell radius 334 m
Transmit power per RB 0.35 W

Number of subcarriers per RB 12
Shadowing standard deviation 8 dB

Path loss 35.3 + 37.6 · log10(d)[dB]
Noise spectral density 3.16 · 10−20W/Hz

B. Discussion
Fig. 1 shows the system throughput as well as individual

throughputs of the UE 01 and UE 02 versus the number of
episodes for the algorithms OPT and PROP. Looking at the
performance of the PROP solution, we can observe that it tends
to the OPT solution as the number of episodes increases. This
result is expected since the more episodes, the more precise
the Q-table becomes and, consequently, the more favorable it
is for the agent to achieve the optimal solution of problem (1).

In Fig. 2 and Fig. 3 we plot the outage rate and the
system throughput in the considered scenario versus the QoS
level for the algorithms OPT, RAISES, RMEC and PROP,
respectively. For the PROP algorithm we vary the number of
episodes and we consider 1, 000 and 3, 000 of them in the
plots of these figures. In this way, we firstly observe the better
performance of our proposed solution both in terms of outage
rate and system throughput in relation to the other sub-optimal
solutions to solve problem (1). Besides, we highlight Fig. 2
that shows the outage curve that is considerably better for the

4
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solution based on Q-learning. In this figure, notice that the
outage rate for that solution is smaller than 1% when it is set
to 3, 000 episodes, while for RAISES and RMEC solutions
we have approximately 7% and 10% in outage, respectively.
Even with 1, 000 episodes we have a significant gain on these
solutions with only 3.1% in outage. This shows that solutions
based on ML algorithms may perform better than traditional
heuristics and, therefore, it may be appealing to optimization
problems in the context of RRA.

However, as discussed in Section IV-A, in the case of
the Q-learning technique, the convergence for the optimal
solution may require high amounts of memory due to the
cost of building and storing the Q-table, especially if the
number of state/action pairs is large. Indeed, this does not
occur with RAISES and RMEC algorithms that are of low
computational cost. On the other hand, to build the Q-table

its memory requirement is an array of states × actions and,
for our proposed solution notice that the cardinality of the
set of states is |S| = JN , while for the set of actions in a
given state s is |A(s)| = J(N −

∑
n∈N xsn,n), which means

that considering scenarios with larger scales makes the appli-
cation of Q-learning technique troublesome. Nevertheless, an
alternative in order to reduce the excessive memory used by
the look-up table representation in the Q-learning technique is
to use a deep neural network to approximate the Q-function.
Integrating neural networks with RL techniques can be quite
promising and has exhibited excellent performance in the
literature [4].

VI. CONCLUSIONS

In this article, we have investigated the problem of max-
imizing the system throughput subject to user satisfaction
ratio constraints in a multiservice scenario. This problem was
previously studied in [2] and [3], where efficient heuristics
were proposed. To tackle this problem again we have proposed
a new approach employing a reinforcement learning technique,
specifically based on Q-learning. The simulations results pre-
sented in this article showed that our proposed algorithm
performs near optimally and, consequently, better than the
conventional heuristics proposed in [2] and [3], especially in
terms of outage. However, as discussed previously, the Q-
learning technique requires high amounts of memory when the
space of states and actions is large and this may considerably
limit its applications. Despite this, it is possible to reduce this
cost by training a neural network to estimate the Q-table and,
although this needs to be further analyzed, it is an interesting
topic of future research.
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