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Abstract—In this paper, we propose an efficient pilot-assisted
technique for the estimation of very-large MIMO (multiple-input
multiple-output) channels exploiting the inherent sparsity of the
channel. We first obtain an appropriate sparse decomposition
model from a virtual channel representation of the very-large
MIMO channel. Based on this model, we capitalize on a
fundamental result of the compressed sensing (CS) to show
that the channel matrix can be accurately estimated from very
short training sequences compared to the number of used
transmit antennas. We compare the normalized mean square
error (NMSE) obtained using the proposed CS-based channel
estimator, the least-square (LS) estimator and the Cramer-Rao
lower bound (CRLB). The simulation results show that the
proposed estimator obtains good performance, being 5 dB from
the CRLB.

Keywords—Very-large MIMO channels, compressed sensing,
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I. INTRODUCTION

Very-large multiple-input multiple-output (VL-MIMO)

systems have recently attracted significant research interests

due to the potential to achieve high data rates and its robustness

against interference, fading and antenna unit failures [1], [2].

Furthermore, according to [1], [2], in cellular networks the

use of very-large arrays is an alternative to cell-size shrinking,

which is the traditional way of increasing the network capacity

. It is also expected that VL-MIMO systems potentially reduce

uplink and downlink transmit powers as discussed in [3], [4].

The promised benefits of VL-MIMO systems are strongly

dependent on the quality of the channel state information

(CSI) available at the receiver and/or transmitter. Conventional

channel estimation approaches rely on training sequences [1],

[5], [6] and most of them use the least square (LS) approach to

estimate the channel. However, this technique requires that the

length of the training sequences be at least equal to the number

of transmit antennas. It may be too restrictive in VL-MIMO

systems where the number of transmit antennas is an order of

magnitude higher than in traditional MIMO systems. Thus, it

can lead to excessive use of critical communication resources

such as energy and spectrum.

One way to overcome this problem in VL-MIMO systems

is exploiting the sparsity of the channel to obtain CSI at

This work is supported by Ericsson Research and Development Centre,
Ericsson Telecommunications S.A., Brazil. The authors are partially supported
by CAPES and CNPq.

transmitter and/or receiver using less communication resource.

The compressed (or compressive) sensing (CS) theory is very

attractive in problems where the signal of interest has a

sparse representation [7], [8]. This subject has been under

intensive study and several works have exploited this concept

in different areas: sampling theory [9], ultrawideband channel

estimation [10], [11] and radar [12], just to mention a few.

The use of compressed sensing techniques holds for signals

which are sparse in the standard coordinate basis or sparse

with respect to some other orthonormal basis. In our context,

the VL-MIMO channel matrix itself is not sparse. However,

considering that the VL-MIMO channel is modelled by the

virtual channel model [13], the channel matrix can be mapped

into a sparse matrix using transmit/receive Fourier bases. The

same occurs to consider the Weichselberger’s channel model

[14] which is a stochastic MIMO channel model that combines

the advantages of the Kronecker model [15] and the virtual

channel model [13].

In literature, some works have proposed channel estimators

based on CS theory [10], [16]. In [17], the authors present a

channel estimator based on CS theory considering the Dantzig

Selector algorithm. However, it is not found any simulation

comparison with another technique, even with the CRLB one.

In this work, we propose a pilot-assisted technique based on

CS theory to estimate the VL-MIMO CSI. Different from

the estimator in [17], our approach uses the well-known

greedy algorithm called orthogonal matching pursuit (OMP).

The VL-MIMO channel is represented in a compressed space

which is a sparse decomposition model based on a virtual

channel representation of the very large channel. Through

normalized mean square error (NMSE) curves, we show that

sparse signal reconstruction methods, such as those based

on matching pursuits, guarantee the recovery of the spatial

structure of the VL-MIMO channel with high probability [7],

[8]. Moreover, by exploiting sparsity we show that the channel

matrix can be accurately estimated from very short training

sequences compared to the number of used transmit antennas.

As a contribution to the literature, we compare the (CS)-based

estimator with the LS-based estimator and Cramer-Rao lower

bound.

II. COMPRESSIVE SENSING PREREQUISITES

First, let us introduce the concept of a sparse vector [7], [8].
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Definition 1: Let h ∈ RNx1, if there exist a K < N
nonzero entries, then it is a K-sparse vector.

