

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE ENGENHARIA DE PESCA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA DE RECURSOS NATURAIS

LUCA MILÉRIO ANDRADE

INVESTIGAÇÃO DE SÍTIOS INÉDITOS E PROPOSIÇÃO DE NOVOS LIGANTES PARA A PROTEÍNA DE MORTE CELULAR PROGRAMADA I HUMANA ATRAVÉS DE DINÂMICA MOLECULAR ENVOLVENDO COSSOLVENTES E TRIAGEM VIRTUAL

FORTALEZA 2021

LUCA MILÉRIO ANDRADE

INVESTIGAÇÃO DE SÍTIOS INÉDITOS E PROPOSIÇÃO DE NOVOS LIGANTES PARA A PROTEÍNA DE MORTE CELULAR PROGRAMADA I HUMANA ATRAVÉS DE DINÂMICA MOLECULAR ENVOLVENDO COSSOLVENTES E TRIAGEM VIRTUAL

Dissertação apresentada ao Programa de Pós-Graduação em Biotecnologia de Recursos Naturais da Universidade Federal do Ceará como requisito parcial à obtenção do título de mestre em Biotecnologia de Recursos Naturais. Área de concentração: Bioinformática.

Orientador: Prof. Dr. João Hermínio Martins da Silva.

FORTALEZA 2021

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

A568i Andrade, Luca.

Investigação de sítios inéditos e proposição de novos ligantes para a proteína de morte celular programada I através de dinâmica molecular envolvendo cossolventes e triagem virtual / Luca Andrade. – 2021. 160 f. : il. color.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências Agrárias, Programa de Pós-Graduação em Biotecnologia de Recursos Naturais, Fortaleza, 2021. Orientação: Prof. Dr. João Hermínio Martins da Silva.

1. Câncer. 2. Imunoterapia. 3. PD-1. 4. Biologia computacional. I. Título.

CDD 660.6

LUCA MILÉRIO ANDRADE

INVESTIGAÇÃO DE SÍTIOS INÉDITOS E PROPOSIÇÃO DE NOVOS LIGANTES PARA A PROTEÍNA DE MORTE CELULAR PROGRAMADA 1 ATRAVÉS DE DINÂMICA MOLECULAR ENVOLVENDO COSSOLVENTES E TRIAGEM VIRTUAL

Dissertação apresentada ao Programa de Pós-Graduação em Biotecnologia de Recursos Naturais da Universidade Federal do Ceará, como requisito parcial à obtenção do título de mestre em Biotecnologia de Recursos Naturais. Área de concentração: Bioinformática.

Aprovada em: 28/06/2021.

BANCA EXAMINADORA

Prof. Dr. João Hermínio Martins da Silva (orientador) Fundação Oswaldo Cruz (Fiocruz – CE)

Profa. Dra. Ana Carolina Ramos Guimarães Fundação Oswaldo Cruz (Fiocruz – RJ)

Prof. Dr. Bruno Lopes de Sousa Universidade Estadual do Ceará (UECE)

AGRADECIMENTOS

À Deus, por ter me dado força e saúde para continuar e seguir em frente principalmente nos momentos mais difíceis.

Aos meus pais, Daniella e Glauber, por sempre estarem ao meu lado disposto a me ajudar em toda e qualquer situação. Obrigado por todo o carinho, afeto, amor e ensinamento. Vocês são e sempre serão os meus maiores exemplos.

À minha irmã Laura por trazer uma enxurrada de alegria, felicidade e arte para a minha vida. Obrigado pelas sessões gratuitas de violão e por todos os dias de algum modo me ensinar a ser uma pessoa melhor.

Aos meus familiares, que sempre me deram apoio quanto a minha escolha de profissão e me deram força para seguir meus objetivos.

Ao Dr. João Hermínio, por ter aceito me orientar durante este mestrado e por me acolher tão bem desde o primeiro dia na Fiocruz. Sou grato demais pelas conversas descontraídas e pelos conselhos e conhecimentos compartilhados.

Ao Dr. Geraldo Sartori, por toda a paciência e dedicação em me ajudar a executar esse projeto. Obrigado também pelas conversas, zoações no futebol e pelo companheirismo.

Aos professores e doutores que compõem a banca examinadora por aceitar me avaliar, pela disponibilidade de tempo e pelas discussões e sugestões.

Aos meus colegas do grupo de Modelagem, Simulação e Evolução, in *sílico*, de biomoléculas da Fiocruz-CE (em especial Andrielly, Aline, Disraeli, Bia e Jean) por tornar o ambiente de trabalho tão agradável e prazeroso. Obrigado pelas risadas, brincadeiras, zoações e troca de conhecimentos durante esse período.

Aos meus colegas do programa de pós-graduação em Biotecnologia de Recursos Naturais, pela parceria ao longo das disciplinas realizadas.

A todos os meus amigos por estarem presentes e contribuírem diariamente para o meu crescimento pessoal e profissional.

A todos os funcionários e colaboradores da Fiocruz Ceará por contribuir e oferecer suporte e a estrutura necessária para a realização deste trabalho.

A todos os profissionais de saúde que nesta pandemia de Covid-19 estão na linha de frente empenhados em salvar vidas.

À Funcap e ao governo do estado do Ceará pela manutenção e compromisso no pagamento da bolsa, possibilitando a execução deste trabalho.

A ciência é muito mais do que um corpo de conhecimento (...) A ciência nos convida a aceitar os fatos, mesmo quando eles não estão de acordo com nossos preconceitos. Ela nos aconselha a levar hipóteses alternativas em nossas cabeças e ver quais são as que melhor correspondem aos fatos. Impõe-nos um equilíbrio perfeito entre a abertura sem obstáculos a novas ideias, por mais heréticas que sejam, e o mais rigoroso escrutínio cético de tudo – estabelecendo novas ideias e sabedoria. Precisamos da ampla apreciação desse tipo de pensamento. Funciona. É uma ferramenta essencial para uma democracia em uma era de mudança. Nossa tarefa não é apenas treinar mais cientistas, mas também aprofundar a compreensão pública da ciência (SAGAN, 1990, p. 265).

RESUMO

Câncer é um conjunto de enfermidades que se originam a partir de modificações genéticas associadas a desregulações nas funções de proliferação e sobrevivência da célula. É um dos principais problemas de saúde pública do mundo, com estimativas apontando para a incidência de 19 milhões de casos só no ano de 2020. A literatura aponta que a interação entre proteína de morte celular programada 1 (PD-1) e o ligante 1 da proteína de morte celular programada (PD-L1) é capaz de proporcionar o escape imunológico e sobrevivência de células cancerígenas. Anticorpos, como pembrolizumabe e nivolumabe atuam inibindo a interação e recuperando a atividade do sistema imunológico. O uso de pequenas moléculas visando o bloqueio desta interação mostra-se uma alternativa interessante aos anticorpos uma vez que apresenta menor custo de produção, baixa ocorrência de efeito adverso e maior adesão do paciente. Este trabalho teve como objetivo a identificação de novos ligantes para PD-1 no intuito de modular a interação entre PD-1 e PD-L1. Simulações de dinâmica molecular com cossolventes possibilitaram a predição de diferentes sítios de interação na PD-1. A identificação de um sítio vinculado à alça C'D, de caráter inédito, próximo a interface principal entre PD-1 e PD-L1 e caracterizado pelo servidor DogSiteScorer e posteriormente pelo programa fpocket se mostrou atrativa para o desenvolvimento de ligantes. As análises de estados conformacionais confirmaram a maior afinidade da região por sondas estruturalmente cíclicas, como benzeno, imidazol e fenol. As triagens virtuais baseadas em docking e ensemble docking confirmaram a importância da estrutura cíclica para a estabilidade dos ligantes no sítio. As análises visuais baseadas em química medicinal possibilitaram a seleção de 10 ligantes para a realização das dinâmicas dos complexos, permitindo verificar a maior estabilidade de 3 ligantes. O perfil de interação demonstrou a importância do grupamento cíclico e amida presente nos ligantes, envolvidos em interações cátion-π e de hidrogênio, respectivamente, com resíduos da PD-1. A análise de componentes principais (PCA) dos complexos PD-1 / ligantes demonstrou a ocorrência de uma certa mudança conformacional nos resíduos de interface principal quando comparada com o complexo PD-1 / PD-L1. Assim, integrando diferentes abordagens computacionais, este trabalho possibilitou identificar moléculas e propor modificações estruturais com intuito de otimizar as estruturas e aumentar a afinidade destas pela região da alça C'D da PD-1 (um sítio predito neste trabalho e inexplorado anteriormente), estabelecendo

as bases para a proposição de ligantes que possam interferir na interação entre PD-1 e PD-L1.

Palavras-chave: câncer; PD-1; imunoterapia; biologia computacional.

ABSTRACT

Cancer is a set of diseases originating from genetic modifications associated with a dysregulation in the cell's proliferation and survival functions. It is one of the leading public health problems globally, with estimates pointing to an incidence of 19 million cases in the year 2020 alone. The literature indicates that the interaction between programmed cell death protein 1 (PD-1) and Programmed death-ligand 1 (PD-L1) can provide immunological escape and cancer cell survival. Antibodies such as pembrolizumab and nivolumab act by inhibiting interaction and recovering immune system activity. Small molecules to block this interaction are an interesting alternative to antibodies since it has a lower production cost, low occurrence of adverse effects, and greater patient compliance. This work aimed to identify new PD-1 ligands in order to modulate the interaction between PD-1 and PD-L1. Molecular Dynamics simulations with co-solvents enabled the prediction of different interaction sites in PD-1. Identifying a site linked to the C'D loop of distinctive character, close to the main interface between PD-1 and PD-L1 and characterized by the DogSiteScorer server and later by the fpocket program proved to be attractive to the development of ligands. The conformational state analyses confirmed the region's greater affinity for structurally cyclic probes, such as benzene, imidazole, and phenol. The virtual screenings based on docking and ensemble docking confirmed the importance of the cyclic structure for the stability of the ligands in the site. The visual analyses based on medicinal chemistry allowed the selection of 10 ligands to perform the dynamics of the complexes, allowing to verify the greater stability of 3 ligands. The interaction profile demonstrated the importance of the cyclic and amide group present in the ligands involved in cation- π and hydrogen interactions, respectively, with PD-1 residues. PCA analysis of the PD-1 / ligand complexes demonstrated the occurrence of a particular conformational change in the major site residues with PD-L1. Thus, integrating different computational approaches, this work made it possible to identify molecules and propose structural modifications in order to optimize the structures and increase their affinity for the region of the C'D loop of PD-1 (a site predicted in this work and unexplored previously), establishing the bases for the proposition of ligands that can interfere in the interaction between PD-1 and PD-L1.

Keywords: cancer; PD-1; immunotherapy; computational biology.

LISTA DE FIGURAS

Figura 1	_	Células pertencentes ao sistema imunológico	20
Figura 2	_	Representação da imunidade inata e adaptativa vinculadas ao sistema imunológico	21
Figura 3	_	Processo de reconhecimento celular envolvendo células APCs e células T	24
Figura 4	_	Interações envolvidas na regulação das células T	25
Figura 5	_	Efeito molecular da interação de PD-1 com PD-L1 nas vias PI3K/Akt e Ras/MEK/Erk	27
Figura 6	_	 (A) Visualização da estrutura tridimensional do domínio igV da PD-1. B) Interface de interação dos domínios IgV entre PD-1 e PD-L1. (C) Interface de interação dos domínios IgV entre PD-1 e PD-L2. Imagem criada com o programa PyMOL 	28
Figura 7	_	Distribuição dos tipos de câncer ao longo do mundo em 2020	30
Figura 8	_	Índice de incidência e mortalidade estimadas e padronizadas por idade em 2020 para ambos os gêneros no Brasil	30
Figura 9	_	Imunoterapia direcionada ao bloqueio da via PD-1 / PD-L1	32
Figura 10	_	Modo de ação de pequenas moléculas na supressão e bloqueio da via PD-1 e PD-L1	36
Figura 11	_	RMSD da cadeia principal da PD-1 nos diferentes sistemas. A) PD-1 / acetato. B) PD-1 / benzeno. C) PD-1 / fenol. D) PD-1 / imidazol. E) PD-1 / n-metil-acetamida F) PD-1 contendo apenas água como solvente	59
Figura 12	_	RMSF ao longo das simulações realizadas dos resíduos que compõem a PD-1. A) PD-1 / acetato. B) PD-1 / benzeno. C) PD-1 / fenol. D) PD-1 / imidazol. E) PD-1 / n-metil-acetamida F) PD-1 contendo apenas água como solvente	61

Figura 13	_	<i>Clusters</i> abrangendo uma única área da PD-1 e formados por resíduos que se destacaram pelo alto nível de contato com as sondas	63
Figura 14	_	Composição e localização aproximada dos resíduos do sítio de interação destacado na PD-1. Imagem criada pelo programa PyMOL	64
Figura 15	_	Interação entre PD-1 e pembrolizumabe. A) Visualização tridimensional dos resíduos envolvidos na interface de interação pelo programa PyMOL. B) Resíduos e tipos de interação envolvidos	65
Figura 16	_	Alteração conformacional advinda da presença da sonda no sítio de interação presente na alça C'D. A visualização foi realizada pelo programa PyMOL	66
Figura 17	_	Resultados obtidos pelo servidor DogSiteScorer. A) Sítios detectados ao longo da estrutura da PD-1. B) Descrição básica dos sítios. C) Análise dos descritores relacionados a tamanho, forma, grupos funcionais e composição de aminoácidos pertencentes a alça C'D	67
Figura 18	_	A) Frequência de contatos nativos de resíduos pertencentes a alça C'D nos complexos estudados. B) Visualização tridimensional pelo programa PyMOL da estrutura final (REP6) da PD-1 com a presença e a fixação do benzeno na cavidade encontrada na alça C'D da proteína	68
Figura 19	_	Resultados do programa fpocket tendo como base a cavidade presente na alça C'D. A) Volume e SASA avaliados nas replicatas 5, 6, 7 e 10. B) Comparação do volume e SASA entre as replicatas 5 e 6	69
Figura 20	_	Mensuração ao longo das simulações realizadas das distâncias entre as sondas que se destacaram e o ponto central da alça C'D. A) Imidazol B) Benzeno C) Fenol	71

Figura 29 – Comparação entre resultados de docking e ensemble docking..... 88

Figura 30	_	Visualização da alça C'D nas estruturas 4 e 10 pelo programa PyMOL. A) Diferença estrutural existente evidenciada pelos resíduos Asp85-Ser87 (RMSD: 2.242 Å). B) Cavidade fechada na estrutura 4. C) Cavidade aberta na estrutura 10	89
Figura 31	_	Padrão de acomodação dos ligantes na região da alça C'D visualizado pelo programa PyMOL e representada por: A) Cartoon B) Superfície	90
Figura 32	_	Posicionamento visualizado pelo programa PyMOL dos top 5 melhores ligantes na alça C'D pertencente às estruturas: A) 4. B) 10	91
Figura 33	_	Moléculas selecionadas na análise visual. A) Estrutura química dos ligantes obtida pelo programa Discovery Studios. B) Características associadas aos ligantes	92
Figura 34	_	Exemplo da análise realizada de diagrama bidimensional (2D) de interações para o ligante 1725189	94
Figura 35	_	Numeração dos átomos de ligantes que se destacaram nas simulações de DM realizadas. A) ligomega15080688. B) ligomega8704840. C) ligomega2810677	97
Figura 36	_	Contabilização das ligações de hidrogênios envolvendo os ligantes destacados e o sítio de interação proposto	98
Figura 37	_	Entalpia de ligação calculada ao longo das simulações de DM dos complexos: A) PD-1 / ligomega15080688. B) PD-1 / ligomega8704840. C) PD-1 / ligomega2810677	100
Figura 38	_	Decomposição da energia de entalpia pertencente aos resíduos do sitio de interação dos complexos: A) PD-1 / ligomega15080688. B) PD-1 / ligomega8704840. C) PD-1 / ligomega2810677	101
Figura 39		Variabilidade conformacional relacionada aos resíduos de interface entre PD-1 e PD-L1 nos complexos contendo sonda ou ligantes selecionados nas análises	104

LISTA DE TABELAS

Tabela 1	-	Componentes pertencentes a imunidade inata e adquirida	22
Tabela 2	_	Pequenas moléculas direcionadas à supressão da via PD-1 e PD-L1, com seus respectivos modos de ação, estágios de desenvolvimento e indicações de uso	37
Tabela 3	_	Características pertencentes às moléculas do banco The REAL drug-like	52
Tabela 4	_	Estados conformacionais registrados durante a análise do complexo PD-1 / benzeno (replicata 6), com seus respectivos átomos e intervalos associados.	72
Tabela 5	_	Resultados da execução do programa FILTER	79
Tabela 6	_	Resultados da execução do programa OMEGA	80
Tabela 7	_	Resultados da execução do programa Open Babel	80
Tabela 8	_	Configuração ideal em termos de performance para a execução dos cálculos de <i>docking</i>	81
Tabela 9	_	Comparação entre os resultados de <i>docking</i> e <i>ensemble docking</i> relacionados aos vinte melhores ligantes da 1ª rodada da triagem.	86
Tabela 10	_	Resultados dos cálculos de <i>ensemble docking</i> envolvendo os vinte melhores ligantes da 1 ^ª rodada de triagem nas estruturas selecionadas.	87
Tabela 11	_	Resultados gerais do ensemble docking realizado	88
Tabela 12	_	Resultado dos ensaios ADMETox realizados nos ligantes selecionados	93
Tabela 13	_	Análise da 1ª rodada de DM dos complexos contendo os ligantes	95

Tabela 14 – Análise da 2ª rodada de DM dos complexos contendo os ligantes. 96

Tabela 15 – Resumo das análises realizadas nos complexos PD-1 / ligantes... 96

SUMÁRIO

1	INTRODUÇÃO	20
1.1	Visão geral do sistema imunológico	20
1.1.1	Linfócitos T	22
1.2	Pontos de checagem imunológico	24
1.2.1	Proteína de morte celular programada 1	25
1.3	Câncer	29
1.3.1	Tumorigênese associada à via PD-1 / PD-L1	31
1.4	Problematização	33
1.5	Abordagens computacionais	37
1.5.1	Triagem virtual	37
1.5.2	Avaliação de propriedades ADMETox	39
1.5.3	Docking molecular	40
1.5.4	Dinâmica molecular	42
1.5.5	Cálculo de energia livre	43
1.5.5.1	MM-PB(GB)SA	43
2	OBJETIVOS	46
2.1	Objetivo geral	46
2.2	Objetivos específicos	46
3	METODOLOGIA	47
3.1	Obtenção e parametrização de sondas e ligantes	47

3.2	Obtenção da estrutura de PD-1 e parametrização dos complexos	47
3.3	Simulações de dinâmica molecular	48
3.4	Análise preliminar das trajetórias	49
3.5	Monitoramento e clusterização de contatos nativos	49
3.6	Predição e análise de sítios	50
3.7	Análise da movimentação e de estados conformacionais das sondas	50
3.8	Triagem virtual	51
3.8.1	Definição do banco de moléculas	51
3.8.2	Filtragem do banco de moléculas	52
3.8.3	Geração das coordenadas tridimensionais dos ligantes	52
3.8.4	Preparação para os cálculos de docking	53
3.8.4.1	Escolha e otimização da estrutura inicial da PD-1	53
3.8.4.2	Benchmarking	53
3.8.5	Screening inicial	54
3.8.6	Ensemble docking	55
3.8.7	Análise Visual	55
3.9	Análise ADMETox	56
3.10	Diagrama bidimensional de interações	56
3.11	Seleção final dos ligantes e análise de interações	57
3.12	MM/GBSA	57

3.13	Análise da interface PD-1 / PD-L1 nos complexos com ligantes propostos	58
4	RESULTADOS E DISCUSSÃO	59
4.1	Análises preliminares das simulações de DM (PD-1 / sondas)	59
4.2	Avaliação e clusterização dos contatos nativos	62
4.3	A região de interação destacada	63
4.3.1	Análise geral	63
4.3.2	Análise pelo fpocket	69
4.4	Análise da dinâmica de movimentação das sondas	70
4.5	Análise de estados conformacionais	72
4.6	Triagem virtual	75
4.6.1	Seleção da estrutura inicial do receptor	75
4.6.2	Filtragem dos ligantes	78
4.6.3	Geração das coordenadas tridimensionais dos ligantes	79
4.6.4	Validação e benchmarking	80
4.6.5	Triagem primária baseada em docking	82
4.6.6	Seleção das estruturas 3D da PD-1 para cálculos de ensemble docking	84
4.6.7	Resultados dos cálculos de ensemble docking	85
4.6.8	Análise visual e seleção final dos ligantes	91
4.7	Análise ADMETox	93
4.8	Análise do diagrama bidimensional de interações	94

4.9	Análises das simulações de DMs (PD-1 / ligantes)	95
4.9.1	Análise dos perfis de interação	97
4.10	Análise de MM/GBSA	100
4.11	Otimização de ligantes direcionados ao sítio proposto	102
4.12	Comportamento da interface PD-1 / PD-L1 nos complexos PD-1 / ligantes	104
5	CONCLUSÕES	106
6	PERSPECTIVAS	107
	REFERÊNCIAS	108
	APÊNDICE A – TABELA DE CONTATOS NATIVOS ENTRE AS DIFERENTES SONDAS E PD-1	123
	APÊNDICE B – ANÁLISE COLORIMÉTRICA DE REPLICATAS QUE SE DESTACARAM NA QUANTIDADE DE CONTATOS COM SITIO IDENTIFICADO	128
	APÊNDICE C – REPLICATAS ESCOLHIDAS PARA ANÁLISE DE VOLUME E SASA NO PROGRAMA FPOCKET	129
	APÊNDICE D – ANÁLISE DE DISTÂNCIA AO LONGO DAS SIMULAÇÕES DE DM DE MOLÉCULAS DE ACETATO E N-METIL- ACETAMIDA PARA O PONTO CENTRAL DO SÍTIO DE INTERAÇÃO	130
	APÊNDICE E – ESTADOS CONFORMACIONAIS OCUPADOS PELAS DIFERENTES SONDAS NA ALÇA C'D DA PD-1	131
	APÊNDICE F – MAPA DE CALOR ALUSIVO À DISTRIBUIÇÃO DAS COMPONENTES PRINCIPAIS DA PCA NO COMPLEXO PD-1 (BENZENO – REP6)	141

APÊNDICE G – *BENCHMARKING* ENTRE VINA E QUICK VINA 2 142 (ANÁLISE DE PERFORMANCE).....

APÊNDICE H – BENCHMARKING ENTRE VINA E QUICK VINA 2 143 (ANÁLISE DE PRECISÃO).....

APÊNDICE I – MAPA DE CALOR RELACIONADO A DISTRIBUIÇÃO 144 DAS COMPONENTES PRINCIPAIS DA PCA NO COMPLEXO PD-1 (BENZENO – REP6) PARA A ESCOLHA DAS ESTRUTURAS DE ENSEMBLE DOCKING.....

APÊNDICE J – PADRÃO DE POSIÇÃO DOS LIGANTES NAS 145 ESTRUTURAS 4 E 10 USADAS NOS ENSAIOS DE ENSEMBLE DOCKING.....

APÊNDICE L – IDENTIFICAÇÃO DOS LIGANTES SELECIONADOS 146 **APÓS A REALIZAÇÃO DA TRIAGEM VIRTUAL**.....

APÊNDICE M – DIAGRAMA BIDIMENSIONAL (2D) DE INTERAÇÃO 147 DOS LIGANTES SELECIONADOS PARA DINÂMICA MOLECULAR..

APÊNDICE N – POSSÍVEL IMPEDIMENTO ESTÉRICO 152 PROVOCADO PELA APROXIMAÇÃO DE GRUPAMENTOS CH2 E F NA REGIÃO CENTRAL DE LIGOMEGA__3036345.....

APÊNDICE O – ANÁLISE DA FORMAÇÃO E QUEBRA AO LONGO 153 DAS SIMULAÇÕES DE DINÂMICA MOLECULAR DE INTERAÇÕES ENVOLVENDO OS LIGANTES SELECIONADOS E O SÍTIO DE INTERAÇÃO.....

APÊNDICE P – DINÂMICA CONFORMACIONAL DE 156 LIGOMEGA__2810677 NO SÍTIO DE INTERAÇÃO PROPOSTO......

APÊNDICE Q – EVOLUÇÃO AO LONGO DO TEMPO DA ENTALPIA 157 DE LIGAÇÃO DOS COMPLEXOS ESTUDADOS VIA MM/GBSA...... APÊNDICE R – ANÁLISE DOS ESTADOS CONFORMACIONAIS 159 ENVOLVENDO OS DADOS DE PCA NOS COMPLEXOS COM OS LIGANTES SELECIONADOS.....

ANEXO A – RELAÇÃO DOS ANTICORPOS DISPONÍVEIS NO 160 MERCADO COM RECONHECIDA ATIVIDADE ANTIPD-1 OU ANTIPD-L1.....

1 INTRODUÇÃO

1.1 Visão geral do sistema imunológico

Credita-se a Tucídides no século 5 a.C em Atenas a primeira menção à palavra imunidade (HOLLADAY; POOLE, 1979). Na China, no século X, a inalação de um pó preparado a partir de lesões cutâneas de pacientes recuperados conferiu imunidade protetora a varíola em crianças (Fundação Oswaldo Cruz, 2016). Avançando um pouco mais na linha do tempo, a constatação de Edward Jenner de que animais que haviam contraído varíola bovina não mais contraíam a forma grave da doença constituiu um marco na imunologia moderna. A partir dessa observação, Jenner inoculou em uma criança a pústula da varíola bovina e, em seguida, quando a mesma foi submetida ao vírus da varíola a doença não apresentou desenvolvimento (RIEDEL, 2005). Originalmente, a imunologia foi definida como o estudo da defesa do corpo contra infecções. Esta definição foi, posteriormente, atualizada para englobar a compreensão de como o corpo reage e reconhece qualquer coisa que seja estranha ou alterada (antígeno), como enxertos, células cancerígenas e partículas não infecciosas, tal qual pólen e sílica (JANEWAY, 2001). As células do sistema imunológico derivam de uma célula tronco comum presente na medula óssea e podem ser observadas na Figura 1.

Fonte: https://cutt.ly/ZnEN1qA - adaptado.

A função imunológica é conceitualmente dividida pelas reações iniciais da imunidade inata e pelas respostas tardias da imunidade adaptativa (Figura 2). A imunidade inata fornece a primeira linha de defesa do organismo e está relacionada a uma resposta rápida e padronizada a um número grande, porém restrito de estímulos. É formada por barreiras físicas, químicas e biológicas e por células especializadas (MEDZHITOV; JANEWAY JR, 2000; ABBAS; LICHTMAN, 2008).

Os principais componentes da imunidade inata são: macrófagos, neutrófilos, células dendríticas e células natural killer - NK. Os mecanismos envolvidos nesse processo abrangem a liberação de mediadores inflamatórios, fagocitose, ativação de proteínas do sistema complemento e a síntese de proteínas, citocinas e quimiocinas na fase aguda (CRUVINEL, 2010).

A imunidade adaptativa (também denominada como adquirida ou específica) é caracterizada pela habilidade de distinguir diferentes substâncias (especificidade) e pela capacidade de responder de forma mais robusta a infecções repetidas do mesmo microrganismo. É formada exclusivamente por células denominadas linfócitos e seus produtos secretados denominados anticorpos (ABBAS; LICHTMAN, 2008).

Figura 2: Representação da imunidade inata e adaptativa vinculadas ao sistema imunológico.

Fonte: ABBAS; LICHTMAN; PILLAI, 2015.

Na Tabela 1 é possível verificar detalhadamente os componentes de cada tipo de imunidade. Apesar da divisão, os dois tipos de imunidade não funcionam de forma totalmente independente. O sistema inato, por exemplo, é capaz de recrutar respostas específicas do antígeno ao atrair células para o local da infecção / lesão e ao transportar o antígeno para os tecidos linfoides, levar à ativação de tipos de células efetoras adaptativas (MEDINA, 2016).

Componente	Imunidade inata	Imunidade adaptativa
Células	- Fagócitos (células	- Linfocito T, B e NK/T
	dendríticas,macrófagos e	- Células dendríticas ou
	neutrófilos)	apresentadoras de antígenos
	- Célula natural-killer (NK)	(APCs)
	- Mastócitos, basófilos e	
	eosinófilos	
Moléculas solúveis	- Complemento	- Anticorpos
	- Proteínas de fase aguda	- Citocinas
	- Citocinas	- Quimiocinas
	- Quimiocinas	

Tabela 1: Componentes pertencentes a imunidade inata e adquirida.

Fonte: CRUVINEL et al, 2010.

Existem dois tipos de imunidade adaptativa: a resposta adaptativa humoral envolve a ativação de linfócitos B (células B) e a consequente produção de anticorpos e a resposta adaptativa mediada por células controlada pelos linfócitos T (células T). Combinadas, estas estratégias podem disparar ataques contra determinado patógeno invasor, matando-o diretamente ou podem secretar anticorpos que aumentam a fagocitose e interrompem a infecção (MOLNAR, 2015).

1.1.1. Linfócitos T

As células T são um dos glóbulos brancos importantes do sistema imunológico e desempenham um papel central na resposta imunológica adaptativa. Podem ser facilmente distinguidas de outros linfócitos pela presença de um receptor de células T (TCR, do inglês: *T-Cell-Receptor*) em sua superfície celular. O desenvolvimento das células T inicia na medula óssea e é concluído no timo, ocorrendo ao longo deste processo a expressão do TCR funcional e de correceptores

CD4 e CD8 (*National Institutes of Health* – NIH, 2020). O TCR é formado por duas cadeias peptídicas da superfamília das imunoglobulinas, possuindo uma região variável e outra constante formadas a partir de segmentos gênicos que durante a maturação sofrem recombinação. Do total de linfócitos T circulantes, 95% possuem o TCR formado pelas cadeias α e β . Uma pequena porcentagem apresenta o receptor composto por cadeias γ e δ . O reconhecimento do receptor a um número grande de antígenos é em consequência ao processo de recombinação somática existente no linfócito T capaz de gerar 10¹⁶ combinações diferentes de receptores (PARDOLL, 2012).

De forma geral os linfócitos T podem ser subdivididos em: T citotóxicos (T_c), de função efetora e caracterizados por possuírem o receptor CD8 em sua superfície, T auxiliares (T_H, do inglês: *helper*), relacionado ao controle da intensidade e do tipo de resposta imune, caracterizados por terem o receptor CD4 na superfície, T de memória (T_M), que fornecem ao sistema "memória" imunológica contra patógenos previamente identificados, sendo identificados como CD4+, CD8+ ou CD45RO+ e, por último, T regulatórias (T_{Reg}), que garantem a manutenção da tolerância imunológica e possuem como particularidade principal a presença do fator de transcrição FOXP3, essencial para o seu desenvolvimento e sua função (CAVANAGH; FINDLAY, 2019; YAGI, 2004; NARDI, 2002).

Após a maturação, os linfócitos transitam ao longo do corpo humano até reconhecerem um antígeno na superfície das células apresentadoras de antígeno (APCs, do inglês: *antigen presenting cells*) a partir da interação TCR - complexo de histocompatibilidade (MHC, do inglês *major histocompability complex*) de classe I (no caso dos linfócitos T citotóxicos) ou de classe II (linfócitos T auxiliares). As moléculas CD4 e CD8 também se ligam ao MHC, estabilizando desta maneira a estrutura. Sinais secundários também são necessários para a ativação plena do linfócito T. Em relação as células T auxiliares, a interação entre CD28 e B7.1 (CD80) ou B7.2 (CD86) é responsável por iniciar a proliferação de células T. As células T citotóxicas, por sua vez, são menos dependentes de CD28, mas requerem outros sinais estimulatórios, como os provenientes da interação atene CD70 (4-1BBL) e 4-1BB (CD137). Os sinais estimulatórios envolvidos na ativação da célula T podem ser observados na Figura 3. Após a ativação por meio de sinais específicos ao antígeno e sinais secundários, ocorre o desencadeamento de produção de citosinas que irão guiar o modo de resposta da célula à infecção. Cada tipo de célula, relacionada a uma citocina

diferente, irá desempenhar uma tarefa específica no tecido e no desenvolvimento de outras respostas imunológicas (CAVANAGH; FINDLAY, 2019).

Figura 3: Processo de reconhecimento celular envolvendo células APCs e células T.

Fonte: CAVANAGH; FINDLAY, 2019 – adaptado. A célula dendrítica se apresenta como APC realizando a apresentação de antígeno para a célula T por meio do MHC classe I e II. A célula T reconhece o antígeno via complexo TCR-CD3 e, simultaneamente, CD4 e CD8 interagem com regiões não polimórficas do MHC. A ativação total do linfócito ocorre por meio de sinais coestimulatórios ligados aos receptores CD80, OX40L, CD86 e 4-1BBL pertencentes a APC.

1.2 Pontos de checagem imunológico

Os pontos de checagem imunológico, também denominados de *checkpoints* imunológicos, são vias inibitórias herdadas que o sistema imunológico adota visando minimizar a resposta autoimune indesejada (AKBAR, 1988; LONG, 1999). No contexto fisiológico, autoimunidade se refere a um conjunto de respostas imunológicas de um organismo contra suas próprias células, tecidos ou outros constituintes saudáveis do corpo, podendo desta maneira ocasionar danos aos tecidos e resultando nas chamadas doenças autoimunes (PARDOLL, 2012; DELVES, 1998). Em circunstâncias normais, os receptores de checkpoint imunológico participam do equilíbrio e do balanço dos sinais estimulatórios, coestimulatórios e

inibitórios envolvidos na ativação das células T e são essenciais para a manutenção da autotolerância (LI; CHAN; CHEN, 2019).

O primeiro receptor de checagem imunológico caracterizado foi o CTLA-4 (do inglês: *cytotoxic t-lymphocyte-associated antigen 4*). Trabalhos na literatura demonstram que o CTLA-4 na célula T possui a capacidade de competitivamente se ligar ao B7 (CD80) das células apresentadoras de antígenos, interferindo nas interações com o CD28 presente nas células T e, por consequência, prejudicando a coestimulação da fase inicial da ativação destas células (GREENWALD; FREEMAN; SHARPE, 2005; ZOU; CHEN, 2008). Efeito similar também é resultado da interação entre outro *checkpoint* imunológico (denominado PD-1) e seu ligante (PD-L1). A Figura 4 exemplifica o balanço de sinais estimulatórios e inibitórios apresentados aqui.

Figura 4: Interações envolvidas na regulação das células T.

Fonte: EVANS; EVANS, 2018 – adaptado. 1: célula T. 2: célula apresentadora de antígeno (APC). Os receptores de checagem imunológico interferem no balanceamento dos estímulos envolvidos na ativação das células T através da interação entre PD-1 e PD-L1 e a partir da interação competitiva entre CTLA-4 – CD80 e CD28 – CD80.

1.2.1 Proteína de morte celular programada 1

A PD-1 (do inglês: *programmed death 1) ou* simplesmente proteína de morte celular programada 1, foi isolada e clonada em 1992 (ISHIDA, 1992). Na data da sua descoberta, a PD-1 foi definida como uma molécula associada a apoptose.

Entretanto, estudos demonstraram que a superexpressão de cDNAs associados a PD-1 não levaram a um aumento no nível de apoptose nas linhagens estudadas (AGATA *et al.*, 1996). Novas pesquisas a definiram como um regulador negativo das respostas imunes ao investigarem camundongos deficientes em PD-1 que apresentaram um fenótipo autoimune e desenvolveram doenças relacionadas a autoimunogenicidade, como lúpus, artrite, esplenomegalia e glomerulonefrite (NISHIMURA *et al.*, 1996)

Paralelamente à PD-1, ocorreu a identificação de outra molécula, denominada B7-H1. Inicialmente, ela foi apontada como homologa a B7-1 e B7-2, com ação coestimuladora de células T por meio de receptores diferentes de CTLA-4 e CD28. Adiante, por meio da colaboração entre grupos de pesquisas intencionados a achar o receptor específico desta molécula, foi descoberto que na verdade esta molécula interagia com a PD-1. Desta maneira a proteína foi denominada como PD-L1 (do inglês: *programmed death-ligand 1* [ligante 1 da proteína de morte celular programada] ou CD274). Posteriormente, outro ligante foi caracterizado, sendo denominado PD-L2 (do inglês: *programmed death-ligand 2* [ligante 2 da proteína de morte celular programada] ou CD273) (LATCHMAN, 2001; FREEMAN, 2000; DONG, 2002).

A PD-1 é expressa em células T CD4 e CD8 ativadas, células B, monócitos, células *natural killers* (NK) e células dendríticas (DCs) (YAMAZAKI *et al.*, 2002; KEIR *et al.*, 2008; AGATA *et al.*, 1996) por meio do fator nuclear das células T ativadas - NFATc1 (OESTREICH *et al.*, 2008). A PD-L1 é expressa em uma ampla variedade de células não hematopoiéticas, incluindo pulmão, endotélio vascular, células reticulares fibroblásticas, células não parênquimais do fígado, células-tronco mesenquimais, ilhotas pancreáticas, astrócitos, neurônios e queratinócitos. Já a PD-L2, por sua vez, possui um espectro menor de expressão, se restringindo a células dendríticas ativadas, macrófagos, mastócitos derivados da medula óssea e mais da metade das células B1 peritoneais (KEIR et al., 2008, ZHONG, 2007).

A PD-1 é uma proteína de 288 aminoácidos composta por um domínio Nterminal semelhante a IgV que compartilha 21-33% de identidade de sequência com CTLA-4 e CD28, um domínio transmembranar e uma cauda citoplasmática. Cerca de 20 aminoácidos separam o domínio N-terminal do domínio transmembranar. A cauda citoplasmática é caracterizada por possuir dois motivos de sinalização: o primeiro, denominado motivo de inibição do imunorreceptor baseado em tirosina (ITIM), necessário para o recrutamento de fosfatases contendo domínio SH2 e o motivo de troca do imunorreceptor baseado em tirosina (ITSM), essencial para a atividade de inibição da PD-1 (LONG, 1999; AGATA *et al.*, 1996; SIDORENKO; CLARK, 2003).

Os ligantes da PD-1, PD-L1 e PD-L2, são glicoproteínas transmembranares do tipo I, contendo domínios igV e igC. A identidade entre os aminoácidos das duas proteínas gira em torno de 40% enquanto os genes ortólogos humanos e murinos apresentam similaridade de 70%. A interação da PD-1 com os seus ligantes atenua a sinalização mediada por TCR e reduz a atividade de duas cascatas de sinalização requeridas para ativação deste receptor: PI3K/Akt e a via Ras/MEK/Erk (Figura 5). Quando a célula T encontra um antígeno apresentado pelo MHC na superfície da APC, o receptor TCR se torna fosforilado após a sua oligomerização com CD3 e ocorre o recrutamento de Lck e Zap-70 para o motivo ITAM fosforilado da cauda do TCR, iniciando assim uma cascada de sinalização que leva a ativação plena da célula T.

Figura 5: Efeito molecular da interação de PD-1 com PD-L1 nas vias PI3K/Akt e Ras/MEK/Erk.

Fonte: BARDHAN; ANAGNOSTOU; BOUSSIOTIS, 2016 – adaptado. A alteração provocada por PD-1 nestas vias ocasiona uma reprogramação metabólica das células T capaz de mudar o curso de sua diferenciação, levando a um prejuízo na formação das células T efetoras e de memória, enquanto favorece a formação das células T reguladoras e das células T exaustas.

Na contramão disto, a interação de PD-1 com seus ligantes inibe a fosforilação dos resíduos de serina e treonina de PTEN regulada por CK2 e provoca o aumento da atividade fosfatase, resultando na redução da atividade frente ao substrato PIP3, prejudicando a via PI3K / Akt. Esta interação também provoca a fosforilação de dois resíduos de tirosina na cauda citoplasmática da PD-1, gerando recrutamento de SHP-2 (e/ou SHP-1) para o motivo ITSM. Como consequência, Lck e Zap-70, duas proteínas essenciais para ativação plena da célula T não são recrutadas, interrompendo a ativação da célula T. O não recrutamento de Lck e Zap-70 resulta na ativação mediada por Ca^{2+} e DAG de RasGRP1 e provoca a regulação decrescente (*downregulation*) de PLC- γ , afetando a via Ras / MEK / Erk em específico (PATSOUKIS *et al.*, 2012; PATSOUKIS *et al.*, 2013; BIVONA *et al.*, 2003; SHEPPARD *et al.*, 2004).

Trabalhos já publicados (YAMAZAKI *et al.*, 2002; KEIR *et al.*, 2008) demonstraram que a PD-1 utiliza a sua face frontal β (fitas β em AGFCC') para se ligar à face β da PD-L1 (fitas β em AGFCC') e PD-L2 (fitas β em AGFC), regiões predominantemente hidrofóbicas, denotando assim a importância desse tipo de interação para o estabelecimento das funções dessas proteínas (Figura 6).

Figura 6: (A) Visualização da estrutura tridimensional do domínio igV da PD-1. B) Interface de interação dos domínios IgV entre PD-1 e PD-L1. (C) Interface de interação dos domínios IgV entre PD-1 e PD-L2. Imagem criada com o programa PyMOL. A) B) PD-1 PD-L1 PD-L2

Fonte: A) Elaborado pelo autor a partir da visualização do PDB: 2M2D (CHENG *et al.*, 2013). B) Elaborado pelo autor a partir da visualização do PDB: 4ZQK (ZAK *et al.*, 2015). (C) Elaborado pelo autor a partir da visualização do PDB: 6UMT (ZAK *et al.*, 2017).

Quando a PD-1 interage com PD-L1, por exemplo, a região CC' (abrangendo o intervalo Met70-Asp77) é translocada em 90°, saindo de um estado "aberto" e convertida para um estado "fechado". Esta mudança dá origem a formação de ligações de hidrogênio envolvendo Gln75 (PD-1) e Asp26 e Arg125 (ambos de PD-L1) enquanto Thr76 (PD-1) e Tyr123 (PD-L1) formam outro par de interação. Essas ligações fornecem uma base biológica estrutural para a descoberta de inibidores de com o objetivo de bloquear a ligação entre PD-1 e PD-L1 (WU *et al.*, 2020).

1.3 Câncer

Câncer pode ser definido como um conjunto de enfermidades com características comuns, das quais se originam a partir do acúmulo de modificações genéticas em uma célula que perde seu mecanismo de controle de proliferação e sobrevivência. Estas desregulações associadas ao comprometimento de diversos sinais vitais da célula se devem a fatores herdados geneticamente ou a fatores externos, como: álcool, obesidade e exposição à radiação (REYES *et al.*, 2020; HANAHAN; WEINBERG, 2011). Estes fatores afetam o controle do ciclo celular, danificando o DNA e alterando genes de reparo, genes supressores de tumor e oncogenes. Com isso geram processos denominados *hallmarks* (marcas registradas) do câncer, como hiperproliferação celular, evasão de fatores supressores de angiogênese e resistência a apoptose (BAYLIN; JONES, 2011).

