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Abstract— This article deals with the algebraic structure of
the real case cost function, present in the analysis of Wiener
filters. The correlation written as a decomposable tensor comes
from the isomorphism of the multiplication of inner products
and linear operators, and for general bases does not have the
same representation in terms of the components. This difference
is the object of this study.
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I. INTRODUCTION

In signal processing, filtering is an important technique for

extracting signal information or allowing such signals to be

suitable for certain applications. Most of these signals are

treated stochastically due to the presence of noise.

One way of designing an optimum filter, specially in linear

cases, is by the minimization of the mean square error, which

is usually called the cost function. In this approach, the signal

is compared to a desired signal and the filter adjusted so we

can minimize the effects of the noise.

This work proposes a general algebraic study of the cost

function considering real-valued signals, which is used to

characterize the mean square error as a function of the

coefficients, done by the study of bilinear forms and their

relations with tensor products. This will be done in order to

verify the algebraic consistency between notations in a simple

problem, but which lacks a more formal treatment, sometimes

not so obvious.

II. SYSTEM MODEL

A transversal discrete filter of finite size N with external

signal entries u = {u1, u2, ..., uk, ...uN} can be charac-

terized by the coefficients wi, with ui = u(n − i) and

w = {w1, . . . , wN}, where u,w ∈ V and dim(V) = N . The

linear time invariant response of the filter can be expressed as

[1]:

y(n) =

N
∑

k=1

u(n− k)wk =

N
∑

k=1

ukwk = 〈u,w〉, (1)

where 〈·, ·〉 is the canonical inner product. Note that

u : Ω → V can be a random variable mapped into the vector

space, w is a deterministic vector and the scalar y(n) is the

output signal at every discrete time instant n.

One possible optimization method to find the filter coeffi-

cients is by means of the minimization of the mean square

error [1]. The quadratic error is calculated as

ε(n) = |e(n)|2 = |d(n)− y(n)|2,
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where d = d(n) is the desired signal sample for a particular

time n. By replacing (1) in the previous expression we obtain

ε(n) = |d|2 − 2〈w, du〉+ 〈w,u〉〈u,w〉. (2)

Equation (2) provides the structure of the quadratic error

in terms of the inner products with respect to the filter

parameters.

In expression (2), the mean is calculated by applying the

expectation operator and minimized with respect to the vector

w.

But how to calculate the expected value of the last term

of the general expression (2)? This is done by the generalized

study of the quadratic form 〈w,u〉〈u,w〉 which is a particular

case of the general bilinear 〈y,x〉〈v,u〉 expression.

III. THE GENERAL BILINEAR FORM OF 〈y,x〉〈w,u〉

From now on, the notation that differentiates upper and

lower indexes will be used to distinguish vectors in their dual

basis from the standard ones.

Given a dual vector x∗ =
∑

i xie
i ∈ V

∗ in dual

space (also known as linear functional space) of the standard

representation x =
∑

i x
iei ∈ V, where the sum occurs up to

the dimension of the space. The dual basis has the following

identity relation: ei(ej) = 1 if i = j and = 0 for i 6= j.

A. Inner product representations

The inner product can be expressed as the application of

linear functional vectors, given by

〈y,x〉〈w,u〉 = x∗(y)u∗(w) =
∑

i,j

xiy
iujw

j ,

where x∗,u∗ ∈ V
∗ and y,w ∈ V. For the pair of inner

multiplication we have

〈y,x〉〈w,u〉 =
∑

i,j

xiujy
iwj =

∑

i,j

xiuje
i(y)ej(w) . (3)

By the definition of tensor product of functional linear basis

which states that (ei ⊗ ej)(y,w) ≡ ei(y)ej(w) [2], the

expression in (3) can be written as

〈y,x〉〈w,u〉 =
∑

i,j

xiuj(e
i ⊗ ej)(y,w) = (x∗ ⊗ u∗)(y,w),

(4)

where ⊗ stands for the outer product.

In order to write x∗ ⊗ u∗ ∈ V
∗ ⊗ V

∗ as a linear transfor-

mation the following isomorphism is used

b(y,w) = 〈y,Bw〉
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where the matrix B for the basis is given by

B(ej) =
∑

k b
k
jek, where each element is represented

by

b(ei, ej) = 〈ei,
∑

k

bkj ek〉 =
∑

k

bkj 〈ei, ek〉 =
∑

k

bkj gik .