Define x ∈ RNx1 as the signal of interest. Consider an

orthonormal basis Ψ ∈ RNxN such that θ = ΨTx is a

K-sparse vector. The matrix Ψ compresses x and is referred

to as the “codebook”. However, in general, we do not acquire

x directly but rather acquire M < N linear measurements

y = Φx using an M ×N measurement matrix Φ. This kind

of acquisition effectively compresses the signal. The acquired

signal can then be written as y = Φx = ΦΨθ, where the

vector y ∈ RMx1 contains the compressed measurements. The

sparsity of vector θ enables that x can be accurately recovered

from the following equation [7], [8], [18]

θ̂ = argmin||θ||1 s.t. ||y −Υθ||2 < ǫ. (1)

where, ǫ is upper-bounded by the l2-norm of a noisy vector.

The solution of Eq.(1) relies on the fact that the θ has to be

sufficiently sparse. Furthermore, the matrix Υ has to obey the

restricted isometry property (RIP) to guarantee the stability of

the problem [19].

Definition 2: Consider each integer K=1, 2, . . . , and l0
norm of a vector θ being ||θ||0 = K , for all θ ∈ RNx1. The

K-restricted isometric constant δK of the matrix Υ

(1− δK)||θ||22 ≤ ||Υθ||22 ≤ (1 + δK)||θ||22.
Defining the constant δK , it is possible to guarantee the

recovery of the information contained in θ [16].

Theorem 1: If the matrix Υ has RIP constant δ2K <
√
2−1,

the solution θ̂ to Eq. (1) [16], [19] obeys

||θ − θ̂||22 ≤ C0K
−1/2||θ − θK||1 + C1ǫ.

where, the constants C0 and C1 rely only on δ2k. θK represents

the approximation of vector θ retaining only the K most

significant values.

Theorem 1 guarantees that sparse signals can be recovered

even from noisy measurements. Unfortunately, the RIP

constant calculation for a given matrix generally implies in

a high computational complexity. Some classes of matrices

have been studied in the literature. A case of interest is a

matrix in RMxN with independent Gaussian entries, having

zero mean and variance 1/M . From Theorem 1 the condition

K ≤ O(M/log(N/M)) guarantees the correct estimation of

the vector θ with high probability [7].

III. CHANNEL MODEL

Consider a MIMO system with N transmit antennas and M
receive antennas, where both N and M are very large, e.g. in

the order of hundreds. Assume that the receiver does not have

any knowledge about the communication channel. However,

for a reliable communication, the receiver needs to estimate

the channel using, e.g. a known training sequence sent by the

transmitter. The received signal is denoted by

Y = HS+ Z. (2)

The matrix S ∈ CNxτ contains the training sequences sent

by each one of the N transmit antennas, where τ denotes

the training time, H is a M × N channel matrix and Z is

the additive white Gaussian noise matrix whose entries have

variance N0/2. The matrixY ∈ CMxτ and its entries, [Y]m,τ ,

stands for the discrete-time baseband received signal at m-th

antenna and τ -th training symbol period.

As we have mentioned previously, it is a common practice

in the literature to use i.i.d entries for modelling the MIMO

channel. However, this assumption leads us to overestimate the

spatial degrees of freedom of the MIMO channel. Thus, for a

precise characterization of the VL-MIMO channel we abandon

the i.i.d. assumption and adopt a spatially structured channel

model and evaluate the impact of increasing the number of

antennas on a structured model.

In [14], a stochastic MIMO channel model, inspired by

Kronecker model and virtual channel model, was proposed.

Combining the advantages of both models, the so-called

Weichselberger’s model shows enhanced capabilities to model

the spatial multipath structure of the MIMO channel. However,

the price for this better matching with the real channel is the

knowledge of the transmit and receive one-side correlation

matrices. Let us first introduce the eigenvalue decomposition

of the one-side correlation matrices

Rr = E{HHH} = UrΛrU
H
r ,

Rt = E{HHH}T = UtΛtU
H
t ,

where, the matrices Ur (resp. Ut) and Λr (resp. Λt) are the

receive (resp. transmit) eigenvector and eingenvalue matrices.