O câncer é o principal problema de saúde pública no mundo e já está entre as quatro principais causas de morte na maioria dos países (Instituto Nacional do Câncer – INCA, 2020). Estimativas mundiais apontam que em 2020 ocorreram 19,3 milhões de casos vinculados ao câncer (Figura 7), com 10,3 milhões de pessoas chegando ao óbito. Globalmente, 1 em cada 5 pessoas desenvolvem câncer durante a vida, e 1 em 8 homens e 1 em 11 mulheres morrem da doença (BRAY *et al.*, 2018).

Com a melhoria das condições socioeconômicos em diversos países e a incorporação de hábitos e atitudes associados a urbanização (como sedentarismo e alimentação inadequada), tem-se observado uma mudança no perfil dos tipos de cânceres, com a diminuição daqueles associados a infecções e o aumento dos relacionados a hábitos inadequados (BRAY *et al.*, 2018).

Figura 7: Distribuição dos tipos de câncer ao longo do mundo em 2020.

Fonte: Observatório Global do Câncer, 2020 - adaptado.

No Brasil, a estimativa de acordo com o Instituto Nacional do Câncer (INCA) é de que para cada ano do triênio 2020-2022 ocorrerão 625 mil casos novos de câncer (450 mil, excluindo os casos de câncer de pele não melanoma). Na Figura 8 é possível verificar as neoplasias mais graves e de maior incidência no país e analisá-las distinguindo as diferentes frequências encontradas por gênero.

Figura 8: Índice de incidência e mortalidade estimadas e padronizadas por idade em 2020 para ambos os gêneros no Brasil.

Fonte: Observatório Global do Câncer, 2020 – adaptador pelo autor. Incidência – Mas - se refere a indivíduos do gênero masculino. Incidência – Fem - está relacionado a indivíduos do gênero feminino. Mortalidade – Mas - relativo à mortalidade dos indivíduos do gênero masculino. Mortalidade – Fem - pertinente a mortalidade dos indivíduos do gênero feminino. LHN – Linfoma Não-Hodgkin. ASR (do inglês: *age-standardized rate* – padronização das taxas de incidência e mortalidade considerando uma estrutura etária padrão da sociedade (ALBUQUERQUE, 2019).

1.3.1 Tumorigênese associada à via PD-1 / PD-L1

Diversos estudos apontam a expressão de PD-L1 e a ativação da interação com PD-1 por células cancerígenas (LATCHMAN et al., 2001; DONG et al., 2002; PARDOLL, 2012). Isto pôde ser constatado a partir da observação de que a superexpressão de PD-L1 em linhagens de células de mastocitoma de camundongo foi capaz de inibir a atividade citolítica de células T CD8 + através da interação de PD-1, aumentando a capacidade de invasão e crescimento do tumor (THOMPSON et al., 2004). Outras pesquisas, mais abrangentes, demonstraram a expressão de PD-L1 em uma grande variedade de tumores sólidos, incluindo urotelial, ovário, mama, cervical, cólon, pancreático, gástrico, melanoma, glioblastoma, câncer de pulmão de células não pequenas (NSCLC, do inglês: non-small-cell lung carcinoma) e malignidades hematológicas (OHIGASHI et al., 2005; WU et al., 2006; HAMANISHI et al., 2007; NAKANISHI et al., 2007; NOMI et al., 2007; HINO et al., 2010). A interação entre PD-1 e PD-L1 promove a sobrevivência das células cancerígenas por meio de sinais antiapoptóticos mediados por PD-L1, inibindo a ativação das vias de sinalização que são críticas para a sobrevivência, expansão, e diferenciação de células T que reconhecem antígenos tumorais, resultando desta maneira em tolerância e escape ao tumor (AZUMA et al., 2008, DONG et al., 2002).

A imunoterapia direcionada ao bloqueio da via (Figura 9), em contrapartida, por anticorpos antiPD-1 ou antiPD-L1, suprime a sobrevivência das células cancerosas, reverte os efeitos de PD-1 na sinalização de células T e promove a geração de células T efetoras e células de memória, evitando a diferenciação em células T_{Ex} e T_{Reg.} Isto resulta no aumento das respostas das células T antitumorais, levando à regressão e rejeição do tumor (BARDHAN; ANAGNOSTOU; BOUSSIOTIS, 2016). O uso de anticorpos monoclonais que bloqueiam os pontos de controle imunológico no tratamento de tumores foi oficialmente estabelecido em 2010, quando o ipilimumabe, um inibidor de CTLA-4, apresentou bons resultados frente ao melanoma metastático, sendo assim aprovado pela FDA (do inglês: *Food and Drug Administration*), um órgão federal dos Estados Unidos análogo à agência de vigilância sanitária (ANVISA) (BRAHMER *et al.*, 2012).

O nivolumabe foi o primeiro agente bloqueador da PD-1 a demonstrar atividade clínica contra vários tipos diferentes de câncer, como carcinoma de células renais e câncer de pulmão de células não pequenas (do inglês: *non-small-cell lung* carcinoma ou NSCLC). Os bons resultados oriundos das pesquisas levaram a aprovação do medicamento para o tratamento de melanoma pela FDA em 22 de dezembro de 2014 e, em 2015 para a terapia direcionada contra NSCLC (BRAHMER *et al.*, 2012). O pembrolizumabe é outro anticorpo monoclonal anti-PD-1 aprovado em 2014 para o tratamento de melanoma avançado em pacientes previamente tratados com ipilimabe ou um inibidor de BRAF em pacientes positivos para a mutação BRAF V600. Em 2015, assim como o nivolumabe, foi aprovado para o tratamento de pacientes com NSCLC (GARON *et al.*, 2018). Anticorpos anti-PD-L1 também estão disponíveis em terapias direcionadas contra câncer. O atezolizumabe foi aprovado como padrão ouro para ser utilizado, juntamente com o medicamento abraxane, no tratamento de câncer de mama triplo negativo. Este tipo de câncer se caracteriza pelo seu padrão mais agressivo quando comparado com outros tipos de câncer de mama devido ao rápido crescimento das células em um curto espaço de tempo.

Figura 9: Imunoterapia direcionada ao bloqueio da via PD-1 / PD-L1.

Fonte: elaborado pelo autor. Quando a via da PD-1 / PD-L1 é ativada, promove a sobrevivência da célula cancerígena por meio de sinais antiapoptóticos promovidos pela PD-L1, inativando as vias responsáveis pela expansão e reconhecimento de antígenos ligados aos tumores pelas células T. O uso de anticorpos como forma de bloquear a interação PD-1 e PD-L1 suprime a sobrevivência da célula cancerígena e potencializa as respostas da célula T direcionadas aos tumores, ao mesmo tempo que promove a diferenciação de células Tcitotóxicas e Tmemória, suprimindo a diferenciação de células Texaustas e Tregulatórias.

A combinação de anticorpos visando o bloqueio de *checkpoint* foi testada pela primeira vez em pacientes com melanoma avançado. Neste caso, o tratamento adotado envolveu o uso de nivolumabe e ipilimabe e a resposta clínica resultante foi muito positiva. Desde então, diversas pesquisam confirmam o benefício de combinar um ou mais anticorpo no tratamento de tumores cancerígenos. Um exemplo é a combinação de nivolumabe e ipilimumabe, que proporcionou uma taxa de resposta objetiva de 59% em comparação a 11% oriunda da aplicação isolada de ipilimumabe. Em outro estudo, a abordagem combinada também foi testada em pacientes com melanoma. Neste grupo, a taxa de resposta foi de 57,6% para a terapia combinada, em comparação com 43,7% para uso isolado de nivolumabe e 19% para monoterapias envolvendo a utilização de ipilimumabe (POSTOW *et al.*, 2015; HODI *et al.*, 2016). No anexo A é possível verificar a relação dos anticorpos utilizados para bloquear a via PD-1 / PD-L1 e os tratamentos atrelados aos seus usos.

1.4 Problematização

A formulação de anticorpos quiméricos, humanizados ou totalmente humanos e a consequente evolução destes com o objetivo de se ligarem com alta especificidade a uma ampla variedade de alvos possibilitou a obtenção de resultados impressionantes na terapia do câncer. Apesar disto, diversos problemas relacionados ao uso destas moléculas foram relatados ao longo do tempo, limitando assim os tratamentos existentes.

O primeiro entrave no uso de anticorpos está atrelado ao seu preço. Anticorpos monoclonais, além de serem moléculas relativamente grandes (150 kDa), possuem inúmeras ligações dissulfeto e modificações pós traducionais, como glicosilações. Esta complexa estrutura demanda a utilização de um maquinário eucariótico sofisticado para a produção destas moléculas a partir da utilização de culturas muito grandes de células de mamíferos. Ademais, são necessárias extensas etapas de purificação, resultando desta maneira em custos de produção extremamente elevados e limitando o amplo uso desses medicamentos (CHAMES *et al.*, 2009). Cada aplicação do nivolumabe, por exemplo, custa em torno de US\$ 18 mil (R\$ 58.500). No Brasil, o tratamento com ipilimumabe custa cerca de R\$ 240 mil (Jornal Extra, 2016). Também é possível encontrar frasco com 4 mL de keytruda, contendo o princípio ativo de pembrolizumabe sendo vendido em lojas especializadas pela internet ao preço de R\$ 18 mil reais, aproximadamente U\$ 3.310,41 dólares (conversão realizada em 03 de maio de 2021) (Singular Medicamentos, 2020).

baseadas em anticorpos são As terapias predominantemente administradas por meio de via intravenosa (IV), bastante invasiva ao paciente e, em menor grau, a partir da via subcutânea (SC). Embora a via IV ofereça 100% de biodisponibilidade, a distribuição sistêmica e as barreiras fisiológicas reduzem muito a concentração real de anticorpos alcançada nos tecidos alvo. A absorção de anticorpos pelo tumor depende do equilíbrio entre sua farmacocinética favorável e a penetração e retenção eficientes no tecido-alvo, assim como outras propriedades, como tamanho molecular, forma, afinidade. Em modelos de xenoenxerto de murinos, os anticorpos direcionados contra antígenos específicos do tumor permaneceram amplamente no sangue e não mais do que 20% da dose administrada conseguiu interagir com o tumor (BECKMAN; WEINER; DAVIS, 2007; SCHWEIZER; SERNO; GOEPFERICH, 2014).

Existe também o risco do desenvolvimento de reações adversas relacionadas com o sistema imunológico (irAEs, do inglês: *immune-related adverse events*). Estas geralmente atingem o trato gastrointestinal, pele e glândulas endócrinas. As reações graves estão associadas a órgãos menos comumente afetados, como sistemas pulmonares, cardíacos e neurológicos (KOTTSCHADE, 2018). Comparativamente, a incidência de irAEs graves e leves é maior em terapias envolvendo anti-CTLA-4 que aquelas relacionadas a anti-PD-1. Desta forma, tais efeitos adversos permanecem como uma preocupação significativa dentro do campo da imunoterapia baseada em anticorpos (LEWIS *et al.*, 2020; NAIDOO *et al.*, 2015).

Devido a estes fatores, surge como necessidade a busca por terapias alternativas que sejam menos invasivas aos pacientes, mais econômicas e que possam proporcionar uma melhor resposta imunológica, apresentando concomitantemente menos efeitos adversos associados. Dentro deste contexto, a terapia envolvendo o uso de pequenas moléculas surge como uma opção, apresentando algumas vantagens quando comparada com aquelas abrangendo anticorpos.

A primeira está relacionada a sua aplicação. Pequenas moléculas, por terem a possibilidade de serem administradas por via oral, possuem maior adesão e aceitabilidade por parte dos pacientes. Estas moléculas apresentam estruturas químicas menos complexas que os anticorpos tradicionais e seu processo de síntese
é mais fácil, requerendo menos aparato biotecnológico, e por consequência, menor custo. Além disso, possuem a capacidade de penetrar facilmente nos tecidos em comparação com a maioria dos anticorpos e, portanto, podem ser direcionadas para alvos extra e intracelulares para promover imunidade antitumoral. Por fim, apresentam meias-vidas mais curtas, o que favorece a sua ação aguda e reversível, reduzindo a chance de efeitos adversos sistêmicos duradouros (LISTON; DAVIS, 2017; KHERA *et al.*, 2017).

Devido a estas características enunciadas, existe um grande interesse no desenvolvimento de estratégias baseadas em pequenas moléculas na área da imunoterapia contra o câncer. Em relação a via PD-1 / PD-L1, estudos promovidos, por exemplo, pela empresa norte-americana Bristol-Myers Squibb (BMS) têm demonstrado a capacidade destas moléculas de interferirem na interface de interação hidrofóbica da via (CHUPAK; ZHENG, 2015; CHUPAK *et al.*, 2015). Em seguida, GUZIK e colaboradores (2017) relataram que a presença destes inibidores nesta região proporciona um rearranjo conformacional em PD-L1, demonstrando o caráter flexível da região de interação de PD-L1. A realização de ensaios *in vitro* por Gavesan e colaboradores (2019) em moléculas propostas anteriormente pelo grupo BMS revelou o caráter bioativo das mesmas, mas também um perfil citotóxico indesejado. Neste mesmo estudo, moléculas peptidomiméticas também não apresentaram caráter bioativo de relevância.

Estes resultados atestam a grande dificuldade na proposição de moléculas que não somente interajam com o alvo molecular desejado, mas que também apresentem perfil não citotóxico. Aliado a isto, a busca por uma maior afinidade de interação permanece como um grande desafio no desenvolvimento destas moléculas (VAN DER ZANDEN, 2020). Atualmente, existem três abordagens terapêuticas direcionadas a interferência na via de sinalização de PD-1 / PD-L1 a partir da utilização de pequenas moléculas. A primeira está relacionada ao bloqueio efetivo da interação direta entre PD-1 e PD-L1. A segunda tem como objetivo inibir a transcrição e tradução de PD-L1. E por último, o estimulo a degradação de PD-L1.

Na Figura 10 é possível verificar moléculas direcionadas a cada uma das abordagens terapêuticas citadas. As moléculas BMS-202 e CA-170 interrompem e promovem o bloqueio da interação de PD-1 e PD-L1. JQ1 e osimertinibe impedem que BRD4 se combine com a região do promotor de PD-L1 visando inibir a sua transcrição. O ligante eFT508 reduz o nível de fosforilação de eIF4E para suprimir a

tradução de PD-L1. Por fim, a utilização da curcumina inibe a atividade de CSN5 e promove a degradação e ubiquitinação de PD-L1 (WU et al., 2020).

Figura 10: Modo de ação de pequenas moléculas na supressão e bloqueio da via PD-1 e PD-L1.

Fonte: WU et al., 2020 – adaptado.

A Tabela 2 lista compostos direcionados para o bloqueio da via PD-1 e PD-L1, assim como os seus respectivos estágios de desenvolvimento e indicações de uso. O desenvolvimento desses inibidores de moléculas pequenas abre um novo caminho para a imunoterapia tumoral com base na via de sinalização PD-1 / PD-L1. A descoberta de possíveis sítios de interação na PD-1 e a subsequente busca por pequenas moléculas que tenham a capacidade de interagir com esta proteína, alterando e prejudicando o padrão de interação encontrado na interação existente com PD-L1 pode contribuir para a formulação de novas terapias e representar um grande benefício para os pacientes que sofrem com comorbidades relacionadas ao câncer.

Moléculas	Alvo	Desenvolvimento	Indicação
AUNP-12		Pré-clínico	Melanoma
DPPA-1		Pré-clínico	Câncer de colón
TPP-1	Interação entre PD-1	Pré-clínico	Leucemia linfoide
	e PD-L1		aguda
BMS-202		Pré-clínico	-
CA-170		Clínico	NSCLC
JQ1		Clínico	Linfoma
eFT508		Clínico	Câncer de fígado
Osimertinibe	Expressão de PD-L1	Pré-clínico	NSCLC
PlatycodinD		Pré-clínico	NSCLC
PD-LYLSO		Pré-clínico	-
Curcumina	Degradação de	Pré-clínico	Câncer de mama
Metformina	PD-L1	Pré-clínico	Câncer de mama

Tabela 2: Pequenas moléculas direcionadas à supressão da via PD-1 e PD-L1, com seus respectivos modos de ação, estágios de desenvolvimento e indicações de uso.

Fonte: WU et al., 2020 - adaptado

Nas últimas décadas, os métodos computacionais, por meio da predição de interações e priorização de moléculas potencialmente bioativas, têm sido amplamente aplicados com grande relevância no processo de desenvolvimento de candidatos a fármacos clinicamente significativos em contrapartida aos custos econômicos e dificuldades envolvidas aos métodos experimentais (XIANG *et al.*, 2012).

1.5 Abordagens computacionais

1.5.1 Triagem virtual

O processo de descoberta de fármacos demanda tempo e alto investimento financeiro. Tecnologias experimentais de bancada, como por exemplo a triagem de alto rendimento (HTS, do inglês: *high-throughput screening*) e a química combinatória são bastante utilizadas para priorizar e selecionar compostos. O HTS é um ensaio primário, automatizado, que tem como objetivo testar bibliotecas contendo milhares

de compostos químicos contra um alvo (celular ou bioquímico). No entanto, esta técnica apresenta diversas limitações relacionadas ao longo tempo de execução, ao custo envolvido durante todo o processo, a necessidade de infraestrutura adequada para sua execução e, por fim, a alta chance de obtenção de falsos positivos e negativos (PASUPA 2016, SLATER; KONTOYIANNI, 2019).

A obtenção de novas estruturas cristalográficas de macromoléculas permitiu o desenvolvimento de diversas novas metodologias *in sílico* relacionadas ao descobrimento de novos fármacos. Neste contexto, a quimioinformática é definida como o uso de técnicas provenientes da informática capazes de resolver problemas relacionados a manipulação de informações estruturais químicas (LEACH; GILLET, 2007). Ao longo das últimas décadas, várias vertentes da quimioinformática se consolidaram, como: representação, visualização, manipulação e processamento de estruturas químicas, organização de bases de dados de estruturas químicas e estudos das relações quantitativas entre estrutura e atividade (QSAR, do inglês: *quantitative structure-activity*) (ALVES *et al.*, 2018). A triagem virtual (VS, do inglês: *virtual screening*) é uma técnica computacional que objetiva pontuar, classificar e filtrar um conjunto de bibliotecas de milhares de compostos químicos a fim de priorizar moléculas com maiores probabilidades de apresentarem atividade (KUBINYI; MANNHOLD; TIMMERMAN, 2008; KONTOYIANNI, 2017).

Neste sentido, a triagem virtual baseada em *docking* consiste em acoplar coleções de milhões de compostos obtidos em banco de dados de moléculas a uma determinada macromolécula. Como consequência, e dependendo dos recursos e do tamanho da biblioteca, uma certa porcentagem dos melhores pontuadores, normalmente entre 0,1–2,5%, é posteriormente considerada para análise e confirmação experimental (SLATER; KONTOYIANNI, 2019). De forma geral, existem duas categorias de triagem virtual: baseado em ligante (do inglês: *ligand-based*) ou baseado em estrutura (do inglês: *structure-based*).

O VS baseado em ligante abrange a identificação de moléculas que compartilham alguma similaridade estrutural e/ou bioquímica com moléculas ativas já conhecidas e identificadas, pontuando-as e selecionando-as com base nesta semelhança (BANEGAS-LUNA; CERÓN-CARRASCO; PÉREZ-SÁNCHEZ, 2018). Já o VS baseado na estrutura, usado neste trabalho, tem como objetivo a busca por ligantes que possam interagir e promover alguma resposta biológica em um determinado alvo conhecido e com estrutura disponível (LIONTA *et al.*, 2014). As

vantagens relacionadas ao uso da triagem virtual envolvem o menor custo e a menor infraestrutura requerida quando comparada com os ensaios de HTS. Outra vantagem é que nem todos os compostos da coleção precisam ser testados, mas apenas os primeiros classificados previamente nos ensaios. Esta avaliação impede que recursos financeiros sejam gastos em ligantes que não irão efetivamente interagir com o alvo nos testes experimentais posteriores de bancada (SLATER; KONTOYIANNI, 2019). Alguns desafios relacionados ao VS baseado em estrutura incluem: a necessidade de uma estrutura tridimensional do receptor, o método de *docking* utilizado e a escolha do banco de dados de moléculas. A falta de precisão da pontuação do docking, juntamente com falhas associadas na seleção e análises visual das moléculas, podem resultar na escolha errônea de ligantes e na perda de resultados potenciais (SCHNEIDER, 2010; KOLB; IRWIN, 2009). O crescente aumento no poder computacional, com a capacidade cada vez maior de análise e processamento de dados, aliado a evolução e melhoria de diversos algoritmos de docking, são capazes de mitigar e diminuir as limitações e adversidades da técnica, tornando-a uma boa solução na descoberta e desenvolvimento de novos ligantes bioativos.

1.5.2 Avaliação de propriedades ADMETox

Uma das principais causas de falhas de desenvolvimento de fármacos está atrelada não na falta de eficácia terapêutica, mas sim em problemas relacionados a farmacocinética das moléculas. Conceitualmente, farmacocinética avalia os efeitos do organismo em relação ao fármaco, desde absorção até sua eliminação. Desta forma, abrange parâmetros relacionados a biodisponibilidade, absorção oral, penetração da barreira hematoencefálica, depuração renal e volume de distribuição (MANNHOLD; KUBINYI; FOLKERS, 2012). Múltiplos filtros *in sílico, in vitro* e *in vivo* são desenvolvidos e implementados diariamente em várias etapas do processo de descoberta e desenvolvimento de fármacos de forma a indicar e prever possíveis problemas relacionados ao uso destas moléculas em testes clínicos. Neste contexto, abordagens computacionais apresentam vantagens em economia de custos e exigência de amostra e possuem potencial de prever algumas propriedades ADMETox (absorção, distribuição, metabolismo, eliminação e toxicidade) essenciais (EGAN, 2007; SHAIKH, 2007).

Um dos principais filtros usados até hoje é a regra dos cinco de Lipinski, desenvolvido por Christopher A. Lipinski em 1997 com base na observação de que a maioria dos fármacos administrados oralmente são moléculas relativamente pequenas e possuem lipofilicidade moderada. Em suma, esta regra considera que uma molécula pode ser definida como promissora, apresentando boa capacidade de absorção e/ou permeabilidade se no máximo um dos seguintes parâmetros forem violados: massa molecular \leq 500 Da; log P calculado (ClogP) \leq 5; número de doadores de ligações hidrogênio \leq 5 e número de aceptores de ligações hidrogênio \leq 10 (LIPINSKI *et al.*, 1997). Como forma de otimizar a predição de drogabilidade, extensões à regra dos cinco de Lipinski foram idealizadas. A mais famosa, a regra de Veber, adiciona dois critérios para a predição de boa biodisponibilidade oral de um fármaco: número de ligações rotáveis \leq 10 e área de superfície polar topológica (TPSA) \leq 140 Å (VEBER *et al.*, 2002).

Do ponto de vista da triagem virtual, o surgimento de compostos que residem além das regras enunciadas (Bro5, do inglês: *beyond rule of 5*) e que possuem a capacidade de interação com alvos que possuem sítios de ligação volumosos, planos ou presentes na interface de interação proteína-proteína sugerem que os filtros de biodisponibilidade oral existentes devem ser utilizados de maneira flexível, evitando o descarte de moléculas que possam ser moduladas quanto as suas características físico-químicas (POONGAVANAM; DOAK; KIHLBERG, 2018; YANG *et al.*, 2020). Em um contexto geral, diversos servidores e programas, auxiliados por ensaios ADMETox *in vitro*, têm sido desenvolvidos com o objetivo de detectar tanto a farmacocinética de um composto, como também seu caráter tóxico. Assim como a lipofilicidade, parâmetros relacionados a solubilidade, pKa são igualmente importantes nessa caracterização. A falta de padronização e qualidade dos dados experimentais, juntamente com limitações envolvendo quantidade e diversidade química constituem uma problemática importante nesta área. (KOLA; LANDIS, 2004).

1.5.3 *Docking* molecular

O objetivo de um processo que envolva a descoberta de novas fármacos é explorar novas moléculas que possam interagir com um alvo conhecido por estar associado a uma determinada doença e, desta maneira, provocar uma resposta biológica. Nesta circunstância, o *docking* (atracamento) molecular fornece as

informações necessárias para compreender o modo e os detalhes de interação entre estas moléculas, elucidando diversos processos bioquímicos importantes (LENGAUER; RAREY, 1996; SHAN *et al.*, 2011). O cálculo é dividido em duas partes: investigação da conformação e orientação do ligante no sítio (pose), levando em consideração as interações eletrostáticas, de van der Waals e a complementaridade de superfícies e por último a predição de pontuação de ligação. O *scoring* traduz em termos de pontuação a probabilidade de determinada pose representar um modelo com energia de ligação favorável. Diversos programas com diferentes algoritmos de buscas e funções de pontuação estão disponíveis (MORRIS *et al.*, 2009; TROTT; OLSON, 2010; FRIESNER *et al.*, 2006; SCHULZ-GASCH; STAHL, 2003; JONES *et al.*, 1997; GUEDES et al., 2021; LEE *et al.*, 2015; JIMÉNEZ-GARCÍA *et al.*, 2018).

Como forma de diminuir o custo computacional envolvido no processo e, caracterizando-se assim como uma limitação do processo, as metodologias de docking, de forma geral, são baseadas no modelo de chave-fechadura de Emil Ficher, onde o receptor permanece rígido durante os cálculos e o ligante flexível. O docking rígido impõe restrições à conformação do complexo, não levando em conta a flexibilidade do receptor e nem a camada de solvatação que porventura possa existir na interface de interação. Desta forma, torna os cálculos passíveis de erros, afetando os resultados finais que por consequência podem estar distantes dos reais. A determinação do scoring consiste em uma variedade de simplificações na avaliação dos complexos proteína-ligante e não consideram inteiramente o número de fenômenos bioquímicos e físicos que estabelecem o reconhecimento molecular. Além disto, a superfície de energia do complexo proteína-ligante é multidimensional e identificar os mínimos globais nela é relativamente complexo (JAKHAR et al., 2020). O sucesso da técnica está atrelado a capacidade da pose prevista representar determinado modelo visualizado experimentalmente com uma discrepância de coordenadas menor do que 2 Å. Outros parâmetros de avaliação importantes envolvem o acerto do modo de interação de uma molécula, a capacidade de distinguir uma molécula ativa de uma inativa, assim como ordenar as moléculas ativas de acordo com medidas experimentais (BALLANTE; MARSHALL, 2016; JAKHAR et al., 2020).

Diversos trabalhos na literatura têm enfatizado a importância da realização de uma análise visual minuciosa nos resultados obtidos por esta técnica para a identificação e/ou otimização de moléculas alvo (LIONTA *et al.*, 2014; GAIEB *et al.*,

2019; WASZKOWYCZ, 2008). É sugerido que a análise visual deve ser priorizada nas rodadas de docking, podendo ser tão ou mais decisiva para o sucesso da aplicação da técnica quanto a avaliação da qualidade da pose dada por funções de pontuação (SCHULZ-GASCH; STAHL, 2004). Neste sentido, parâmetros como características físico-químicas, complementaridade de carga entre ligantes e o sítio e avaliação da tendência de ocupação do sítio são utilizados e adotados nestas etapas. De forma a mitigar o problema relacionado à flexibilidade da proteína e solvatação, uma estratégia adotada envolve a utilização do ensemble docking. Essa abordagem leva em consideração a natureza dinâmica do receptor, explorando um conjunto diversificado de formas e estruturas do alvo e, portanto, podendo prever de forma mais realista a interação com determinado ligante. Tal conjunto pode ser obtido de múltiplas estruturas de RMN ou de raios-X (EDINK et al., 2011, BOLLAG et al., 2010), de estruturas obtidas por modelagem (EVANGELISTA et al., 2016; NOVOA et al., 2010) ou por simulações de dinâmica molecular (AMARO et al., 2018; EVANGELISTA FALCON et al., 2019). A técnica de docking e ensemble docking também é amplamente utilizada em conjunto com a dinâmica molecular. A flexibilidade da proteína e do ligante podem ser induzidas por estas simulações, permitindo o ajuste induzido do local de ligação do receptor em torno do ligante recém-introduzido (VERLI, 2014).

Devido a alta quantidade de falsos positivos atrelados aos cálculos de *docking*, também está bem estabelecido na literatura a importância da execução de dinâmicas moleculares para avaliar os resultados destes cálculos, tendo como parâmetro principal a estabilidade e o comportamento dos ligantes no sítio de interação estudado. Também é bem definido o uso de metodologias mais robustas atreladas a obtenção de valores de energia de livre, como MM-PBSA ou MM-GBSA a fim de compensar as limitações relacionadas a pontuação de energia obtida na etapa de *docking* molecular (FISCHER *et al.*, 2021).

1.5.4 Dinâmica molecular

Dinâmica molecular (DM) consiste no cálculo dos movimentos de átomos individuais ou de moléculas ao longo do tempo, de acordo com a segunda lei de Newton. Neste processo são avaliados alguns fatores físicos como velocidade, aceleração e posição do átomo por meio de diversos parâmetros e funções denominados campos de forças, capazes de descrever o sistema e o comportamento das partículas em um determinado meio (VERLI, 2014). Esta simulação pode não apenas mostrar a variação estrutural sobre mudanças ambientais, como pH, temperatura e mutações de resíduos, mas também pode exibir o processo dinâmico de reconhecimento e interação de uma pequena molécula com um receptor como também o dobramento e agregação de proteínas e peptídeos. Devido a isto, esta técnica tem sido comumente utilizada no estudo da patogênese de diversas doenças (HASSAN *et al.*, 2018; SCHUETZ; KAY, 2016). Estruturas de RMN e raios-X podem revelar sítios de ligação bem definidos capazes de acomodar ligantes endógenos; no entanto, às vezes, os modelos produzidos por essas técnicas experimentais camuflam outros sítios potencialmente drogáveis, como sítios crípticos e sítios alostéricos, capazes de abrigar estas moléculas e gerar respostas biológicas (DURRANT; MCCAMMON, 2010). Desta maneira, a dinâmica molecular possui um papel importante na obtenção destas informações, possibilitando a identificação e o estudo dessas regiões.

Simulações de DM envolvendo a utilização de cossolventes orgânicos com grupos funcionais capazes de mimetizar tipos específicos de interações tem sido utilizada para revelar ou estudar possíveis sítios de interação existentes em proteínas. Nesta metodologia, a apoproteína de interesse é imersa em uma mistura de solventes, e simulações simples de DM são realizadas para permitir que as moléculas da sonda interajam adequadamente com a proteína. Devido à presença de interações proteína-solvente, as sondas tendem a ocupar posições e orientações específicas, revelando assim locais de interação relevantes que poderiam não ser identificados em uma simples simulações de dinâmica molecular atreladas ao uso de diferentes abordagens de dinâmica molecular estão disponíveis na literatura e atestam a importância e o potencial desta técnica (ALVAREZ-GARCIA; BARRIL, 2014; RAMAN *et al.*, 2013).

1.5.5 Cálculo de energia livre

1.5.5.1 MM-PB(GB)SA

A intensidade da interação entre macromoléculas (receptores, por exemplo) e ligantes é comumente dada pela variação de energia livre (ΔG) obtida de

forma simplificada por programas de *docking* ou por ensaios experimentais. Estes considerados caracterizados demorados e dispendiosos. Neste contexto, métodos computacionais como perturbação da energia livre (FEP, do inglês: *free energy perturbation*) e integração termodinâmica (TI, do inglês: *thermodynamic integration*) foram desenvolvidos com o intuito de otimizar a obtenção destes parâmetros de energia. Entretanto, tais métodos se mostraram bastante rigorosos quanto ao uso e a demanda computacional requerida para a execução dos cálculos. Desta forma, abordagens mais eficientes foram desenvolvidas, com o objetivo de diminuir a pressão e a exigência computacional. Dentre elas, a mais popular é o MM-PB(GB)SA (do inglês: *molecular mechanics poisson-boltzmann [generalized born] surface area*), amplamente utilizada em estudos relacionados a interação entre proteínas-ligantes e complexos proteicos (WENG et al., 2019; WU et al., 2019; GOHLKE; CASE, 2004). Para interações entre pequenas moléculas e proteínas, a energia livre de ligação (ΔGligação) é obtida a partir da equação 1 (Xu *et al.*, 2013):

$$\Delta G_{liga,\tilde{a}o} = G_{complexo} - (G_{proteina} + G_{ligante})$$
(1)
solvatado solvatada

Cada termo de energia livre é calculado a partir de uma média dos quadros oriundos da trajetória de dinâmica molecular, seguindo as equações 2 a 5:

$$\Delta G_{ligacão} = \Delta H - T\Delta S \tag{2}$$

$$\Delta G_{ligação} = \Delta E_{MM} + \Delta G_{solv} - T\Delta S \tag{3}$$

$$\Delta E_{MM} = \Delta E_{interna} + \Delta E_{eletrostática} + \Delta E_{vdw}$$
(4)

$$\Delta G_{solv} = \Delta G_{(PB/GB)} + \Delta G_{SA} \tag{5}$$

 ΔE_{MM} , calculado por meio da mecânica molecular, é obtido pela soma dos valores relacionados de energia interna ($\Delta E_{interna}$) como energia dos diedros, ângulo de torção, das interações eletrostáticas ($\Delta E_{eletrostática}$) e de Van der Waals (ΔE_{vdw}). ΔG_{solv} é a soma dos componentes eletrostáticos ($\Delta G_{(PB/GB)}$) e não eletrostáticos (ΔG_{SA}) associados ao solvente. Em relação aos componentes eletrostáticos de solvatação são utilizados modelos de solvatação implícitos como 0 Poisson-Boltzmann (PB) e o Generalized Born (GB). A literatura aponta que a determinação do modelo de solvatação a ser utilizado depende exclusivamente do sistema que está sendo utilizado, não sendo possível determinar qual seja melhor (GENHEDEN; RYDE, 2020). Diversos trabalhos têm optado pelo modelo de solvatação GB pelo menor tempo computacional demandado pelo cálculo e pela relativa precisão quando comparado ao modelo de solvatação mais rígido (PB), sendo até mais eficiente em alguns sistemas que este ao ranquear energia de ligação de complexos proteicos não-metálicos (WANG *et al.*, 2019). Os componentes não eletrostáticos (ΔG_{SA}) são obtidos por meio de uma relação linear com a área superficial acessível ao solvente (SASA). Por último, o termo TS diz respeito a temperatura absoluta multiplicada pela entropia, estimada por análise de NMA (do inglês: *normal mode analysis*) ou por aproximação quase harmônica e normalmente não incluída nos cálculos pela alta demanda computacional existente nesta parte do processo e pelos sérios problemas de convergência (GOHLKE; CASE, 2004).

Esta metodologia foi originalmente desenvolvida para o pacote de simulações Amber (KOLLMAN *et al.*, 2000; SRINIVASAN *et al.*, 1998), possibilitando o surgimento em sequência de scripts automatizados (MILLER III *et al.*, 2012). Adiante, tais scripts também foram disponibilizados gratuitamente para outras plataformas, como o Gromacs, NAMD e APBs (KUMARI et al., 2014; PAISSONI et al., 2015).

2 OBJETIVOS

2.1 Objetivo geral

Por meio de abordagens *in silico*, explorar sítios inéditos de interação e propor possíveis ligantes que possuam a capacidade de interagir com a PD-1 e prejudicar o estabelecimento da interação com PD-L1.

2.2 Objetivos específicos

- Verificar como diferentes sondas orgânicas afetam a estrutura da PD-1;
- Identificar e caracterizar regiões de interação de destaque na PD-1;

• Determinar e contabilizar estados conformacionais que ajudem a descrever a presença e o impacto das sondas na região do sítio de interação proposto;

- Selecionar ligantes que tenham maior afinidade com o sítio de interação;
- Verificar a estabilidade dos ligantes no sítio de interação;

• Definir grupos farmacofóricos importantes para a estabilização destas moléculas no sítio;

 Propor modificações nos ligantes de destaque baseadas em hipótese para futura otimização.

3 METODOLOGIA

3.1 Obtenção e parametrização de sondas e ligantes

Inicialmente, simulações envolvendo cossolventes orgânicos foram preparadas de forma a identificar sítios de interação na PD-1. Estas moléculas possuem a capacidade de interagir com proteínas e provocar modificações estruturais capazes de ocasionar o aparecimento destas regiões de interação (GHANAKOTA; CARLSON, 2016). Quatro sondas (acetato, benzeno, fenol e imidazol) foram escolhidas com base na semelhança com a cadeia lateral dos aminoácidos e uma, nmetil-acetamida, a partir de sua identidade com a cadeia principal destes resíduos. A estrutura tridimensional de cada uma das sondas foi obtida por meio do banco de moléculas PubChem (KIM et al., 2019; WANG et al., 2009). A parametrização dos cossolventes foi realizada por meio do campo de força general amber forcefield2 gaff2 (VASSETTI; PAGLIAI; PROCACCI, 2019) e utilizou o método de derivação de cargas RESP (do inglês: Restrained Electrostatic Potential) proveniente do programa R.E.D. Server (VANQUELEF et al., 2011). As ferramentas antechamber e LEaP vinculadas ao AmberTools foram usadas para parametrizar os arquivos contendo informações sobre átomos, ligações e subestruturas (formato mol2), assim como arquivos de modificação de topologia e ângulo de diedro (formato frcmod). Estes dados foram necessários para a geração dos arquivos iniciais de trajetória e coordenada dos complexos PD-1 / sondas. De forma análoga, a parametrização dos ligantes selecionados na etapa de triagem virtual também seguiu o mesmo protocolo desenvolvido para as sondas escolhidas.

3.2 Obtenção da estrutura de PD-1 e parametrização dos complexos

A estrutura da PD-1 obtida a partir de ressonância magnética nuclear (RMN) em solução e depositada no banco de dados *Protein Data Bank* (código 2M2D) foi utilizada como sistema inicial para as simulações (CHENG *et al.*, 2013). Dos 35 modelos contendo o domínio igV da PD-1, apenas o primeiro (eleito pelos autores da publicação como estrutura representativa) foi escolhido, sendo os demais descartados e removidos do arquivo. Em seguida, foi realizado um tratamento neste modelo, com a remoção de moléculas de água e de hidrogênio do complexo proteico. O servidor

PDB2PQR (DOLINSKY *et al.*, 2004), por meio do algoritmo PropKa (OLSSON *et al.*, 2011) foi utilizado para determinar o estado de protonação dos resíduos da proteína em pH fisiológico (7.4) (ROSTKOWSKI *et al.*, 2011). A montagem do sistema padrão (apenas água) contou com o uso do módulo LEaP pertencente ao programa Amber18 (CASE *et al.*, 2018), usado para tratar o sistema por meio do campo de força ff14SB (MAIER *et al.*, 2015), aplicando uma caixa cúbica de 15 Å com água do tipo TIP3P (JORGENSEN *et al.*, 1983) e fixando uma concentração salina de 0,1 M, semelhante ao fisiológico. Nos sistemas contendo as sondas escolhidas, o programa Packmol (MARTÍNEZ *et al.*, 2009) foi utilizado para distribuição uniforme das moléculas de água e cossolvente, utilizando o mesmo tratamento do sistema padrão e fixando uma concentração de 0,2 M para as sondas (TAN *et al.*, 2016).

3.3 Simulações de dinâmica molecular

Simulações convencionais de dinâmica molecular dos complexos PD-1 / sondas foram executadas por meio do programa Amber18. Para estas simulações, foram utilizadas o barostato Monte Carlo e o termostato de Langevin. Foi definida e padronizada o valor de frequência de choque igual a 1 visando explorar novos sítios. A inclusão de restrição de ligações de hidrogênio (por meio do algoritmo SHAKE) permitiu o uso de *timestep* de 2 fs para as simulações. A dinâmica envolveu etapas de tratamento e preparação do sistema (minimização energética, aquecimento do sistema, ajuste de densidade e equilibração) e, em seguida, produção propriamente dita da simulação. A minimização de energia foi realizada em 3 etapas e contou com restrição no movimento e na liberdade dos átomos, de forma a acomodar melhor o sistema. Na primeira (por 2 mil ciclos), tanto a proteína como as moléculas de cossolvente foram mantidas fixas e restritas. Na segunda (por novamente 2 mil ciclos), apenas a proteína foi submetida a restrições. Na terceira (por 5 mil ciclos), todos os componentes do sistema foram deixados livres para interagirem. Ao final, todo o processo foi realizado em 9 mil ciclos e todas as restrições realizadas sob força de 500 kcal/mol/Å². Os complexos foram aquecidos gradualmente para 310K a volume constante (NVT) com a proteína sob força de restrição de 20 kcal/mol/Å². A rampa de aquecimento teve duração de 160 ps e a manutenção da temperatura final durou 15 ps. A equilibração, realizada sob pressão constante de 1 atm, também contou com a aplicação de força de restrição de 20 kcal/mol/Å² em movimentos da proteína nos

primeiros 500 ps. Adiante, ocorreu ao longo de 5 ns sem restrições aplicadas. A produção da dinâmica foi realizada em 10 etapas de 5 ns (totalizando 50 ns), sob condições NPT e pressão de 1 atm e temperatura de 310K. Foram realizadas 10 replicatas para cada complexo. As simulações foram realizadas levando em consideração um *cutoff* de 10,0 Å para interações de longas distâncias. Informações de trajetórias e energia foram salvas a cada 1000 passos.

Em relação aos complexos contendo os ligantes selecionados, as simulações de dinâmica molecular convencionais foram realizadas visando avaliar a manutenção destes no sítio de interação. As etapas de preparação, tratamento e equilibração dos sistemas, assim como a produção seguiram basicamente os protocolos realizados nos complexos contendo as sondas. Como forma de obter um maior rendimento no processamento da dinâmica e possibilitar o uso de um valor mais alto de *timestep*, aplicou-se a técnica de HMR (do inglês: *Hydrogen Mass Repartitioning*), realizando assim alterações nos arquivos de topologia dos complexos por meio da suíte parmed, presente no amber18 (HOPKINS *et al.*, 2015). A redistribuição de parte da massa de átomos pesados a hidrogênios permitiu aumento no valor de *timestep* para 4 fs, otimizando este processo.