The inner product 〈ei, ek〉 ≡ gik is called metric tensor and

the equivalent representation for dual space 〈ei, ek〉 ≡ gik is

called inverse metric tensor, given by the identity of relation

between the original space and its dual. Also bij = xiuj and

bkj = xkuj which implies that

xi =
∑

k

gikx
k (5)

So, we can write

x⊗ u∗ ≡
∑

i,j

xiujei ⊗ ej ,

that belongs to V
∗ ⊗ V which is isomorphic to the linear

transformation space L : V → V [3]. We can then conclude

that

〈y,x〉〈w,u〉 = 〈y,x ⊗ u∗(w)〉, (6)

where the functional u∗ acts on w.

The expressions (4) and (6) show that, for both forms

to represent the same product, there is a difference in the

representation of its elements. This equivalence is given by

the presence of the metric acting in each component like in

(5).

B. Matrix Representations

For a vector x =
∑N

i=1
xiei ∈ V and u∗ =

∑N

i=1
uie

i ∈
V

∗, the component operations can be given by matrix opera-

tions for a given basis α = {e1, ..., eN}, expressed as

[x⊗u∗]α =







x1

...

xN







[

u1 . . . uN

]

=







x1u1 . . . x1uN

...
. . .

...

xNu1 . . . xNuN






.

We can write that in compact notation [x⊗u∗]α = XU∗ =
[xiuj ]N×N , where bold capital letters represent the matrix

coordinates for a given basis. The upper index denotes the

row and lower one the column, i.e., X = [xi] is a column

vector and U∗ = [uj] is a row vector.

For Y = [yi]N×1 and W = [wi]N×1 we write

〈y,x ⊗ u∗(w)〉 = 〈Y,XU∗W〉,

or in the dual representation, by the property that

(AB)∗ = B∗A∗ [2]:

〈y,x⊗ u∗(w)〉 = W∗UX∗Y.

Furthermore, for the real symmetry inner product (can be

done for the complex case with Hermitian symmetry) we have

〈y,x⊗ u∗(w)〉 = 〈x⊗ u∗(w),y〉 = Y∗XU∗W.

For the real case, both expressions have the same value,

which is

W∗UX∗Y = Y∗XU∗W = (W∗UX∗Y)∗.

IV. QUADRATIC ERROR

The cost function is just a particular situation of the previous

analysis, when x = u and y = w.

From this, the quadratic form is computed and gives the

filter last term of expression (2), it means,

〈w,u〉〈u,w〉 = 〈w,u⊗ u∗(w)〉 = W∗UU∗W

which relates the equivalent representations.

A. Mean calculation of quadratic error

Calculating the mean of Equation (1) we have the following

expression of the cost function:

J = E[ε] = E[|d|2]− 2〈w, E[du]〉+ E[〈w,u〉〈u,w〉]. (7)

The last (quadratic) term is given by:

E[〈w,u〉〈w,u〉] = 〈w, E[u ⊗ u∗](w)〉 = W∗E[UU∗]W.

(8)

Equation (8) in component terms is given by the second

order symmetric tensor called auto correlation which can be

written as

Ruu
∗ = E[u⊗ u∗] =

N
∑

i,j=1

E[uiuj]ei ⊗ ej .

The auto correlation written in matrix form is given as

Ruu
∗ =







E[u1u1] . . . E[u1uN ]
...

. . .
...

E[uNu1] . . . E[uNuN ]






. (9)

A relation for expressions in (4) and in (9) is given by the

metric so that

Ru
∗
u

∗ = GRuu
∗ ,

where G = [gij ]N×N is the matrix form of the metric tensor

and G−1 = [gij ]N×N .

Another relation of the auto correlation can be obtained by

the action of the metric matrix, as in Ru
∗
u

∗ = GRuuG. The

final expression or the cost function can be expressed as

J = E[|d(n)|2]− 2〈w,p〉+ 〈w, Ruu
∗w〉,

where p = E[du]. From the expression above, the optimal w

can be derived, which is out of the scope of this work.

V. CONCLUSIONS

From the study of bilinear forms and its isomorphisms

with inner products and linear transformations, one can see

the algebraic formulation of the cost function is important

in the filter analysis. The formulation allows to explicit the

symmetric tensor of the auto correlation, which is important

in the analysis of discrete filters, specially in the cases the

cost function is the mean square error. Finally, a generalized

representation of the filter coefficients in a general base system

was provided.
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