In [14], Weichselberger proposed the following channel

decomposition model

H = Ur (Ω⊙Hw)U
H
t (3)

where Ω is a positive and real-valued matrix, being equal

to the square-root of the power coupling between transmit

and receive eigenmodes, Hw has i.i.d entries, and ⊙ denotes

the Hadamard product. A full-rank matrix Ω means a

scattering-rich environment with maximum diversity. In this

situation, model (5) is equivalent to the Kronecker model. In

[14], typical examples for the structure of Ω are given for

different propagation environments.

In work [13], [14], it is shown that whether the number

of antennas elements goes to infinity, the discrete Fourier

transform (DFT) matrix serves as asymptotically optimal

eigenvectors matrix in Eq. (4) for the channel matrix [13],

[14]. This can be confirmed empirically in the Fig. 1, where

it depicts the normalized l2-norm of the error

enorm =
||W −Ur||22

MN
(4)

where W is the DFT matrix and Ur is the measured

eigenvector matrix of a one-side correlation matrix Rx =
E{HHH}.
Figure 1 has been obtained from hundreds of eigenvector

decompositions of the i.i.d channels and taken a mean matrix

Ur. If we consider a specific channel, this curve will be

different, in other words this depends on the environment.

Thus, how much antennas are necessary for the MIMO channel

to be considered “very large”?. It is a difficult question, since

each scenario has a different spatial structure.
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Fig. 1. Convergence of the error between the eigenbasis of the one-sided
correlation matrix and the DFT matrix of the same dimensions as the number
of antennas grows large.

Based on Fig. 1, we propose to model for VL-MIMO as

follows

H = [Wr +∆r] (Ω⊙Hw) [Wt +∆t]
H

= W̃r (Ω⊙Hw)W̃
H
t , (5)

where W̃t = Wt + ∆t and W̃r = Wr + ∆r.

Wt and Wr are DFT matrix N × N and M × M
respectively. The matrices ∆t and ∆r are the error model

due to the approximation of eigenvectors of the one side

matrices correlation Rr and Rt in DFT matrices. Their

entries are zero mean white Gaussian random variables with

E{vec(∆t)vec(∆t)
H} = σ2

t IM2 , E{vec(∆r)vec(∆r)
H} =

σ2
rIN2 and E{vec(∆t)vec(∆r)

H} = 0MN . The values

of σ2
r and σ2

t depend on the number of antenna and the

characteristics of the scenario like position of the scattering. If

the number of antennas increases W̃t ≈ Wt and W̃r ≈ Wr,

thus

H ≈ Wr (Ω⊙Hw)W
H
t . (6)

Eq. (6) represents a virtual channel model for the VL-MIMO

channel. Therefore,the asymptotic growth of the number of

transmit and receive antennas, the Weichselberger’s model

converges to the virtual channel model. Such a convergence

can be faster or not depending on the spatial structure of the

environment.

IV. PROPOSED CHANNEL ESTIMATION TECHNIQUE

The channel estimation via LS impose that τ ≥ N to

obtain the VL-MIMO channel. However, this restriction is

not practical, whereas a desirable situation is that τ ≤ N .

This condition lead us a systems with less equation than

variable resulting in a system of equations with infinitely many

solutions. Using compressed sensing it is possible to estimate

the VL-MIMO channel even under the condition τ ≤ N . First

it is necessary to find an appropriate codebook (also known

as “dictionary”) Ψ to obtain a sparse representation of H.

Consider Eq. (2) and use the vec(.) operator to obtain

vec(Y) = vec(HS) + vec(Z)

= (S⊗ IM ) vec(H) + vec(Z), (7)

where we have used the property vec(ABC) = (CT ⊗
A)vec(B) of the Kronecker product. Substituting Eq. (5) in

Eq. (7) and using again this property, yields

vec(Y) = (ST ⊗ IM )vec(Ur (Ωw ⊙Hw)U
H
t ) + vec(Z)

= (ST ⊗ IM )
(

W̃t ⊗ W̃r

)

vec(Ωw ⊙Hw) + vec(Z).