3.4 Análise preliminar das trajetórias

O módulo cpptraj presente no ambiente AmberTools foi utilizado no processamento e na análise dos arquivos de coordenadas e trajetórias oriundos das simulações de dinâmica molecular. A análise de RMSD (do inglês: *root mean square deviation* ou desvio quadrático médio) e RMSF (do inglês: *root mean square fluctuation* ou flutuação quadrática média) permitiram verificar a variação da posição dos átomos e dos resíduos da PD-1 entre as estruturas obtidas pelas simulações e aquelas usadas como *input* (estrutura inicial). A visualização tridimensional e a análise estrutural dos complexos proteicos contendo as sondas foram realizadas por meio do programa pyMOL, pertencente a Schrodinger, e Chimera (PETTERSEN *et al.*, 2004).

3.5 Monitoramento e clusterização dos contatos nativos

O parâmetro *lifetime*, embutido no programa cpptraj, foi utilizado para mensurar os contatos das sondas com os resíduos da PD-1 ao longo das simulações

realizadas. Por meio desse parâmetro, dado em função do número de quadros da simulação, qualquer aproximação menor que 4 Å entre sonda e proteína foi contabilizada e caracterizada como contato. Após esta contabilização, os dados foram filtrados, de forma a identificar regiões *hot-spots*, ou seja, aquelas em que se sobressaíram na quantidade de contatos frente as demais. A aplicação do filtro foi baseada no número de quadros de contatos nativos e resíduos que apresentaram no mínimo dez mil quadros de contatos foram selecionados. Após a filtragem, os resíduos selecionados foram clusterizados visualmente com o uso do programa Chimera, tendo como critério principal a orientação da cadeia lateral, de forma a identificar pares de resíduos que poderiam estar atuando concomitantemente em uma zona de interação.

3.6 Predição e análise de sítios

O servidor DoGSiteScorer (VOLKAMER, 2012) foi utilizado para descrever e caracterizar o possível sítio de ligação de relevância identificado na PD-1. Propriedades globais, descrevendo o tamanho, forma e características químicas do sítio foram calculadas. Um índice de drogabilidade foi determinado com base em três descritores (volume, hidrofobicidade e área de abertura do sítio). Além disso, o servidor foi capaz de identificar outros sítios presentes na PD-1, possibilitando assim a comparação de características entre estas regiões e o sítio destacado. O programa fpocket (LE GUILLOUX; SCHMIDTKE; TUFFERY, 2009) foi utilizado para avaliar a dinâmica de movimento do sítio de interesse ao longo das simulações. Para a identificação do sítio, foi utilizado o módulo mdpocket com parâmetros específicos para detecção de pequenas cavidades (-m 2.8 -M 5.5 -i 3 -n 2). A avaliação do volume da cavidade ao longo do tempo foi realizada por meio do algoritmo Monte Carlo, baseado em mosaico de Voronoi e alfa esferas (KIM *et al.*, 2008).

3.7 Análise da movimentação e de estados conformacionais das sondas

Preliminarmente, a dinâmica de aproximação e afastamento das sondas em relação ao sítio foi analisada tendo como um *cutoff* de 5 Å para o centro da massa da região. Adiante, parâmetros específicos (como distância e ângulos) foram utilizados juntamente com determinados intervalos de valores para designar e indicar o(s) estado(s) conformacional(is) em que dada sonda se encontrou ao longo das simulações. Assim, buscando encontrar um padrão de comportamento e visando melhor caracterizar a presença e a ocupação destas moléculas na região do sítio de ligação, diversos estados conformacionais relativos às posições ocupadas na região alvo foram definidos. Tais posições foram numeradas de forma a abranger todos os espaços da molécula na região do sítio de interação. A mensuração ao longo das simulações da distância entre átomos específicos de resíduos pertencentes a região e o ponto médio de cada benzeno (sonda utilizada como padrão) em uma dada posição, levando em conta um intervalo específico, permitiu a contagem dos estados conformacionais relativos a esta sonda. Os parâmetros e valores foram então adotados para as demais sondas e simulações, possibilitando assim a comparação dos resultados entre as moléculas. Todas as análises foram realizadas mediante o uso do módulo cpptraj.

3.8 Triagem virtual

3.8.1 Definição do banco de moléculas

A escolha do banco de moléculas consiste em uma etapa primordial da triagem virtual. Para este trabalho, foi decidido utilizar o banco da Enamine denominado The REAL drug-like. Este repositório, no formato SMILE, possui ao todo 21 milhões de moléculas selecionadas conforme as regras de Lipinski e Veber (Tabela O banco também foi previamente tratado visando a exclusão de moléculas PAINS (Pan-assay interference compounds), que tendem a reagir de forma inespecífica com vários alvos biológicos, resultando em falsos positivos em ensaios experimentais (BAELL, 2016). Outra característica do banco é o fato de possuir moléculas com coeficiente de Tanimoto < 0.6. Este filtro de dissimilaridade garantiu uma diversidade maior de moléculas com estruturas e grupos funcionais diferentes ao reposítorio, possibilitando abranger um espaço químico maior de interações. O banco escolhido é dividido por moléculas de síntese química mais simples (denominadas S, do inglês: simple chemistry, standard effort) e por moléculas de síntese mais complexa (designadas M, do inglês: advanced chemistry, high effort). Devido ao alto número de compostos e a necessidade posterior de síntese química e de experimentos em bancada para atestar a interação destas moléculas com a PD-1, foi priorizado trabalhar exclusivamente com as classificadas como S. Desta forma, seguindo estes

critérios, das 21 milhões de moléculas, pouco mais de 17 milhões foram escolhidas para a execução dos cálculos de *docking*.

The REAL drug-like	
Característica	Valor
Peso molecular	≤500
Aceptores de ligação de hidrogênio	≤10
Doadores de ligação de hidrogênio	≤5
Ligações rotacionáveis	≤10
Área de superfície polar topológica (TPSA)	≤140 Å
SlogP	≤5

Tabela 3: Características pertencentes às moléculas do banco The REAL drug-like.

Fonte: Elaborado pelo autor.

3.8.2 Filtragem do banco de moléculas

De forma a garantir que o banco de dados fosse formado por moléculas com bons preditores farmacocinéticos e propriedades básicas favoráveis, foi utilizado o programa FILTER (OPEN EYE SCIENTIFIC SOFTWARE) para tratar e filtrar possíveis moléculas que tenham sido incluídas no banco de dados original da empresa de forma equivocada. Para isto, foi utilizado o filtro padrão do programa (*Blockbuster*), não havendo restrição direcionada exclusivamente a moléculas PAINS e nem a grupos funcionais específicos. O programa também tratou as moléculas quanto aos seu real estado de protonação, realizando a correção de hidrogênios com base no pH fisiológico (7.4).

3.8.3 Geração das coordenadas tridimensionais dos ligantes

As coordenadas tridimensionais (3D) das moléculas filtradas foram geradas a partir do programa OMEGA (HAWKINS *et al.*, 2010), vinculado a suíte de programas da *Open Eye*. Para isto foi utilizado o modo clássico do programa. Com o objetivo de diminuir o custo computacional envolvido no processo, o parâmetro *maxconfs* foi alterado de 400 para 1 visando a geração de apenas uma conformação por molécula. De forma a evitar erros, outra alteração realizada envolveu a mudança do indicador *strictstereo* de T (*true* - verdadeiro) para F (*false* - falso), indicando para o programa não haver necessidade de haver informações relacionadas aos centros estereoquímicos nos arquivos das moléculas para que a conversão e a geração das coordenadas 3D fossem realizadas. O programa Open Babel (O'BOYLE *et al.*, 2011) foi utilizado para gerar as conformações 3D das moléculas que apresentaram erro durante a execução do OMEGA e também para converter o arquivo únicos .sdf (com todas as moléculas) em arquivos separados. pdbqt prontos para o *docking*.

3.8.4 Preparação para os cálculos de docking

3.8.4.1 Escolha e otimização da estrutura inicial da PD-1

Nesta primeira etapa de screening, dois critérios foram utilizados para selecionar a estrutura base para os ensaios de *docking*. O primeiro levou em conta a capacidade da estrutura em conseguir abrigar a sonda no sítio. O segundo deu importância ao volume do sítio disponível para interação. Desta forma foi realizada uma análise de componente principal (PCA) a partir do programa pyPcazip (SHKURTI *et al.*, 2016) abrangendo a região do sítio no complexo contendo PD-1 e sondas que se destacaram nas simulações de dinâmica molecular. Esta análise possibilitou verificar a direção e a amplitude dos movimentos da região, traduzindo-os por meio de componentes principais. A posterior comparação com os dados de volume obtidos pelo fpocket possibilitou escolher a estrutura ideal para os ensaios. O preparo da estrutura foi realizado por meio da interface gráfica do programa AutoDockTools (MORRIS *et al.*, 2009), levando em conta a presença de apenas hidrogênios polares na estrutura e a adição de cargas parciais (*Gasteiger charges*). Ao fim da preparação do sistema, foi possível a geração e a obtenção do arquivo em formato pdbtq direcionado ao ensaio de *docking*.

3.8.4.2 Benchmarking

Devido ao alto custo computacional envolvido principalmente nesta primeira etapa do *screening*, onde milhões de moléculas serão submetidas a cálculos

de docking, foi decidido utilizar uma versão modificada do Autodock Vina denominada Quick Vina 2 como forma de otimizar o desempenho nesta etapa. Apesar da literatura já abordar a superioridade de performance do Quick Vina 2 em relação ao Vina sem haver perda de qualidade na previsão das poses calculadas (ALHOSSARY et al., 2015), testes de benchmarking (validação) variando as configurações de execução foram realizados com o objetivo de atestar o melhor rendimento deste sobre o Vina e também achar a melhor configuração para os ensaios, tendo como referência a capacidade computacional do nosso laboratório e o sistema estudado. Diante disto, ensaios de docking foram realizados na estrutura previamente escolhida da PD-1 com a utilização de 160 ligantes pertencentes ao banco de dados escolhido. Os testes foram divididos em duas partes: performance de execução e precisão dos cálculos. A primeira etapa envolveu a variação de parâmetros como exaustividade (4, 8, 16, 24) e também número de processadores por *job* (1, 2, 4, 5, 8, 10, 20, 30 e 40 [máximo]). Todas as execuções foram realizadas de forma simultânea, simulando a situação dos cálculos que serão realizados adiante. A segunda etapa dos testes abrangeu a mensuração da precisão e exatidão dos cálculos comparando Quick Vina 2 com o Vina a partir da utilização de parâmetros de exaustividade e processamento que obtiveram melhor performance na etapa anterior. Para esta parte do ensaio foram utilizados os cinco melhores ligantes (em termos de energia de ligação) da etapa anterior. As comparações relacionadas aos programas utilizados foram mensuradas a partir da obtenção da energia de ligação e RMSD pertencentes a um mesmo ligante.

3.8.5 Screening inicial

Na primeira etapa de *screening*, 17 milhões de moléculas foram submetidas a *docking* molecular na estrutura da PD-1 previamente escolhida. Neste ensaio, a PD-1 foi tratada de forma rígida, enquanto aos ligantes foi permitida a flexibilidade, admitindo ajustes conformacionais destas moléculas no sítio. As configurações de *docking* incluíram a utilização de uma caixa de dimensões 22, 20 e 24 Å centrada no sítio de interação e exaustividade de 4, seguindo os melhores parâmetros observados nos testes de *benchmarking*. As 17 milhões de moléculas foram divididas igualmente em 74 grupos. Cada grupo foi subdividido em 20 subconjuntos, respeitando assim as configurações ótimas encontradas nos ensaios de benchmarking. A realização dos cálculos de *docking* contou com a execução simultânea de dois grupos por máquina. O processamento do *docking* resultou na geração de 10 poses por ligante. Os resultados foram avaliados em termo de pontuação de ligação e de termo de eficiência do ligante (HOPKINS *et al.*, 2014), parâmetro relacionado à contribuição individual de cada átomo pesado na ligação e interação de uma molécula com uma proteína.

3.8.6 Ensemble docking

Como forma de superar as limitações provenientes do uso de apenas uma estrutura para o *docking* molecular, realizou-se um *ensemble docking* incluindo dez estruturas da PD-1 nos cálculos. Para a escolha das estruturas, foi realizada uma análise de PCA levando em consideração, na replicata que melhor acomodou a sonda no sítio nas simulações de dinâmica molecular, apenas quadros que registraram a presença destas moléculas no sítio. Após esta análise, as estruturas foram escolhidas com base na variação das componentes principais, tendo como objetivo abranger o maior espaço conformacional possível. Devido às limitações computacionais existentes, para esta etapa foram incluídas apenas as 100 mil melhores moléculas (em termos de pontuação de energia) da etapa anterior de *screening*, permanecendo iguais as configurações e parâmetros de cálculo usadas anteriormente.

3.8.7 Análise visual

Os resultados do *ensemble docking* foram analisados visualmente utilizando o programa PyMOL. A partir da estrutura da PD-1 que obteve melhor desempenho nos ensaios, foi realizada uma seleção de ligantes baseando-se em dois critérios de ranqueamento: pontuação de ligação e eficiência do ligante. Os 500 melhores ligantes de cada critério foram inspecionados visualmente tendo como base os seguintes parâmetros: estrutura molecular (tamanho, volume e grupos funcionais), capacidade de interação (por meio de interações polares), complementaridade química e tendência de ocupar o sítio, dissimilaridade e toxicidade. Também foi realizado um ensaio de *docking* cego (do inglês: *blind docking*) com estes ligantes tendo como alvo a PD-1 (estrutura de ensemble docking que melhor se saiu nos ensaios) de forma a mensurar a propensão destas moléculas de ocuparem o sítio de interação. Para este ensaio as mesmas configurações das outras etapas de *docking* foram utilizadas, variando-se apenas as dimensões da caixa adotada para 50, 50 e 50

À centrada na proteína. A toxicidade foi preliminarmente avaliada e predita a partir da submissão dos ligantes ao servidor ChembioServer 2 (KARATZAS *et al.*, 2020). Ao fim das análises foram selecionados 10 ligantes elegíveis para as próximas etapas do trabalho.

3.9 Análises ADMETox

Análises mais detalhadas de ADMETox foram realizadas nos ligantes selecionados na etapa de análise visual com o intuito de conhecer de forma mais aprofundada suas propriedades farmacocinéticas e grau de toxicidade no organismo. Com este objetivo, foi utilizado o programa Osiris Property Explorer, pertencente a Organic Chemistry Portal, capaz de avaliar os riscos de toxicidade (mutagênese, tumorigênese, irritabilidade e danos ao sistema reprodutivo) assim como de realizar a caracterização de descritores importantes (cLogP, solubilidade, peso molecular e área de superfície polar topológica (TPSA) pertencentes a molécula em análise. O grau de drogabilidade (do inglês: druglikeness) também foi avaliado, tendo como base um estudo envolvendo 3300 fármacos e 15 mil produtos químicos comercializados (Fluka). A quebra destes compostos em pequenos fragmentos e a atribuição de uma pontuação permitiu inferir quais deles estão mais presentes em fármacos comercializados. Desta maneira foram adotados padrões de pontuação negativos para produtos químicos e de pontuação positiva para fármacos. O programa também fornece a pontuação final (drug-score), consistindo de 0 a 100 (em %) baseando-se nos resultados obtidos pelos descritores analisados. De forma a analisar o maior número de descritores, outros programas foram utilizados, como Marvin Sketch, da Chemaxon, para análise de aceptores e doadores de hidrogênio e o servidor Molinspiration Cheminformatics (Bratislava University) para contabilização das ligações rotáveis. Os descritores foram avaliados tendo como referência a regra de Lipinski e Veber.

3.10 Diagrama bidimensional de interações

Os ligantes selecionados foram submetidos a análise simplificada de interações por meio de um diagrama bidimensional (2D). As poses que prevaleceram nas estruturas que melhor se sobressaíram na etapa anterior de *ensemble docking*

foram escolhidas para representar cada ligante. Uma esfera de 5 Å a partir do centroide do ligante foi criada por meio da utilização da versão livre do *software* Discovery Studios 3.1 (BIOVIA), permitindo a contabilização e a caracterização das interações existentes.

3.11 Seleção final dos ligantes e análise de interações

Os resultados das simulações de DM nos complexos PD-1 / ligantes foram preliminarmente analisados com base na evolução ao longo do tempo da distância do ligante para o ponto central do sítio de interação. Após esta análise, os ligantes que apresentaram melhor estabilidade no sítio foram submetidos a cinco novas simulações de DM (totalizando 10 replicatas). Além da distância para o centro da alça, análises de RMSD foram realizadas de forma a constatar a manutenção da posição destes ligantes no sítio. As moléculas selecionadas ao final deste processo foram submetidas também a análise de formação e quebra de interações, como ligações de hidrogênio, cátion $-\pi$, empilhamento $-\pi$ e pontes salinas ao longo das simulações. Esta análise foi realizada em um primeiro momento tendo como parâmetro a distância entre átomos específicos relacionados a cada tipo de interação, de forma a avaliar a sua existência. Em um segundo momento, as ligações de hidrogênio ao longo das simulações foram contabilizadas, destacando-se os átomos aceptores e doadores de hidrogênio, além do número de quadros envolvidos na interação. A construção desse perfil de interação foi realizada a partir da ferramenta cpptraj presente na plataforma Amber18.

3.12 MM/GBSA

A técnica de MM/GBSA foi utilizada para mensurar a energia de ligação entre a PD-1 e os ligantes destacados nas simulações de dinâmica molecular. O script MMPBSA.py (MILLER III *et al.*, 2012) embutido no programa AmberTools foi utilizado para esta finalidade. Neste sentido, 125 quadros espaçados equidistantemente provenientes das simulações de dinâmica molecular foram utilizados como *input* ao programa. O número de quadros analisados seguiu protocolos existentes na literatura que apontam o uso e a confiabilidade estatística de valores maiores que 100 quadros (PAISSONI *et al.*, 2014; TAVASSOLI; TAGHDIR; RANJBAR, 2018; WANG *et al.*, 2019). Os parâmetros para realização das análises foram mantidos nos valores padrões recomendados pelo programa. O modelo de *Generalized Born* de Hawkins, Cramer e Truhlar (HAWKINS; CRAMER; TRUHLAR, 1996) foi utilizado para realizar os cálculos. Este modelo é compatível com os arquivos de topologia utilizados nas dinâmicas moleculares previamente utilizadas e possui uma boa concordância com os valores experimentais de afinidade de ligação (WANG *et al.*, 2019). Decomposições de energia por resíduos do sítio de interação também foram realizadas para todos os quadros analisados, permitindo avaliar a contribuição individual destes resíduos ao longo da trajetória. Devido ao alto custo computacional e a relativa imprecisão, valores de mudanças de entropia foram ignorados no cálculo, restringindo assim a obtenção por parte do cálculo realizado da entalpia de ligação (Δ H).

3.13 Análise da interface PD-1 / PD-L1 nos complexos com ligantes propostos

Análises de componente principal (PCA) foram realizadas com o intuito de avaliar o impacto na interface da PD-1 e PD-L1 da presença dos novos ligantes no sítio de interação proposto. Com este propósito, foram utilizadas simulações contendo o sistema padrão (PD-1 e água, somente), PD-1 e sonda de destaque, PD-1 e os ligantes selecionados do trabalho e, por último, sistema abrangendo a interface de interação entre PD-1 e PD-L1, obtida por simulações de dinâmica molecular realizadas anteriormente pelo nosso grupo de pesquisa. Para esta análise foi considerada como seleção os átomos da cadeia principal dos resíduos que abrangem a região de interação entre PD-1 e PD-L1 e todos aqueles a uma distância de 5 Å.

4 RESULTADOS E DISCUSSÃO

4.1 Análises preliminares das simulações de DMs (PD-1 / sondas)

As análises de RMSD permitiram verificar o desvio médio de uma estrutura ao longo das simulações realizadas segundo uma referência (estrutura inicial sem qualquer etapa de minimização ou equilibração) como ponto de partida. Tendo como base a cadeia principal da proteína, foi possível verificar que em todas as simulações a PD-1 apresentou poucas alterações em suas coordenadas (Figura 11).

Figura 11: RMSD da cadeia principal da PD-1 nos diferentes sistemas. A) PD-1 / acetato. B) PD-1 / benzeno. C) PD-1 / fenol. D) PD-1 / imidazol. E) PD-1 / n-metil-acetamida F) PD-1 contendo apenas água como solvente.

Fonte: Elaborado pela autor.

Os valores de RMSD encontrados (em torno de 2,5 Å) estão de acordo com as observações encontradas na literatura e apontam a estabilidade da proteína ao longo das simulações (BOLHUIS, 2006). Desta maneira, a princípio, os resultados mostraram que a presença das sondas nas simulações não influenciou e alterou diretamente a conformação da proteína. Ademais, esta observação é corroborada pelo padrão parecido de comportamento das estruturas contendo as sondas e aquelas tendo apenas a água como solvente principal. De fato, este resultado é de certa forma esperado, tendo em vista que as sondas orgânicas possuem como foco maior de interação a cadeia lateral dos resíduos de aminoácidos presentes na proteína. Está bem documentado em trabalhos publicados que devido a esta capacidade de interação, o uso de sondas orgânicas é amplamente adotado para estudar a dinâmica e a formação da cavidade se dá em um intervalo de tempo pequeno (ARCON *et al.*, 2017; KIMURA *et al.*, 2017).

A avaliação da flutuação individual média de cada resíduo (RMSF) foi realizada de forma a identificar as regiões mais flexíveis da proteína ao longo das dinâmicas realizadas. Os resultados demonstraram que as alças da PD-1 (em destaque na Figura 12) atuaram de forma mais desordenada que outras estruturas ao longo das simulações. O padrão de comportamento dessas estruturas já é conhecido na literatura. A grande flexibilidade conformacional existente neste tipo de região pode ser explicada pela presença de resíduos como glicina e prolina, conhecidos por conferirem esta característica à região (NELSON; COX, 2018).

Hipóteses atreladas à capacidade de interação das sondas e também à dinâmica conformacional das estruturas proteicas podem ajudar a explicar a diferença de comportamento de uma mesma região em replicatas diferentes. O alto nível de flexibilidade da alça C'D nos complexos PD-1 / fenol frente aos demais sistemas pode ser entendido a princípio pelo alto grau de interação promovido por este tipo de sonda na região, desregulando e promovendo grande variabilidade conformacional à região. Antagonicamente, a menor flexibilidade de certas regiões frente ao sistema padrão, contendo apenas água, pode indicar possíveis interações estáveis com as sondas, regulando e "travando" a região. Isso pode ser observado atentando-se para os complexos PD-1 / benzeno (alça C'D), PD-1 / n-metil-acetamida (alça DE) e PD-1 / imidazol (alça CC'). Outra possibilidade sugere a não interação destas sondas na região, podendo resultar também na estabilidade da região. Também foi possível

observar diferenças de comportamento entre um mesmo tipo de complexo. Por exemplo, no sistema PD-1 / fenol, a alça FG apresentou grande variação na replicata 8, enquanto que em todas as outras a variação ao longo das simulações desta estrutura não passou de 3 Å. De fato, cada simulação tem a possibilidade de percorrer trajetórias diferentes ao longo da dinâmica molecular, resultantes de parâmetros específicos associados a sementes aleatórias que são recomendadas e inseridas nos arquivos de *input* da simulação (CASE *et al.*, 2020). Isto pode possibilitar o acesso em diferentes momentos e espaços da sonda orgânica na proteína, resultando em diferentes respostas dos complexos. Em suma, estes postulados ajudam a explicar os comportamentos divergentes e os diferentes padrões observados aqui.

Figura 12: RMSF ao longo das simulações realizadas dos resíduos que compõem a PD-1. A) PD-1 / acetato. B) PD-1 / benzeno. C) PD-1 / fenol. D) PD-1 / imidazol. E) PD-1 / n-metil-acetamida F) PD-1 contendo apenas água como solvente.

Fonte: Elaborado pela autor.

4.2 Avaliação e clusterização dos contatos nativos

O uso do parâmetro *lifetime* permitiu a identificação de regiões da PD-1 que se destacaram pela alta taxa de contatos nativos com as sondas orgânicas utilizadas. Os resíduos da PD-1 com seus respectivos valores de contatos nativos por sonda podem ser visualizados no apêndice A. Os resultados demonstraram que entre todas as sondas, benzeno, fenol e imidazol apresentaram os melhores resultados, estabelecendo mais contatos efetivos com a proteína que as demais. Este resultado levou a interpretação de que a estrutura química similar entre as três sondas, consistindo basicamente de um anel aromático (para o benzeno), anel aromático e um grupamento polar (para o fenol) e estrutura heterocíclica (imidazol) atuem de forma importante para o reconhecimento molecular com a PD-1, descrita na literatura como uma proteína de natureza amplamente hidrofóbica. Tais interações hidrofóbicas inclusive são importantes para a sua interação com seus ligantes PD-L1/L2 e com anticorpos já desenvolvidos (ZAK *et al.*, 2017).

A clusterização e a comparação destes resultados entre as sondas possibilitou verificar quais regiões obtiveram destaque levando em conta as simulações realizadas. Isto possibilitou a identificação de uma área de destaque em comum com as sondas destacadas anteriormente, abrangendo os resíduos 80-94 da PD-1 (Figura 13). Outras regiões também puderam ser identificadas (incluindo a interface de interação PD-1 e PD-L1), porém alguns motivos nos fizeram ter atenção a esta região em detrimento as outras. O primeiro é referente a quantidade de clusters que contabilizaram alta quantidade de contatos e que abrangeram unicamente esta região. Outro fator que nos chamou a atenção foi a capacidade das sondas de não somente interagir com a região, mas também apresentar estabilidade, permanecendo no sítio durante as simulações. Este comportamento foi bem visível em simulações envolvendo benzeno e fenol. O ineditismo atrelado em trabalhar com pequenas moléculas direcionadas a esta região também foi outro motivo. Diversos trabalhos envolvendo o bloqueio da interação PD-1 e PD-L1 via peptídeos macrociclos ou até pequenas moléculas estão registrados e disponíveis na literatura. Entretanto, estas pesquisas tendem a focar no bloqueio do sítio de interface entre as duas proteínas (KOPALLI et al., 2019; TANG; KIM, 2019) O estudo dessa região em específico nos motivou a descobrir possíveis ligantes que em um primeiro momento possam interagir de forma adequada e estável com a região e, em um segundo momento, possam alterar e afetar negativamente o padrão de interação já conhecido entre PD-1 e PD-L1. Outras regiões com certo destaque em número de contatos dentre as sondas foram identificadas, mas o já conhecido envolvimento delas em interações envolvendo a PD-1 e a PD-L1/L2 e anticorpos já desenvolvidos (como a alça CC'), juntamente com a baixa estabilidade das moléculas no sítio, apresentando alta alternância, foram usados como critérios para classificar estas regiões como menos relevantes (ZAK *et al.*, 2015). É importante pontuar que a identificação dessas regiões conhecidas validou o método escolhido, mostrando que o mesmo foi aplicado e executado corretamente. O apêndice B exemplifica o padrão de interação encontrado nestas sondas.

Figura 13: *Clusters* abrangendo uma única área da PD-1 e formados por resíduos que se destacaram pelo alto nível de contato com as sondas.

№ de contatos nativos (PD-1 I benzeno)								№ de contatos nativos (PD-1 I Fenol)																
Identificação Cluster 11									Ide	Identificação Cluster 14														
iue													Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10	
PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10	52	GLU84	10057	15617	13306	13278	32518	16627	41281	11684	13697	24200	
/18	AL A80	124	2865	1151	117	951	22/199	187	3/11	3223	20107	54	ARG86	19022	9081	17254	18054	31524	18408	40643	15210	10934	29677	
-10	ALAUU	124	2005	11.51	11/	551	23433	107	341	5225	20107	59	GLN91	12299	11080	13189	12075	9475	17220	33648	18694	15596	40980	
50	PHE82	10198	11803	5757	13539	5301	7042	4609	7223	11115	11883	58	GLY90	9709	12208	9315	10045	6995	10485	7387	14226	7416	15543	
65	VAL97	14694	15336	12090	7267	7705	3211	19573	23904	619	11895	Ide	ntificação	Cluster 15										
												PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10	
Ide	ntificação					Clust	ter 12					55	SER87	11452	18221	16152	11144	20482	12348	26607	6169	12326	14209	
PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10	56	GLN88	14896	19189	19572	11011	27924	17043	27339	11410	17014	30052	
												57	PRO89	16072	25541	1/339	11502	28/26	13260	24323	14092	18660	14842	
52	GLU84	8778	11183	12465	6183	5203	37798	13197	68/1	/612	18639	58	GLY90	9709	9709 12208 9315 10045 6995 10485 7387 14226 7416								15543	
54	ARG86	10227	8071	11584	9492	3584	37385	12048	12603	13687	12836	Ide	ntificação	0004	0503	0503	DED4		er 16	0507	пгре	DEDO	00010	
67	DPO90	0120	10426	10160	7464	7244	12402	0261	10764	12524	22629	PDB	Residuo	2220	REPZ	6000	REP4	REP5	12427	12206	KEP8	2170	24462	
57	PR069	0150	10430	10100	7404	7544	15405	3301	10704	15554	52056	40	ALA80	14755	20495	21/2/	6772	22403	22116	12200	10251	20697	24403	
59	GLN91	8173	15531	6591	5723	8386	25564	4187	5198	11906	20309	50	PHE82	16247	20465	22424	0062	12471	22015	20769	12000	20037	2/1015	
5.8	GLY90	8013	6110	4649	6381	6842	4638	5349	5323	10698	30094	65	VA107	28/15	27062	199/11	18638	14257	17046	9308	22730	4514	23665	
									03 VH:57 2045 27002 15541 10050 14237 17040 5508 22750 4514 25005															
Ide	ntificação					Clust	ter 13					Nº de contatos nativos (PD-1 l imidazol)												
PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10	Ide	ntificação	0504	DEDO	DEDO	DEDA	Clus	ter 9	0507	0500	DEDO	DED40	
50	DUERO	10100	11000		10500	5201	70.40	4600	7000		11000	PDB	Residuo	REP1	KEP2	REP3	KEP4	KEP5	REPO	KEP/	KEP8	REP9	REP10	
50	PHE8Z	10198	11803	5/5/	13239	5301	7042	4609	7223	11115	11883	55	SER87	3907	5203	7300	3/23	0280	4988	0//4	10/94	9815	4320	
51	PRO83	13063	17633	13612	15928	6734	8108	11054	8952	16639	9325	50	GLINGO	100/1	5626	2001	14357	6301	7710	2225	5140	5006	6020	
Ide	ntificação					Clust	tor 14					oc	ntificação	0445	3020	5601	20240	Cluct	7/10	5255	5140	3090	0025	
iue	linnação				<u> </u>	Ciusi	14			<u> </u>		PDB	Resíduo	RED1	RED2	RED3	RED/	REDS	REDG	RED7	REDS	REDO	RED10	
PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10	48	AL A80	18402	2070	3989	15010	4267	1191	4211	5093	5379	194	
55	SER87	6280	7118	9572	4845	2849	41659	3542	8419	8828	12426	52	GLU84	10438	7445	10134	15084	8679	9020	4923	16385	11198	8034	
		100										54	ARG86	7531	9301	8235	24104	9794	11363	13876	17098	8564	10158	
56	GLN88	6143	9893	9823	5211	3338	35411	6755	9660	13107	30075	59	GLN91	8449	6059	7261	22483	10870	10229	8699	5801	9931	4045	
57	PRO89	8130	10436	10160	7464	7344	13403	9361	10764	13534	32638	58	GLY90	16333	5626	3801	20240	6391	7718	3235	5140	5096	6029	

Fonte: Elaborado pela autor. Os intervalos de cores utilizados denotam o grau de contato existente entre os resíduos e as sondas (pouco: branco, médio: amarelo, alto: verde).

4.3 A região de interação destacada

4.3.1 Análise geral

A região identificada anteriormente na análise de contatos nativos abrange basicamente a alça C'D da PD-1. As regiões de alça são reconhecidamente importantes no reconhecimento molecular envolvendo ligantes e proteínas (PEETER *et al.*, 2011). A visualização da estrutura permitiu verificar os resíduos de aminoácidos relacionados diretamente e indiretamente ao sitio de interação no qual a alça está inserida (Figura 14). É possível verificar a presença de 21 aminoácidos, sendo nove hidrofóbicos (Leu79, Ala80, Ala81, Phe82, Pro83, Pro89 e Gly90, Phe95 e Val97), quatro polares carregados negativamente (Asp77, Glu85, Asp85 e Asp92), quatro polares carregados positivamente (Lys78 e Arg86, Arg94 e Arg96) e quatro polares com carga neutra (Ser87, Gln88, Gln91 e Ser93). Seu relativo caráter hidrofóbico é bastante compatível com a natureza química conhecida da PD-1. Dos 21 aminoácidos, 4 pertencem a fita C' da PD-1, 2 à fita D e 12 à alça C'D.

Figura 14: Composição e localização aproximada dos resíduos do sítio de interação destacado na PD-1. Imagem criada pelo programa PyMOL.

Fonte: Elaborado pelo autor a partir da visualização do PDB: 2M2D (CHENG et al., 2013).

A alça C'D é conhecida por estar envolvida na interação com o anticorpo pembrolizumabe. A interação deste anticorpo não envolve somente a região C'D da PD-1, mas também outras, como as alças BC, CC' e FG. A região CC', inclusive, encontra-se próxima a alça C'D e merece destaque pela sua importância na interação entre PD-1 e PD-L1 (ZAK *et al.*, 2015). Pesquisas comprovam que a interação deste anticorpo com a PD-1 envolve majoritariamente os resíduos Glu84 a Gly90 presentes na alça C'D e a cadeia pesada da região CDR do pembrolizumabe e que ligações de

hidrogênio e pontes salinas existentes entre as estruturas são importantes para a estabilização do complexo (NA *et al.*, 2017; HORITA *et al.*, 2016). A Figura 15 exemplifica mais detalhadamente os resíduos envolvidos e as interações existentes. É possível destacar a participação de três resíduos da alça C'D: Ser87 (pelo alto número de interações) e Asp85 e Arg86 (pelas pontes salinas formadas).

Figura 15: Interação entre PD-1 e pembrolizumabe. A) Visualização tridimensional dos resíduos envolvidos na interface de interação pelo programa PyMOL. B) Resíduos e tipos de interação envolvidos.

Fonte: A) Elaborado pelo autor a partir da visualização do PDB: 5B8C (HORITA *et al.*, 2016). B) HORITA *et al.*, 2016 – adaptado. CL: Cadeia leve do anticorpo. CV: Cadeia pesada do anticorpo. IgV: dominio extracelular da PD-1.

O uso de pequenas moléculas tendo como alvo a área C'D da PD-1 ainda não foi explorado na literatura. A sobreposição da estrutura cristalográfica contendo PD-1 e PD-L1 (obtida por simulações realizadas anteriormente pelo nosso grupo de pesquisa) e a estrutura final do complexo PD-1 / benzeno (replicata 6) (Figura 16) tornou possível a observação de que a interação da sonda no sítio localizado na alça C'D permitiu a ocupação da molécula em uma região de interface entre as duas proteínas, próxima a região de interação principal entre PD-1 e PD-L1. Além disto, é possível notar uma relativa mudança conformacional ocorrida na área em decorrência da presença desta molécula. Estas observações permitiram levantar a hipótese de que a presença da sonda na cavidade presente na alça C'D possa ter a capacidade de interferir e prejudicar a interação entre as duas proteínas. De fato, existem trabalhos e publicações na literatura que indicam e apontam o papel de modulador alostérico exercido por diversos ligantes em proteínas (LU et al., 2018; LÜCKMANN et al., 2019) A interação destas moléculas em sítios secundários poderia provocar uma perda de afinidade envolvendo o sitio de interação principal e seu substrato. Desta maneira, se faz interessante a busca por pequenas moléculas que possuam afinidade com esta região, podendo provocar uma resposta biológica que afete negativamente a interface principal da interação entre PD-1 e PD-L1.

Figura 16: Alteração conformacional advinda da presença da sonda no sítio de interação presente na alça C'D. A visualização foi realizada pelo programa PyMOL.

Fonte: Elaborado pelo autor a partir da visualização e sobreposição de simulações envolvendo o complexo PD-1 / PD-L1 (PDB de origem: 4ZQK [ZAK *et al.*, 2015]) e a estrutura final obtida por simulações do complexo PD-1 / benzeno (REP6). A alça C'D está encontra-se destacada em vermelho.

O servidor DogSiteScorer foi utilizado para predizer, caracterizar e comparar as características biofísicas da cavidade presente na alça C'D com outros possíveis sítios presentes na proteína. Os resultados, obtidos com base na estrutura final da simulação do complexo PD-1 / benzeno (REP6), podem ser visualizados na Figura 17. O programa conseguiu identificar ao todo 12 regiões de interação na estrutura da PD-1. Os sítios foram ranqueados em termos do índice de drogabilidade (de 0 a 1) e, notadamente, o sítio P_0, relacionado a alça C'D, foi o melhor ranqueado. O maior volume e a maior área disponível para interação presentes na alça C'D ajudam a explicar o melhor desempenho desta região. A maior pontuação final está atrelada aos bons índices de volume, drogabilidade e superfície da região. A caracterização de descritores relacionados exclusivamente a alça C'D constatou a grande presença de aminoácidos apolares na região. Também apontou para uma boa capacidade de formação de ligações de hidrogênios, com a presença de aceptores e doadores de hidrogênios.

Figura 17: Resultados obtidos pelo servidor DogSiteScorer. A) Sítios detectados ao longo da estrutura da PD-1. B) Descrição básica dos sítios. C) Análise dos descritores relacionados a tamanho, forma, grupos funcionais e composição de aminoácidos pertencentes a alça C'D.

A)		\sim	B)		Nome	Volume (ų)	Superfície (Ų)	Drogabilidade	Pontuação
\sim	7	255		\bigcirc	P_0	411.84	657.53	0.55	0.25
	and the second second	for the	5	\bigcirc	P_1	244.67	550.29	0.46	0.09
AF.	a set	tesa		\bigcirc	P_1_0	141.25	413.07	0.15	0.06
	1				P_1_1	103.42	267.44	0.35	0.02
		E C		\bigcirc	P_2	242.82	374.22	0.39	0.02
C)		\mathcal{N}		\bigcirc	P_2_0	165.12	278.0	0.14	0.06
Descritores de taman	ho e form	Descritores de elementos Total de átomos do sítio	97	\bigcirc	P_2_1	77.7	179.97	0.17	0
Volume (ų) Superfície(Ų)	411.84 657.53	Átomos de carbono (C) Átomos de nitrogênio (N)	56 20	\bigcirc	P_3	207.55	446.17	0.32	0.08
Profundidade (Å)	10.62	Átomos de oxigênio (O) Átomos de enxofre (S) Outros elementos	16 0	\bigcirc	P_3_0	115.58	267.79	0.08	0.01
Descritores de grupos	funcionais	Composição de aminoácidos	Ū	\bigcirc	P_3_1	91.97	277.01	0.16	0
Doadores de lig. de H Aceptores de lig. de H Metais	16 26 0	Proporção de aminoácidos apolare Proporção de aminoácidos polares Proporção de aminoácidos +	⁵ 0.40 0.27 0.20	\bigcirc	P_4	181.06	330.53	0.38	0.1
Interações hidrofóbica Relação de hidrofobicida	30 ade 0.42	Proporção de aminoácidos -	0.13	\bigcirc	P_5	118.98	355.91	0.18	0

Fonte: DogSiteScorer – adaptado.

A Figura 18 foca exclusivamente nos valores obtidos de contatos nativos pertencentes aos resíduos da alça C'D nos complexos contendo as diferentes sondas. Os dados corroboram com alguns fatos já observados. O acetato atestou a menor afinidade com a região, o que vai ao encontro com a ausência de clusters de destaque identificada previamente para esta sonda (Figura 13). De forma contrastante, os complexos formados por benzeno, fenol e imidazol apresentaram os maiores valores de contato, demonstrando a alta afinidade destas moléculas por esta área.

Figura 18: A) Frequência de contatos nativos de resíduos pertencentes a alça C'D nos complexos estudados. B) Visualização tridimensional pelo programa PyMOL da estrutura final (REP6) da PD-1 com a presença e a fixação do benzeno na cavidade encontrada na alça C'D da proteína.

	Alça C'D											Alça C'D											
lo	Identificação Contatos nativos por quadros de simulação (PD-1 / acetato)										Identificação Contatos nativos por quadros de simulação (PD-1 / benzeno)												
PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10	PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
47	LEU79	44	783	1220	2833	389	12	743	427	409	138	47	LEU79	12223	12891	253	5040	5207	26860	2147	5827	9608	24906
48	ALA80	1	134	0	2184	0	5	28	233	231	0	48	ALA80	124	2865	1151	117	951	23499	187	341	3223	20107
49	ALA81	133	175	54	2137	11	219	300	199	896	7	49	ALA81	933	3529	1548	219	406	23925	529	930	1174	18276
50	PHE82	2669	1805	1441	1434	817	1447	643	810	1527	18	50	PHE82	10198	11803	5757	13539	5301	7042	4609	7223	11115	11883
51	PRO83	2999	1092	646	1330	693	1395	1089	1013	1144	49	51	PRO83	13063	17633	13612	15928	6734	8108	11054	8952	16639	9325
52	GLU84	3823	1201	780	3346	1316	2664	1994	2414	4948	243	52	GLU84	8778	11183	12465	6183	5203	37798	13197	6871	7612	18639
53	ASP85	4504	1244	1575	1521	1898	4425	2097	1863	2991	826	53	ASP85	3579	7547	4899	3558	4668	13008	7249	5800	6053	6254
54	ARG86	6510	8668	2542	9198	9381	12661	7440	7110	10701	1660	54	ARG86	10227	8071	11584	9492	3584	37385	12048	12603	13687	12836
55	SER87	2636	1832	1780	2629	2261	5306	3449	3230	2948	446	55	SER87	6280	7118	9572	4845	2849	41659	3542	8419	8828	12426
56	GLN88	2212	2970	2501	4695	3462	6402	3776	1898	4610	524	56	GLN88	6143	9893	9823	5211	3338	35411	6755	9660	13107	30075
57	PRO89	3266	3779	2372	4636	3770	4751	4980	2451	5572	284	57	PRO89	8130	10436	10160	7464	7344	13403	9361	10764	13534	32638
58	GLY90	2379	3408	2462	3852	2204	2761	3481	1776	2165	352	58	GLY90	8013	6110	4649	6381	6842	4638	5349	5323	10698	30094
59	GLN91	1501	2765	3081	6839	1581	1649	3107	2968	3745	282	59	GLN91	8173	15531	6591	5723	8386	25564	4187	5198	11906	20309
60	ASP92	1926	3927	3628	4608	1781	2070	3648	3144	3795	544	60	ASP92	8082	11339	2959	4235	5241	2879	3101	3493	11239	12294
61	SER93	4403	6058	7029	7394	2723	6054	3641	8512	6557	1030	61	SER93	7144	10758	13966	5779	8403	12647	10769	7062	9916	14945
62	ARG94	7737	11196	13502	8518	4115	6570	12422	13803	10412	1449	62	ARG94	6249	12713	9733	4717	8002	8132	12141	5230	8304	6095
				1	Alça C'E)											Alça C'E)					
Ic	lentificação		Contat	os nativ	os por	quadro	s de sir	nulação	o (PD-1	/ fenol)	Ide	ntificação	C	ontatos	nativo	s por qu	uadros	de simu	lação (PD-1/i	midazo	ol)
PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10	PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
47	LEU79	11555	6497	6477	7628	29080	25752	12345	13537	13092	30908	47	LEU79	19351	3018	2768	17578	8320	5957	7263	3259	4925	1701
48	ALA80	3329	9550	6908	2374	22403	13437	12206	6096	3170	24463	48	ALA80	18402	2070	3989	15010	4267	1191	4211	5093	5379	194
49	ALA81	3236	9189	7102	3718	22136	16020	12657	4183	3231	22958	49	ALA81	13695	1493	4802	4824	2350	1892	1476	4261	6740	306
50	PHE82	14755	20485	21424	6773	8370	22116	13885	10251	20697	20409	50	PHE82	15010	10151	10279	6436	9691	4870	6144	16038	6787	14574
51	PRO83	16347	21572	23098	9962	12471	32015	20768	13909	21427	34815	51	PRO83	9302	14377	11770	7327	12806	7823	9435	18216	8235	15640
52	GLU84	10057	15617	13306	13278	32518	16627	41281	11684	13697	24200	52	GLU84	10438	7445	10134	15084	8679	9020	4923	16385	11198	8034
53	ASP85	7751	9207	7207	11617	16938	13902	20972	7278	5864	32955	53	ASP85	7451	7149	7895	4870	7290	6070	5830	12873	9215	4877
54	ARG86	19022	9081	17254	18054	31524	18408	40643	15210	10934	29677	54	ARG86	7531	9301	8235	24104	9794	11363	13876	17098	8564	10158
55	SER87	11452	18221	16152	11144	20482	12348	26607	6169	12326	14209	55	SER87	3907	5203	7306	5723	6280	4988	6774	16794	9815	4326
56	GLN88	14896	19189	19572	11011	27924	17043	27339	11410	17014	30052	56	GLN88	10671	7377	5805	14397	8529	8204	8500	8616	6469	6881
57	PRO89	16072	25541	17339	11502	28726	13260	24323	14092	18660	14842	57	PRO89	6457	7472	5491	9430	6073	9993	7796	8949	7781	7856
58	GLY90	9709	12208	9315	10045	6995	10485	7387	14226	7416	15543	58	GLY90	8449	5626	3801	20240	6391	7718	3235	5140	5096	6029
59	GLN91	12299	11080	13189	12075	9475	17220	33648	18694	15596	40980	59	GLN91	16333	6059	7261	22483	10870	10229	8699	5801	9931	4045
60	ASP92	11602	8220	5636	9330	8039	9910	10815	13431	11899	17498	60	ASP92	10856	4531	2844	3427	9093	8329	7236	4409	5193	3345
61	SER93	13136	24296	15081	11488	14525	13801	33457	16797	12863	19647	61	SER93	7345	8230	5633	5688	11163	8736	8329	8733	6655	9811
62	ARG94	8334	15656	11809	12999	14512	13081	8307	14914	13205	9246	62	ARG94	5953	5337	4294	3635	8497	7570	6623	6099	5559	8768
																	<u>_</u>						
					Alça C'E)							2		~								
Ic	lentificação	Contat	tos nati	vos por	quadro	os de si	mulaçã	o (PD-1	/ n-me	etil-ace	tamida)			15		P	1	- W		T			
PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10			No.	4		-		1	2			
47	LEU79	4520	4431	1591	1591	1591	4267	2390	4644	2982	6639				1				-	1			
48	ALA80	3316	939	71	71	71	101	164	1176	323	3893		42	A			S.C		10	~			
49	ALA81	4297	947	692	692	692	2811	580	1544	619	3746		10	1			2-1	X	X				
50	PHE82	6949	11052	8177	8177	8177	8803	15369	14280	10678	5980		1 Cal		EL.		20			1			
51	PRO83	8520	12925	9020	9020	9020	7944	16954	17032	14251	4831	0	10	V				1	-				
52	GLU84	9995	4779	9963	9963	9963	5620	5098	8721	6238	7219		5									2	
53	ASP85	4478	4042	5039	5039	5039	6513	3210	6452	6902	6765								4		H	-T	
54	ARG86	12630	8313	9133	9133	9133	12820	6661	10324	13146	9783			6			1	-			0		
55	SER87	9686	4938	5678	5678	5678	8030	4828	3895	5388	10700			NC2		-		-	1				
56	GLN88	11028	6111	6090	6090	6090	9305	3745	6739	5179	8366			EXP			5	31	77				
57	PRO89	10924	7246	6332	6332	6332	7169	4735	7024	6514	8197				1	1	2		12				
58	GLY90	7103	7844	4252	4252	4252	4210	4150	6645	4197	5360				-	1	-	1	A	lça C'l	D		
59	GLN91	8204	6577	2301	2301	2301	5244	3860	8023	4029	5469							Y					
60	ASP92	4943	5933	2342	2342	2342	4539	2999	6703	4580	4658				1	15							
61	SER93	3072	6189	10079	10079	10079	6168	4979	5478	8106	10666												
62	ARG94	1778	6056	6740	6740	6740	5278	4029	5268	8177	11015												

Fonte: Elaborado pela autor.

4.3.2 Análise pelo fpocket

Analisando os resíduos da alça C'D que se destacaram na interação com as sondas, foi observado uma situação intrigante no complexo PD-1 / benzeno, onde os valores de contatos nativos envolvendo ALA80 e ALA81 apresentaram alta discrepância nas simulações. Para investigar isto, o programa fpocket foi utilizado para analisar o comportamento da cavidade nas replicatas 5 e 7 (que obtiveram valores baixos de contatos) e nas replicatas 6 e 10 (que apresentaram alta taxa de contatos) (apêndice C). Os resultados podem ser observados na Figura 19 e foram baseados em dois parâmetros: volume do sítio e área da superfície acessível a solvente (SASA). Foi possível constatar a maior abertura da cavidade nas replicatas 6 e 10. Em contrapartida, valores menores associados ao volume e ao SASA foram obtidos nas replicatas 5 e 7. Esta correlação de certa forma apresenta logica à medida que se entende que a maior abertura da cavidade é capaz de proporcionar a entrada e a acomodação da sonda no sítio e, consequentemente, facilita o maior número de contatos nativos entre ligante e alça. Além de também proporcionar uma maior exposição da região ao solvente, elevando o valor de SASA.

Figura 19: Resultados do programa fpocket tendo como base a cavidade presente na alça C'D. A) Volume e SASA avaliados nas replicatas 5, 6, 7 e 10. B) Comparação do volume e SASA entre as replicatas 5 e 6.

Fonte: Elaborado pela autor.

Os resultados de contatos nativos obtidos no complexo PD-1 / benzeno e, em especial, a diferença de padrão existente entre as replicatas 6 e 10 frente as demais possibilitou a cogitação da existência de um sítio críptico na região. Ou seja, uma região de interação não disponível naturalmente na proteína, mas que devido a mudanças conformacionais em um curto espaço de tempo torna-se aptas e favorável à interação (OLEINIKOVAS *et al.*, 2018). Entretanto, a abertura e a disponibilidade da cavidade (exemplificados por valores de volume e SASA) durante praticamente toda a simulação rechaçaram esta ideia. Além disto, a frequência de interações desta região com outras sondas, principalmente fenol, também são pontos importantes a serem considerados e que levaram a crer a não existência desse tipo de sítio na região estudada.

4.4 Análise da dinâmica de movimentação das sondas

Análises com base na distância de cada molécula para o ponto médio central da alça C'D foram realizadas com o objetivo de obter mais detalhes acerca do fluxo e da dinâmica de interações que estavam ocorrendo entre esta área e as sondas. A combinação de fatores associados a aproximação da sonda ao ponto central e a permanência desta ao longo do tempo (a partir de uma distância) possibilitou indicar não somente a presença da molécula na região do sítio, mas também a sua estabilidade e fixação.

De modo geral os dados corroboraram com os resultados obtidos anteriormente. O acetato foi a sonda que apresentou os menores números tanto de aproximação de moléculas para o ponto médio da alça C'D, como também em termos de permanência na região. A replicata 10, inclusive, não apresentou nenhuma molécula próxima, fato este não observado em nenhum outro tipo de sonda. O n-metilacetamida apresentou melhores resultados comparados ao acetato, sendo possível observar a maior aproximação destas sondas na região. Entretanto, não foi observado a manutenção de pequenas distâncias ao longo do tempo, demonstrando que apesar da aproximação houve uma alta instabilidade das sondas na região. Os resultados atrelados a estes dois tipos de sondas podem ser visualizados no apêndice D. Corroborando com os dados anteriores de contato nativos, benzeno, fenol e imidazol apresentaram os melhores resultados (Figura 20). O fenol foi a sonda que apresentou a maior quantidade de moléculas dentro do intervalo de 5 Å estipulado. Para este tipo
de sonda, em praticamente todas as replicatas este padrão alto foi repetido. Além disso, foi visualizada a fixação dessas sondas em algumas replicatas (como a 5, a 7 e a 10). Essa estabilização também foi possível de ser visualizada na replicata 4 do imidazol. De forma análoga, o benzeno também apresentou resultados interessantes. Especificamente em relação a essa sonda, a replicata 6 do benzeno se destacou pela aproximação e grande permanência do BEN130 ao longo de praticamente toda a simulação, assim como na replicata 10, onde este padrão foi observado para o BEN142.

Em princípio, o que foi observado aqui ao longo dos resultados enunciados é a grande capacidade do fenol em interagir não somente com a região, mas com a PD-1. Esta alta capacidade de interação (por meio de interações hidrofóbicas e ligações de hidrogênio) é possivelmente fruto da sua estrutura química formada por uma região hidrofóbica, em consoante com a natureza química da PD-1 e outra polar, conferindo maior poder de interação a molécula. Esta capacidade de interação, dada a quantidade de moléculas de cossolventes presente na simulação, e a própria presença de moléculas de água na simulação, podem levar a interações instáveis, observada pela alta alternância entre este tipo de molécula próxima da região da alça. O benzeno, possivelmente pela ausência da região polar na sua estrutura, tenha conseguido estabelecer interações mais estáveis com a PD-1 dada a ausência de grandes interferências por outras moléculas.

Figura 20: Mensuração ao longo das simulações realizadas das distâncias entre as sondas que se destacaram e o ponto central da alça C'D. A) Imidazol B) Benzeno C) Fenol.

Fonte: Elaborado pela autor.

4.5 Análise de estados conformacionais

Com base nos critérios listados na metodologia e na visualização da movimentação das sondas durante a dinâmica molecular na estrutura de referência (PD-1 / benzeno – replicata 6), foram descritos e computados estados conformacionais relacionados a distribuição e a posição das sondas na área da alça C'D. Cada estado foi definido com o objetivo de abranger da melhor forma o espaço ocupado pela sonda na região, tendo como base átomos e intervalo de distância específicos (Tabela 4). Os átomos envolvidos, juntamente com os intervalos associados, foram escolhidos de forma a assegurar com maior confiabilidade a presença da sonda na posição, garantindo desta maneira uma real compreensão da dinâmica de movimentação das sondas na área.

	Estados conformacionais											
Estado	Parâmetro	Átomo	Intervalo									
0	Distância	CD (Gln91)	0-4 Å									
1	Distância	CA (79-95)	0-6 Å									
2	Distância	CA, CB, CG, CD, N (Pro89)	0-4 Å									
3	Distância	CB (Ser93)	0-3.5 Å									
4	Distância	CA (Asp85)	0-3.5 Å									

Tabela 4: Estados conformacionais registrados durante a análise do complexo PD-1 / benzeno (replicata 6), com seus respectivos átomos e intervalos associados.

Fonte: Elaborado pela autor.

Os estados conformacionais definidos (0 a 4) podem ser visualizados na Figura 21. Os estados 0, 2, 3 e 4 foram obtidos por meio da distância, dentro do intervalo proposto, do ponto central das sondas para átomos pertencentes aos resíduos Gln91, Pro89, Ser93 e Asp85, respectivamente. O estado 1, relacionado a presença da sonda na cavidade do sítio de interação, diferentemente dos demais, foi obtido a partir do ponto médio central dos resíduos que compõem a alça. O maior intervalo vinculado a este estado se fez necessário a partir da constatação de que haviam conformações da sonda que "escapavam" de serem contabilizadas a partir de valores menores que 6 angstrons mesmo estando presente (embora translocados) na cavidade. Figura 21: Estados conformacionais definidos durante a análise do complexo PD-1 / benzeno (replicata 6). A) Átomos envolvidos na contabilização de cada estado conformacional. B) Posição relativa de cada estado ao longo da alça C'D.

Fonte: Elaborado pela autor. Átomos e regiões envolvidos no cálculo foram marcados em rosa.

Os átomos e intervalos usados para estimar os estados no complexo PD-1 / benzeno (REP6) foram utilizados em todos os outros sistemas, a fim de comparar o padrão de comportamento das sondas na região. Os resultados, disponíveis no apêndice E, consolidaram os fatos vistos até então neste trabalho. É possível constatar que o complexo PD-1 / acetato apresentou pouquíssimas moléculas dentro dos estados conformacionais estabelecidos. De modo particular, praticamente não houve registro da ocupação do estado 4 (próximo ao Asp85) por esta sonda. Os estados 0, 2 e 3 foram os mais acessados, enquanto que o estado 1, relacionado ao sítio, pouco foi contabilizado, sendo vista pouca fixação e estabilização da sonda no local. Isto denota um modelo de comportamento para esta molécula onde o cossolvente tendeu a ter maior frequência de posicionamento nas margens da alça em comparação ao sitio localizado na cavidade, reforçando a ideia de que estas moléculas não possuem a afinidade suficiente para interagir com a região proposta.

Os sistemas contendo n-metil-acetamida apresentaram melhores resultados quanto ao número de moléculas presentes na margem da alça. Entretanto, de forma similar ao acetato, esta sonda não conseguiu apresentar estabilidade na cavidade. De certa forma, é possível inferir preliminarmente que o baixo rendimento destas duas sondas nestes cálculos (em especial na descrição do sítio 1) está intimamente ligada à sua estrutura química. A presença de anéis aromáticos e regiões hidrofóbicas tem se mostrado um diferencial para os melhores resultados relacionados

a sondas como benzeno e fenol (e de certa maneira o imidazol, como visto na replicata 4). Neste sentido, é possível verificar além da grande presença destas moléculas ao redor da alça, também considerável fixação e estabilização no estado 1 (Figura 22).

Figura 22: Sistemas que obtiveram destaque na presença e fixação das sondas na cavidade da alça C'D (estado 1). A) PD-1 / benzeno. B) PD-1 / imidazol. C) PD-1 / fenol.

Fonte: Elaborado pelo autor. -1 relaciona-se a estados não definidos. R: replicata.

Os dados mostrados aqui, sejam por contatos nativos, por distância ou por estados conformacionais procuraram descrever, respaldados por diversas metodologias da biologia computacional, a dinâmica de movimentação e interação das sondas estudadas com a PD-1. Foi possível constatar os diferentes padrões de comportamento para cada cossolvente e também destacar aqueles que conseguiram interagir de forma estável com o sítio proposto. A semelhança de estrutura química entre as moléculas que se sobressaíram, como o benzeno, o fenol e o imidazol, sugerem a importância do arranjo cíclico e aromático para a interação e permanência da molécula no sítio. Tais resultados foram cruciais e serviram de base para o prosseguimento do trabalho.

4.6 Triagem virtual

4.6.1 Seleção da estrutura inicial do receptor

A realização de *dockings* semiflexíveis, onde o ligante é tratado de forma flexível e o receptor de forma rígida, pressupõe a utilização de uma estrutura do receptor confiável, capaz de abrigar e estabelecer interações estáveis com a molécula alvo. No caso do sítio em análise, considerou-se principalmente que a cavidade presente na região deveria estar aberta e disponível para interação. Tendo isto em mente, o complexo PD-1 / benzeno (replicata 6), identificado anteriormente pela grande capacidade de abrigar a sonda no sítio de interação ao longo do tempo, foi submetido a análise de componente principal (PCA). Os resultados, indicados por quadros de simulação, foram comparados com aqueles obtidos pela medição dos estados conformacionais. Isto possibilitou a visualização de dois padrões de conformações relacionados ao estado 1 (estado ligado) e todos os outros (estado não ligado) (Figura 23).

É possível discutir aqui que a separação entre os dois clusters foi bem sucedida e que os parâmetros utilizados anteriormente na etapa de identificação e contabilização de estados conformacionais foram definidos corretamente. A presença de pontos em comum nos dois *clusters* sinaliza que a princípio apesar da bem sucedida separação, os intervalos e parâmetros adotados relacionados aos estados conformacionais não foram perfeitos. A adoção de diferentes critérios, como ângulos entre átomos, juntamente com novos intervalos, poderia trazer maior exatidão aos resultados. Além disto, a possibilidade de haver estruturas que apresentaram a cavidade aberta, mas que não obtiveram a inserção e a estabilização da sonda na região pois naquele determinado tempo de simulação não haviam moléculas disponíveis para interação não pode ser descartada.

Figura 23: Análise de componente principal no complexo PD-1 / benzeno (replicata 6).
A) Conformações associadas a presença das sondas fora do sítio (estado não ligado)
B) Conformações relacionadas a presença da sonda no sítio (estado 1).

Fonte: Elaborado pela autor.

Os dados no apêndice F enfatizam a diferença de perfil conformacional existente entre os dados relacionados ao estado ligado e aos estados não ligados. De maneira geral o estado 1, por ser predominante sobre os demais ao longo da simulação, contabilizou o maior número de pontos. As coordenadas das componentes principais no estado ligado giraram em torno de -3.5 a 5.5 (PC1) e -4,5 a 1,5 (PC2), enquanto que a variação e o padrão encontrado nos estados não ligados chegaram a intervalos maiores de componentes principais. De certa forma entende-se aqui que a interação da sonda com a alça restringiu o espaço conformacional da região. A análise dos quadros relacionados ao cluster 1 com os dados obtidos anteriormente pelo programa fpocket revelou um padrão de volume da alça associado ao estado em que

o ligante está presente no sítio. É possível perceber que no início da dinâmica molecular o volume do sítio encontrou-se relativamente baixo. Entre 5 e 10 ns, o aumento deste volume permitiu a translocação de moléculas próximas para o interior da cavidade.

A redução do volume da cavidade no momento seguinte não impediu a estabilização da sonda na cavidade. Isso leva a crer que a abertura da cavidade foi sumariamente importante em um primeiro momento para a entrada da sonda no sítio, e que a permanência e a estabilização desta molécula na região ocorreram mesmo em volumes menores. Após este momento de declínio entre 15 e 20 ns, o volume voltou a subir, permanecendo em uma faixa elevada ao longo de toda a simulação. Analisando a evolução das componentes principais utilizadas no cálculo de PCA, é possível constatar após um período da simulação a manutenção dos valores associados a estes parâmetros. Estes resultados (indicados na Figura 24) sugerem que a partir do transcorrer da dinâmica, a presença da sonda no sítio conseguiu estabilizar conformação da alça, mantendo-a em um alto platô de volume.

Figura 24: Análise de parâmetros associados a abertura e mudança conformacional da cavidade situada na alça C'D no complexo PD-1 / benzeno (replicata 6). A)
Comparação entre volume da cavidade e estado conformacional 1 ao longo do tempo.
B) Evolução das componentes principais ao longo da dinâmica molecular realizada.

Fonte: Elaborado pela autor.

Após a obtenção destes dados, a escolha da estrutura inicial mais adequada para os ensaios de *docking* foi realizada buscando, dentre os quadros de

dinâmica molecular compatíveis com o estado conformacional 1, aquele que possuiu o maior volume disponível na cavidade. Analisando os valores vinculados ao complexo PD-1 / benzeno (replicata 6), foi possível detectar o quadro da dinâmica que melhor se encaixou nesses critérios (Figura 25).

O quadro 15601 no tempo 31,202 ns foi escolhido por apresentar a maior abertura da cavidade (982.24 Å³). Por meio das respectivas componentes principais (PC1: 0,05909; PC2: -2,17245) associadas a este quadro, foi possível verificar o seu posicionamento em relação ao cluster de interação. A estrutura está posicionada em uma porção central do cluster, abrangendo valores neutros de PC1. Esta região é diametralmente oposta à aquela pertencente ao estado não ligado, e desta forma, abrange estruturas com conformações específicas ao estado ligado

Figura 25: Dados relacionados a estrutura escolhida para os ensaios de *docking*. A) Caracterização da estrutura. B) Posição da estrutura no cluster de interação (estado conformacional 1).

Fonte: Elaborado pela autor. O ponto vermelho em B indica as coordenadas da estrutura escolhida.

4.6.2 Filtragem dos ligantes

Os ligantes provenientes do banco de dados escolhido (*The REAL drug-like*) foram filtrados pelo programa FILTER. Os resultados podem ser visualizados na Tabela 5. O pouco número de moléculas filtradas (em torno de 0.3% do total) está de acordo com o fato de que este banco é formado por moléculas já submetidas a um processo de filtragem, como bem descrito anteriormente na seção 3.8.1. Esse tratamento preexistente justificou a execução de um filtro contendo parâmetros mais básicos, com o objetivo exclusivo de garantir a presença de ligantes que possuam

bons preditores farmacocinéticos e propriedades básicas adequadas. Neste sentido, a aplicação de um filtro mais rígido nesse momento poderia resultar na exclusão de moléculas importantes para a compreensão do modo de interação com o sítio, desvirtuando-se do principal objetivo do trabalho. Esta abordagem está alinhada com metodologias encontradas na literatura que focam na aplicação de filtros mais básicos nos estágios iniciais de descoberta e desenvolvimento de fármacos, reconhecendo este ser um processo multifatorial formado por diversos passos de execução (YANG *et al.*, 2020).

FILTER		
Total de moléculas filtradas	21.441.181	100 %
Moléculas aprovadas	21.367.981	99,65 %
Moléculas recusadas	73.200	0,35 %
Número de erros	0	0 %
Média de moléculas processadas por segundos	1442.9	-
Tempo total de execução (segundos)	14.859	-

Tabela 5: Resultados da execução do programa FILTER.

Fonte: Elaborado pela autor.

4.6.3 Geração das coordenadas tridimensionais dos ligantes

Os ligantes aprovados anteriormente na etapa de filtragem tiveram suas coordenadas tridimensionais geradas de forma a possibilitar a realização dos ensaios de *docking*. Para este fim, primeiramente foi utilizado o programa OMEGA. Os resultados podem ser visualizados na Tabela 6. A geração das coordenadas tridimensionais dos ligantes pelo programa OMEGA foi bem sucedida, resultando em menos de 0,7 % de taxa de erro. As 166.488 moléculas que não tiveram suas coordenadas geradas foram submetidas ao programa Open Babel. Isto foi realizado de forma a evitar a perda, mesmo em pouco número, de moléculas. A Tabela 7 mostra os resultados da execução do Open Babel. Como pode ser visualizado, das 166.488 moléculas submetidas ao programa, 163.046 moléculas obtiveram suas coordenadas geradas corretamente (totalizando uma taxa de sucesso de 97 %).

OMEGA		
Total de moléculas processadas	21.367.981	100 %
Moléculas bem sucedidas	21.201.493	99,22 %
Moléculas que resultaram em erro	166.488	0,88 %
Média de moléculas processadas por segundos	0.010049	-
Tempo total de execução (segundos)	214.729	-

Tabela 6: Resultados da execução do programa OMEGA.

Fonte: Elaborado pela autor.

Tabela 7: Resultados da execução do programa Open Babel.

Open Babel		
Total de moléculas processadas	166.488	100 %
Moléculas bem sucedidas	163.046	97,93 %
Moléculas que resultaram em erro	3.442	3,07 %

Fonte: Elaborado pela autor.

As moléculas submetidas ao Open Babel e que não obtiveram sucesso na geração das coordenadas foram devidamente descartadas. Este processo envolvendo o uso de dois programas capazes de gerar as coordenadas tridimensionais foi importante para evitar perda de moléculas, embora o uso exclusivo do programa OMEGA já tenha garantido um grande retorno de moléculas bem sucedidas. Após este processo, todas as moléculas com coordenadas tridimensionais geradas foram convertidas corretamente pelo programa Open Babel em arquivos no formato pdbqt, pronto para os ensaios de *docking*.

4.6.4 Validação e benchmarking

Cálculos de *docking* foram realizados com o objetivo de atestar a performance e a precisão do programa Quick Vina 2 em relação ao Vina. Os resultados estão disponíveis nos apêndices G e H. O teste relacionado a performance entre os dois programas, utilizando um grupo de 160 moléculas, atestou maior velocidade de execução do Quick Vina 2 em relação ao Vina em todas as configurações. O aumento da exaustividade levou a uma perda de rendimento e do número de moléculas calculadas por segundo. Esta observação é respaldada por

dados encontrados na literatura que indicam que o aumento deste parâmetro está associado ao aumento do esforço computacional existente para encontrar a conformação de mínimo de energia, resultando no aumento do tempo demandado para a execução do cálculo (JAGHOORI; BLEIJLEVENS; OLABARRIAGA, 2016; TROTT; OLSON, 2010).

Neste sentido, os cálculos com exaustividade 4 obtiveram as melhores performances. A execução utilizando 4 processadores por cálculo resultou no melhor resultado do grupo, com um rendimento em torno de 1,50 moléculas / segundo. A extrapolação do número de processadores usados em relação aos disponíveis por máquina mostrou uma melhora nos valores de desempenho (Tabela 8). A execução de 20 processos (cada um responsável pelos mesmos 160 ligantes), mantendo a exaustividade e o número de processadores / *job* em 4, levou a um tempo total de 100,42 segundos e a uma performance final de aproximadamente 1,59 moléculas por segundo. Os ensaios envolvendo o cálculo simultâneo de 2 blocos de 160 ligantes em 40 *jobs* com exaustividade em 4, juntamente com o uso de 4 processadores / *job*, resultou em mais um ganho de rendimento. O cálculo foi finalizado em 196,619 segundos, tendo uma performance de aproximadamente 1,63 moléculas / segundo.

A melhora observada está de acordo com os enunciados presentes na literatura que indicam que programas atuais de *docking* recorrem ao uso da chamada computação paralela para otimizar a execução dos cálculos. Isto permite a distribuição do cálculo entre os processadores de forma a otimizar o cálculo. A distribuição não demanda totalmente todos os processadores ao mesmo tempo e, por isso, o uso além do limite de processadores nos testes foi possível e resultou em performances mais interessantes (DONG *et al.*, 2018; GOTTLIEB; ALMSI, 1989).

Tabela 8: Configuração ideal em termos de performance para a execução dos cálculos de *docking*.

	Quick Vina 2												
Moléculas	Processadores	Exaustividade	Nº de <i>jobs</i>	Tempo Total (segundos)	Molecula/segundo								
160	4	4	20	100,42	1,59								
Moléculas	Processadores	Exaustividade	Nº de <i>jobs</i>	Tempo Total (segundos)	Molecula/segundo								
320	4	4	40	196,62	1,63								

Fonte: Elaborado pela autor.

Também foi avaliada a capacidade do Quick Vina 2 de identificar a melhor pose e mensurar corretamente a energia de ligação. Foi possível constatar que a mudança de exaustividade e também a mudança de programa não resultaram em uma alteração significativa de valores relacionados à energia de ligação. Na realidade, pode-se dizer que os valores permaneceram praticamente iguais entre os cálculos realizados. Em termos de avaliação de poses, valores de RMSD foram utilizados para comparar os mesmos ligantes em diferentes cálculos com diferentes programas. De forma similar aos dados de energia de ligação, as poses avaliadas mantiveram baixo RMSD entre si. Desta maneira, chegou-se à conclusão de que o Quick Vina 2 não só consegue realizar os cálculos com um rendimento maior que o Vina, como consegue também obter previsões de poses tão boas quanto o programa original, se tornando assim uma boa alternativa para uso. De fato, o trabalho publicado pelos autores principais do Quick Vina 2 já indicavam os benefícios do programa comparado ao Vina (ALHOSSARY *et al.*, 2015). Entretanto os testes foram necessários para averiguar a efetividade dos parâmetros dos cálculos nas maquinas locais e no sistema em estudo, assim como o impacto desses parâmetros na precisão das energias e na previsão correta das poses.

4.6.5 Triagem primária baseada em docking

Os resultados relacionados a primeira rodada de *screening* podem ser visualizados na Figura 26. Em termos de energia de ligação, os resultados apontam que a maior parte dos ligantes obtiveram valores no intervalo de –6.9 a -6.0 kcal/mol. É possível perceber também um padrão bem característico de distribuição, em que a maior quantidade de ligantes situou-se nos intervalos intermediários de energia.

Intervalo de energia (kcal/mol)	№ de ligantes	% relativa
-9.9 -9.0	1417	0,008%
-8.9 -8.0	355.177	2,079%
-7.9 -7.0	5.489.034	32,124%
-6.9 -6.0	8.837.253	51,719%
-5.9 -5.0	2.309.633	13,517%
-4.9 -4.0	94.091	0,551%
-3.9 -3.0	367	0,002%
Total	17.086.97	/2

Fonte: Elaborado pela autor.

De fato, este modelo de resultado é habitualmente encontrado em ensaios de *docking*. Uma pequena parte dos ligantes se sobressai favoravelmente a interação com o receptor, outra desfavoravelmente e a maior parte das moléculas que estão sendo estudadas tendem a ocupar uma posição de meio termo, sem conseguir se destacar. As estruturas, assim como a energia de ligação e a eficiência do ligante (EL) dos vinte melhores e dos vinte piores ligantes estão destacadas na Figura 27.

Figura 27: Melhores e piores ligantes na 1^a rodada de triagem virtual. A) Tabela contendo os 20 melhores ligantes, com suas respectivas energias de ligação e eficiência do ligante (EL). B) Tabela contendo os 20 piores ligantes, com suas respectivas energias de ligação e eficiência do ligante (EL). C) Estruturas dos 5 melhores/piores ligantes visualizadas pelo Marvin Sketch.

A) Top 2		elhores ligant	es	B)	Тор	op 20 piores ligantes			
	ligante	Energia (kcal/mol)	EL (Kcal·mol-1·non-	-,	Liganto	Energia (kcal/mol)	EL (Kcal·mol-1·non-		
	ligobabel 44759	-9.800	-0.363		ligomega 6270015	-3 600	-0.360		
	ligomega 10632356	-9 700	-0.346		ligomega 698353	-3 600	-0.400		
	ligomega 13405846	-9.700	-0.359		ligomega 7098889	-3 600	-0.400		
	ligomega 13932769	-9.700	-0.346		ligomega 7187861	-3 600	-0.360		
	ligomega 10856295	-9.600	-0.310		ligomega 7427258	-3.600	-0.327		
	ligomega 13311313	-9.600	-0.331		ligomega 8212105	-3.600	-0.360		
	ligomega 1358397	-9.600	-0.343		ligomega 9606925	-3.600	-0.327		
	ligomega 14797560	-9.600	-0.343		ligomega 9607198	-3.600	-0.300		
	ligomega 16761315	-9.600	-0.343		ligomega 12492188	-3.500	-0.350		
	ligomega 19847393	-9.600	-0.331		ligomega 12504145	-3.500	-0.318		
	ligomega 2667325	-9 600	-0.343		ligomega 12508314	-3 500	-0.389		
	ligomega 4133758	-9.600	-0.343		ligomega 13332397	-3 500	-0.389		
	ligomega 7406414	-9.600	-0.331		ligomega 120218	-3.500	-0.305		
	ligomega 97420	-9.600	-0.343		ligomega 18401423	-3.500	-0.318		
	ligobabel 125014	-9.500	-0.365		ligomega 102625/3	-3 500	-0.318		
	ligomega 11/15682	-9.500	-0.303		ligomoga 2196652	-3.500	-0.318		
	ligomoga 11960940	-9.500	-0.328		ligomogo 2582802	-5.500	-0.550		
	ligomoga 11977002	-9.500	0.217		ligomoga 6391720	-5.500	-0.209		
	ligomega_11877003	-9.500	-0.517		ligomaga 6256	-5.500	-0.569		
	ligomega_13053462	-9.500	-0.328		ligomogo 2452920	-3.500	-0.350		
ligobabe	l_44759 ligomega_	_10632356	ligomega_134	05846	ligomega_139	32769	ligomega10856295		
ij ligobabe	IL_44759 ligomega		ligomega_134	05846			ligomega_10856295		

Fonte: Elaborado pela autor. Os melhores ligantes do ensaio foram assinalados em verde e o piores em vermelho.

O melhor ligante do ensaio obteve energia de ligação de -9.8 kcal/mol (ligobabel_44759), enquanto o pior registrou valores em torno de -3.3 kcal/mol (ligomega__3452839). Os dados relacionados a eficiência do ligante não apresentaram grande variação entre os grupos com melhores pontuações de energia de ligação e aqueles que apresentaram as piores. Na realidade, todos os ligantes (exceto o ligomega__2582892) atingiram o platô mínimo necessário relacionado ao valor de EL de -0.300 kcal·mol-1·*non-hydrogen atom*-1 aceitável para que uma molécula seja candidata a fármaco (HAJDUK; GREER, 2007). Os resultados também revelaram um padrão estrutural entre os ligantes de melhor pontuação e aqueles que tiveram os piores rendimentos nos ensaios. Primeiramente foi possível perceber a presença de grupamentos aromáticos no grupo dos melhores e a ausência destes no grupo dos piores ligantes. Esta observação segue coerente com o que foi visto anteriormente em relação a presença das sondas no sítio que possuíam também em sua estrutura este tipo de grupo químico.

Os resultados até aqui demonstram que ligantes policíclicos possuem vantagem na interação e na ocupação do sítio de interação. Os piores ligantes apresentaram pesos moleculares comparativamente menores e ausência de anéis aromáticos e grupamentos polares, o que pode ter impactado diretamente na capacidade destas moléculas em estabelecerem interações com o sítio. A presença de ligantes bem colocados em termos de energia de ligação, mas que contenham grupamentos volumosos e indesejados também deve ser observada. Este fato foi observado no ligante ligobabel__44759. Tais grupamentos, além de serem altamente rígidos, elevam a dificuldade de síntese dos compostos. Desta maneira, como o trabalho possui uma perspectiva experimental, tais moléculas devem ser evitadas.

4.6.6 Seleção das estruturas 3D da PD-1 para cálculos de ensemble docking

As análises de PCA contemplando apenas as estruturas com a presença do benzeno no sítio de interação possibilitaram a visualização da variabilidade conformacional existente exclusiva a este grupo de estruturas. Desta maneira, foi possível verificar aquelas que apresentaram variação estrutural entre si, e que foram capazes de manter e estabilizar a sonda no sitio. A Figura 28 permite visualizar o resultado desta análise. As estruturas para os ensaios de *ensemble docking* foram escolhidas com base na tendência delas de serem significativas ao longo da simulação e no grau de divergência conformacional existente. Seguindo estes critérios, foram escolhidas por meio da visualização dos dados das componentes principais 10 estruturas significativas e divergentes entre si. A inclusão de estruturas provenientes de diferentes tempos de simulação trouxe ainda mais valor ao grupo de estruturas escolhido, abrangendo assim maior tempo de simulação. Foi possível confirmar por meio do apêndice I que o maior número de estruturas esteve compreendido nos intervalos de componentes principais entre -3.5 e 4.5, o mesmo intervalo presente nas estruturas escolhidas, confirmando desta maneira que o grupo de estruturas escolhido possui maior representatividade comparado aos demais complexos.

Figura 28: Estruturas escolhidas para os ensaios de *ensemble docking* tendo como base a PCA realizada no complexo PD-1 (benzeno – replicata 6).

Fonte: Elaborado pela autor. Os círculos sem preenchimento indicam as estruturas escolhidas para os ensaios de *ensemble docking*. O círculo preenchido refere-se a estrutura usada anteriormente na primeira rodada de triagem virtual.

4.6.7 Resultados dos cálculos de ensemble docking

Os resultados de *ensemble docking* foram analisados inicialmente entre os 20 melhores ligantes da primeira rodada da triagem virtual, com o objetivo de avaliar o desempenho destas moléculas. De forma geral, a partir da Tabela 9 e considerando a média dos valores de energia de ligação obtidos nos ensaios com as 10 estruturas,

é possível constatar que todos os ligantes apresentaram piores resultados comparados aos ensaios da primeira rodada. Aqui, fica claro a importância de se incluir múltiplas conformações em protocolos de *docking*, visto o caráter dinâmico da proteína e os diferentes graus de conformações que ela pode adotar, podendo dessa maneira alterar a interface de interação com o ligante. Desta maneira, os resultados provenientes desta etapa se mostraram mais representativos e reais.

Tabela 9: Comparação entre os resultados de *docking* e *ensemble docking* relacionados aos vinte melhores ligantes da 1^ª rodada da triagem.

	Ene	ergia de liga	ição (kcal/m	nol)	
			Ensemble	e docking	
Ligante	1a rodada	Média	Desvio	↑	\checkmark
ligobabel_44759	-9.800	-8.210	0,586	-9.200	-7.600
ligomega10632356	-9.700	-7.750	0,877	-9.200	-6.800
ligomega13405846	-9.700	-8.230	0,972	-10.100	-6.900
ligomega13932769	-9.700	-7.480	0,627	-8.700	-6.900
ligomega10856295	-9.600	-7.900	0,718	-8.800	-6.800
ligomega13311313	-9.600	-8.270	0,445	-9.000	-7.600
ligomega1358397	-9.600	-7.640	0,806	-8.700	-6.400
ligomega14797560	-9.600	-6.840	0,858	-8.400	-5.700
ligomega16761315	-9.600	-7.390	0,637	-8.200	-6.100
ligomega19847393	-9.600	-7.830	0,615	-9.200	-7.100
ligomega2667325	-9.600	-7.930	0,606	-9.100	-6.800
ligomega4133758	-9.600	-7.240	0,696	-8.400	-6.300
ligomega7406414	-9.600	-7.420	0,676	-9.000	-6.500
ligomega97420	-9.600	-7.260	0,735	-8.500	-6.000
ligobabel_125914	-9.500	-7.230	0,602	-8.400	-6.200
ligomega11415683	-9.500	-8.250	0,477	-8.800	-7.400
ligomega11860849	-9.500	-8.030	0,636	-9.000	-7.100
ligomega11877003	-9.500	-8.390	0,593	-9.300	-7.500
ligomega13053462	-9.500	-7.940	0,943	-9.500	-6.300
ligomega 13614377	-9 500	-7 390	0.765	-9 200	-6 600

Fonte: Elaborado pela autor. ↑: melhor resultado do *ensemble docking*. ↓: pior resultado do *ensemble docking*.

A Tabela 10 foi montada com o intuito de investigar a variação da energia de ligação encontrada nos ensaios envolvendo estes ligantes em cada estrutura adotada no *ensemble docking*. De maneira geral, foi possível constatar um padrão entre todos os ligantes, onde os ensaios envolvendo as primeiras 4 estruturas obtiveram energias de ligação menores que aqueles envolvendo as estruturas 5 a 10. Entre as melhores estruturas, a 5, 8 e 10 se destacaram.

		Estrutura																		
		1	1	2		3	4	1	Ļ	5		5	7	/	٤	3		9	1	0
Ligante	Energia	Posição	Energia	Posição	Energia	Posição	Energia	Posição	Energia	Posição	Energia	Posição	Energia	Posição	Energia	Posição	Energia	Posição	Energia	Posição
LOB_44759	-8.100	8833	-7.800	5165	-7.900	6615	-7.600	6677	-9.200	34	-8.800	1137	-8.700	3469	-8.700	5922	-7.600	41675	-7.700	63616
LOM_10632356	-7.500	29987	-6.900	45344	-6.800	71977	-7.000	50858	-9.200	35	-7.800	35136	-7.200	75037	-8.800	3593	-7.500	47384	-8.800	10826
LOM_13405846	-6.900	66379	-7.100	33884	-7.600	18292	-7.400	16863	-8.700	1500	-8.700	2136	-8.500	8847	-8.600	10718	-8.700	2247	-10.100	15
LOM_13932769	-8.700	1299	-6.900	46897	-6.900	66787	-6.900	16863	-8.100	27172	-7.300	65703	-7.600	56534	-8.100	50623	-7.200	65458	-7.100	88927
LOM_10856295	-7.100	52402	-6.800	52023	-7.700	12955	-7.700	4273	-8.100	25272	-9.000	356	-8.100	26343	-8.400	21861	-7.300	58658	-8.800	10887
LOM_13311313	-8.200	7232	-8.200	1316	-7.700	13696	-7.600	7496	-7.900	47361	-8.300	10782	-8.600	6052	-9.000	1236	-8.600	3503	-8.600	19450
LOM_1358397	-7.500	31046	-6.400	76936	-7.100	51923	-6.800	72964	-8.700	1512	-7.100	74850	-8.200	21902	-8.300	31706	-7.600	43166	-8.700	15321
LOM_14797560	-6.600	84093	-5.700	98023	-7.000	59789	-7.600	7757	-7.800	59039	-6.300	97117	-6.000	99140	-8.400	23852	-6.300	98348	-6.700	96945
LOM_16761315	-7.300	42470	-7.900	4325	-6.100	97615	-6.600	88090	-8.000	38381	-7.600	49600	-7.500	62463	-8.200	42535	-7.300	60637	-7.400	78945
LOM_19847393	-7.600	27746	-7.100	35764	-8.200	2868	-7.100	45693	-9.200	50	-7.600	50451	-8.100	29233	-8.100	53314	-7.600	44775	-7.700	66352
LOM_2667325	-7.700	23791	-7.500	15245	-7.600	20291	-6.800	76180	-9.100	126	-8.000	26763	-8.000	35500	-8.000	63042	-8.400	8678	-8.200	41268
LOM_4133758	-7.200	50227	-6.400	79253	-7.200	47708	-7.400	20023	-8.400	9862	-6.300	97574	-7.000	84857	-8.200	45282	-6.700	91176	-7.600	71740
LOM_7406414	-6.500	90627	-7.700	9270	-6.900	70675	-7.700	6327	-7.700	73864	-7.200	73133	-7.100	82008	-9.000	1857	-7.100	74236	-7.300	84306
LOM_97420	-7.100	58148	-6.000	94458	-6.600	87308	-6.900	70467	-7.800	65833	-6.900	85246	-7.900	43295	-8.500	21217	-7.100	74869	-7.800	63562
LOM_125914	-7.200	45866	-6.200	84990	-7.300	35107	-6.700	79008	-7.800	55410	-7.200	69155	-7.300	70232	-7.400	92242	-6.800	84705	-8.400	27625
LOM_11415683	-7.900	14583	-7.400	17236	-7.900	6919	-8.000	876	-8.700	1380	-8.000	23818	-8.600	5735	-8.400	22205	-8.800	1307	-8.800	11043
LOM_11860849	-8.000	11750	-7.200	27319	-7.100	50988	-7.400	16212	-9.000	196	-8.100	18789	-8.000	32598	-8.700	6396	-8.500	5095	-8.300	33463
LOM_11877003	-7.900	14700	-7.500	13341	-8.200	2457	-7.800	2775	-8.900	400	-8.000	24030	-9.000	800	-8.600	10250	-8.700	2128	-9.300	1628
LOM_13053462	-7.400	35867	-6.300	81720	-7.500	23605	-7.300	23797	-9.000	205	-8.000	24454	-7.600	56224	-8.800	3946	-8.000	22452	-9.500	631
LOM_13614377	-7.000	60026	-6.600	65899	-6.800	73270	-6.900	63512	-9.200	41	-7.100	74860	-7.100	79861	-7.600	86456	-8.000	22609	-7.600	69694
Média	-7.470	37.854	-6.980	44.420	-7.305	41.042	-7.260	33.836	-8.525	20.384	-7.665	45.255	-7.805	44.007	-8.390	29.913	-7.690	42.655	-8.220	42.812

Tabela 10: Resultados dos cálculos de *ensemble docking* envolvendo os vinte melhores ligantes da 1^ª rodada de triagem nas estruturas selecionadas.