(8)

Defining

y = vec(Y) ∈ C
τM×1, z = vec(Z) ∈ C

τM×1, (9)

Φ
.
= ST ⊗ IM ∈ C

τM×NM , (10)

Ψ
.
= W̃t ⊗ W̃r ∈ C

NM×NM , (11)

g
.
= vec(Ωw ⊙Hw) ∈ C

NM×1, (12)

allows one to compactly rewrite (8) as

y = ΦΨg+ z, (13)

which corresponds to a CS reconstruction model. Note that,

in this model, the measurement matrix Φ is constructed by

the known training sequence matrix S. Thus the number of

measurements corresponds to the training sequence length,

which is assumed to be shorter than the number of transmit

antennas, i.e. τ < N . The basis dictionary matrix is given

by the compound transmit-receive spatial basis W̃t and W̃r,

herein assumed to be generated by DFT matrices. Moreover,

in the CS model (13), the signal of interest to be recovered,

represented by the vector g, reveals the spatial structure of the

VL-MIMO channel, which is likely to be sparse in practical

propagation channels when very large transmit and receive

arrays are used. The sparsity of g is determined by the number

of non zero entries in the coupling matrix Ωw.

From Eq. (1), we propose to solve the following

optimization problem:

ĝ = argmin ||g||1 s. t. ||y −ΦΨg||2 < ǫ. (14)

There are some algorithms that solve (14). In this work, we

choose the well known orthogonal matching pursuit (OMP)

algorithm [11]. The advantage of this greedy algorithm is the

reduced complexity compared to another class of algorithm

based on l1 relaxation, for example the Dantzig selector [17],

[18]. The proposed CS-based channel estimation algorithm

using OMP is described in the Table I.

From Eq. (7), a pertinent question is “how much training we

need to recover the K-sparse vector g”? Thanks to Theorem

1, it is possible to recover this vector almost surely if

K ≤ O(τM/log(NM/τM))

≤ O(τM/log(N/τ)). (15)

Thus, from the above condition, it is possible to guide the

choice of τ for a pre-specified number of transmit and receive

antennas, and sparsity degree K of the VL-MIMO channel.

Note that the term O(τM/log(N/τ)) increases linearly with
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TABLE I

CS-BASED CHANNEL ESTIMATION ALGORITHM USING OMP

Step 1 Set parameters:
the residual error r0 = vec(Y) ;
components of sparse representation ĝ = 0,
ĝ ∈ CMNx1 ;
Υ = ΦΨ = [u1, . . . ,uMN ]
counter t = 1.

Step 2 Select the component in the dictionary
that best match the residual error.

l = argmaxi=1,...,MN
u
H

i
rt−1

||ui||

Step 3 Update the residual error

rt = rt−1 −
u
H

l
rt−1

||ul||
ul

Update the l-th component of ĝ

ĝl = θ̂l +
u
H

i
rt−1

||ui||

Step 4 If t < T0 and ||rt||2 > ||vec(Y)||2
the set t = t + 1 and go back to Step 2,
otherwise go to Step 5

Step 5 Reconstruct the channel vec(H) = Ψĝ.

M , so that the training sequence length can be reduced

without compromising the reliability of the channel estimation.

Note, however, that an increase in the number of antennas

results in a increase in the dimensions of the “spatial” basis

dictionary. This condition establishes a trade off between

training sequence length and number of antennas.

V. CRAMER-RAO LOWER BOUND

In the previous section, a estimator ĝ was derived for the

vector g. Thus, it is worthwhile to derive the CRLB. Assume

that the Eq. 13 is rewritten as following:

y =
√
αs+ z, (16)

where,
√
α is the transmitted power that is known, meanwhile

s = ΨΦg and g are a unknown parameters. The vector z is

a white Gaussian noise of zero mean and its variance is σ2.

The dependence of signal y on s is explicit noted. It is easy

to conclude that

p(y; s) =
1

(2πσ2)τM/2
e−

1

2σ2

∑
τM

n=0
(y[n]−s[n;g])2, (17)

where, y[n] and s[n;g] is the n-th element from the vectors

y and s, respectively.

CRLB is obtained from Fisher information matrix ΓF (s),
where (i, j)-th matrix element is given by

[ΓF ((s))]ij = −E{∂
2lnp(y; s)

∂si∂sj
}. (18)

From [20], the CRLB is given by

CRLB =
∂f(s)

∂s
Γ−1
F (s)

∂f(s)H

∂s
.