Fonte: Elaborado pela autor. Os resultados foram divididos em cores para facilitar a interpretação. Em verde: energia de ligação < -7.5 kcal/mol. Em amarelo: -7.5 ≤ energia de ligação < -7.0. Em vermelho: ligação > -7.0 kcal/mol. LOM: ligomega. LOB: ligobabel.

Ampliando esta análise para todos os 100 mil ligantes submetidos aos cálculos (Tabela 11), foi possível verificar o mesmo padrão de resultados. Por meio da adoção de intervalos de energia de ligação, constatou-se novamente que as estruturas 1 a 4 apresentaram os piores resultados, em contrapartida as estruturas 5 a 10 que obtiveram os melhores. Isto é perceptível ao observar o número de ligantes presentes em faixas de intervalo de energia mais favoráveis de ligação. Paralelamente a isso, as estruturas 1 a 4 apresentaram quantidade menor de ligantes nas faixas mais inferiores de energia que as estruturas 5 a 10. Isto fica mais nítido ao observar os intervalos de pontuação de -10.9 / -10.0 e -9.9 / -9.0 kcal/mol. Foi possível verificar também que os ensaios relacionados a estrutura 10 obtiveram o maior número de ligantes de ligantes dentro dos dois menores intervalos de energia.

Desta forma foi possível defini-la e caracteriza-la como a estrutura que melhor se saiu nos ensaios frente as demais. Embora a estrutura 5 tenha apresentado uma quantidade parecida, mas menor de ligantes na faixa -9.9 / -9.0 comparada a estrutura 1, é importante pontuar que a mesma apresentou mais que o triplo de ligantes na faixa -8.9 / -8.0 que a estrutura 1. De maneira geral, foi possível verificar que para as estruturas 1 a 4, o intervalo -7.9 I -7.0 apresentou o maior número de ligantes. Enquanto isso, para as estrutura 5 a 10, foi possível verificar uma

dominância maior no intervalo -8.0 I -8.9. Desta forma, fica claro a superioridade dos resultados advindos nos cálculos dessas estruturas frente as demais.

									-		
Estrutura	1		2		3		4		5		
Energia	№ de ligantes	% relativa	№ de ligantes	% relativa	№ de ligantes	% relativa	№ de ligantes	% relativa	№ de ligantes	% relativa	
-10.9 -10.0	0	0,00%	0	0,00%	0	0,00%	0	0,00%	0	0,00%	
-9.9 -9.0	454	0,45%	30	0,03%	99	0,10%	0	0,00%	355	0,36%	
-8.9 -8.0	-8.9 -8.0 13.739 13,74%		3.664	3,66%	6.508	6,51%	1.442	1,44%	44.058	44,06%	
-7.9 -7.0	50.398	50,40%	41.228	41,23%	58.093	58,09%	59.234	59,23%	54.774	54,77%	
-6.9 -6.0	34.864	34,86%	49.563	49,56%	34.190	34,19%	39.202	39,20%	812	0,81%	
-5.9 -5.0	545	0,55%	5.512	5,51%	1.109	1,11%	122	0,12%	1	0,00%	
-4.9 -4.0	0	0,00%	3	0,00%	1	0,00%	0	0,00%	0	0,00%	
-3.9 -3.0	0	0 0,00% 0		0,00%	0	0,00%	0,00% 0		0	0,00%	
Estrutura	6		7		8		9		10		
Energia	№ de ligantes	% relativa	№ de ligantes	% relativa	№ de ligantes	% relativa	№ de ligantes	% relativa	№ de ligantes	% relativa	
-10.9 -10.0	0		-			0.000/				0.05%	
	U U	0,00%	2	0,00%	1	0,00%	3	0,00%	47	0,0070	
-9.9 -9.0	631	0,00%	2 1251	0,00% 1,25%	1 1962	1,96%	722	0,00%	47 7680	7,68%	
-9.9 -9.0 -8.9 -8.0	631 28018	0,00% 0,63% 28,02%	2 1251 36300	0,00% 1,25% 36,30%	1 1962 63909	0,00% 1,96% 63,91%	3 722 25264	0,00% 0,72% 25,26%	47 7680 45857	7,68% 45,86%	
-9.9 -9.0 -8.9 -8.0 -7.9 -7.0	631 28018 53167	0,00% 0,63% 28,02% 53,17%	2 1251 36300 48197	0,00% 1,25% 36,30% 48,20%	1 1962 63909 32959	0,00% 1,96% 63,91% 32,96%	3 722 25264 53963	0,00% 0,72% 25,26% 53,96%	47 7680 45857 39581	7,68% 45,86% 39,58%	
-9.9 -9.0 -8.9 -8.0 -7.9 -7.0 -6.9 -6.0	631 28018 53167 17819	0,00% 0,63% 28,02% 53,17% 17,82%	2 1251 36300 48197 13626	0,00% 1,25% 36,30% 48,20% 13,63%	1 1962 63909 32959 1168	0,00% 1,96% 63,91% 32,96% 1,17%	3 722 25264 53963 19922	0,00% 0,72% 25,26% 53,96% 19,92%	47 7680 45857 39581 6793	7,68% 45,86% 39,58% 6,79%	
-9.9 -9.0 -8.9 -8.0 -7.9 -7.0 -6.9 -6.0 -5.9 -5.0	631 28018 53167 17819 365	0,00% 0,63% 28,02% 53,17% 17,82% 0,37%	2 1251 36300 48197 13626 624	0,00% 1,25% 36,30% 48,20% 13,63% 0,62%	1 1962 63909 32959 1168 1	0,00% 1,96% 63,91% 32,96% 1,17% 0,00%	3 722 25264 53963 19922 126	0,00% 0,72% 25,26% 53,96% 19,92% 0,13%	47 7680 45857 39581 6793 42	30,000 7,68% 45,86% 39,58% 6,79% 0,04%	
-9.9 -9.0 -8.9 -8.0 -7.9 -7.0 -6.9 -6.0 -5.9 -5.0 -4.9 -4.0	631 28018 53167 17819 365 0	0,00% 0,63% 28,02% 53,17% 17,82% 0,37% 0,00%	2 1251 36300 48197 13626 624 0	0,00% 1,25% 36,30% 48,20% 13,63% 0,62% 0,00%	1 1962 63909 32959 1168 1 0	0,00% 1,96% 63,91% 32,96% 1,17% 0,00% 0,00%	3 722 25264 53963 19922 126 0	0,00% 0,72% 25,26% 53,96% 19,92% 0,13% 0,00%	47 7680 45857 39581 6793 42 0	0,00% 7,68% 45,86% 39,58% 6,79% 0,04% 0,00%	
-9.9 9.0 -8.9 8.0 -7.9 -7.0 -6.9 -6.0 -5.9 -5.0 -4.9 -4.0 -3.9 -3.0	631 28018 53167 17819 365 0 0	0,00% 0,63% 28,02% 53,17% 17,82% 0,37% 0,00% 0,00%	2 1251 36300 48197 13626 624 0 0	0,00% 1,25% 36,30% 48,20% 13,63% 0,62% 0,00% 0,00%	1 1962 63909 32959 1168 1 0 0	0,00% 1,96% 63,91% 32,96% 1,17% 0,00% 0,00%	3 722 25264 53963 19922 126 0 0	0,00% 0,72% 25,26% 53,96% 19,92% 0,13% 0,00% 0,00%	47 7680 45857 39581 6793 42 0 0	0,00% 7,68% 45,86% 39,58% 6,79% 0,04% 0,00%	

Tabela 11: Resultados gerais do *ensemble docking* realizado.

Fonte: Elaborado pela autor. As estruturas que obtiveram os piores resultados foram marcadas em vermelho. Em contrapartida, as estruturas que tiveram bons resultados foram marcadas em verde. A melhor/pior estrutura estão marcadas com cores mais intensas que as demais.

A Figura 29 complementa o que foi observado até então. É possível denotar que os resultados da primeira rodada de *docking* apresentaram uma tendência de energia de pontuação maior (ou seja, desfavorável) que aqueles provenientes do *ensemble docking*. O resultado foi esperado, tendo em vista que a segunda rodada de *docking* contou com um grupo selecionado de estruturas e ligantes.

Figura 29: Comparação entre resultados de docking e ensemble docking

Fonte: Elaborado pela autor.

A melhor (10) e a pior estrutura (4) foram visualizadas de forma a entender as características estruturais intrínsecas de cada uma que podem justificar as diferenças de rendimento e performance nos ensaios de *docking* observadas até aqui (Figura 30). Foi possível perceber que a estrutura 4 e a estrutura 10 divergiram principalmente no grau de abertura da cavidade presente no sítio. A cavidade encontra-se pouco acessível na estrutura 4 em decorrência da pequena abertura existente na região. Em contrapartida, na estrutura 10 esta cavidade está amplamente aberta. Esta abertura possibilita que ligantes e pequenas moléculas consigam interagir de forma mais eficiente e estável com a região. De fato, a pequena abertura da estrutura 4 não foi empecilho para a interação e acomodação das sondas, como fenol e benzeno. Entretanto, para ligantes maiores, foi observada este impedimento estrutural, decorrente possivelmente de impedimentos estéricos envolvendo nuvens de elétrons sobrepostas entre as estruturas. A diferença de abertura da cavidade é consequência de um reajuste conformacional existente na porção Asp85-Ser87 da alça. A simples movimentação da cadeia principal desta região (em especial relacionada a serina) foi capaz de provocar a abertura ou fechamento do sítio. De fato, aqui percebemos um dos problemas em trabalhar com este tipo de região: a sua alta flexibilidade e instabilidade.

Figura 30: Visualização da alça C'D nas estruturas 4 e 10 pelo programa PyMOL. A) Diferença estrutural existente evidenciada pelos resíduos Asp85-Ser87 (RMSD: 2.242 Å). B) Cavidade fechada na estrutura 4. C) Cavidade aberta na estrutura 10.

Fonte: Elaborado pela autor. Estrutura 4, denominada E4, encontra-se em amarelo. Estrutura 10, designada E10, foi marcada em azul. A região mais flexivel responsável pela abertura e fechamento do sítio encontra-se destacada em cinza.

De forma a entender melhor o impacto dessas mudanças conformacionais nos cálculos de *docking*, os melhores 100 ligantes das estruturas 10 e 4 foram analisados visualmente. Foi possível identificar 3 poses gerais dos ligantes na região. A Figura 31 exemplifica estas posições na estrutura 4. Nas análises, o ligante ligobabel_160883 foi localizado em uma posição mais externa à alça. Enquanto isso, ligobabel_91995 se encontrou posicionado mais internamente à alça. Em contrapartida aos dois ligantes, o ligomega_16932623 foi capaz de se posicionar corretamente no sítio, ocupando e atravessando a cavidade.

Figura 31: Padrão de acomodação dos ligantes na região da alça C'D visualizado pelo programa PyMOL e representada por: A) *Cartoon* B) Superfície.

ligobabel_160883 ligobabel_91995 ligomega_16932623

De maneira geral, a visualização dos ligantes em cada posição nas estruturas 4 e 10 permitiu verificar um padrão diferente no posicionamento destas moléculas em cada estrutura. No apêndice J é possível conferir que na estrutura 4, dos 100 ligantes, apenas 3 conseguiram se posicionar na cavidade, atravessando-a como demonstrado anteriormente pelo ligomega__16932623. A grande maioria se encontrou posicionada na porção externa (75 ligantes) e interna da alça (22 ligantes). Em contrapartida a esta situação encontrada na estrutura 4, a estrutura 10 apresentou ligantes em um tipo de posicionamento totalmente diferente. Nesta, todos se encontraram na posição de ocupação da cavidade, preenchendo-a e atravessando-a, assim como o ligomega__16932623. Desta forma, podemos ver como a abertura da alça possibilitou o acesso dos ligantes na cavidade. Também pode-se inferir como o acesso e a ocupação da cavidade melhorou os resultados de pontuação do *docking*,

indicando a maior afinidade dos ligantes situados nesta posição para com o sítio de interação. A Figura 32 exemplifica o posicionamento encontrado dos cinco melhores ligantes nos *dockings* realizados nas estruturas 4 e 10.

Figura 32: Posicionamento visualizado pelo programa PyMOL dos top 5 melhores ligantes na alça C'D pertencente às estruturas: A) 4. B) 10.

Fonte: Elaborado pela autor.

4.6.8 Análise visual e seleção final dos ligantes

A análise visual de 500 ligantes e a triagem de moléculas baseada nos critérios relacionados a pontuação de energia de ligação e eficiência do ligante permitiu a seleção final de 10 ligantes (Figura 33 e apêndice L). Dos 10 ligantes, 6 foram obtidos tendo como origem o ranqueamento por energia de ligação, enquanto que 4 pela eficiência do ligante (EL). Todas as moléculas selecionadas apresentaram complementaridade estrutural com o sítio. Os resultados reforçaram as observações vistas anteriormente envolvendo o padrão estrutural das moléculas. Os ligantes ligomega_1725189, ligomega_3036345, ligomega_15080688 e também o ligomega_874840 apresentaram uma estrutura definida, com a presença de grupamentos aromáticos em suas extremidades e ao centro um grupo amida. A importância do grupamento aromático já havia sido constatada nas análises relacionadas à presença das sondas no sítio. Já a presença e a suposta importância do grupamento amida foi sumariamente observada nos resultados de screening, com

a observação de que a grande maioria dos ligantes possuíam este grupamento na sua parte central. Embora este tipo de estrutura química tenha prevalecido nas análises visuais realizadas, de forma a abranger o maior espaço químico possível nos ensaios posteriores de dinâmica molecular, optou-se por restringir a presença deste tipo de estrutura no grupo final de moléculas selecionadas. Desta forma, dos 10 ligantes selecionados, selecionou-se basicamente 4 ligantes com este tipo de esqueleto estrutural. Os outros 6 foram selecionados sob os mesmos critérios, porém variando a presença, a quantidade e orientação de grupamentos cíclicos. Também procurou-se variar a presença de grupamentos funcionais, a partir da adição de grupos mais volumosos e grupos doadores de hidrogênios na amida e também a partir da retirada do grupamento amida, de forma a validar a sua importância.

Figura 33: Moléculas selecionadas na análise visual. A) Estrutura química dos ligantes obtida pelo programa Discovery Studios. B) Características associadas aos ligantes.

I						Caracterís	ticas Impor	tantes				
				Média de energia	Média de posição	Compatibilidade	Grupos	Grupos cíclicos	Contatos		Poses direcionadas ao sítio (<i>blind</i>	
ļ	Liga	ante	Origem	(E>=5)	(E>=5)	química	cíclicos	com HA	polares	Resíduos em contato	docking)	Seguro?
			Energia de							LYS78 (2) –		
	ligomega_	_1725189	ligação	-9.300	729,2	Sim	4 (2 2)	3	4	GLN88 (2)	7[10]*	
	ligomega	3036345	Energia de ligação	-9.117	3106,2	Sim	4 (2 2)	4	5	LYS78 (2) - LEU79 (2) - GLN88 (1)	5[10]*	
	ligomega	15080688	Energia de ligação	-9.000	1811.8	Sim	4(2 2)	4	2	ALA81 - ARG86	5[10]*	er 2.0
	ligomega_	8704840	Energia de ligação	-9.033	4849,0	Sim	4 (1 1 2)	2	3	ALA81 (2) – GLN88 (1)	7 [10]*	Servi
	ligomega_	2810677	Energia de ligação	-8.983	7528,7	Sim	4 (2 1 1)	4	3	LEU79 - SER93 - PHE95	2[10]*	mBic
	ligomega_	_12326857	EL	-7.833	48569,2	Sim	4 (2 1 1)	4	3	ALA81 - GLU84 - GLN88	7 [10]*	Che
	ligomega_	1261946	EL	-7.783	53572,8	Sim	3 (1 2)	2	2	ALA81 - GLN88	5[10]*	
	ligomega_	10280954	EL	-8.350	19609,3	Sim	4 (1 3)	3	1	ARG86	5[10]	
	ligomega_	_1234101	EL	-8.000	39388,8	Sim	3 (1 2)	2	4	ASP77 (1) - LYS78 (1) - GLN88 (2)	4[10]*	
	ligomega_	3904584	Energia de ligação	-8.983	5012,2	Sim	4 (2 2)	3	3	ARG86 (1) - GLN88 (2)	5[10]*	

Fonte: Elaborado pela autor. O * indica que a pose energeticamente mais favorável no ensaio de blind *docking* foi direcionada à cavidade. Os valores de energia e posição foram obtidos com base nas estruturas que melhor se sairam nos ensaios de *ensemble docking*. EL: eficiência do ligante.

4.7 Análise ADMETox

Os ligantes selecionados foram submetidos a testes mais específicos de ADMETox. Estes resultados podem ser visualizados na Tabela 12. Todos os ligantes (exceto o ligomega__1261946) apresentaram ausência de risco de toxicidade. Este ligante em especifico apresentou alta possibilidade de ser mutagênico e irritante, além de poder ter moderado efeito no sistema reprodutor humano. Em relação as características físico químicas atreladas aos compostos, todos se encaixaram nos limites das regras de Lipinski e Veber, demonstrando possuírem peso molecular apropriado, boa capacidade de interação, a partir de fontes doadoras e aceptoras de ligação de hidrogênio, biodisponibilidade oral adequada e boa capacidade de permear e interagir com a membrana celular (LIPINSKI *et al.*, 1997; VEBER *et al.*, 2002).

Valores de solubilidade se encaixaram no padrão pertencente a fármacos comerciais existentes proposto pelos criadores do programa adotado (SANDER *et al.*, 2009). Dos 10 ligantes, três (ligomega_1261946, ligomega_2810677 e ligomega_1234101) apresentaram valores razoáveis de drogabilidade, indicando possuírem fragmentos ou grupos funcionais incomuns em fármacos disponíveis no mercado (SANDER *et al.*, 2009). Devido a isto e aos riscos de toxicidade encontrados no ligomega_1261946, estes três ligantes apresentaram pontuação final menor que 50 %. De maneira geral, os bons resultados aqui de certa forma eram esperados, dada a aplicação prévia de filtros de seleção de compostos indesejados pelo detentor original do banco de moléculas.

		Risco de toxi	cidade				Caracterí	sticas físic	o-químic	as			
				Efeito	Peso	Aceptor	Doador	Ligações					
Ligante	Mutagênico ^o	Tumorigênicoo	Irritante ^o	reprodutivoo	molecular ^m	de H ^s	de H ^s	rotáveis ^m	CLogP ^o	TPSA	Solubilidade ^o	Drogabilidadeo	Drug-score ^o
ligomega_1725189	Ausente	Ausente	Ausente	Ausente	351,34	3	4	2	2,11	96,01	-5,34	1,3	57%
ligomega_3036345	Ausente	Ausente	Ausente	Ausente	358,37	4	3	2	1,13	96,11	-3,53	3,57	82%
ligomega_15080688	Ausente	Ausente	Ausente	Ausente	358,31	4	3	2	2,01	96,11	-5,11	0,69	55%
ligomega_8704840	Ausente	Ausente	Ausente	Ausente	387,48	3	3	3	1,52	98,53	-4,41	1,46	66%
ligomega_2810677	Ausente	Ausente	Ausente	Ausente	396,44	4	3	2	2	82,03	-4,12	-4,41	37%
ligomega_12326857	Ausente	Ausente	Ausente	Ausente	292,30	5	1	2	1,65	93,38	-4,8	1,4	66%
ligomega_1261946	Presente	Ausente	Presente	Presente	355,62	2	1	1	2,27	49,41	-3,98	-3,98	11%
ligomega10280954	Ausente	Ausente	Ausente	Ausente	309,30	3	2	1	2,19	66,62	-3,43	1,32	76%
ligomega_1234101	Ausente	Ausente	Ausente	Ausente	297,29	2	3	2	1,98	84,22	-5,56	0,48	52%
ligomega3904584	Ausente	Ausente	Ausente	Ausente	397,45	3	3	2	2,91	79,46	-4,94	-3,82	32%
		350,39	3,30	2,60	1,90	1,98	84,19	-4,52	-0,20	0,53			
	Desv	io padrão			39.08	0.95	0.97	0.57	0.48	15.84	0.74	2.80	0.22

Tabela 12: Resultado dos ensaios ADMETox realizados nos ligantes selecionados.

Fonte: Elaborado pelo autor. Os diferentes sufixos indicam a ferramenta utilizada para análise de determinado parâmetro: o (osiris property explorer), s (marvin sketch) e m (molinspiration). O gradiente de cores (vermelho para valores ruins e verde para bons) presente na tabela foi aplicado de acordo com os valores ótimos conhecidos na literatura (a partir da regra dos cinco de Lipinski e também de trabalhos realizados por Sander e colaboradores (2009).

4.8 Análise do diagrama bidimensional de interações

A análise do diagrama 2D de interações permitiu contabilizar e verificar os tipos de interações existentes entre os ligantes e o sítio de interação. Todos as análises podem ser visualizadas no apêndice M. De forma ampla, foi possível verificar a presença de interações de cátion- π envolvendo a LYS78, situada na fita C' presente na região próxima da alça C'D e o grupamento aromático dos ligantes. Estes dados referendam a importância registrada ao longo de todo este trabalho da presença de grupamentos cíclicos ou aromáticos para a interação de moléculas nesta região. De fato, existem inúmeras publicações na literatura ao longo das últimas décadas que atestam a importância desse tipo de interação no reconhecimento molecular envolvendo estruturas biológicas. Embora seja reconhecida como uma interação forte, fatores associados a natureza do cátion e dos sistemas π ricos em elétrons, assim como a distância existente entre eles, podem prejudicar e enfraquecer esse tipo de interação (FOKOUE et al., 2020; GALLIVAN; DOUGHERTY, 1999; MAHADEVI; SASTRY, 2013). Também foi possível verificar a presença de ligações de hidrogênio principalmente entre as regiões centrais dos ligantes e os resíduos do sítio, indicando que este tipo de interação pode ter papel na estabilização das moléculas nesta região e atestando a importância do grupamento amida. O ligante presente na Figura 34 exemplifica os padrões encontrados nas estruturas analisadas.

Figura 34: Exemplo da análise realizada de diagrama bidimensional (2D) de interações para o ligante ligomega__1725189.

Fonte: elaborado pelo autor.

4.9 Análises das simulações de DMs (PD-1 / ligantes)

As simulações de dinâmica molecular foram preliminarmente analisadas com base na distância do ligante para o centro da região de interação. Os resultados, mostrados na Tabela 13, permitiram a seleção de cinco ligantes que obtiveram comportamentos estáveis, com menor variação de distância para o sítio que os demais ao longo das simulações. A adoção de intervalos de corte abaixo de 9 Å que pudessem classificar o comportamento do ligante como estável (e preso ao sítio) ou instável foi possível a partir da observação visual de cada tipo de complexo. De fato, em um primeiro momento este valor de corte pode ser considerado alto, mas devido à estrutura e ao amplo espaço conformacional que o ligante é capaz de preencher, envolvendo diferentes ângulos e torções, este intervalo se mostrou eficaz para classificar corretamente as moléculas quanto ao seu comportamento no sítio. Observando a estrutura dos cinco ligantes destacados, foi possível atestar que todos possuem em comum o grupamento amida ao centro. Também foi possível visualizar que os ligantes com estrutura química diferente do padrão observado (e que por consequência não possuem a amida no eixo central de suas estruturas) apresentaram comportamentos mais instáveis, chegando a sair do local de interação proposto em mais de uma replicata.

Replicata																		
Ligante		REP1 Distância ao centro da			REP2 Distância ao centro da			REP3			REP4 Distância ao centro da			REP5 Distância ao centro da			1	
								Distância ao centro da		Comportamento em relação ao								
		alça (Å)			alça (Å)			alça (Å)			alça (Å)			alça (Å)			sítio	
		Início	Final	Maior	Início	Final	Maior	Início	Final	Maior	Início	Final	Maior	Início	Final	Maior	Estável	Instável
ligomega_	1725189	3,4	4,4	5,2	3,9	4,3	5,7	3,3	3,4	8,8	3,2	3,9	8,8	2,7	3,6	5,3	60%	40%
ligomega_	_3036345	3,8	8,1	19,2	5,7	2,9	7,1	7,9	5,3	11,9	6,7	9,5	13,6	3,9	9,5	14,2	20%	80%
ligomega	15080688	3,6	3,9	6,4	4,2	4,1	6,3	3,3	3,6	5,3	3,6	4,3	6,3	3,3	3,9	5,2	100%	0%
ligomega_	8704840	2,5	1,6	3,6	2,6	0,9	4,6	5,8	4,8	6,4	2,1	4,8	6,6	3,9	5,1	6,8	100%	0%
ligomega	2810677	3,0	2,6	4,9	2,6	1,7	4,3	3,0	4,8	5,4	2,2	2,9	4,6	3,0	2,5	5,4	100%	0%
ligomega	12326857	5,0	16,5	45,5	8,9	4,3	11,2	2,5	13,9	21,3	10,0	9,8	14,2	2,8	17,2	55,6	0%	100%
ligomega	1261946	3,0	6,2	9,4	3,9	9,5	9,8	4,1	3,5	9,4	3,1	3,9	6,6	5,4	7,7	18,4	20%	80%
ligomega_	10280954	3,0	21,0	54,1	1,6	6,2	9,2	6,9	12,6	25,0	2,6	7,2	15,7	6,5	5,7	10,0	0%	100%
ligomega	1234101	2,3	7,6	10,0	2,4	6,9	16,6	5,8	39,8	41,3	6,8	8,3	17,1	3,0	7,7	12,4	0%	100%
ligomega	3904584	3.3	4.6	5.7	6.1	8.0	13.0	3.1	2.4	5.1	3.7	4.2	5.4	4.5	3.1	6.4	80%	20%

 Tabela 13: Análise da 1ª rodada de DM dos complexos contendo os ligantes.

 1a rodada de dinâmica molecular

Fonte: Elaborado pelo autor. Os valores de distância situados abaixo do corte estabelecido foram marcados em verde. Em contrapartida aqueles dispostos acima foram sinalizados em vermelho. Os ligantes que se destacaram nesse ensaio foram grifados em amarelo.

O ligante ligomega__3036345 mesmo possuindo estrutura similar a aquelas moléculas que se destacaram, não apresentou a mesma estabilidade no sítio. Observando sua estrutura e seu comportamento nas simulações, foi possível perceber uma relativa proximidade de um grupamento CH₂ apolar e de um átomo de F à região

central do ligante, resultando na diminuição do espaço disponível de interação do grupo NH pertencente a amida. Isto pôde ter causado um prejuízo no estabelecimento de ligações de hidrogênios e contribuído para a desestabilização da molécula na região (apêndice N). A saída dos ligantes nas simulações foi vista por um lado de forma positiva, pois demonstrou que o inverso é possível, ou seja: as moléculas possuem também a capacidade de adentrar na região da cavidade. Novas simulações realizadas com ligantes que se destacaram na 1ª rodada de DM atestaram de uma maneira geral a estabilidade dos cinco ligantes escolhidos previamente (Tabela 14).

Tabela 14: Análise da 2^a rodada de DM dos complexos contendo os ligantes.

2a rodada de dinâmica molecular																	
		Replicata															
	REP6			REP7			REP8			REP9			REP10				
Ligante	Distância ao centro da			Distância ao centro da			Distância ao centro da			Distância ao centro da			Distância ao centro da			Comportamento em relação	
	alça (Å)			alça (Å)			alça (Å)			alça (Å)			alça (Å)			ao sítio	
	Início	Final	Maior	Início	Final	Maior	Início	Final	Maior	Início	Final	Maior	Início	Final	Maior	Estável	Instável
ligomega_1725189	2,1	4,5	6,8	2,4	2,7	6,3	2,9	14,6	26,2	3,3	4,4	6,1	1,6	0,9	6,3	80%	20%
ligomega15080688	3,4	2,8	4,8	3,6	3,8	6,6	3,6	6,1	10,7	3,7	3,9	5,4	2,7	4,2	7,9	80%	20%
ligomega_8704840	4,2	1,4	5,5	5,0	5,6	7,1	5,0	4,1	6,8	4,6	8,1	10,0	5,3	4,6	7,0	80%	20%
ligomega_2810677	2,2	4,5	4,7	3,2	1,9	3,9	2,2	2,0	3,6	8,2	7,3	52,0	3,4	4,1	6,0	80%	20%
ligomega_3904584	3,3	2,8	5,2	4,2	3,4	5,7	3,8	2,4	5,3	2,5	6,9	9,5	4,5	4,2	6,4	80%	20%

Fonte: Elaborado pelo autor. Os valores de distância situados abaixo do corte estabelecido foram marcados em verde. Em contrapartida aqueles dispostos acima do corte foram sinalizados em vermelho.

Os dados de RMSD seguiram o padrão observado na mensuração das distâncias, indicando que estes parâmetros de análise foram obtidos e utilizados de forma correta e dando solidez aos resultados obtidos. Foi possível destacar os melhores resultados provenientes das moléculas ligomega_15080688, ligomeg_8704840 e ligomega_2810677 (Tabela 15).

Tabela 15: Resumo das análises realizadas nos complexos PD-1 / ligantes.

Fonte: Elaborado pelo autor. Os valores situados abaixo do corte estabelecido foram marcados em verde. Em contrapartida, aqueles dispostos acima do corte foram sinalizados em vermelho. Os ligantes que se destacaram ao final das análises foram grifados em amarelo.

4.9.1 Análise dos perfis de interação

As análises de formação e quebra de interações do tipo cátion- π , empilhamento π e pontes salinas foram avaliadas ao longo das simulações nos complexos envolvendo os ligantes que se destacaram nas análises anteriores estão disponíveis no apêndice O. Para facilitar a interpretação dos resultados, os átomos dos três ligantes foram numerados e mostrados a seguir na Figura 35.

Figura 35: Numeração dos átomos de ligantes que se destacaram nas simulações de DM realizadas. A) ligomega_15080688. B) ligomega_8704840. C) ligomega_2810677.

Fonte: Elaborado pelo autor.

De forma geral, as análises demonstraram a possibilidade de ocorrência de interação cátion-π entre os ligantes e o resíduo carregado LYS78, concordando com os dados de diagrama 2D de interações. Esta conclusão se dá principalmente pelo fato de que na maioria das replicatas as distâncias existentes entre os átomos participantes da interação se mantiveram por volta de 6 Å. Este valor é corroborado com dados na literatura, que indicam que a possibilidade da existência desta interação neste intervalo de valor (GALLIVAN; DOUGHERTY, 1999). Em relação ao ligomega__15080688, a ocorrência desta interação se deu principalmente vinculada ao centro aromático 1 da molécula. Quanto ao ligante ligomega__8704840, foi possível observar a possibilidade deste tipo de interação envolvendo os dois centros aromáticos da molécula e o resíduo carregado LYS78. Entretanto, este tipo de

interação não foi observado, em termos de distância, ao analisar o átomo N⁺ presente no ligante e os centros aromáticos de PHE95 e PHE82. A possibilidade de interação também foi observada envolvendo o centro aromático único pertencente a molécula ligomega 2810677. Valores altos de distância podem ser consequência de um deslocamento (ou até saída do ligante do sítio, como na replicata 9 pertencente a esse ligante). De forma geral, os ligantes mantiveram o padrão de distância reconhecido deste tipo de interação, o que leva a crer que ela exista e possa ajudar na estabilização das moléculas no sítio. As altas distancias encontradas entre os centros aromáticos dos ligantes e as regiões cíclicas de resíduos como PHE95 e PHE82, presentes no sítio, indicam a inexistência da interação do tipo empilhamento π (do inglês: π stacking). Em relação a pontes salinas, o ligante ligomega_8704840, por ser carregado positivamente, possibilitou o estabelecimento desse tipo de interação com o sítio. Isto foi observado nas replicatas 2 e 6 envolvendo o átomo N⁺ e ASP77 e na replicata 4 abrangendo a interação entre N⁺ e GLU84. Esses resultados demonstram que este tipo de interação pode ser um fator importante na estabilização do ligante na cavidade. No mesmo sentido, a literatura aponta a participação e o papel dessa interação no reconhecimento molecular envolvendo diversos alvos moleculares e ligantes (KURCZAB et al., 2018). As ligações de hidrogênios formadas ao longo das simulações foram analisadas detalhadamente e podem ser visualizadas na Figura 36.

Figura 36: Contabilização das ligações de hidrogênios envolvendo os ligantes destacados e o sítio de interação proposto.

	ligo	mega_15080	0688		ligon	nega870484	40		ligomega 2810677			
Replicatas	Aceptor	Doador	Quadros (%)				Quadros				Quadros	
	ARG86:O	L03:N4	76%	Replicatas	Aceptor	Doador	(%)	Replicatas	Aceptor	Doador	(%)	
REP1	ARG86:O	L03:N3	61%		LEU79:O	L04:N1	42%					
	ARG86:O	L03:N4	75%	REP1	GLN88:OE1	L04:N2	33%		LEU_79:O	L05:O26	41%	
	ARG86:O	L03:N3	50%	RFP2	1YS78 [.] 0	1.04·N2	30%					
REP2	GLU84:O	L03:N2	33%	REP3	ARG86:0	L 04:N1	30%	REP1	PHE_95:0	L05:O25	33%	
	ARG86:O	L03:N4	82%		ARC00.0		240/					
REP3	ARG86:O	L03:N3	62%	REP4	ARG86:0	L04:N1	34%	REP2	PHE_95:0	L05:O25	65%	
	ARG86:O	L03:N4	71%	REP5	ARG86:O	L04:N1	42%					
REP4	ARG86:O	L03:N3	36%		ASP77:OD1	L04:N2	32%	REP3	ARG_86:O	L05:O26	48%	
	ARG86:O	L03:N4	84%	REP6	LEU79:O	L04:N1	31%		Sem interação	> 30 % de frar	mes totais	
REP5	ARG86:O	L03:N3	56%	REP7	ARG86:O	L04:N1	44%	REP4				
	ARG86:O	L03:N4	60%	REP8	ARG86:O	L04:N1	35%	DEDC	105 110-000	050 07.00	0.50/	
REP6	ARG86:O	L03:N3	50%	REP9	Sem interação > 30 % de quadros totais		REP3	L05_119.023	SER 87.00	35%		
	ARG86:O	L03:N4	77%	REP10	1.04.026		34%			105-026	500/	
REP7	ARG86:O	L03:N3	51%		204.020	ALAOTIN	0170	KEF0	ARG_00.0	LU5.020	09%	
	SER87:O	L03:N4	69%						Sem interação	> 30 % de frar	nes totais	
	ARG86:O	L03:N2	52%					REP/				
REP8	SER87:O	L03:N3	37%					0500	105 110-000	050 07.00	400/	
	ARG86:O	L03:N4	63%					REP8	L05 119:023	SER 87:0G	48%	
REP9	ARG86:O	L03:N3	59%						Sem interação >	> 30 % de qua	dros totais	
	ARG86:O	L03:N4	79%					KEP9				
REP10	ARG86:O	L03:N3	52%					REP10	PHE 95:O	L05:O25	77%	

Fonte: Elaborado pelo autor. L03: ligomega__15080688. L04: ligomega__150806888704840. L05: ligomega__150806882810677.

Pode-se verificar, em relação ao ligomega_15080688 uma grande predominância desse tipo de interação envolvendo principalmente a ARG86 e os nitrogênios N3 e N4 do ligante. O nitrogênio N3, alias, encontra-se na região central do ligante, ocupada pelo grupamento amida. Este resultado de certa forma valida ainda mais a importância desta região para a acomodação do ligante no sítio. Padrão parecido foi visualizado ao analisar as interações provenientes do ligomega 8704840. Neste caso, também foi encontrada uma certa predominância de ligações de hidrogênio envolvendo a ARG86 e os átomos N1 e N2 do ligante. Neste caso, o N1 é responsável por ocupar a região central do ligante. É importante frisar que apesar da dominância notória e particular da ARG86, outros resíduos também demonstraram capacidade de interagir com a porção central do ligante, como SER87 e LEU79.

O ligomega 2810677 apresentou, dentre os 3, o padrão mais diferenciado de interação. Aqui não foi possível visualizar a predominante interação envolvendo ARG86 ou qualquer outro resíduo envolvendo o nitrogênio pertencente ao grupamento amida do ligante. Neste caso, foi encontrada uma predominância grande de interações envolvendo os oxigênios O25 e 026 presentes nos grupamentos hidroxilas localizadas na extremidade do ligante. Analisando mais profundamente a dinâmica desta molécula no sítio, foi verificado que ao longo das simulações este ligante se portou entre duas conformações: uma com as hidroxilas direcionadas para a região inferior da alça (próxima a ARG86) e outra com esta região próxima à parte superior da estrutura (em contato com resíduos mais hidrofóbicos, como LEU79 e PHE95). A análise visual mais cuidadosa mostrou que a conformação do ligante com o grupamento formado pelas hidroxilas próximo da ARG86 pode dificultar o estabelecimento das interações envolvendo o nitrogênio da amida. Já quando o ligante muda de conformação, a capacidade da interação do nitrogênio com a ARG86 se anula totalmente. Apesar de surgir uma nova interação envolvendo o O23 da região central do ligante, ela não predomina ao longo de todas as simulações. Esta análise pode ser verificada no apêndice P presente ao final do trabalho.

Estes dados indicam, assim como o que foi preliminarmente observado no ligomega__3036345, que a presença de grupos funcionais nas extremidades, a depender do seu tamanho e da sua orientação, pode culminar no prejuízo de interações envolvendo a região central do ligante. A instabilidade observada advinda disto, tanto com o ligomega__3036345, como para o ligomega__2810677 (que

embora tenha sido selecionado entre os mais estáveis foi o único entre os 3 a registrar saída do sítio em uma replicata), podem ser explicadas por estas observações. Possivelmente a maior capacidade de interação do ligomega_2810677, por meio das interações envolvendo as hidroxilas facilitou e promoveu a maior estabilização deste ligante em relação ao ligomega_3036345.

4.10 Análise de MM/GBSA

Os resultados de MM/GBSA contribuíram para complementar as observações vistas até aqui. De forma geral, os três complexos estudados mantiveram um platô de entalpia ao longo das simulações em torno de -30 a -40 kcal/mol (apêndice Q). Entretanto, em algumas replicatas relacionadas ao ligomega_8704840 e ligomega_2810677, pode-se perceber uma alteração mais acentuada neste padrão de entalpia. Especificamente, em relação ao ligomega_8704840, pode-se perceber que duas replicatas (2 e 6) se destacaram entre as demais por possuírem valores energeticamente mais favoráveis. Estas observações, juntamente aos dados do apêndice O, permitem inferir que nestas duas replicatas a interação de ponte salina entre ASP77 e N⁺ foi bem estabelecida e impactou diretamente na entalpia de ligação do complexo. Em contrapartida, o ligomega_2810677 apresentou energias de ligação mais desfavoráveis, principalmente relacionada a replicata 9, onde foi registrada a saída do ligante do sítio. A Figura 37 permite visualizar o padrão energético dos complexos analisados.

Figura 37: Entalpia de ligação calculada ao longo das simulações de DM dos complexos: A) PD-1 / ligomega__15080688. B) PD-1 / ligomega__8704840. C) PD-1 / ligomega__2810677.

Fonte: Elaborado pelo autor.

O ligomega__15080688, corroborando com os dados já obtidos que indicam a sua estabilidade no sítio, apresentou intervalo de entalpia bem especifico, sem apresentar grandes oscilações. Analisando as energias de entalpia decompostas nos resíduos do sítio de interação, foi possível ratificar o importante papel desempenhado pela ARG86 em todos os complexos estudados (Figura 38).

Figura 38: Decomposição da energia de entalpia pertencente aos resíduos do sitio de interação dos complexos: A) PD-1 / ligomega_15080688. B) PD-1 / ligomega 8704840. C) PD-1 / ligomega 2810677.

Fonte: Elaborado pelo autor.

Foi possível visualizar a atuação das pontes salinas identificadas anteriormente em replicatas envolvendo ligomega__8704840. Neste sentido, foram observadas energias mais favoráveis de interação nas replicatas 2 e 6 envolvendo ASP77 e também na replicata 4 abrangendo GLU84. Aqui, vale um adendo. Embora a presença desta ponte salina tenha sido registrada tanto em termos de avaliação de distância de átomos, como também no ensaio envolvendo MM-GBSA, não houve impacto significativo (como registrado nas replicata 2 e 6) no valor de entalpia de ligação observado para a mesma replicata na Figura 37. A ponte salina da replicata 4,

presente em somente uma parte da simulação, é teoricamente mais fraca e instável que as presentes nas outras replicatas. Isto é possível de ser visualizado a partir do apêndice O, onde é possível visualizar a sua formação e a sua quebra. A maior instabilidade deste ligante, avaliada por RMSD e distância ao centro do sítio, também ajudam a explicar os valores de entalpia de ligação mais desfavoráveis encontrados.

Outra situação que vale destaque é relacionada a replicata 1 deste mesmo complexo. Embora não tenha havido registro de pontes salinas sendo formadas decorrentes da presença do ligante no sítio, os valores de entalpia nesta replicata apresentaram-se moderadamente mais favoráveis que o padrão geral observado. Analisando o comportamento do ligante no sítio nesta replicata, foi visto que a molécula apresentou alta estabilidade no sítio, como bem demonstrado anteriormente na Tabela 15. A decomposição de energia obtida por meio do MM/GBSA atestou que especificamente nesta replicata ocorreu uma forte interação com GLN88. Este dado vai ao encontro aos resultados obtidos anteriormente em relação as ligações de hidrogênios (Figura 36) e possibilitam afirmar que esta interação foi fundamental para a estabilidade observada. Em suma, os melhores resultados observados aqui para este ligante são decorrentes tanto da adição de carga, possibilitando o surgimento de entalpias de ligação mais favoráveis, mas também da própria estabilidade observada pela molécula, propiciada por outras interações especificas, como a realizada com GLN88. O ligomega_2810677 apresentou as maiores energias de entalpia dentre os 3 ligantes. Isso pode ser justificado pela maior instabilidade da molécula no local de interação, exemplificada tanto pela sua saída na replicata 9 como também na adoção de conformações instáveis, como as visualizadas anteriormente no apêndice P.

4.11 Otimização de ligantes direcionados ao sítio proposto

Os resultados vistos ao longo deste trabalho permitiram o conhecimento de características estruturais e químicas essenciais para a interação de sondas e ligantes no sítio proposto. Desta forma, os resultados possibilitaram a concepção de possíveis modificações estruturais que podem ser promovidas de forma a otimizar o processo de interação entre ligantes e a cavidade. A presença de interações do tipo hidrofóbica e de hidrogênio vão de encontro ao padrão encontrado na literatura que atesta a predominância destes tipos de interações não covalentes em complexos ligantes e receptores disponíveis no *Protein Data Bank* (DE FREITAS; SCHAPIRA,

2017). A presença de grupamentos aromáticos ou cíclicos foi de fato importante, dada as observações relacionadas as sondas que mais se destacaram na região, como fenol, benzeno e imidazol. Este ponto pode ser explicado pelo caráter relativamente hidrofóbico da alça, assemelhando-se ao encontrado por toda a PD-1, mas também a ocorrência de tipos específicos de interações, como a cátion– π existente entre estes grupamentos e LYS78, bem demonstrada nas análises em diagrama 2D de interações e na análise de formação e quebra de interações ao longo das simulações.

A modificação mais clara no intuito de favorecer a interação de uma molécula com o seu sítio é a substituição de grupamentos apolares. Nesse sentido, é importante ter ciência de que esta substituição deve ser realizada de forma cuidadosa, pois é sabido a importância do empacotamento hidrofóbico para a estabilização de ligantes. Devido ao fato de a cavidade apresentar regiões expostas ao solvente em suas extremidades, parece ser aceitável a ideia de trabalhar com moléculas menores, mais compactas, mas que mantenham o esqueleto estrutural necessário para a sua estabilização. Vale ressaltar que dentre as 10 moléculas escolhidas durante a análise visual, aquelas menores e mais compactadas não possuíam o grupo amida na sua região central. Diante disto, vale a tentativa de estudar de forma mais profunda a importância destes grupos por meio do desenho de fármacos baseados em fragmentos (LBDD, do inglês: *fragment based drug discovery*), por exemplo.

A presença de grupamentos não volumosos nas extremidades do ligante pode ser benéfica no sentido de evitar possíveis impedimentos estéricos com o grupamento amida na porção central, essencial para a estabilização dos ligantes no sítio. Foi visto anteriormente, tanto com o ligomega_2810677, como para o ligomega_3036345 que isto pode ocasionar em um prejuízo de interação da amida e, de certa forma, desestabilizar o ligante no sítio. A adição de pontos de interação na porção central do ligante e grupamentos carregados capazes de realizar pontes salinas também pode ser favorável para a interação do ligante na alça, a exemplo do que foi visto com o ligomega_8704840. De fato, embora a PD-1 seja uma proteína de natureza majoritariamente hidrofóbica, a presença de resíduos carregados positivamente e negativamente na alça não pode ser ignorada. A importância disto já foi referendada com a identificação do papel de LYS78 na interação com os ligantes, assim como GLU84 e ASP77 podem desempenhar um papel significativo. Outros resíduos carregados também estão presentes na região e a depender da localização da carga no ligante podem favorecer a estabilização da molécula no sítio.

4.12 Comportamento da interface PD-1 e PD-L1 nos complexos PD-1 / ligantes

A análise de componentes principais (PCA) envolvendo a região de interface entre PD-1 e PD-L1 permitiu verificar o impacto nesta região da presença de ligantes no sítio proposto (Figura 39). De maneira geral, foi possível observar comportamentos divergentes entre os sistemas.

Figura 39: Variabilidade conformacional relacionada aos resíduos de interface entre PD-1 e PD-L1 nos complexos contendo sonda ou ligantes selecionados nas análises.

Fonte: Elaborado pelo autor. PD-1 (H2O): azul; PD-1 (benzeno): verde; PD-1 / PD-L1: cinza. L03 (rosa claro) se refere a ligomega_15080688; L04 (Vermelho claro): ligomega_8704840 e L05 (vermelho escuro): ligomega_2810677.

A análise permitiu observar em PD-1 / PD-L1 a menor variação conformacional entre todos os sistemas estudados. Assim, foi possível inferir que,

neste sistema, os resíduos PD-1, por interagirem com a interface PD-L1, foram encontrados em restrita liberdade conformacional. A avaliação do sistema PD-1 (benzeno) possibilitou observar uma relativa mudança conformacional na região, possivelmente devido à presença da sonda na alça C'D da proteína. Da mesma forma, quanto aos sistemas contendo os ligantes selecionados, verificou-se um padrão e uma mudança conformacional mais pronunciada em comparação com todos os outros complexos. A mudança conformacional mais notável encontrada nos sistemas contendo o ligante pode ser explicada pela maior capacidade dessas moléculas de interagir e influenciar conformacionalmente a região. Essa maior capacidade de interação pode estar ligada à maior complexidade estrutural dos ligantes em relação à sondas utilizadas.

A avaliação de estados com base nos valores dos componentes principais nos permitiu aprofundar essas observações. Para tanto, três estados foram estipulados: 1 (PC1 <-5 e PC2 <0, relacionado ao espaço conformacional divergente e não padrão observado em PD-1 e PD-L1), 2 (PC1> -5 e PC2 < 0, espaço de meio termo entre 1 e 3) e 3 (PC1 <-5 e PC2 <0, relacionado ao espaço conformacional ocupado pelas simulações PD-1 e PD-L1). Foi possível verificar uma tendência durante a simulação entre os sistemas contendo os ligantes de ocupar e alternar entre os estados 1 e 2 (apêndice R). Isso corrobora com nossas observações e nos leva a crer que ao longo das simulações a região da interface assume uma conformação diferente da usual. Novos estudos in silico podem e devem ser realizados para validar essas observações. Nesse sentido, simulações de dinâmica molecular mais longas podem ser realizadas a fim de verificar se a tendência aqui observada de ocupação do sítio 1 se confirma. Embora seja uma conclusão preliminar, os resultados aqui apresentados são animadores e incentivam a realização de novos testes e novos estudos para melhor compreender como ocorre esta dinâmica conformacional apresentada.

5 CONCLUSÕES

O presente trabalho foi bem sucedido na descoberta e proposição de otimização de novos ligantes direcionados ao sitio de interação inédito e não explorado presente na região da alça C'D da PD-1. As simulações envolvendo cossolventes orgânicos possibilitaram a identificação de regiões da PD-1 propensas a interagir com pequenas moléculas, assim como investigar de forma preliminar características estruturais e químicas importantes para a ocorrência destas interações. O sítio envolvendo a região da alça C'D foi escolhido dentre os demais sítios preditos por apresentar alta quantidade de contatos nativos e por estar localizado próximo à interface de interação entre PD-1 e PD-L1. Embora envolvido na interação com o anticorpo pembrolizumabe, a ideia de trabalhar com pequenas moléculas direcionadas a esta região se mostrou promissora e interessante. As análises realizadas através de servidores (DogSiteScorer), programas (fpocket) e ferramentas associadas ao AmberTools permitiram caracterizar o sítio e descrever a dinâmica conformacional das sondas na região. As subestruturas químicas associadas ao fenol, benzeno e Imidazol possibilitaram maior estabilidade destas sondas na região, preliminarmente indicando a importância de regiões cíclicas e aromáticas na interação com o sítio.

A triagem virtual tendo como alvo a estrutura da PD-L1, juntamente com os ensaios de *docking* e *ensemble docking*, permitiram filtrar e selecionar ligantes dentro de um banco de dados de 21 milhões de moléculas. A aplicação de dinâmicas moleculares e a análise da estabilidade dos ligantes, via RMSD e distância ao centro do sítio, trouxe maior confiabilidade para a seleção dos melhores ligantes. A análise de interações via cpptraj, juntamente com os ensaios de MM/GBSA, trouxeram informações acerca dos modos de interação relacionados a acomodação dos ligantes no sítio. Os resultados obtidos dão suporte para que novas *triagens virtuais* sejam realizadas, de forma a validar os enunciados e as observações aferidas neste trabalho. A investigação minuciosa e aprofundada direcionada ao suposto impacto dos ligantes selecionados na interface de interação entre PD-1 e PD-L1 deve ser realizada, assim como a detecção e a mensuração da desejável redução na interação e afinidade entre as duas proteínas. Por fim, experimentos como calorimetria, cristalografia e espectrometria de massa com troca H - deutério podem confirmar a presença e interação do ligante no sítio proposto.
6 PERSPECTIVAS

 Realizar novas triagens virtuais, tendo como referência as moléculas destacadas e as características químicas e estruturais desejáveis sugeridas neste trabalho;

• Realizar novas dinâmicas moleculares, abrangendo mais replicatas, com o objetivo de atestar a estabilidade dos ligantes;

 Caracterizar e descrever a influência e o impacto na região de interface de interação principal envolvendo PD-1 e PD-L1 dos ligantes presentes no sítio de interação proposto;

• Realizar ensaios experimentais com o objetivo de verificar a interação e a presença dos ligantes no sítio proposto;

Realizar ensaios experimentais envolvendo PD-1 (com o ligante no sítio)
e PD-L1 de forma a verificar o prejuízo de interação ou a disruptura e não formação do complexo.

REFERÊNCIAS

ABBAS, A. K.; LICHTMAN, A. H.; PILLAI, S. **Imunologia Celular e Molecular**. 8. ed. [*s.l*.]: Elsevier Brasil, 2015.

AGATA, Y. *et al.* Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. **International Immunology**, [*s.l.*], v. 8, n. 5, p. 765-772, 1996.

AKBAR, A. N. *et al.* Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. **The Journal of Immunology**, [*s.l.*], v. 140, n. 7, p. 2171-2178, 1988.

ALBERTS, B. *et al.* **Biologia Molecular da Célula**. 6 . ed. [*s.l.*]: Artmed Editora, 2010.

ALBUQUERQUE, A. O. **Avaliação computacional de um conjunto de fragmentos de anticorpos anti-DLL1 como base para a proposição de um novo biofármaco**. CE. 2020. 135 f. Dissertação (Mestrado em Biotecnologia de Recursos Naturais) – Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal do Ceará, Fortaleza, 2020.

ALHOSSARY, A. *et al.* Fast, accurate, and reliable molecular docking with QuickVina 2. **Bioinformatics**, [*s.l.*], v. 31, n. 13, p. 2214-2216, 2015.

ALVAREZ-GARCIA, D.; BARRIL, X. Molecular simulations with solvent competition quantify water displaceability and provide accurate interaction maps of protein binding sites. **Journal of Medicinal Chemistry**, [s.l.], v. 57, n. 20, p. 8530-8539, 2014.

ALVES, V. M. *et al.* Quimioinformática: uma introdução. **Química Nova**, [*s.l.*], v. 41, n. 2, p. 202-212, 2018.

AMARO, R. E. *et al.* Ensemble docking in drug discovery. **Biophysical Journal**, [*s.l.*], v. 114, n. 10, p. 2271-2278, 2018.

ARCON, J. P. *et al.* Molecular dynamics in mixed solvents reveals protein–ligand interactions, improves docking, and allows accurate binding free energy predictions. **Journal of Chemical Information and Modeling**, [s.*l*.], v. 57, n. 4, p. 846-863, 2017.

AZUMA, T. *et al.* B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. **Blood, The Journal of the American Society of Hematology**, [s.*l*.], v. 111, n. 7, p. 3635-3643, 2008.

BAELL, J. B. Feeling nature's PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). **Journal of Natural Products**, [s.*l*.], v. 79, n. 3, p. 616-628, 2016.

BALLANTE, F.; MARSHALL, G.R. An automated strategy for binding-pose selection and docking assessment in structure-based drug design. **Journal of Chemical Information and Modeling**, [s.*l*.], v. 56, n. 1, p. 54-72, 2016.

BANEGAS-LUNA, A.; CERÓN-CARRASCO, J.P.; PÉREZ-SÁNCHEZ, H. A review of ligand-based virtual screening web tools and screening algorithms in large molecular databases in the age of big data. **Future Medicinal Chemistry**, [s.l.], v. 10, n. 22, p. 2641-2658, 2018.

BARDHAN, K.; ANAGNOSTOU, T.; BOUSSIOTIS, V. A. The PD1: PD-L1/2 pathway from discovery to clinical implementation. **Frontiers in immunology**, [s.l.], v. 7, p. 550, 2016.

BAYLIN, S. B.; JONES, P. A. A decade of exploring the cancer epigenome biological and translational implications. **Nature Reviews Cancer**, [s.l.], v. 11, n. 10, p. 726-734, 2011.

BECKMAN, R. A.; WEINER, L. M.; DAVIS, H. M. Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. **Cancer**, [*s.l.*], v. 109, n. 2, p. 170-179, 2007.

BIVONA, T. G. *et al.* Phospholipase Cγ activates Ras on the Golgi apparatus by means of RasGRP1. **Nature**, [*s.l.*], v. 424, n. 6949, p. 694-698, 2003.

BOLHUIS, P. G. Sampling kinetic protein folding pathways using all-atom models. *In*: **Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology**. [*s.l.*]: Springer, Berlin, Heidelberg, v. 1, p. 393-433, 2006.

BOLLAG, G. *et al.* Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. **Nature**, [*s.l.*], v. 467, n. 7315, p. 596-599, 2010.

BRAHMER, J. R. *et al.* Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. **New England Journal of Medicine**, [s.*l*.], v. 366, n. 26, p. 2455-2465, 2012.

BRAY, F. *et al.* Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. **CA: a cancer journal for clinicians**, [*s.l.*], v. 68, n. 6, p. 394-424, 2018.

BUTINA, D.; SEGALL, M. D.; FRANKCOMBE, K. Predicting ADME properties in silico: methods and models. **Drug Discovery Today**, [*s.l.*], v. 7, n. 11, p. S83-S88, 2002.

CASE, D. *et al.* **The Amber Molecular Dynamics Package**. Disponível em: https://ambermd.org. Acesso: 04 nov. 2019.

CASE, D. A. *et al.* AMBER 20, Users' Manual. **University of California, San Francisco**, [*s.l.*], v. 30, 2020.

CAVANAGH, M.; FINDLAY, E. G. T-Cell Activation. **British Society of Immunology**. Disponível em: https://www.immunology.org/public-information/bitesized-immunology/systems-and-processes/t-cell-activation. Acesso: 03 jan. 2020.

CHAMES, P. *et al.* Therapeutic antibodies: successes, limitations and hopes for the future. **British Journal of Pharmacology**, [*s.l.*], v. 157, n. 2, p. 220-233, 2009. CHENG, X. *et al.* Structure and interactions of the human programmed cell death 1 receptor. **Journal of Biological Chemistry**, [*s.l.*], v. 288, n. 17, p. 11771-11785, 2013.

CHUPAK, L. S; ZHENG, X. **Compounds useful as immunomodulators**. Depositante: Bristol-Myers Squibb Company. WO2015034820. Depósito: 12 mar. 2015.

CHUPAK, L. S. *et al.* **Compounds useful as immunomodulators**. Depositante: Bristol-Myers Squibb Company. WO2015160641A3. Depósito: 22 out. 2015.

COSTA, A. H. D. S. **Simulação de dinâmica molecular com co-solvente para busca de novos sítios de interação na proteína PD-L1**. Trabalho de conclusão de curso – Bacharelado em Biotecnologia, Universidade Federal do Ceará, Fortaleza, 2019.

CRUVINEL, W. D. M. *et al.* Sistema imunitário: Parte I. Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. **Revista Brasileira de Reumatologia**, [s.*l.*], v. 50, n. 4, p. 434-447, 2010.

DE FREITAS, R. F; SCHAPIRA, M. A systematic analysis of atomic protein–ligand interactions in the PDB. **Medicinal Chemistry Communications**, [*s.l.*], v. 8, n. 10, p. 1970-1981, 2017.

DELVES, P. J. Autoimmunity. **Encyclopedia of Immunology**. 2 ed. [*s.l*.]: Oxford: Elsevier, p. 292–296, 1998.

DIALLO, B. N. T. *et al.* Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through proteome scale computational drug discovery and in vitro assay. **Scientific Reports**, [s.*l*.], v. 11, n. 1, p. 1-15, 2021.

DIAMOND, B.; LIPSKY, P. E. Chapter 348: Autoimmunity and Autoimmune Diseases. **Harrison's Principles of Internal Medicine**. 19. ed. [*s.l.*]: McGraw-Hill Education / Medical, 2014.

DOLINSKY, T. J. *et al.* PDB2PQR: an automated pipeline for the setup of Poisson– Boltzmann electrostatics calculations. **Nucleic Acids Research**, [*s.l.*], v. 32, n. suppl_2, p. W665-W667, 2004.

DONG, D. *et al*. Parallelization of molecular docking: a review. **Current Topics in Medicinal Chemistry**, [*s.l.*], v. 18, n. 12, p. 1015-1028, 2018.

DONG, H. *et al.* Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. **Nature Medicine**, [s.*l*.], v. 8, n. 8, p. 793-800, 2002.

DURRANT, J. D.; MCCAMMON, J. A. Molecular dynamics simulations and drug discovery. **BMC Biology**, [*s.l.*], v. 9, n. 1, p. 1-9, 2011.

EDINK, E. *et al.* Fragment growing induces conformational changes in acetylcholinebinding protein: a structural and thermodynamic analysis. **Journal of the American Chemical Society**, [s.l.], v. 133, n. 14, p. 5363-5371, 2011.

EGAN, W. J. Computational models for ADME. **Annual reports in medicinal chemistry**, [*s.l.*], v. 42, p. 449-467, 2007.

EKHTEIARI, S. R, SERHAT, I.Y, DURDAGI, S.; STEIN, M.; YURTSEVER, M.A QM protein-ligand investigation of antipsychotic drugs with the dopamine D2 Receptor (D2R). Journal of Biomolecular Structure and Dynamics, [s.l.], p. 1–10, 2017.

EVANGELISTA FALCON, W. *et al.* Ensemble docking in drug discovery: how many protein configurations from molecular dynamics simulations are needed to reproduce known ligand binding? **The Journal of Physical Chemistry B**, [*s.l.*], v. 123, n. 25, p. 5189-5195, 2019.

EVANGELISTA, W. *et al.* Ensemble-based docking: From hit discovery to metabolism and toxicity predictions. **Bioorganic & Medicinal Chemistry**, [s.*l*.], v. 24, n. 20, p. 4928-4935, 2016.

EVANS, B.; EVANS, S. Immune checkpoint inhibitors in cancer: pharmacology and toxicities. **The Pharmaceutical Journal**, [*s.l.*], v. 300, n. 7913, p. 10, 2018.

FISCHER, A. *et al.* Decision making in structure-based drug discovery: visual inspection of docking results. **Journal of Medicinal Chemistry**, [s./.], v. 64, n. 5, p. 2489-2500, 2021.

FOKOUE, H. H. *et al.* HÁ ALGO NOVO NO RECONHECIMENTO MOLECULAR APLICADO À QUÍMICA MEDICINAL? **Química Nova**, [s.*l*.], v. 43, n. 1, p. 78-89, 2020.

FREEMAN, G. J. *et al.* Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. **The Journal of experimental medicine**, [s.*l.*], v. 192, n. 7, p. 1027-1034, 2000.

FRIESNER, R. A. *et al.* Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein– ligand complexes. **Journal of Medicinal Chemistry**, [s.*l.*], v. 49, n. 21, p. 6177-6196, 2006.

FUNDAÇÃO OSWALDO CRUZ. Vacinas: as origens, a importância e os novos debates sobre seu uso. Disponível em:

https://www.bio.fiocruz.br/index.php/br/noticias/1263-vacinas-as-origens-aimportancia-e-os-novos-debates-sobre-seu-uso?start=1. Acesso em: 03 maio. 2021.

GAIEB, Z. *et al.* D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings. **Journal of Computer-aided Molecular Design**, [s.*l*.], v. 33, n. 1, p. 1-18, 2019.

GALLIVAN, J. P.; DOUGHERTY, D. A. Cation-π interactions in structural biology. **Proceedings of the National Academy of Sciences**, [s./.], v. 96, n. 17, p. 9459-9464, 1999.

GANESAN, A. *et al.* Comprehensive in vitro characterization of PD-L1 small molecule inhibitors. **Scientific Reports**, [s.*l.*], v. 9, n. 1, p. 1-19, 2019.

GARON, E. B. *et al.* Pembrolizumab for the treatment of non–small-cell lung cancer. **New England Journal of Medicine**, [*s.l.*], v. 372, n. 21, p. 2018-2028, 2015.

GENHEDEN, S.; RYDE, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. **Expert opinion on drug discovery**, [s.*l*.], v. 10, n. 5, p. 449-461, 2015.

GHANAKOTA, P.; CARLSON, H. A. Driving structure-based drug discovery through cosolvent molecular dynamics: Miniperspective. **Journal of Medicinal Chemistry**, [*s.l.*], v. 59, n. 23, p. 10383-10399, 2016.

GUEDES, I. A. *et al.* New machine learning and physics-based scoring functions for drug discovery. **Scientific Reports**, [*s.l.*], v. 11, n. 1, p. 1-19, 2021.

GOHLKE, H.; CASE, D. A. Converging free energy estimates: MM-PB (GB) SA studies on the protein–protein complex Ras–Raf. **Journal of Computational Chemistry**, [s.*l*.], v. 25, n. 2, p. 238-250, 2004.

GOTTLIEB, A.; ALMSI, G. **Highly parallel computing**. 2. ed. [*s.l*.]: Benjamin-Cummings Pub Co, 1989.

GREENWALD, R. J.; FREEMAN, G. J.; SHARPE, A. H. The B7 family revisited. **Annual Review of Immunology**, [s.*l*.], v. 23, p. 515-548, 2005.

GUZIK, K. *et al.* Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. **Journal of Medicinal Chemistry**, [*s.l.*], v. 60, n. 13, p. 5857-5867, 2017.

HAMANISHI, J. *et al.* Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. **Proceedings of the National Academy of Sciences**, [s.*l*.], v. 104, n. 9, p. 3360-3365, 2007.

HANAHAN, D.; WEINBERG, R. A. Hallmarks of cancer: the next generation. **Cell**, [*s.l.*], v. 144, n. 5, p. 646-674, 2011.

HASSAN, M. *et al.* Molecular docking and dynamic simulation of AZD3293 and solanezumab effects against BACE1 to treat Alzheimer's disease. **Frontiers in Computational Neuroscience**, [s.*l.*], v. 12, p. 34, 2018.

HAWKINS, G. D.; CRAMER, C. J.; TRUHLAR, D. G. Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. **The Journal of Physical Chemistry**, [*s.l.*], v. 100, n. 51, p. 19824-19839, 1996.

HAWKINS, P. C. D *et al.* Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. **Journal of chemical information and modeling**, [s.*l.*], v. 50, n. 4, p. 572-584, 2010.

HINO, R. *et al.* Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer: Interdisciplinary International **Journal of the American Cancer Society**, [s.*l*.], v. 116, n. 7, p. 1757-1766, 2010.

HODI, F. S. *et al.* Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. **The Lancet Oncology**, [s.*l*.], v. 17, n. 11, p. 1558-1568, 2016.

HOLLADAY, A. J.; POOLE, J.C.F. Thucydides and the Plague of Athens. **The Classical Quarterly**, [*s.l*.], v. 29, n. 2, p. 282-300, 1979.

HOPKINS, A. L. *et al.* The role of ligand efficiency metrics in drug discovery. **Nature Reviews Drug Discovery**, [*s.l.*], v. 13, n. 2, p. 105-121, 2014.

HOPKINS, C. W. *et al.* Long-time-step molecular dynamics through hydrogen mass repartitioning. **Journal of Chemical Theory and Computation**, [*s.l.*], v. 11, n. 4, p. 1864-1874, 2015.

HORITA, S. *et al*. High-resolution crystal structure of the therapeutic antibody pembrolizumab bound to the human PD-1. **Scientific Reports**, [s.l.], v. 6, n. 1, p. 1-8, 2016.

INSTITUTO NACIONAL DO CÂNCER (INCA). Estimativa 2020 – Introdução. Disponível em: https://www.inca.gov.br/estimativa/introducao. Acesso: 10 jan. 2020.

ISHIDA, Y. *et al.* Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. **The EMBO Journal**, [*s.l.*], v. 11, n. 11, p. 3887-3895, 1992.

IWAI, Y. *et al.* Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. **Proceedings of the National Academy of Sciences**, [*s.l.*], v. 99, n. 19, p. 12293-12297, 2002.

JAGHOORI, M. M.; BLEIJLEVENS, B.; OLABARRIAGA, S.D. 1001 Ways to run AutoDock Vina for virtual screening. **Journal of Computer-aided Molecular Design**, [s.l.], v. 30, n. 3, p. 237-249, 2016.

JAKHAR, R. *et al.* Relevance of Molecular Docking Studies in Drug Designing. **Current Bioinformatics**, [*s.l.*], v. 15, n. 4, p. 270-278, 2020.

JANEWAY, C. A. How the immune system works to protect the host from infection: a personal view. **Proceedings of the National Academy of Sciences**, [s.*l*.], v. 98, n. 13, p. 7461-7468, 2001.

JIMÉNEZ-GARCÍA, B. *et al.* LightDock: a new multi-scale approach to protein– protein docking. **Bioinformatics**, [s.l.], v. 34, n. 1, p. 49-55, 2018.

JONES, G. *et al.* Development and validation of a genetic algorithm for flexible docking. **Journal of Molecular Biology**, [s.*l*.], v. 267, n. 3, p. 727-748, 1997. JORGENSEN, W. L. *et al.* Comparison of simple potential functions for simulating liquid water. **The Journal of Chemical Physics**, [s.*l*.], v. 79, n. 2, p. 926–935, 15 jul. 1983.

JUNQUEIRA, F. Imunoterapia muda o tratamento do câncer fazendo o próprio organismo combater o tumor. JORNAL EXTRA. Disponível em: https://extra.globo.com/noticias/saude-e-ciencia/imunoterapia-muda-tratamento-docancer-fazendo-proprio-organismo-combater-tumor-19770163.html. Acesso: 27 jan. 2021.

KARATZAS, E. *et al.* ChemBioServer 2.0: an advanced web server for filtering, clustering and networking of chemical compounds facilitating both drug discovery and repurposing. **Bioinformatics**, [*s.l.*], v. 36, n. 8, p. 2602-2604, 2020.

KEIR, M. E. *et al.* PD-1 and its ligands in tolerance and immunity. **Annual Review of Immunology**, [*s.l.*], v. 26, p. 677-704, 2008.

KHERA, N.; RAJPUT, S. Therapeutic potential of small molecule inhibitors. **Journal** of Cellular Biochemistry, [s.l.], v. 118, n. 5, p. 959-961, 2017.

KIM, D. *et al.* Pocket extraction on proteins via the Voronoi diagram of spheres. **Journal of Molecular Graphics and Modelling**, [s.*l*.], v. 26, n. 7, p. 1104–1112, 2008.

KIM, S. *et al.* PubChem 2019 update: improved access to chemical data. **Nucleic Acids Research**, [*s.l.*], v. 47, n. D1, p. D1102–D1109, 2019.

KIMURA, S. R. *et al.* Deciphering cryptic binding sites on proteins by mixed-solvent molecular dynamics. **Journal of Chemical Information and Modeling**, [s./.], v. 57, n. 6, p. 1388-1401, 2017.

KOLB, P.; IRWIN, J. J. Docking screens: right for the right reasons? **Current Topics** in **Medicinal Chemistry**, [*s.l.*], v. 9, n. 9, p. 755-770, 2009.

KOLLMAN, P. A. *et al.* Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. **Accounts of Chemical Research**, [s./.], v. 33, n. 12, p. 889-897, 2000.

KONTOYIANNI, M. Docking and virtual screening in drug discovery. *In*: **Proteomics For Drug Discovery**, v. 1647. [*s*.*l*.]: Humana Press, New York, NY, 2017. p. 255-266.

KOPALLI, S. R. *et al.* Novel small molecule inhibitors of programmed cell death (PD)-1, and its ligand, PD-L1 in cancer immunotherapy: a review update of patent literature. **Recent patents on Anti-cancer Drug Discovery**, [*s.l.*], v. 14, n. 2, p. 100-112, 2019.

KOTTSCHADE, L. A. Incidence and management of immune-related adverse events in patients undergoing treatment with immune checkpoint inhibitors. **Current Oncology Reports**, [*s.l.*], v. 20, n. 3, p. 1-8, 2018.

KUBINYI, H.; MANNHOLD, R.; TIMMERMAN, H. Virtual Screening for Bioactive **Molecules**. v. 10. [*s.l*]: John Wiley & Sons, 2008.

KUMARI, R. *et al.* g_mmpbsa: A GROMACS tool for high-throughput MM-PBSA calculations. **Journal of Chemical Information and Modeling**, [*s.l.*], v. 54, n. 7, p. 1951-1962, 2014.

KURCZAB, R. *et al.* Salt bridge in ligand–protein complexes—systematic theoretical and statistical investigations. **Journal of Chemical Information and Modeling**, [*s.l.*], v. 58, n. 11, p. 2224-2238, 2018.

LATCHMAN, Y. *et al.* PD-L2 is a second ligand for PD-1 and inhibits T cell activation. **Nature Immunology**, [*s.l.*], v. 2, n. 3, p. 261-268, 2001.

LE GUILLOUX, V.; SCHMIDTKE, P.; TUFFERY, P. Fpocket: An open source platform for ligand pocket detection. **BMC Bioinformatics**, [s.*l*.], v. 10, n. 1, p. 168, 2009.

LEE, H. *et al.* GalaxyPepDock: a protein–peptide docking tool based on interaction similarity and energy optimization. **Nucleic Acids Research**, [s.*l*.], v. 43, n. W1, p. W431-W435, 2015.

LEACH, A. R.; GILLET, V. J. An Introduction to Chemoinformatics. 1. ed. [s.*l*.]: Springer, 2007.

LENGAUER, T.; RAREY, M. Computational methods for biomolecular docking. **Current Opinion in Structural Biology**, [s.*l*.], v. 6, n. 3, p. 402-406, 1996.

LEWIS, A. L. *et al.* Immune checkpoint inhibitors: a narrative review of considerations for the anaesthesiologist. **British journal of anaesthesia**, [s.*l*.], v. 124, n. 3, p. 251-260, 2020.

LI, B.; CHAN, H. L.; CHEN, P. Immune checkpoint inhibitors: basics and challenges. **Current Medicinal Chemistry**, [*s.l.*], v. 26, n. 17, p. 3009-3025, 2019.

LIONTA, E. *et al.* Structure-based virtual screening for drug discovery: principles, applications and recent advances. **Current Topics in Medicinal Chemistry**, [s.*l*.], v. 14, n. 16, p. 1923-1938, 2014.

LIPINSKI, C. A. *et al.* Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. **Advanced Drug Delivery Reviews**, [*s.l.*], v. 23, n. 1-3, p. 3-25, 1997.

LISTON, D. R.; DAVIS, M. Clinically relevant concentrations of anticancer drugs: a guide for nonclinical studies. **Clinical Cancer Research**, [s.*l*.], v. 23, n. 14, p. 3489-3498, 2017.

LONG, E. O. Regulation of immune responses through inhibitory receptors. **Annual Review of Immunology**, [*s.l.*], v. 17, n. 1, p. 875-904, 1999.

LU, S. *et al.* Discovery of hidden allosteric sites as novel targets for allosteric drug design. **Drug Discovery Today**, [*s.l.*], v. 23, n. 2, p. 359-365, 2018.

LÜCKMANN, M. *et al.* Molecular dynamics-guided discovery of an ago-allosteric modulator for GPR40/FFAR1. **Proceedings of the National Academy of Sciences**, [*s.l.*], v. 116, n. 14, p. 7123-7128, 2019.

MAHADEVI, A. S; SASTRY, G. N. Cation– π interaction: Its role and relevance in chemistry, biology, and material science. **Chemical Reviews**, [s./.], v. 113, n. 3, p. 2100-2138, 2013.

MAIER, J. A. *et al.* ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. **Journal of Chemical Theory and Computation**, [s.*l*.], v. 11, n. 8, p. 3696–713, 11 ago. 2015.

MANNHOLD, R.; KUBINYI, H.; FOLKERS, G. **Pharmacokinetics and Metabolism in Drug design**. v. 51. [*s.l*.]: John Wiley & Sons, 2012.

MARTÍNEZ, L. *et al.* PACKMOL: a package for building initial configurations for molecular dynamics simulations. **Journal of computational chemistry**, [s.*l*.], v. 30, n. 13, p. 2157-2164, 2009.

MCHUGH, R. S.; SHEVACH, E.M. The role of suppressor T cells in regulation of immune responses. **Journal of Allergy and Clinical Immunology**, v. 110, n. 5, p. 693-702, 2002.

MEDINA, K. L. Overview of the immune system. *In*: **Handbook of Clinical Neurology**. v. 133. [*s.l*.]: Elsevier, 2016. p. 61-76.

MEDZHITOV, R.; JANEWAY J. R, Charles. Innate immunity. **New England Journal** of Medicine, [s.*l*.], v. 343, n. 5, p. 338-344, 2000.

MILLER III, B. R. *et al.* MMPBSA. py: an efficient program for end-state free energy calculations. **Journal of Chemical Theory and Computation**, [s.*l*.], v. 8, n. 9, p. 3314-3321, 2012.

MOLNAR, C; GAIR, J. **Concepts of Biology**: 1. ed. [*s.l.*]: BCcampus Open Education, 2015.

MORRIS, G. M. *et al.* AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. **Journal of Computational Chemistry**, [*s.l.*], v. 30, n. 16, p. 2785-2791, 2009.

NA, Z. *et al*. Structural basis for blocking PD-1-mediated immune suppression by therapeutic antibody pembrolizumab. **Cell Research**, [s./.], v. 27, n. 1, p. 147-150, 2017.

NAIDOO, J. *et al.* Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. **Annals of Oncology**, [*s.l.*], v. 26, n. 12, p. 2375-2391, 2015.

NAKANISHI, J. *et al.* Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. **Cancer Immunology, Immunotherapy**, [*s.l.*], v. 56, n. 8, p. 1173-1182, 2007.

NARDI, N. B. Caderno de Imunologia. [s./.]: UFRGS, 2002.

NATIONAL INSTITUTE OF HEALTH. **Hematopoietic Stem Cells**. Disponível em: https://stemcells.nih.gov/info/2001report/chapter5.html. Acesso: 10 jan. 2021.

NELSON, D. L.; COX, M. M. **Princípios de Bioquímica de** Lehninger. 7. ed. [*s.l.*]: Artmed Editora, 2018.

NISHIMURA, H. *et al.* Developmentally regulated expression of the PD-1 protein on the surface of double-negative (CD4–CD8–) thymocytes. **International Immunology**, [s.*l.*], v. 8, n. 5, p. 773-780, 1996.

NOMI, T. *et al.* Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. **Clinical Cancer Research**, [s.*l.*], v. 13, n. 7, p. 2151-2157, 2007.

NOVOA, E. M. *et al.* Ensemble docking from homology models. **Journal of Chemical Theory and Computation**, [*s.l.*], v. 6, n. 8, p. 2547-2557, 2010.

O'BOYLE, N. M. *et al.* Open Babel: An open chemical toolbox. **Journal of Cheminformatics**, [*s.l.*], v. 3, n. 1, p. 1-14, 2011.

OESTREICH, K. J. *et al.* NFATc1 regulates PD-1 expression upon T cell activation. **The Journal of Immunology**, [*s.l.*], v. 181, n. 7, p. 4832-4839, 2008.

OHIGASHI, Y. *et al.* Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. **Clinical Cancer Research**, [s.*l.*], v. 11, n. 8, p. 2947-2953, 2005.

OLEINIKOVAS, V. *et al.* Understanding cryptic pocket formation in protein targets by enhanced sampling simulations. **Journal of the American Chemical Society**, [s./.], v. 138, n. 43, p. 14257-14263, 2016.

OLSSON, M. H. M *et al.* PROPKA3: consistent treatment of internal and surface residues in empirical p K a predictions. **Journal of Chemical Theory and Computation**, [s./.], v. 7, n. 2, p. 525-537, 2011.

Organic Chemistry Portal. **OSIRIS Property Explorer**. Disponível em: http://www.organic-chemistry.org/prog/peo/. Acesso: 15 jan. 2020.

PAISSONI, C. *et al.* GMXPBSA 2.0: A GROMACS tool to perform MM/PBSA and computational alanine scanning. **Computer Physics Communications**, [s.*l*.], v. 185, n. 11, p. 2920-2929, 2014.

PARDOLL, D. M. The blockade of immune checkpoints in cancer immunotherapy. **Nature Reviews Cancer**, [*s.l.*], v. 12, n. 4, p. 252-264, 2012.

PASUPA, K. The Review of Virtual Screening Techniques. วารสาร เทคโนโลยี สารสนเทศ ลาดกระบัง, [s./.], v. 1, n. 1, 2016.

PATSOUKIS, N. *et al.* PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. **Molecular and Cellular Biology**, [*s.l.*], v. 33, n. 16, p. 3091-3098, 2013.

PATSOUKIS, N. *et al.* Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. **Science Signaling**, [s.*l*.], v. 5, n. 230, p. ra46-ra46, 2012.

PEETERS, M. C. *et al.* Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. **Trends in Pharmacological Sciences**, [*s.l.*], v. 32, n. 1, p. 35-42, 2011.

PETTERSEN, E. F. *et al.* UCSF Chimera: A visualization system for exploratory research and analysis. **Journal of Computational Chemistry**, [*s.l.*], v. 25, n. 13, p. 1605–1612, 2004.

POONGAVANAM, V.; DOAK, B. C.; KIHLBERG, J. Opportunities and guidelines for discovery of orally absorbed drugs in beyond rule of 5 space. **Current Opinion in Chemical Biology**, [s.l.], v. 44, p. 23-29, 2018.

POSTOW, M. A. *et al.* Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. **New England Journal of Medicine**, [s.*l.*], v. 372, n. 21, p. 2006-2017, 2015.

RAMAN, E. P. *et al.* Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. **Journal of Chemical Information and Modeling**, [*s.l.*], v. 53, n. 12, p. 3384-3398, 2013.

REYES, S. J. *et al.* Actualización general de inmunoterapia en cáncer. **Revista médica de Chile**, [*s.l.*], v. 148, n. 7, p. 970-982, 2020.

RIEDEL, S. Edward Jenner and the history of smallpox and vaccination. *In*: **Baylor University Medical Center Proceedings**. [*s*.*I*.]: Taylor & Francis, v. 18, 2005.

ROSTKOWSKI, M. *et al.* Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. **BMC Structural Biology**, [s.*l.*], v. 11, n. 1, p. 6, 26 jan. 2011.

SAGAN, C. Why we need to understand science. **Skeptical inquirer**, [*s.l.*], v. 14, n. 3, p. 263-269, 1990.

SANDER, T. *et al.* OSIRIS, an entirely in-house developed drug discovery informatics system. **Journal of Chemical Information and Modeling**, [s.*l*.], v. 49, n. 2, p. 232-246, 2009.

SCHNEIDER, G. Virtual screening: an endless staircase? **Nature Reviews Drug Discovery**, [s.*l*.], v. 9, n. 4, p. 273-276, 2010.

SCHUETZ, A. K.; KAY, L. E. A dynamic molecular basis for malfunction in disease mutants of p97/VCP. **Elife**, [*s.l.*], v. 5, p. e20143, 2016.

SCHULZ-GASCH, T.; STAHL, M. Binding site characteristics in structure-based virtual screening: evaluation of current docking tools. **Journal of Molecular Modeling**, [*s.l.*], v. 9, n. 1, p. 47-57, 2003.

SCHULZ-GASCH, T.; STAHL, M. Scoring functions for protein–ligand interactions: a critical perspective. **Drug Discovery Today: Technologies**, [s.*l*.], v. 1, n. 3, p. 231-239, 2004.

SCHWEIZER, D.; SERNO, T.; GOEPFERICH, A. Controlled release of therapeutic antibody formats. **European Journal of Pharmaceutics and Biopharmaceutics**, [s.*l*.], v. 88, n. 2, p. 291-309, 2014.

SHAIKH, S. A. *et al.* From drug target to leads-sketching a physicochemical pathway for lead molecule design in silico. **Current pharmaceutical design**, [s.*l*.], v. 13, n. 34, p. 3454-3470, 2007.

SHAN, Y. *et al*. How does a drug molecule find its target binding site? **Journal of the American Chemical Society**, [*s.l.*], v. 133, n. 24, p. 9181-9183, 2011.

SHEN, J.; ZHANG, W.; FANG, H.; PERKINS, R.; TONG, W.; HONG, H. Homology modeling, molecular docking, and molecular dynamics simulations elucidated α -fetoprotein binding modes. **BMC Bioinformatics**, [s.*l*.], 14 (Suppl 14), S6, 2013.

SHENG, J. *et al.* Clinical pharmacology considerations for the development of immune checkpoint inhibitors. **The Journal of Clinical Pharmacology**, [s.*l*.], v. 57, p. S26-S42, 2017.

SHEPPARD, K. *et al.* PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and downstream signaling to PKCθ. **FEBS letters**, [s.*l*.], v. 574, n. 1-3, p. 37-41, 2004.

SHKURTI, A. *et al.* pyPcazip: A PCA-based toolkit for compression and analysis of molecular simulation data. **SoftwareX**, [s.*l.*], v. 5, p. 44–50, 2016.

SIDORENKO, S. P.; CLARK, E. A. The dual-function CD150 receptor subfamily: the viral attraction. **Nature immunology**, [s.l.], v. 4, n. 1, p. 19-24, 2003.

SINGULAR MEDICAMENTOS. **Keytruda 100MG/4 ML - 1 Frasco 4 ML**. Disponível em: https://www.singularmedicamentos.com.br/produto/keytruda-100mg-4ml-1-frasco-4ml-88286. Acesso: 18 jan. 2021.