= (Υ†)(Υ†)H . (19)

The covariance matrix of ĝ is Cĝ and it is related to the

CRLB as follows [20]

Cĝ ≥ (Υ†)(Υ†)H (20)

where, the operator ()† stands for pseudoinverse, Υ = ΦΨ

and f(s) = Υ†s.
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Fig. 2. NMSE of the channel for different lengths of training sequence,
using the CS-estimator.

VI. NUMERICAL RESULTS

In this section, we simulate a system with N = 100
transmitters and M = 30 receivers antennas, using a training

sequence under the constraint τ < 100. To perform the

simulation, a channel was synthesized using the model H =
W̃r(Ω ⊙ Hw)W̃

H
t . The coupling matrix Ωw is sparse and

there are one hundred nonzero entries, all in the first column

of the coupling matrix. In practice, this means that only

one eigenmodes of the transmitter is connected to all other

receivers eigenmodes. A more detailed description about this

coupling matrix and others configuration can be found at

[14]. The error matrices ∆r and ∆t depend on the field

measurements. They vary with the environment and rely on the

number of antennas, for this work we consider σ2
r and σ2

t on

the order of 10−9. The Fig. 2 represents the Normalized Mean

Squares Error (NMSE) estimated of the channel for τ = 20,
50, 80.
The results in Fig. 2 shows that is possible to estimate the

channel even under the constraint τ << N . As expected, the

channel estimation for τ = 20 was the poorest estimation

meanwhile for τ = 50, 80 the estimator presented the same

performance. This way τ achieves its lower bound for the

proposed estimator and any additional length to the training

sequence means a waste of resources to the communication

system.

Observe the Eq. (2), if the Least-Square approach was

adopted the estimated channel would be

ĤT = (ST )†YT , (21)

where ()† and ()T mean pseudoinverse and transpose

respectively. However, this strategy do not exploit the sparsity

and it requires τ ≥ N and resulting in a bad spectral efficiency.

Therefore, using compressive sensing it is possible to design

a VL-MIMO system reducing the penalty due to the large

numbers of transmitter antennas on the spectral efficiency

which would be caused adopting the Least Square Method.
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Fig. 3. Comparison among the CS-estimator, LS-estimator and CRLB.

The Fig. 3 compares the NMSE curve of LS-based

estimator, CS-based estimator and Cramer-Rao Lower Bound.

Note in Fig. 3 that the performance among CS-based estimator

and LS-based estimator in a correlated channel model has

huge gap. This is due to how CS-based estimator operates. Its

functionality involves a iterative estimation, using the greedy

algorithm OMP, where only the β most significant components

of the basis ΦΨ expressed in Eq. 13 are estimated, where

β ≥ K is the number of iterations set in greedy algorithm.

On the other hand, LS is not an iterative process and estimates

all the components. Because of this, components where there

is no information the estimation is impaired by the noise. To

obtain the results of Fig. 2 and Fig. 3 we use β = 110.
The Cramer-Rao lower bound is well known in the literature

and widely use as a benchmark in problems of estimation. In

the Fig. 3, we compare the two estimators with Cramer-Rao

lower bound and due to the CS estimator take account a

structured model of channel and exploit the inherent channel

sparsity, this ones reaches a better performance than LS

estimator, losing about 5 dB in performance compared to the

CRLB. However, analysing table I, the process of searching

the most significant component of the residual error rt has a

high computational cost. Thus, there is a trade off between

the performance of the CS-estimator and the complexity of

the algorithm OMP.

VII. CONCLUSION

This work verifies via simulation that the number of

antennas increases than its eigenvector matrix converges to

a DFT matrix as stated in [14]. This helps us to derive the

codebook matrix to generate a sparse version of the channel to

be estimated. Furthermore, the result of convergence give us a

modified Weichselberger’s model what was used to synthesize

the channel for the simulations.

From the numerical results in this paper, we conclude that it

is possible to estimate the channel even if the time of training

sequence is less than the number of transmitter antennas.

Moreover, the LS-based estimator and CRLB were compared

with our approach. The numerical results show a huge gap

between LS-based and CS-based estimator performances,

indicating that the latter effectively exploits the sparsity of

the channel. As future perspectives, we intend to extend this

analysis for time-frequency selectivity channels, using the

tensor model channel [21]. Moreover, the pilot design is a

topic of future works.
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