SLATER, O.; KONTOYIANNI, M. The compromise of virtual screening and its impact on drug discovery. **Expert Opinion on Drug Discovery**, [s.*l*.], v. 14, n. 7, p. 619-637, 2019.

SRINIVASAN, J. *et al.* Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate – DNA helices. **Journal of the American Chemical Society**, [s./.], v. 120, n. 37, p. 9401-9409, 1998.

STOURAC, J. *et al.* Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. **Nucleic acids research**, [*s.l.*], v. 47, n. W1, p. W414-W422, 2019.

TAN, Y. S. *et al.* Benzene probes in molecular dynamics simulations reveal novel binding sites for ligand design. **The Journal of Physical Chemistry Letters**, [s.*l*.], v. 7, n. 17, p. 3452-3457, 2016.

TANG, S.; KIM, P. S. A high-affinity human PD-1/PD-L2 complex informs avenues for small-molecule immune checkpoint drug discovery. **Proceedings of the National Academy of Sciences**, [*s.l.*], v. 116, n. 49, p. 24500-24506, 2019.

TAVASSOLI, Z.; TAGHDIR, M.; RANJBAR, B. Renin inhibition by soyasaponin I: A potent native anti-hypertensive compound. **Journal of Biomolecular Structure and Dynamics**, [*s*.*l*.], v. 36, n. 1, p. 166-176, 2018.

THE INTERNATIONAL AGENCY FOR RESEARCH ON CANCER. **Globocan 2020**. Disponível em: https://www.uicc.org/news/globocan-2020-new-global-cancer-data. Acesso: 15 jan. 2020.

THOMPSON, R. H. *et al.* Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. **Proceedings of the National Academy of Sciences**, [*s.l.*], v. 101, n. 49, p. 17174-17179, 2004.

TROTT, O.; OLSON, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. **Journal of Computational Chemistry**, [s.*l*.], v. 31, n. 2, p. 455-461, 2010.

VAN DER ZANDEN, S.Y. *et al.* Opportunities for small molecules in cancer immunotherapy. **Trends in immunology**, [*s.l.*], 2020.

VANQUELEF, E. *et al.* R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. **Nucleic Acids Research**, [*s.l.*], v. 39, n. Suppl 2, p. W511–W517, 2011.

VASSETTI, D.; PAGLIAI, M.; PROCACCI, P. Assessment of GAFF2 and OPLS-AA General Force Fields in Combination with the Water Models TIP3P, SPCE, and OPC3 for the Solvation Free Energy of Druglike Organic Molecules. **Journal of Chemical Theory and Computation**, [*s.l.*], v. 15, n. 3, p. 1983–1995, 2019.

VEBER, D. F. *et al.* Molecular properties that influence the oral bioavailability of drug candidates. **Journal of Medicinal Chemistry**, [s.*l*.], v. 45, n. 12, p. 2615-2623, 2002. VERLI, H. **Bioinformática: da Biologia à Flexibilidade Moleculares**. 1. ed. [s.*l*.]: FAPERRGS, 2014.

VOLKAMER, A. *et al.* Combining global and local measures for structure-based druggability predictions. **Journal of Chemical Information and Modeling**, v. 52, n. 2, p. 360-372, 2012.

WANG, E. *et al*. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. **Chemical Reviews**, v. 119, n. 16, p. 9478-9508, 2019.

WANG, Y. *et al.* PubChem: a public information system for analyzing bioactivities of small molecules. **Nucleic Acids Research**, [s.*l*.], v. 37, n. Web Server, p. W623–W633, 2009.

WASZKOWYCZ, B. Towards improving compound selection in structure-based virtual screening. **Drug Discovery Today**, [*s.l.*], v. 13, n. 5-6, p. 219-226, 2008.

WENG, G. *et al.* Assessing the performance of MM/PBSA and MM/GBSA methods. Prediction reliability of binding affinities and binding poses for protein–peptide complexes. **Physical Chemistry Chemical Physics**, [*s.l.*], v. 21, n. 19, p. 10135-10145, 2019.

WU, C. *et al.* Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. **Acta Histochemica**, [s.*l*.], v. 108, n. 1, p. 19-24, 2006.

WU, Q. *et al*. Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway. **Acta Pharmacologica Sinica**, [*s.l*.], p. 1-9, 2020.

WU, W. *et al*. Structural insights into ligand binding features of dual FABP4/5 inhibitors by molecular dynamics simulations. **Journal of Biomolecular Structure and Dynamics**, [*s.l.*], 2019.

XIANG, M. *et al.* Computer-aided drug design: lead discovery and optimization. **Combinatorial Chemistry & High Throughput Screening**, [s.*l*.], v. 15, n. 4, p. 328-337, 2012.

XU, L. *et al.* Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. **The Journal of Physical Chemistry B**, [*s.l.*], v. 117, n. 28, p. 8408-8421, 2013.

YAGI, H. *et al.* Crucial role of FOXP3 in the development and function of human CD25+ CD4+ regulatory T cells. **International immunology**, [s.*l*.], v. 16, n. 11, p. 1643-1656, 2004.

YAMAZAKI, T. *et al.* Expression of programmed death 1 ligands by murine T cells and APC. **The Journal of Immunology**, [*s.l.*], v. 169, n. 10, p. 5538-5545, 2002.

YANG, Z. Y. *et al.* Application of negative design to design a more desirable virtual screening library. **Journal of Medicinal Chemistry**, [s.*l*.], v. 63, n. 9, p. 4411-4429, 2020.

ZAK, K. M. *et al.* Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). **Oncotarget**, [*s.l.*], v. 7, n. 21, p. 30323, 2016.

ZAK, K. M. *et al.* Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. **Structure**, [*s.l.*], v. 25, n. 8, p. 1163-1174, 2017.

ZAK, K. M. *et al.* Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. **Structure**, [*s.l.*], v. 23, n. 12, p. 2341-2348, 2015.

ZHONG, X. *et al.* PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for VH11/VH12 and phosphatidylcholine binding. **European Journal of Immunology**, [s.*l*.], v. 37, n. 9, p. 2405-2410, 2007.

ZOU, W.; CHEN, L. Inhibitory B7-family molecules in the tumour microenvironment. **Nature Reviews Immunology**, [*s.l.*], v. 8, n. 6, p. 467, 2008.

APÊNDICE A – TABELA DE CONTATOS NATIVOS ENTRE AS DIFERENTES SONDAS E PD-1

Id	entificação		Contat	os nativ	os por o	quadros	de simu	ılação (I	PD-1/a	cetato)		Ide	entificação		Contat	os nativ	os por o	quadros	de simu	ulação (F	PD-1/a	cetato)	_
PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10	PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	MET33	13558	9470	13149	11710	15758	11507	16782	15693	9266	2253	60	ASP92	1926	3927	3628	4608	1781	2070	3648	3144	3795	544
2	PRO34	6088	3920	8233	5215	7119	3756	9973	9953	3682	1901	61	SER93	4403	6058	7029	7394	2723	6054	3641	8512	6557	1030
3	PRO35	3598	913	6027	630	1743	1025	4034	2463	1104	2260	62	ARG94	7737	11196	13502	8518	4115	6570	12422	13803	10412	1449
4	THR36	2897	3822	3354	2073	4020	5633	2163	2660	1840	76	63	PHE95	177	2070	3832	2334	317	158	670	1314	757	18
5	PHE37	1502	1722	1038	344	2171	2749	502	1592	357	15	64	ARG96	10175	16998	9991	17775	6971	6562	7287	13036	12578	2312
6	SER38	3036	3062	3841	1549	3500	5278	1384	3076	1317	97	65	VAL97	832	5784	2318	4989	1147	972	203	465	2312	508
7	PRO39	2563	2130	2621	1701	1441	3184	2122	1825	1450	63	66	THR98	2578	9136	5150	7709	3737	2615	1137	1799	3758	650
8	ALA40	2653	1604	2369	1740	1447	1798	1673	1796	1117	32	67	GLN99	1441	2002	1414	1633	1509	2073	1620	1683	2284	288
9	LEU41	4992	3703	3857	3322	3590	5119	3950	3503	2646	350	68	LEU100	1616	2151	2512	1061	2127	1861	1923	2355	1713	366
10	LEU42	1317	1037	545	1773	694	821	1185	970	499	8	69	PRO101	2849	3197	4176	1858	3441	2999	3730	4032	3244	505
11	VAL43	7062	2169	4825	5090	4811	3557	2614	3498	3580	184	70	ASN102	3815	5042	5931	2730	4388	3799	5107	5269	4508	511
12	VAL44	2691	714	1174	2078	1104	924	550	1158	975	4	71	GLY103	212	1089	683	545	1002	1261	656	841	1627	29
13	THR45	3387	1673	1824	2682	2075	2333	1411	1508	3127	25	72	ARG104	8338	9608	10338	6072	5723	7653	6820	8546	8446	517
14	GLU46	7776	10268	7596	7383	13413	9628	5974	9817	11774	530	73	ASP105	651	778	1035	375	1209	986	594	756	423	127
15	GLY47	8455	11729	7868	5407	14328	9480	9186	11238	14001	1356	74	PHE106	11	166	2	18	136	927	25	104	36	0
16	ASP48	2348	1694	1651	2240	842	1399	1076	1627	1419	53	75	HIS107	2566	9509	5996	11157	3998	2781	2041	1653	3923	459
17	ASN49	5538	6212	4306	9611	3057	3260	6525	6787	6248	658	76	MET108	294	4179	1506	4177	1027	237	0	1	1580	401
18	ALA50	2206	916	423	3687	627	472	2488	1253	1119	101	77	SER109	2635	7843	4556	10783	2697	1844	3625	2950	5312	1083
19	THR51	3514	5909	2557	9794	2498	2641	4961	3063	4726	629	78	VAL110	612	463	105	2949	237	300	1917	692	1313	91
20	PHE52	34	68	732	247	389	928	84	123	387	0	79	VAL111	9019	9107	8480	12920	4992	7206	13499	14009	13782	1526
21	THR53	1269	1730	3040	1059	3206	4738	1140	2406	831	62	80	ARG112	21926	24781	20422	18263	22069	19498	25853	26705	29320	2996
22	CYX54	502	1064	893	40	2123	2233	32	1236	2	1	81	ALA113	3647	6812	4768	2549	7899	5539	3126	4601	7261	246
23	SER55	2125	1802	2556	639	3090	3822	1446	1942	834	264	82	ARG114	15367	20223	21049	15279	20528	14406	25142	23317	22306	2068
24	PHE56	15404	8405	7423	12480	6325	4843	3246	12588	12987	2243	83	ARG115	4824	7421	8139	7336	5652	8883	7167	3760	6099	291
25	SER57	9650	5825	8194	4752	6264	7632	6498	5899	5870	2423	84	ASN116	3298	3275	4611	51/6	3582	4083	5909	3032	3612	283
26	ASN58	16032	10445	11811	12438	7349	6792	7484	5854	14072	2642	85	ASP117	76	461	691	69	85	144	446	353	117	12
2/	THK59	5680	7952	8650	6722	5541	8/83	4243	5/16	3937	521	86	SER118	901	965	1584	1931	2162	1015	2037	1625	1/53	44
28	SER60	5312	10054	64//	6/24	4862	6106	4/69	8022	6119	3	8/	GLY119	1014	1323	2223	11/9	3/80	1189	1829	3450	2356	3
29	61061	2504	4977	4121	3100	2288	2420	4508	1936	2301	1/9	88	THR120	5282	2181	3014	2829	4299	2086	262	4055	5001	1/
30	BUECO	0052	4231	4121	11710	2005	3207	4808	2740	10722	140 E 41	00	1111121	224	747	956	500	747	1454	1567	55	1046	0
32	VAL64	3674	780	805	1811	1155	2744	1169	2630	2034	252	01	CVV122	1	,4,	010	0	1	2454	1307	0	1040	0
33	LEU65	0	,05	005	0	0	A1	8	101	0	0	92	GLV124	18	25	3	0	33	84	0	415	6	0
34	ASN66	6138	4137	1420	2409	2231	3443	961	6862	4320	639	93	ALA125	9685	5804	6275	10751	3429	203	213	7926	10230	73
35	TRP67	0	3	0	0	0	0	0	0	0	005	94	ILE126	15383	11411	7785	13917	6795	4176	2139	14638	15507	683
36	TYR68	5211	5748	2549	2705	3336	5549	2218	7352	6285	640	95	SER127	14138	13659	11546	15377	11460	6332	2774	12276	16286	277
37	ARG69	4610	3565	6817	5168	3883	3071	7247	6133	3893	433	96	LEU128	3671	3736	2738	2268	2863	3153	2958	1453	2124	108
38	MET70	5251	3951	7822	4396	7165	6116	9806	6089	5993	288	97	ALA129	4630	7509	3900	4652	7820	5336	4100	4936	5620	263
39	SER71	5662	5327	8190	5375	6086	4032	9818	7656	6682	356	98	PRO130	4365	4677	4119	3518	4535	4533	4599	4150	3368	122
40	PRO72	4253	6467	6484	5086	6875	4476	6661	8461	5946	409	99	LYS131	10042	10696	8055	7694	13887	10932	9001	10860	9871	673
41	SER73	3391	3427	3435	3596	3324	2671	4425	2764	4118	210	100	ALA132	8499	7715	3754	6340	9731	5884	1089	5790	10372	245
42	ASN74	3521	3639	3045	3659	5269	6259	7089	3368	3955	191	101	GLN133	10109	8079	6014	6074	12318	7048	7968	7088	8521	245
43	GLN75	5460	3752	6297	4484	4848	4635	11437	3955	5787	237	102	ILE134	7141	6361	4741	3362	5079	5415	3443	8343	5874	632
44	THR76	3232	2913	5527	2799	3798	4864	10096	2864	5005	118	103	LY\$135	21839	13163	19096	17471	15137	5759	11143	21630	17313	2559
45	ASP77	3377	3871	6137	3458	2974	2960	7170	2140	4946	332	104	GLU136	2208	1504	6267	1048	2990	2313	1958	1240	1650	63
46	LYS78	7689	8536	4078	8356	4959	7723	3796	8065	9371	1149	105	SER137	495	320	447	190	385	749	395	274	720	0
47	LEU79	44	783	1220	2833	389	12	743	427	409	138	106	LEU138	2999	2207	2361	1476	1928	2528	3004	1918	2028	38
48	ALA80	1	134	0	2184	0	5	28	233	231	0	107	ARG139	7529	4651	4847	6675	6847	7943	9198	5937	5573	339
49	ALA81	133	175	54	2137	11	219	300	199	896	7	108	ALA140	1035	30	75	1006	846	153	867	890	420	0
50	PHE82	2669	1805	1441	1434	817	1447	643	810	1527	18	109	GLU141	2290	478	679	1405	2076	531	1853	1981	1575	45
51	PRO83	2999	1092	646	1330	693	1395	1089	1013	1144	49	110	LEU142	96	29	12	82	98	4	86	29	55	1
52	GLU84	3823	1201	780	3346	1316	2664	1994	2414	4948	243	111	ARG143	8257	5942	5600	5370	8004	6626	5850	4566	6382	750
53	ASP85	4504	1244	1575	1521	1898	4425	2097	1863	2991	826	112	VAL144	1047	1841	2018	1661	1298	1314	1575	555	2018	153
54	ARG86	6510	8668	2542	9198	9381	12661	7440	7110	10701	1660	113	THR145	6606	4490	6333	4230	4616	3767	3228	2970	4598	246
55	SER87	2636	1832	1780	2629	2261	5306	3449	3230	2948	446	114	GLU146	3821	5875	5550	2206	2589	5842	2394	2180	3364	281
56	GLN88	2212	2970	2501	4695	3462	6402	3776	1898	4610	524	115	ARG147	9753	8180	10530	12902	17717	12143	10400	10419	17364	1402
57	PK089	3266	3/79	2372	4636	3/70	4/51	4980	2451	5572	284	116	AKG148	8844	1/861	11123	7244	/611	10005	6369	8013	8515	464
58	GLY90	23/9	3408	2462	3852	2204	2/61	3481	1//6	2165	352	11/	ALA149	2/92	3434	2994	2533	3043	3381	2733	2/13	1625	191
59	GLN91	1501	2/65	3081	6839	1581	1649	3107	2968	3/45	282	118	GLU150	3866	4863	4366	1864	2501	3366	3253	2256	3303	91

Ide	entificação		Contato	os nativo	os por q	uadros	de simu	lação (F	D-1 / b	enzeno)		Id	entificação		Contato	os nativo	os por q	uadros	de simu	lação (P	D-1 / b	enzeno)	
PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10	PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	MET33	16754	17922	11594	23820	15468	26569	17548	10602	19442	10152	60	ASP92	8082	11339	2959	4235	5241	2879	3101	3493	11239	12294
2	PRO34	5237	5351	5857	9534	3812	9304	8143	5459	7561	4625	61	SER93	7144	10758	13966	5779	8403	12647	10769	7062	9916	14945
3	PRO35	3343	4049	3098	8552	2272	6999	5326	3507	4021	3199	62	ARG94	6249	12713	9733	4717	8002	8132	12141	5230	8304	6095
4	THR36	12391	14751	13542	19688	16446	17221	9287	20079	10715	7375	63	PHE95	9778	11751	2809	2204	4537	6358	3554	1975	8613	10506
5	PHE37	9882	7099	6076	8307	9462	6948	5816	12749	5527	1567	64	ARG96	20833	26205	25848	13330	17823	18827	34968	30068	7098	24140
6	SER38	18040	13505	11781	13633	16366	11095	10607	19283	8021	4495	65	VAL97	14694	15336	12090	7267	7705	3211	19573	23904	619	11895
7	PRO39	14560	6504	5006	8275	6974	3979	6212	8522	2822	3403	66	THR98	21660	24906	18970	16952	13582	6927	25654	28996	2678	13822
8	ALA40	7362	4009	6735	7410	6746	4654	3628	9935	3631	4159	67	GLN99	14307	19397	10980	19264	9204	9473	6892	12663	12378	13370
9	LEU41	7492	7741	4792	17309	6913	5690	5315	8124	4486	7445	68	LEU100	19585	16280	16296	15936	13790	7209	11876	10554	6469	8374
10	LEU42	4699	5262	1909	5568	2559	1723	2968	3377	2671	3074	69	PRO101	16911	15079	16420	17462	14162	8327	11447	13749	8497	10813
11	VAL43	11768	12663	5306	18552	8602	6839	9313	8011	5690	8845	70	ASN102	7702	11526	9531	9394	9439	5690	5434	9306	8233	8569
12	VAL44	5479	5305	2539	4049	3798	1736	3422	2711	3019	2316	71	GLY103	8491	12989	6658	7730	5380	4608	2108	8383	10801	13848
13	THR45	5965	6819	4886	3820	4851	3022	3743	2602	3061	3371	72	ARG104	5884	19979	15006	18458	15732	13931	2782	18109	11583	15224
14	GLU46	13614	8091	7548	5156	14245	14193	10187	13681	9210	10823	73	ASP105	9302	10730	8597	9824	11401	7967	6851	12104	5338	4866
15	GLY47	15634	8551	8713	5207	16657	15377	11875	17050	8922	12464	74	PHE106	7374	8846	2393	9690	2449	4446	2564	3894	7716	7858
16	ASP48	3127	1680	1645	1248	3048	1321	1480	2111	2393	1510	75	HIS107	35151	28504	21982	20352	19024	7188	28071	30108	4582	13908
17	ASN49	5366	5781	7814	5591	9719	8333	8003	3777	4768	7655	76	MET108	14343	12997	6681	5153	6558	583	17601	17560	86	5666
18	ALA50	957	1740	1187	1911	2532	3104	1639	609	2114	2399	77	SER109	14849	18129	13830	12492	12845	8077	27747	23458	2217	13320
19	THR51	24188	13317	12329	11194	14476	7763	20051	21781	3987	12643	78	VAL110	277	1690	1575	2119	2978	3349	5208	26	1036	2112
20	PHE52	10929	2925	1559	2007	2643	231	1720	440	368	538	79	VAL111	7995	10898	15037	8609	13645	14111	17316	6931	9557	12102
21	THR53	24348	15436	12045	13864	16537	10498	11853	15655	7690	4677	80	ARG112	20051	13747	18496	9088	23106	18668	15444	21650	13056	16722
22	CYX54	8566	6936	4091	7186	7943	5928	6073	7216	4948	1354	81	ALA113	7013	4380	3003	2544	8033	5440	4224	6974	3566	4445
23	SER55	10420	14185	10542	16743	14216	14537	7178	16123	8385	5670	82	ARG114	15418	11822	10515	7079	17717	14160	9381	12539	11350	10929
24	PHE56	14858	25899	8801	24286	15280	28241	23281	9275	18076	14439	83	ARG115	9540	5391	3158	5871	9154	10086	9873	7631	5629	7984
25	SER57	8044	13269	6657	10943	3822	9320	12946	6212	13288	10724	84	ASN116	15462	11867	8218	8636	13064	12436	7211	9625	9387	10463
26	ASN58	12905	30266	9113	22027	17180	25463	25002	12433	20689	13687	85	ASP117	6207	7950	4937	648	2590	2024	772	233	2135	2997
27	THR59	7720	12419	9515	9831	5555	4951	7479	8342	11095	10419	86	SER118	9819	4764	8005	5438	6393	7179	7356	6855	4164	11067
28	SER60	3015	16514	12070	15143	13170	9833	4142	11549	11048	12459	87	GLY119	4820	3912	6550	3581	1718	1277	1581	2491	2285	8476
29	GLU61	9642	15577	10966	17289	9605	8721	7561	11106	13900	10068	88	THR120	10700	18120	14855	9208	10368	10203	7435	8263	21117	11933
30	SER62	7602	11669	15080	15476	10300	9483	13585	14567	14169	10248	89	TYR121	4303	6572	4997	727	2361	1391	409	83	10188	3851
31	PHE63	12720	34516	14369	29147	16964	25871	21419	20794	22713	16556	90	LEU122	24175	23492	12803	21688	17559	26309	18401	16651	26410	15538
32	VAL64	9037	14598	17408	13608	7336	8575	11974	15430	23752	8891	91	CYX123	1461	1755	595	3458	414	1564	2409	2033	1509	938
33	LEU65	1229	3517	349	5310	951	2074	20	720	5327	3114	92	GLY124	6195	5558	3650	8101	3928	6359	5752	7214	8887	6225
34	ASN66	854	2201	2383	1327	1398	2093	1280	1211	7467	3846	93	ALA125	7048	18775	5245	17920	13084	21369	18591	5251	12934	7506
35	TRP67	1	178	1	2	0	374	1	28	194	399	94	ILE126	10695	24735	15610	25082	19255	25646	23743	17001	25858	11437
36	TYR68	18238	24345	12125	20439	21064	24435	15315	18981	34572	16530	95	SER127	12547	22986	16045	27570	20167	27420	26231	19090	18304	13240
37	ARG69	26819	16003	30141	20690	27908	26705	11375	30514	24864	25154	96	LEU128	13918	16470	29902	19505	16452	13190	22929	19740	29400	17153
38	MET70	33748	28802	43716	30547	37237	42259	25341	40878	38252	31053	97	ALA129	7788	7024	13423	15619	11326	8401	9383	13056	12146	12049
39	SER71	22434	14037	36249	25426	29938	30137	16760	35217	20475	22918	98	PRO130	7913	8697	13158	13215	10797	8376	9883	15477	13087	10861
40	PRO72	13845	16884	15396	16224	15155	15447	11627	16318	17603	16079	99	LYS131	5603	6370	7998	12022	6692	5713	7142	7064	6945	7392
41	SER73	7263	3658	6220	7685	6417	5692	5965	6747	7962	5162	100	ALA132	4111	10973	6216	9852	8213	7054	8419	5670	7052	6539
42	ASN74	15494	10668	14185	11098	9976	12493	13554	11520	15757	7989	101	GLN133	9683	19806	9953	22871	12661	14174	16234	9169	11757	7626
43	GLN75	18130	4545	28678	18401	24662	25402	14161	28347	15153	16064	102	ILE134	22369	33814	17131	35261	27779	29978	22565	20347	32348	18659
44	THR76	40214	27197	38589	37549	43343	48785	30497	45070	40729	28323	103	LYS135	13492	23677	9741	23476	18207	26677	26242	9723	14281	8295
45	ASP77	24252	13301	25685	20745	26932	25002	12323	30340	21718	19722	104	GLU136	27806	21686	15947	23707	19271	27361	23871	18399	19808	16122
46	LYS78	5917	7565	3131	4927	5496	28671	3033	5229	14557	22663	105	SER137	2868	1760	2481	3559	1080	2603	5138	2480	2131	2214
47	LEU79	12223	12891	253	5040	5207	26860	2147	5827	9608	24906	106	LEU138	6411	4037	8474	5960	4591	7007	8611	11018	5428	5270
48	ALA80	124	2865	1151	117	951	23499	187	341	3223	20107	107	ARG139	18762	17804	18140	14984	15029	17019	16393	17437	27870	11897
49	ALA81	933	3529	1548	219	406	23925	529	930	1174	18276	108	ALA140	4029	2457	3307	4048	3452	1902	1552	5345	1369	2134
50	PHE82	10198	11803	5757	13539	5301	7042	4609	7223	11115	11883	109	GLU141	5893	6149	4425	6851	4728	3091	3104	5104	2061	5317
51	PRO83	13063	17633	13612	15928	6734	8108	11054	8952	16639	9325	110	LEU142	411	1402	423	192	281	295	341	379	160	581
52	GLU84	8778	11183	12465	6183	5203	37798	13197	6871	7612	18639	111	ARG143	9002	6643	5732	12592	5196	7374	7193	7583	3675	9654
53	ASP85	3579	7547	4899	3558	4668	13008	7249	5800	6053	6254	112	VAL144	4763	2194	2419	1435	2580	3864	3939	3272	2050	2588
54	ARG86	10227	8071	11584	9492	3584	37385	12048	12603	13687	12836	113	THR145	11183	8301	7097	11180	6581	6976	8024	5701	5078	7024
55	SER87	6280	7118	9572	4845	2849	41659	3542	8419	8828	12426	114	GLU146	2941	3962	4509	3446	4700	3673	3696	2449	3412	4589
56	GLN88	6143	9893	9823	5211	3338	35411	6755	9660	13107	30075	115	ARG147	14027	11353	11812	8407	14963	16466	12877	14363	9687	14068
57	PRO89	8130	10436	10160	7464	7344	13403	9361	10764	13534	32638	116	ARG148	7944	9779	9584	7591	9107	6865	7991	6941	5256	9995
58	GLY90	8013	6110	4649	6381	6842	4638	5349	5323	10698	30094	117	ALA149	4328	6560	4469	5046	4399	4637	4859	2811	3250	4660
59	GLN91	8173	15531	6591	5723	8386	25564	4187	5198	11906	20309	118	GLU150	3085	4622	2277	4574	3621	4826	3153	5428	1903	2632
																		,					

Id	entificação		Conta	tos nati	ivos por	quadro	s de sin	nulação	(PD-1 /	fenol)		Ide	entificação		Conta	tos nati	vos por	quadro	s de sin	nulação	(PD-1 /	fenol)	
PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10	PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	MET33	24338	16481	27884	17858	27977	6429	32725	21135	22620	8839	60	ASP92	11602	8220	5636	9330	8039	9910	10815	13431	11899	17498
2	PRO34	6209	7909	11873	5170	10197	4781	7414	9884	7843	8018	61	SER93	13136	24296	15081	11488	14525	13801	33457	16797	12863	19647
3	PRO35	4175	4953	8828	2625	8146	3333	4821	7552	5990	6106	62	ARG94	8334	15656	11809	12999	14512	13081	8307	14914	13205	9246
4	THR36	11778	11512	10574	24237	16817	10777	12378	31904	8281	14121	63	PHE95	11887	9552	3859	8929	12781	12964	7174	10641	16310	13721
5	PHE37	7415	6550	4591	22780	6952	5645	5922	22099	4010	6638	64	ARG96	13870	44643	34407	31820	25806	27928	30727	32198	20017	39073
6	SER38	12209	14483	8186	32357	15587	10703	9648	26825	6666	16256	65	VAL97	2845	27062	19941	18638	14257	17046	9308	22730	4514	23665
7	PRO39	7738	14487	6830	16235	12078	5235	5828	12732	6140	14107	66	THR98	8657	28214	25107	31777	17811	22787	12004	27438	8387	34557
8	ALA40	8577	6477	7436	9029	10055	6367	6302	8588	8710	7562	67	GLN99	16543	15903	24083	11342	16969	19564	17155	14242	19774	23418
9	LEU41	9805	11294	9916	/2/8	9300	6/21	9834	/383	9408	11923	68	LEU100	9454	25538	12501	29209	14118	14232	11020	16974	12307	28657
10	LEU42	62/9	6036	5856	6197	6078	3184	4158	6414	3104	6128	69	PRO101	11393	1/418	15532	21221	16339	16/30	14543	16255	15397	22908
11	VAL43	10854	14188	12014	82/9	12632	9169	10450	9858	11341	13240	70	ASN102	8519	10999	10700	8685	12424	14400	10303	10202	11/62	11570
12	VAL44	3700	4552	5042	2040	5400	2955	2/88	3834	4289	4257	71	011103	12010	10215	10/89	3985	20020	107402	10147	10285	12/5/	10457
13	61146	14454	9554	17202	12224	12026	15402	10516	12104	12205	4008	72	ARG104	12910	110215	7047	21042	20838	7060	0145	22142	4751	11057
14	GLU46	7940	11455	20171	15042	13920	17495	11000	16964	16963	10281	73	ASP105	0522	12012	17262	21045	4126	10760	7626	10112	14425	6339
15	ASD49	5052	2054	201/1	2509	2065	1059	2166	2209	2619	2605	74	HIS107	9000	27005	25464	42005	21099	22754	0097	27540	9526	44078
17	ASN/10	10477	7735	8869	8004	10528	5437	5567	4533	6567	6358	76	MET108	748	16335	12822	17543	5704	10583	3123	20261	11	20284
18	41450	4434	795	1597	872	3392	1422	2110	599	2562	1232	77	SER109	9132	19667	23037	22687	18655	22643	11004	20544	6596	28025
19	THR51	10583	28202	21112	20179	18713	18558	8118	26188	6075	22874	78	VAI 110	3936	388	2165	2596	4453	4830	3454	8	3837	2339
20	PHE52	969	9082	1177	9588	2923	1077	348	7936	864	7109	79	VAL111	11163	20776	16321	17326	18428	12595	10488	13944	12894	10334
21	THR53	10800	23999	7559	37502	13823	11334	9496	31197	5055	24364	80	ARG112	13112	22804	25988	20810	16015	20408	14419	25890	21511	15871
22	CYX54	5142	7341	2521	18246	3444	4476	5224	18320	1318	6949	81	ALA113	2149	4850	8741	7651	3512	8001	3647	5251	5611	4639
23	SER55	10316	10033	9495	19991	13603	9093	10503	26848	5355	11984	82	ARG114	10983	12689	17654	15532	9634	16880	10264	13925	14057	12328
24	PHE56	26971	15140	34181	14712	31304	6524	31738	22846	30875	7835	83	ARG115	22067	9140	12508	7868	15764	11919	20260	9118	7235	9277
25	SER57	6730	7073	17555	11764	12796	6385	11259	11542	7849	8261	84	ASN116	21037	8477	10472	11952	9103	15343	11314	16561	13575	11076
26	ASN58	23950	13053	39533	16767	30651	7228	35645	16264	29709	6404	85	ASP117	12244	455	2629	5282	2715	5491	4758	7160	8182	3160
27	THR59	12285	10148	20694	12736	22588	8858	22915	16177	14932	8246	86	SER118	23513	11613	11283	9685	9083	12011	13785	10285	10733	7718
28	SER60	18801	13677	18532	3825	25461	13564	23513	18063	23814	15261	87	GLY119	13243	6633	5713	5803	2345	5319	7534	8804	9605	2497
29	GLU61	13512	16443	25245	5671	16521	22411	15008	15676	23194	23405	88	THR120	23981	16461	8585	13182	9776	13368	22305	13269	12498	26675
30	SER62	13420	11770	12930	7130	11569	25694	18484	13009	14560	14991	89	TYR121	11185	4800	2104	5367	1547	4291	10410	5858	7478	18802
31	PHE63	35049	26652	44275	6742	29623	21183	37685	23280	41012	14241	90	LEU122	16750	20481	15692	25717	23992	10937	34820	11990	17883	41234
32	VAL64	16479	19204	17595	13348	18753	33100	20008	12346	18795	39353	91	CYX123	279	2284	697	1941	531	973	2305	370	308	2429
33	LEU65	3873	5834	7458	1057	3311	10601	3031	3108	8665	10449	92	GLY124	3002	6251	3178	9058	6655	6302	9444	3511	3430	14963
34	ASN66	2942	5694	2047	4967	4507	8273	4008	1409	1608	15390	93	ALA125	21820	16591	22982	6315	24167	3567	27321	15769	23370	9845
35	TRP67	23	481	24	66	139	473	7	1	2	3147	94	ILE126	31878	24358	26732	15831	33728	17647	39663	21910	30596	22754
36	TYR68	16974	23783	16252	27427	24623	17459	35127	15763	18042	55207	95	SER127	34027	18921	29184	16474	32557	17260	34742	22207	31574	13206
37	ARG69	38865	20600	24976	24718	23465	32942	31223	30831	33912	35477	96	LEU128	18787	22861	18221	16771	21578	44574	29824	19457	21460	40640
38	MET70	51455	29127	33834	35404	38268	35627	49464	29840	35359	36843	97	ALA129	11920	11043	10959	10147	12972	25281	15960	12459	14597	13987
39	SER/1	46073	19050	28434	26313	25976	36359	33607	28694	29700	12091	98	PRO130	9018	13291	10421	/95/	11/83	23281	16586	14359	14998	13521
40	PRO/2	31441	16963	14429	20310	16306	22566	21043	185/1	1/650	10/81	99	LYS131	8318	82/5	6358	9013	/837	10488	9192	10746	10299	5/62
41	3EK/3	10000	11070	4602	10000	17001	0122	0282	0103	100000	0550	100	ALA132	15642	2000	7480	94/6	20202	0010	10938	14420	14394	5916
42	ASN/4 GLN75	27460	14661	23030	19220	22809	33005	20011	19957	20200	3002	101	ULN133	20058	35774	20530	31182	20580	20869	48522	23060	232805	36265
45		41022	32464	25039	43822	46645	23903	56475	200/5	36402	57045	102	1/0125	262/7	21820	20627	11627	27700	6359	34672	10/55	28400	9362
44	Δ\$₽77	27083	17503	25218	20186	25463	27944	25885	22740	26500	25012	104	GI [] 136	20245	21059	19316	29680	28929	14150	31376	16842	20490	25147
45	19678	9507	10393	11926	10102	26740	22418	21784	10445	12148	34618	105	SER137	2250	3057	2177	5744	3735	2366	4621	3776	4303	3846
47	LEU79	11555	6497	6477	7628	29080	25752	12345	13537	13092	30908	106	LEU138	8478	8465	7658	15155	11032	6544	8344	10785	10536	7937
48	ALA80	3329	9550	6908	2374	22403	13437	12206	6096	3170	24463	107	ARG139	20980	20610	12031	25533	23384	16843	28031	16638	16797	33783
49	ALA81	3236	9189	7102	3718	22136	16020	12657	4183	3231	22958	108	ALA140	3683	5021	2116	5356	5356	3681	3168	6089	5330	2958
50	PHE82	14755	20485	21424	6773	8370	22116	13885	10251	20697	20409	109	GLU141	6498	11241	3586	2617	5696	5412	4879	4263	6081	4409
51	PRO83	16347	21572	23098	9962	12471	32015	20768	13909	21427	34815	110	LEU142	902	2262	720	345	384	196	468	131	122	278
52	GLU84	10057	15617	13306	13278	32518	16627	41281	11684	13697	24200	111	ARG143	13872	15227	9563	7310	9156	10020	8431	5070	8401	10066
53	ASP85	7751	9207	7207	11617	16938	13902	20972	7278	5864	32955	112	VAL144	17837	5919	5616	4588	11747	7102	13702	2600	3003	3745
54	ARG86	19022	9081	17254	18054	31524	18408	40643	15210	10934	29677	113	THR145	22383	13471	11982	8651	18672	12655	19002	7271	10801	9892
55	SER87	11452	18221	16152	11144	20482	12348	26607	6169	12326	14209	114	GLU146	19152	6384	8133	7379	13041	8458	16424	4611	7218	10692
56	GLN88	14896	19189	19572	11011	27924	17043	27339	11410	17014	30052	115	ARG147	9966	10594	17273	17919	10264	13491	16017	15825	13821	9890
57	PRO89	16072	25541	17339	11502	28726	13260	24323	14092	18660	14842	116	ARG148	15135	12628	15453	11981	9692	12289	11625	12358	13710	13107
58	GLY90	9709	12208	9315	10045	6995	10485	7387	14226	7416	15543	117	ALA149	9252	7173	7288	11512	4929	6538	6173	6355	7382	10150
59	GLN91	12299	11080	13189	12075	9475	17220	33648	18694	15596	40980	118	GLU150	4712	6012	6367	9195	3550	5317	5356	6612	4998	5287

Ide	entificação		Contato	os nativ	os por q	uadros	de simu	lação (F	PD-1 / ir	nidazol)		Ide	entificação		Contato	os nativo	os por q	uadros	de simu	lação (F	PD-1 / ir	nidazol)	
PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10	PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	MET33	11407	21024	16485	4504	20694	14565	10427	5142	11185	18232	60	ASP92	10856	4531	2844	3427	9093	8329	7236	4409	5193	3345
2	PRO34	8850	9813	6135	4315	9933	5298	7994	3822	8021	7480	61	SER93	7345	8230	5633	5688	11163	8736	8329	8733	6655	9811
3	PRO35	8540	7972	6814	3452	6819	4758	4340	3139	7127	5802	62	ARG94	5953	5337	4294	3635	8497	7570	6623	6099	5559	8768
4	THR36	9854	20177	14386	9485	12248	15071	15582	9488	9171	17749	63	PHE95	13375	3289	4392	793	5698	7283	7324	7162	4946	4236
5	PHE37	5339	12128	9022	6181	3566	10596	8917	6499	6070	7334	64	ARG96	18172	14485	16357	8097	14639	11087	16755	17087	11325	22271
6	SER38	7060	13693	11944	7841	6867	11563	12449	8082	7005	11316	65	VAL97	18150	6608	8773	3897	8956	4415	9032	9136	3323	10811
7	PRO39	4814	4311	5767	6450	4297	4300	3766	4366	5142	4659	66	THR98	15408	10691	11401	7139	12975	7599	13066	8725	5302	15661
8	ALA40	4961	5926	7735	6564	3566	5502	2719	4756	6537	4773	67	GLN99	8902	12797	9991	6889	9375	5024	7049	9702	7872	16093
9	LEU41	3959	5298	7599	7143	6327	5222	3997	3969	5393	9277	68	LEU100	7508	9180	10639	6751	5729	7817	8227	8014	7269	11171
10	LEU42	2917	1899	6040	3655	3112	3483	1911	3520	2960	3753	69	PRO101	10380	9498	9469	8436	7150	6781	8091	9221	9276	10239
11	VAL43	5018	5668	9212	6891	9181	/982	3880	/100	6843	8492	70	ASN102	641/	9010	8327	6/0/	6201	4437	6/64	/303	/642	/0/8
12	VAL44	2196	2543	5347	2642	3511	3889	1/82	4184	2621	2308	/1	GLY103	5/36	5503	5540	4305	3074	2464	4653	5510	4814	3997
13	1HK45	2/32	31//	4695	3143	4316	4553	2311	5080	3347	2495	72	AKG104	9031	15214	12438	7643	12118	4143	10544	8434	10302	15122
14	GL040	7007	4225 E101	10971	4002	2777	7960	0405	2066	10414	7650	73	RHE105	2047	0225	6610	1012	6461	4001	4600	12205	2060	11504
15	ASP/18	2627	23/9	3671	1572	1773	3503	3288	4410	303/	2037	75	HIS107	13358	13217	1/1828	6686	12070	7/38	15611	8858	7400	17231
17	ASN49	3783	5379	6688	2603	3411	5785	6206	6694	7749	7227	76	MFT108	6931	5917	5050	1777	5835	2751	8845	3131	956	9471
18	ALA50	1302	1553	2502	602	1174	1457	1967	2539	2459	1699	77	SER109	10380	9507	8368	3754	9289	4915	12248	5804	5552	15222
19	THR51	10557	5423	11555	4272	10142	4796	9317	6974	6693	6513	78	VAL110	118	1570	882	363	643	372	1405	599	2396	3161
20	PHE52	811	1206	2436	825	1591	455	1960	1086	747	1339	79	VAL111	4715	6980	6244	5090	7550	7539	8224	7388	7799	10430
21	THR53	5849	12819	12476	5404	6547	10339	14424	7074	4901	11535	80	ARG112	10015	7822	13464	7194	9374	13152	12128	13007	13620	11935
22	CYX54	2232	7990	6690	2347	2685	7809	9481	3205	1519	6249	81	ALA113	3344	1938	4460	1611	1191	4195	3585	2804	4223	3255
23	SER55	7590	16466	12208	5499	10086	11754	13913	6531	7063	16206	82	ARG114	8959	6955	11715	5157	5765	10457	8419	8389	9789	9064
24	PHE56	12511	29212	27825	2712	26091	22600	11623	13108	9509	27902	83	ARG115	4825	3382	7195	4198	4192	4636	5395	5993	5787	5875
25	SER57	7160	12226	9597	4477	8799	6848	10183	7894	9195	11059	84	ASN116	6282	5920	7508	4404	4860	10630	9392	6029	4413	4882
26	ASN58	5973	24142	22783	3585	15104	20890	12441	9122	6297	19486	85	ASP117	1194	2502	1546	1426	847	7608	4732	1405	771	259
27	THR59	6718	8953	16509	5474	19455	6472	9127	12520	8281	12700	86	SER118	3017	4450	6739	5337	3341	9575	8005	3636	3525	5386
28	SER60	7155	7555	16415	5033	20766	5072	9855	12267	5348	14712	87	GLY119	3301	4273	3394	4672	1952	9382	6701	2695	2421	3632
29	GLU61	9446	13434	9566	8197	8719	5786	9894	13368	7588	15912	88	THR120	6243	4938	7629	10221	4281	10883	11396	5577	4781	4915
30	SER62	8178	8208	6794	7188	6503	9507	8353	5252	5202	10480	89	TYR121	2336	2204	1185	1526	563	6984	4026	1104	611	35
31	PHE63	12287	31252	27872	5485	24623	21218	12988	18684	9638	32255	90	LEU122	4309	9916	12255	8089	13959	6309	13614	11216	13013	4918
32	VAL64	12027	13993	11544	6524	11839	8368	10219	16154	9453	15309	91	CYX123	398	1057	1670	269	399	390	1434	517	434	111
33	LEU65	5109	6274	4328	2027	4516	/38	914	10228	2124	8181	92	GLY124	3662	2491	4305	3804	3134	2041	4450	3132	3202	920
34	ASN66	7911	888	1210	2472	1327	2086	1295	1532	2538	693	93	ALA125	8333	20039	21128	1610	18311	18115	6463	4646	3154	18364
35	16267	12706	28	12057	43	17442	9105	12710	12754	12616	14	94	ILE126	10925	25126	23849	4075	23664	23160	13219	5986	0016	22/25
37	ARG69	15330	25153	14612	16084	15513	23643	14666	7266	0033	8470	96	JEN127	15170	10976	0072	10767	10220	12316	15650	10077	11738	12968
38	METZO	12813	26647	18698	24059	18636	23045	20455	10384	14459	13323	97	ALA129	7926	6985	5629	7865	6659	7441	8037	7555	7659	8726
39	SER71	12312	24802	16859	21545	15826	22451	15660	8100	9264	12671	98	PRO130	8668	6550	6684	7765	7349	7468	8808	8133	7504	8624
40	PRO72	11618	8316	10013	13395	7340	11982	13706	6918	8148	11084	99	110130	8029	6698	4944	6853	6626	6292	7077	8530	6730	6098
41	SER73	5040	4535	5297	4593	3877	4192	5120	3259	4177	4574	100	ALA132	6133	8217	6403	4303	7802	5125	6711	5978	6997	7303
42	ASN74	5769	6749	5777	9113	6194	6270	9245	5727	7214	7034	101	GLN133	8125	13243	10911	4819	13344	21754	9676	8536	9160	10929
43	GLN75	8817	23165	13991	14584	13958	14703	9746	6155	8592	8269	102	ILE134	13904	15998	18691	12013	24974	25634	18006	18242	18307	11394
44	THR76	15496	31253	25080	20276	31079	19228	20530	17830	20293	11770	103	LY\$135	9678	23707	24365	3474	23134	21446	12545	5204	7587	22390
45	ASP77	13000	24463	14965	15574	18125	15206	9002	6673	9120	9056	104	GLU136	8472	14016	16111	12298	19393	7937	18690	14666	16879	7721
46	LYS78	17207	4469	3561	20023	8666	4553	3862	6156	5331	3001	105	SER137	2873	6128	4307	4533	2090	3132	4624	2757	4789	1604
47	LEU79	19351	3018	2768	17578	8320	5957	7263	3259	4925	1701	106	LEU138	7921	13139	8898	9532	5336	8560	6941	7289	11124	6748
48	ALA80	18402	2070	3989	15010	4267	1191	4211	5093	5379	194	107	ARG139	8997	11552	13501	13661	8934	9724	11784	7949	12582	9382
49	ALA81	13695	1493	4802	4824	2350	1892	1476	4261	6740	306	108	ALA140	3029	3424	5356	2881	1395	2782	1872	2453	4398	1597
50	PHE82	15010	10151	10279	6436	9691	4870	6144	16038	6787	14574	109	GLU141	3702	2866	5782	4580	3901	3461	5592	2934	3473	3579
51	PRO83	9302	14377	11770	7327	12806	7823	9435	18216	8235	15640	110	LEU142	371	197	545	641	54	1005	1672	677	483	182
52	GLU84	10438	7445	10134	15084	8679	9020	4923	16385	11198	8034	111	ARG143	3748	4787	7175	4883	7428	5314	6768	4378	4521	9636
53	ASP85	7451	7149	7895	4870	7290	6070	5830	12873	9215	4877	112	VAL144	492	587	3096	2284	1843	1583	2059	2279	1450	2081
54	AKG86	/531	9301	8235	24104	9/94	11363	13876	1/098	8564	10158	113	IHK145	2/11	4204	6902	4862	6689	5492	4036	6120	4867	6377
55	SER87	3907	5203	/306	5/23	6280	4988	0//4	16/94	9815	4326	114	GLU146	3850	2618	3980	4117	3495	3953	3084	10000	3826	5933
56	GLN88	106/1	7377	5805	14397	6072	8204	8500	8616	7701	7956	115	ARG14/	9111	7262	0425	0042	/322	8445	6265	10820	10437	7913
5/	PK089	945/	5626	2001	9430	6201	7710	2225	5140	5006	6020	110	AKG148	91/3	/303	5435	40042	4400	5026	2800	4760	2075	5270
50	GL190	16222	6050	7261	20240	10970	10220	9600	5140	0021	4045	110	GLU450	5100	4023	3413	4994	2054	1166	2107	9200	4601	2246
23	01/01	10333	0029	1201	22483	108/0	10253	9033	1000	3321	4045	119	GLU150	2122	4/43	440/	4430	2024	4100	2171	3208	4001	3340

Ide	entificação	Cont	atos na	tivos po	or quadr	os de si	mulação	(PD-1	/ n-meti	il-acetar	nida)	Ide	entificação	Cont	atos na	tivos po	r quadr	os de si	mulação	(PD-1 /	/ n-met	ll-acetar	nida)
PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10	PDB	Resíduo	REP1	REP2	REP3	REP4	REP5	REP6	REP7	REP8	REP9	REP10
1	MET33	10567	8287	7379	15381	5856	9878	14008	7140	15393	8504	60	ASP92	4943	5933	2342	6072	2034	4539	2999	6703	4580	4658
2	PRO34	4777	6560	5118	5645	2798	7370	5287	4474	3700	7311	61	SER93	3072	6189	10079	6289	9651	6168	4979	5478	8106	10666
3	PRO35	2558	4808	10227	2760	1667	6404	3389	2784	3988	5278	62	ARG94	1778	6056	6740	5089	3675	5278	4029	5268	8177	11015
4	THR36	10041	17009	11094	7263	8418	10733	6363	6901	8401	11959	63	PHE95	2232	3213	2444	3406	1811	4006	2512	3985	5493	7862
5	PHE37	7231	17489	8303	9150	16203	2999	3096	3827	10307	3702	64	ARG96	11187	9255	15632	7566	20515	11250	11589	8174	12402	17440
6	SER38	10682	19368	7670	11547	19024	8700	7402	6640	11565	10650	65	VAL97	5032	2081	3509	1274	8866	4222	6469	4439	3141	10017
7	PRO39	6208	8550	7416	8378	14518	6139	5945	3748	7300	5293	66	THR98	10493	7531	7419	7492	13732	10189	10772	7261	9308	11503
8	ALA40	6570	12992	8033	11537	16486	4769	5123	3633	11949	4248	67	GLN99	14279	8433	10287	9834	6647	12100	13156	9328	11628	9333
9	LEU41	5225	7540	5383	7771	4585	7009	5916	5995	5590	6665	68	LEU100	10777	9489	10578	10682	9679	13401	10395	6978	10185	14594
10	LEU42	3197	4217	3303	2990	3836	4258	2692	2557	2431	2185	69	PRO101	14200	8081	10775	12770	9817	12250	10984	8346	11386	14100
11	VAL43	6747	8496	8864	8382	6443	11124	8175	15194	7034	7570	70	ASN102	9752	6739	7929	10028	6398	8923	6766	5479	8129	9853
12	VAL44	2674	4004	4372	2528	2917	3745	2978	6425	3405	2417	71	GLY103	11195	2634	5092	6323	4100	7142	8243	8029	6376	7417
13	THR45	4134	4185	6047	3420	2340	4079	3477	9970	4299	3875	72	ARG104	11678	10268	6667	8355	8885	11739	8156	10118	9738	10392
14	GLU46	9326	5261	5551	6634	4088	3386	7733	10175	4193	5984	73	ASP105	4719	8068	3033	4050	3525	5953	2935	3611	4066	7726
15	GLY47	9733	5783	6202	7110	4216	3889	6991	9181	4462	6892	74	PHE106	5719	8257	3633	4604	3489	4349	10025	8644	4927	2115
16	ASP48	1568	2775	2840	1638	1923	1872	1352	2881	2430	2671	75	HIS107	11131	10584	8778	8413	17169	13799	13255	6907	11463	12462
17	ASN49	6990	7262	6843	5501	5037	4170	2945	3497	6285	3297	76	MET108	2105	935	1717	147	5178	3118	5524	2346	2219	3370
18	ALA50	1220	2465	1910	1362	1437	1056	646	282	1615	356	77	SER109	8098	5680	5784	5052	9406	5522	7795	3642	8518	6054
19	THR51	8161	6409	5712	6349	9656	7965	6531	4062	7200	5037	78	VAL110	770	1860	1396	1624	279	141	517	409	3533	3328
20	PHE52	488	926	1015	751	2616	3358	2895	963	1479	1744	79	VAL111	6455	8511	10916	7354	6681	6784	4542	4532	10816	8643
21	THR53	7830	13838	3616	6066	8327	10339	7342	6050	6967	11328	80	ARG112	12200	9540	12318	10403	7872	8923	9034	11455	7659	12461
22	CYX54	3492	8109	3183	2208	1757	3255	2110	3081	2905	4260	81	ALA113	5327	3294	2126	3314	1458	1686	3438	4299	1382	1936
23	SER55	7298	12131	5125	4293	4390	8849	4480	5146	5871	9554	82	ARG114	10056	7588	7181	9435	4926	5248	8116	9226	6081	6888
24	PHE56	11207	7569	5662	16497	5362	10705	17370	4447	19037	5592	83	ARG115	5945	4407	6937	6447	5812	8286	7948	6977	7438	5334
25	SER57	8046	4879	3917	5214	3532	10301	9309	6339	6194	8209	84	ASN116	6194	4507	6264	7434	5024	7648	4673	10720	7414	9356
26	ASN58	12501	9603	5540	17135	6976	8369	19928	6042	16497	5003	85	ASP117	172	1309	446	643	279	2766	1664	5436	1807	4965
27	THR59	7704	6855	4312	6803	5351	9469	9737	6709	19179	6780	86	SER118	3442	3003	4956	4957	4230	7690	5468	8679	5562	7208
28	SER60	7419	7370	3658	7124	5608	8364	6872	3599	19242	4480	87	GLY119	2023	2756	2677	4395	4255	5388	3129	6825	4350	6124
29	GLU61	12320	11981	8498	8947	6399	9599	17216	12865	8840	6389	88	THR120	5968	5805	5238	8145	9397	7403	7051	7618	8592	6695
30	SER62	6556	7951	7099	8543	9225	7427	9425	7238	10059	5197	89	TYR121	37	940	208	394	1114	2544	1261	6157	1845	4560
31	PHE63	15311	11354	5864	19406	10129	10203	26795	12116	23309	4949	90	LEU122	16280	13690	14784	8704	14518	8645	11703	18168	5998	5929
32	VAL64	8938	12422	5697	10014	10454	9707	17588	14634	11509	3872	91	CYX123	1917	2536	7160	722	725	696	3286	2152	883	1535
33	LEU65	2912	/41/	2363	3418	2970	1800	6987	6942	2928	209	92	GLY124	/331	/365	10484	36/1	3466	3382	6636	/11/	3429	3513
34	ASN66	2221	1186	3058	2161	2925	3424	2131	2616	1188	1221	93	ALA125	5/48	1258	3013	13094	2994	4864	12752	23/3	15203	1/2/
35	TKP67	83	5	104	1	42	5	1	124	2	5	94	ILE126	11146	4902	11424	18937	9880	10441	19190	/109	20405	//45
36	19658	19103	14328	1/990	111/5	1/65/	8/9/	11263	19924	8298	7868	95	SER127	11321	5887	3022	19/15	9385	8451	20575	6264	19362	6/96
37	AKG69	8451	6451	10032	9229	15221	18619	6558	23338	12828	18976	96	LEU128	108/3	11950	9387	10275	11984	11//6	16295	13122	13136	9489
38	WEI70	10502	10698	12811	105.62	24231	18633	13034	28214	13309	19928	97	ALA129	7510	7927	5603	7001	2000	3525	9967	7164	5964	/341
39	SEK/1	10593	7628	11044	10562	16161	1/454	9746	21/84	13161	20262	98	PRO130	8074	7643	8606	7910	7088	/165	9835	//68	7310	81/8
40	PR0/2	10438	10920	5704	4425	E402	12098	5107	7826	1160/	15272	39	LT5131	5754	4122	5/96	£000	4705	4500	0408	2074	6174	55/1
41	3ER/3	7024	9106	6202	6694	6476	6697	9046	7506	6417	6204	100	GLN422	0200	4122	4024	7040	4795	4000	0014	5060	12494	1994
42	GLN75	0550	8372	0705	7657	13992	16677	7340	20302	10400	16501	101	UE134	22225	10110	19054	15255	1/120	13029	15780	17870	16315	10035
43	THR76	2/052	10755	22706	15100	25030	20037	15487	33005	1/1005	20085	102	11/5135	10444	6756	8461	16852	5370	7900	18700	6372	15605	6576
45	ASP77	9678	7604	9061	8811	15046	15062	5102	21156	10775	16256	104	611136	18429	17865	10/07	12530	13500	0080	13321	18304	7495	8625
46	19578	9708	6055	3230	5200	6711	5204	3235	6487	4240	4200	105	SER137	2420	8978	6790	4297	6478	1374	2780	3179	4164	2161
40	1 51179	4520	4431	1591	4435	599	4267	2390	4644	2982	6639	105	LEU138	9143	15730	12042	14036	17004	6964	6196	6518	10734	5383
48	AI 480	3316	939	71	953	3	101	164	1176	323	3893	107	ARG139	13636	17699	10385	16730	24760	10216	11422	10348	16209	7398
49	ALAR1	4297	947	692	1113	2308	2811	580	1544	619	3746	108	ALA140	4356	9720	5026	7973	15167	1801	2134	1060	9525	1072
50	PHF87	6949	11052	8177	7774	5030	8803	15369	14280	10678	5980	100	GUU141	3450	4340	3489	6406	5184	4486	3258	2652	5588	3684
51	PRO83	8520	12925	9020	8579	6995	7944	16954	17032	14251	4831	110	1 FU142	195	340	493	1234	311	798	784	291	477	717
52	GU184	9995	4779	9963	6238	5568	5620	5098	8721	6238	7210	111	ARG143	4621	5661	5914	7560	5388	9713	7222	7621	5153	7109
52	ASP25	4479	4042	5030	4554	1179	6513	3210	6452	6902	6765	112	VAI 144	1376	1862	2255	2446	1477	3483	4201	2196	2358	1270
54	AR686	12630	8312	9133	9154	12110	12820	6661	10324	13146	9783	113	THR145	4698	6592	8540	6531	4484	9271	8986	12569	6747	5321
55	SFR87	9686	4938	5678	6901	6624	8030	4828	3895	5388	10700	114	GUI146	4480	5000	4568	3998	4452	4783	6399	6909	5290	3828
56	GLN88	11028	6111	6090	6770	2420	9305	3745	6739	5179	8366	115	ARG147	10855	7097	9392	5525	8321	5987	8278	14305	5566	10578
57	PRO89	10924	7246	6332	8428	4891	7169	4735	7024	6514	8197	116	ARG148	7247	7674	9874	6102	7867	7387	7931	12180	6548	9060
58	GI Y90	7103	7844	4252	5823	4823	4210	4150	6645	4197	5360	117	AI A149	5111	3368	4530	3716	5126	4657	4699	8634	3566	5539
59	GL N91	8204	6577	2301	7067	2677	5244	3860	8023	4029	5469	118	GLU150	3602	2761	4366	3514	3152	6224	4191	5901	3221	4478
							2011																

Fonte: Elaborado pelo autor. Os intervalos de cores utilizados denotam o grau de contato existente entre os resíduos e as sondas (pouco: branco, médio: amarelo, alto: verde).

APÊNDICE B – ANÁLISE COLORIMÉTRICA DE REPLICATAS QUE SE DESTACARAM NA QUANTIDADE DE CONTATOS COM SITIO IDENTIFICADO

Fonte: Elaborado pelo autor. As regiões de contato relevantes encontram-se marcadas em cinza.

APÊNDICE C – REPLICATAS ESCOLHIDAS PARA ANÁLISE DE VOLUME E SASA NO PROGRAMA FPOCKET

		Alça	a C'D								
lo	dentificação	Frames específicos (PD1 - Benzeno)									
PDB	Resíduo	REP5	REP6	REP7	REP10						
48	ALA80	951	23499	187	20107						
49	ALA81	406	23925	529	18276						

Fonte: Elaborado pelo autor. As replicatas 6 e 10 (com alto numero de contatos) e 5 e 7 (com baixa quantidade de contatos) foram escolhidas para estudos no programa fpocket.

APÊNDICE D – ANÁLISE DE DISTÂNCIA AO LONGO DAS SIMULAÇÕES DE DM DE MOLÉCULAS DE ACETATO E N-METIL-ACETAMIDA PARA O PONTO CENTRAL DO SÍTIO DE INTERAÇÃO

Fonte: Elaborado pelo autor.

APÊNDICE E – ESTADOS CONFORMACIONAIS OCUPADOS PELAS DIFERENTES SONDAS NA ALÇA C'D DA PD-1

PD-1 / fenol

PD-1 / imidazol

PD-1 / n-metil-acetamida

Fonte: elaborado pelo autor. -1 relaciona-se a estados não definidos. R: replicatas.

APÊNDICE F – MAPA DE CALOR ALUSIVO À DISTRIBUIÇÃO DAS COMPONENTES PRINCIPAIS DA PCA NO COMPLEXO PD-1 (BENZENO – REP6)

Fonte: Elaborado pelo autor. Os resultados de mapa de calor foram cruzados com os de estados conformacionais, permitindo a análise de dois *clusters* específicos.

APÊNDICE G – *BENCHMARKING* ENTRE VINA E QUICK VINA 2 (ANÁLISE DE PERFORMANCE)

		Vina	1					Quick Vir	1a 2		
	Processadores			Tempo	Molécula por		Processadores		Nº de	Tempo	Molécula por
Moléculas	por <i>job</i>	Exaustividade	Nº de <i>jobs</i>	(segundos)	segundo	Moléculas	por <i>job</i>	Exaustividade	i jobs	(segundos)	segundo
160	1	4	40	231,73	0,69	160	1	4	40	116,47	1,37
160	2	4	20	204,71	0,78	160	2	4	20	110,47	1,45
160	4	4	10	191,68	0,83	160	4	4	10	106,04	1,51
160	5	4	8	204,15	0,78	160	5	4	8	112,44	1,42
160	8	4	5	243,49	0,66	160	8	4	5	141,13	1,13
160	10	4	4	325,51	0,49	160	10	4	4	173,33	0,92
						160	20	4	2	336.32	0.48
						160	32	4	2	336.61	0.48
						160	40	4	1	637.26	0.25
									_	,	-/
		Vina						Ouick Vir	na 2		
	Processadores			Tempo	Molécula por		Processadores			Tempo	Molécula por
Moléculas	por iob	Exaustividade	Nº de <i>iobs</i>	(segundos)	segundo	Moléculas	por iob	Exaustividade	Nº de <i>iobs</i>	(segundos)	segundo
160	1	8	40	456.65	0.35	160	1	8	40	228.83	0.70
160	2	8	20	403.87	0,00	160	2	8	20	21/ 39	0.75
160	1	8	10	366.02	0.44	160	1	8	10	206.60	0.77
160	5	8	8	397.88	0,44	160	5	8	8	214 20	0.75
160	8	8	5	400.84	0,40	160	8	8	5	214,20	0,79
160	10	0	3	400,84	0,40	160	10	0	4	203,55	0,75
100	10	0	4	445,50	0,56	160	10	0	4	222,06	0,72
						160	20	8	2	339,92	0,47
						160	32	8	2	339,29	0,47
						160	40	8	1	642,94	0,25
		Vina	1					Quick Vin	a 2		
	Processadores			Tempo	Molécula por		Processadores		Nº de	Tempo	Molécula por
Moléculas	por <i>job</i>	Exaustividade	e Nº de <i>jobs</i>	(segundos)	segundo	Moléculas	por <i>job</i>	Exaustividade	jobs	(segundos)	segundo
160	1	16	40	912,76	0,18	160	1	16	40	452,72	0,35
160	2	16	20	801,36	0,20	160	2	16	20	423,50	0,38
160	4	16	10	971,59	0,16	160	4	16	10	406,19	0,39
160	5	16	8	760,09	0,21	160	5	16	8	420,12	0,38
160	8	16	5	773,13	0,21	160	8	16	5	395,18	0,40
160	10	16	4	838,72	0,19	160	10	16	4	422,00	0,38
						160	20	16	2	446,57	0,36
						160	32	16	2	744,64	0,21
						160	40	16	1	681,70	0,23
									- 2		
		Vina						Quick Vir	14 2		
	Processadores	Vina		Tempo	Molécula por		Processadores	Quick Vir	14 2	Tempo	Molécula por
Moléculas	Processadores	Vina Exaustividade	Nº de <i>iobs</i>	Tempo (segundos)	Molécula por segundo	Moléculas	Processadores por <i>iob</i>	Quick Vir Exaustividade	Nº de <i>iobs</i>	Tempo (segundos)	Molécula por segundo
Moléculas 160	Processadores por job	Vina Exaustividade 24	№ de <i>jobs</i> 40	Tempo (segundos) 1372.16	Molécula por segundo 0,12	Moléculas 160	Processadores por job	Quick Vir Exaustividade 24	Nº de jobs 40	Tempo (segundos) 678.38	Molécula por segundo 0,24
Moléculas 160 160	Processadores por job	Vina Exaustividade 24 24	№ de <i>jobs</i> 40 20	Tempo (segundos) 1372,16 1191.66	Molécula por segundo 0,12 0.13	Moléculas 160 160	Processadores por job 1 2	Quick Vir Exaustividade 24 24	Nº de jobs 40 20	Tempo (segundos) 678,38 636,16	Molécula por segundo 0,24 0,25
Moléculas 160 160 160	Processadores por job 1 2 4	Vina Exaustividade 24 24 24	№ de <i>jobs</i> 40 20	Tempo (segundos) 1372,16 1191,66 1079,19	Molécula por segundo 0,12 0,13 0,15	Moléculas 160 160 160	Processadores por job 1 2 4	Quick Vir Exaustividade 24 24 24 24	Nº de jobs 40 20 10	Tempo (segundos) 678,38 636,16 600.42	Molécula por segundo 0,24 0,25 0,27
Moléculas 160 160 160	Processadoress por job 1 2 4	Vina Exaustividade 24 24 24 24	№ de jobs 40 20 10 8	Tempo (segundos) 1372,16 1191,66 1079,19 1073.84	Molécula por segundo 0,12 0,13 0,15 0,15	Moléculas 160 160 160 160	Processadores por job 1 2 4 5	Quick Vir Exaustividade 24 24 24 24 24	Nº de jobs 40 20 10 8	Tempo (segundos) 678,38 636,16 600,42 591.67	Molécula por segundo 0,24 0,25 0,27 0,27
Moléculas 160 160 160 160	Processadores por job 1 2 4 5 8	Vina Exaustividade 24 24 24 24 24 24	№ de jobs 40 20 10 8	Tempo (segundos) 1372,16 1191,66 1079,19 1073,84 1142,40	Molécula por segundo 0,12 0,13 0,15 0,15 0,14	Moléculas 160 160 160 160	Processadores por job 1 2 4 5 8	Quick Vir Exaustividade 24 24 24 24 24 24	Nº de jobs 40 20 10 8	Tempo (segundos) 678,38 636,16 600,42 591,67 584,66	Molécula por segundo 0,24 0,25 0,27 0,27 0,27
Moléculas 160 160 160 160 160	Processadores por job 1 2 4 5 8	Vina Exaustividade 24 24 24 24 24 24 24	№ de jobs 40 20 10 8 5 4	Tempo (segundos) 1372,16 1191,66 1079,19 1073,84 1142,40 1260,67	Molécula por segundo 0,12 0,13 0,15 0,15 0,14 0,13	Moléculas 160 160 160 160 160	Processadores por job 1 2 4 5 8	Quick Vir Exaustividade 24 24 24 24 24 24 24 24	Nº de jobs 40 20 10 8 5 4	Tempo (segundos) 678,38 636,16 600,42 591,67 584,66 623 32	Molécula por segundo 0,24 0,25 0,27 0,27 0,27 0,26
Moléculas 160 160 160 160 160 160	Processadores por job 1 2 4 5 8 10	Vina Exaustividade 24 24 24 24 24 24 24 24	№ de jobs 40 20 10 8 5 4	Tempo (segundos) 1372,16 1191,66 1079,19 1073,84 1142,40 1260,67	Molécula por segundo 0,12 0,13 0,15 0,15 0,14 0,13	Moléculas 160 160 160 160 160 160	Processadores por job 1 2 4 5 5 8 10 20	Quick Vir Exaustividade 24 24 24 24 24 24 24 24 24	№ de jobs 40 20 10 8 5 4 2	Tempo (segundos) 678,38 636,16 600,42 591,67 584,66 623,32 743,12	Molécula por segundo 0,24 0,25 0,27 0,27 0,27 0,26 0,22
Moléculas 160 160 160 160 160 160	Processadores por job 1 2 4 5 8 10	Vina 24 24 24 24 24 24 24 24 24 24	№ de jobs 40 20 10 8 5 4	Tempo (segundos) 1372,16 1191,66 1079,19 1073,84 1142,40 1260,67	Molécula por segundo 0,12 0,13 0,15 0,15 0,14 0,13	Moléculas 160 160 160 160 160 160 160	Processadores por job 1 2 4 5 8 10 20 20	Quick Vir Exaustividade 24 24 24 24 24 24 24 24 24 24 24 24	Nº de jobs 40 20 10 8 5 4 2 2	Tempo (segundos) 678,38 636,16 600,42 591,67 584,66 623,32 743,12 587,20	Molécula por segundo 0,24 0,25 0,27 0,27 0,27 0,26 0,22
Moléculas 160 160 160 160 160 160	Processadores por job 1 2 4 5 8 10	Vina Exaustividade 24 24 24 24 24 24 24 24	№ de jobs 40 20 10 8 5 4	Tempo (segundos) 1372,16 1191,66 1079,19 1073,84 1142,40 1260,67	Molécula por segundo 0,12 0,13 0,15 0,15 0,14 0,13	Moléculas 160 160 160 160 160 160 160 160	Processadores por job 1 2 4 5 8 10 20 32 40	Quick Vir Exaustividade 24 24 24 24 24 24 24 24 24 24 24 24	Nº de jobs 40 20 10 8 5 4 2 2 2 2	Tempo (segundos) 678,38 636,16 600,42 591,67 584,66 623,32 743,12 587,20	Molécula por segundo 0,24 0,25 0,27 0,27 0,27 0,26 0,22 0,22 0,22
Moléculas 160 160 160 160 160 160	Processadores por job 1 2 4 5 8 10	Vina Exaustividade 24 24 24 24 24 24 24	Nº de jobs 40 20 10 8 5 4	Tempo (segundos) 1372,16 1191,66 1079,19 1073,84 1142,40 1260,67	Molécula por segundo 0,12 0,13 0,15 0,15 0,14 0,13	Moléculas 160 160 160 160 160 160 160 160 160	Processadores por job 1 2 4 5 8 10 20 32 40	Quick Vir Exaustividade 24 24 24 24 24 24 24 24 24 24 24 24 24	Nº de jobs 40 20 10 8 5 4 2 2 2 1	Tempo (segundos) 678,38 636,16 600,42 591,67 584,66 623,32 743,12 587,20 809,97	Molécula por segundo 0,24 0,25 0,27 0,27 0,26 0,27 0,26 0,27 0,26 0,22 0,22 0,20
Moléculas 160 160 160 160 160 160	Processadores por job 1 2 4 5 8 10	Vina Exaustividade 24 24 24 24 24 24 24	Nº de jobs 40 20 10 8 5 4	Tempo (segundos) 1372,16 1191,66 1079,19 1073,84 1142,40 1260,67	Molécula por segundo 0,12 0,13 0,15 0,15 0,14 0,13	Moléculas 160 160 160 160 160 160 160 160	Processadores por job 1 2 4 5 8 10 20 32 32 40	Quick Vir Exaustividade 24 24 24 24 24 24 24 24 24 24 24 24 24	Nº de jobs 40 20 10 8 5 4 2 2 2 1	Tempo (segundos) 678,38 636,16 600,42 591,67 584,66 623,32 743,12 587,20 809,97	Molécula por segundo 0,24 0,25 0,27 0,27 0,26 0,27 0,27 0,27 0,27 0,26 0,22 0,22 0,22 0,20

		Quick	Vina 2		
Moléculas	Processadores por job	Exaustividade	Nº de <i>jobs</i>	Tempo (segundos)	Molécula por segundo
160	4	4	20	100,42	1,59
				Mel	hor configuração
		Quick	Vina 2		
Maláaulas	Processed over nov ich	Quick	Vina 2	Tompo (sogundos)	Maléaula / cogundo
Moléculas	Processadores por job	Quick Exaustividade	Vina 2 Nº de <i>jobs</i>	Tempo (segundos)	Molécula / segundo

Fonte: Elaborado pelo autor.
APÊNDICE H – *BENCHMARKING* ENTRE VINA E QUICK VINA 2 (ANÁLISE DE PRECISÃO)

		Ene	ergia de liga	ação (kcal/ı	mol)						
		v	ina	QV 2		RMSD (Å)					
Ligantes avaliados	Exaustividade	EX 4	EX 8	EX 4	EX 8	Vina	Quick Vina 2	V(EX 4) / QV2(EX 8)	QV2(EX 4) / V(EX 8)		
lig_obabel_61	04 08	-6.8	-6.9	-6.8	-6.8	0.059	0.098	0.071	0.122		
lig_obabel_59	04 08	-6.8	-6.9	-6.8	-6.8	0.047	0.911	0.925	0.079		
lig_obabel_79	04 08	-6.8	-6.8	-6.8	-6.8	0.816	0.639	0.801	0.036		
lig_obabel_12	04 08	-6.7	-6.7	-6.7	-6.6	0.447	0.084	0.080	0.441		
lig obabel 56	04 08	-6.6	-6.5	-6.6	-6.7	0.304	0.921	1.028	0.049		

		Ene	rgia de liga	ção (kcal/	mol)						
		v	ina	QV 2		RMSD (Å)					
Ligantes avaliados	Exaustividade	EX 4	EX 16	EX 4	EX 16	Vina	Quick Vina 2	V(EX 4) / QV2(EX 16)	QV2(EX 4) / V(EX 16)		
lig_obabel_61	04 16	-6.8	-6.8	-6.8	-6.8	0.046	0.093	0.038	0.108		
lig_obabel_59	04 16	-6.8	-6.8	-6.8	-6.8	0.014	0.039	0.006	0.047		
lig_obabel_79	04 16	-6.8	-6.8	-6.8	-6.8	0.817	1.087	0.640	0.036		
lig_obabel_12	04 16	-6.7	-6.7	-6.7	-6.7	0.439	0.424	0.430	0.433		
lig obabel 56	04 16	-6.6	-6.7	-6.6	-6.6	1.498	0.022	0.264	1.575		

		Ene	ergia de liga	ção (kcal/	mol)						
		Vi	ina	QV 2		RMSD (Å)					
Ligantes avaliados	Exaustividade	EX 4	EX 24	EX 4	EX 24	Vina	Quick Vina 2	V(EX 4) / QV2(EX 16)	QV2(EX 4) / V(EX 16)		
lig_obabel_61	04 24	-6.8	-6.8	-6.8	-6.8	0.043	0.105	0.049	0.051		
lig_obabel_59	04 24	-6.8	-6.8	-6.8	-6.8	0.015	0.058	0.027	0.046		
lig_obabel_79	04 24	-6.8	-6.8	-6.8	-6.8	0.813	0.818	0.025	0.807		
lig_obabel_12	04 24	-6.7	-6.7	-6.7	-6.7	0.447	0.084	0.077	0.441		
lig obabel 56	04 24	-6.6	-67	-6.6	-6.6	0.268	0.916	1 025	0.017		

		Ene	ergia de liga	ıção (kcal/ı	mol)						
		v	ina	QV 2		RMSD (Å)					
Ligantes avaliados	Exaustividade	EX 8	EX 16	EX 8	EX 16	Vina	Quick Vina 2	V(EX 8) / QV2(EX 16)	QV2(EX 8) / V(EX 16)		
lig_obabel_61	08 16	-6.9	-6.8	-6.8	-6.8	0.047	0.051	0.041	0.075		
lig_obabel_59	08 16	-6.9	-6.8	-6.8	-6.8	0.035	0.926	0.042	0.927		
lig_obabel_79	08 16	-6.8	-6.8	-6.8	-6.8	0.003	0.818	1.102	0.666		
lig_obabel_12	08 16	-6.7	-6.7	-6.6	-6.7	0.017	0.388	0.035	0.399		
lig obabel 56	08 16	-6.5	-6.7	-6.7	-6.6	1.586	0.908	0.045	1.497		

		Energia de liga Vina		ção (kcal/mol) QV 2		RMSD (Å)					
Ligantes avaliados	Exaustividade	EX 8	EX 8 EX 24		EX 24	Vina	Quick Vina 2	V(EX 8) / QV(EX 16)	QV2(EX 8) / V(EX 16)		
lig_obabel_61	08 24	-6.9	-6.8	-6.8	-6.8	0.082	0.067	0.051	0.056		
lig_obabel_59	08 24	-6.9	-6.8	-6.8	-6.8	0.035	0.932	0.027	0.929		
lig_obabel_79	08 24	-6.8	-6.8	-6.8	-6.8	0.807	0.709	0.819	1.086		
lig_obabel_12	08 24	-6.7	-6.7	-6.6	-6.7	0.002	0.016	0.415	0.410		
lig obabel 56	08 24	-6.5	-6.7	-6.7	-6.6	0.040	0.012	0.884	0.911		

		Ene	rgia de liga	ção (kcal/ı	nol)						
		Vi	na	QV 2		RMSD (Å)					
Ligantes avaliados	Exaustividade	EX 16	EX 24	EX 16	EX 24	Vina	Quick Vina 2	V(EX 8) / QV2(EX 16)	QV2(EX 8) / V(EX 16)		
lig_obabel_61	16 24	-6.8	-6.8	-6.8	-6.8	0.068	0.041	0.015	0.051		
lig_obabel_59	16 24	-6.8	-6.8	-6.8	-6.8	0.009	0.021	0.015	0.009		
lig_obabel_79	16 24	-6.8	-6.8	-6.8	-6.8	0.806	0.622	0.820	0.808		
lig_obabel_12	16 24	-6.7	-6.7	-6.7	-6.7	0.018	0.393	0.405	0.034		
lig_obabel_56	16 24	-6.7	-6.7	-6.6	-6.6	1.577	0.904	1.503	0.018		

Fonte: Elaborado pelo autor.

APÊNDICE I – MAPA DE CALOR RELACIONADO A DISTRIBUIÇÃO DAS COMPONENTES PRINCIPAIS DA PCA NO COMPLEXO PD-1 (BENZENO – REP6) PARA A ESCOLHA DAS ESTRUTURAS DE *ENSEMBLE DOCKING*

Fonte: Elaborado pelo autor. Apenas as estruturas capazes de abrigar as sondas no sítio (estado conformacional 1) foram submetidas ao ensaio.

APÊNDICE J – PADRÃO DE POSIÇÃO DOS LIGANTES NAS ESTRUTURAS 4 E 10 USADAS NOS ENSAIOS DE *ENSEMBLE DOCKING*

Estrutura 4

						Contatos	- resíduos	da alça C'D				
Posição	Ligantes totais	ASP77	LYS78	LEU79	ALA80	ALA81	PHE82	PRO83	GLU84	ASP85	ARG86	SER87
		67	75	56	23	17	0	0	21	0	2	62
		89%	100%	75%	31%	23%	0%	0%	28%	0%	3%	83%
	75	GLN88	PRO89	GLY90	GLN91	ASP92	SER93	ARG94	PHE95	ARG96	VA	L97
		74	12	52	74	50	1	18	54	0		D
1	75%	99%	16%	69%	99%	67%	1%	24%	72%	0%	0	%
						Contatos	- resíduos	da alca C'D				
Posição	Ligantes totais	ASP77	17578	LEU79	ALA80	ALA81	PHF82	PRO83	GLU84	ASP85	ARG86	SER87
roongao	Liguncestotais	1	1	2	22	21	12	1	15	0	11	22
		5%	5%	9%	100%	95%	55%	5%	68%	0%	50%	100%
	22	GLN88	PRO89	GLY90	GLN91	ASP92	SER93	ARG94	PHE95	ARG96	VA	L97
		21	22	5	20	0	19	0	4	20	2	20
2	22%	95%	100%	23%	91%	0%	86%	0%	18%	91%	91	1%
						Contatos	- resíduos	da alca C'D				
Posição	Ligantes totais	ASP77	LYS78	LEU79	ALA80	ALA81	PHE82	PRO83	GLU84	ASP85	ARG86	SER87
		0	3	3	3	3	2	1	2	0	0	2
		0%	100%	100%	100%	100%	67%	33%	67%	0%	0%	67%
	3	GLN88	PRO89	GLY90	GLN91	ASP92	SER93	ARG94	PHE95	ARG96	VA	L97
		2	1	2	1	0	0	0	0	0		D
-	20/	670/	220/	670/	22%	0%	0%	0%	0%	0%		0/

Estrutura 10

			Contatos - resíduos da alça C'D									
Posição	Ligantes totais	ASP77	LYS78	LEU79	ALA80	ALA81	PHE82	PRO83	GLU84	ASP85	ARG86	SER87
		26	100	73	100	89	31	5	90	4	85	100
		26%	100%	73%	100%	89%	31%	5%	90%	4%	85%	100%
	100	GLN88	PRO89	GLY90	GLN91	ASP92	SER93	ARG94	PHE95	ARG96	VA	L97
		100	1	0	92	0	32	0	17	98	4	18
3	100%	100%	1%	0%	92%	0%	32%	0%	17%	98%	48	1%

Fonte: Elaborado pelo autor. Os resíduos que obtiveram contatos com mais de 50 % dos ligantes avaliados foram marcados em verde.

APÊNDICE L – IDENTIFICAÇÃO DOS LIGANTES SELECIONADOS APÓS A REALIZAÇÃO DA TRIAGEM VIRTUAL

Arquivo	Identificação	Estrutura em formato SMILE
ligomega1725189	PV- 002868250326	CC1=NC(NC(=O)C2=CC=C3CNC(=O)NC3=C2)=NC2=CC=CC(F)=C12
ligomega3036345	Z3467844072	C[C@@H]10[C@H](C)CC2=C1[NH]N=C2C(=O)NC1=CC2=C(C=C1F)CCC(=O)N2
ligomega15080688	PV- 002824147170	CC1=C(C(=O)NC2=CC=C3OCC(=O)NC3=N2)[NH]C2=CC(F)=CC(F)=C12
ligomega8704840	Z3549008675	O=C(NC1=CC=C2CCNCC2=C1)C1=CC=CC(N2CCCNS2(=O)=O)=C1
ligomega_2810677	Z4041875852	CC1(C2=CC=C(NC(=O)N3C[C@@H](O)[C@@H](O)CC34CCOCC4)C=C2)CC1(F)F
ligomega12326857	PV- 003037918533	CC1=CC(C2=NC(C3=CC=C4C=C[NH]C4=N3)=NO2)=NN=C1C
ligomega1261946	PV- 002945074956	O=C1[NH]N(C2=CC=C(Cl)C(Br)=C2)C(=O)C2=C1CCCC2
ligomega10280954	PV- 002823316576	CN1C2=CC=CC=C2C2=C1C(=O)[NH]C(C1=CC(O)=CC(F)=C1)=N2
ligomega1234101	PV- 002712211088	NC(=O)NC1=CC=CC(C2=CC3=C(C=C[NH]C3=O)C(F)=C2)=C1
ligomega3904584	Z4317037881	CC1(C)CC(NC(=O)NC2=CC=C3CCC(=O)NCC3=C2)C2=CC=C(F)C=C2O1

Fonte: Elaborado pelo autor.

APÊNDICE M – DIAGRAMA BIDIMENSIONAL (2D) DE INTERAÇÃO DOS LIGANTES SELECIONADOS PARA DINÂMICA MOLECULAR

ligomega__1508068

ligomega__8704840

ligomega__1232685

APÊNDICE N – POSSÍVEL IMPEDIMENTO ESTÉRICO PROVOCADO PELA APROXIMAÇÃO DE GRUPAMENTOS CH₂ E F NA REGIÃO CENTRAL DE LIGOMEGA__3036345

Fonte: Elaborado pelo autor.

APÊNDICE O – ANÁLISE DA FORMAÇÃO E QUEBRA AO LONGO DAS SIMULAÇÕES DE DINÂMICA MOLECULAR DE INTERAÇÕES ENVOLVENDO OS LIGANTES SELECIONADOS E O SÍTIO DE INTERAÇÃO

ligomega_8704840

ligomega_2810677

Fonte: Elaborado pelo autor. As interações com real possibilidade de ocorrência encontram-se assinaladas em verde.

APÊNDICE P – DINÂMICA CONFORMACIONAL DE LIGOMEGA__2810677 NO SÍTIO DE INTERAÇÃO PROPOSTO

Fonte: Elaborado pelo autor. As interações em amarelo foram destacadas por possuirem abundância maior que 30 % do numero de quadros das simulações. As setas indicam interações que contribuiram para a presença do ligante no sítio. Setas vermelhas: possível competição entre nitrogenio da amida e hidroxila presente na extremidade do ligante com ARG86. Seta verde: interações envolvendo o oxigenio do grupamento amida. Seta azul: interações predominantes entre a porção da hidroxila da extremidade do ligante e o sítio de interação.

ARG86

APÊNDICE Q – EVOLUÇÃO AO LONGO DO TEMPO DA ENTALPIA DE LIGAÇÃO DOS COMPLEXOS ESTUDADOS VIA MM/GBSA

➡ ligomega_15080688

➡ ligomega_2810677

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

ANEXO A – RELAÇÃO DOS ANTICORPOS DISPONÍVEIS NO MERCADO COM RECONHECIDA ATIVIDADE ANTIPD-1 OU ANTIPD-L1.

Nome	Anticorpo	Ano de aprovação	Tipo de tumor		
Atezolizumab	antiPD-L1	2016	Carcinoma urotelial		
		2016	Câncer pulmonar		
Avelumab	antiPD-L1	2016	Tumor de Merkel		
		2016	Carcinoma urotelial		
Durvalumab	antiPD-L1	2017	Carcinoma urotelial		
		2018	Câncer pulmonar		
Cemiplimab	antiPD-1	2018	Carcinoma cutâneo		
Nivolumab	antiPD-1	2014	Melanoma		
		2015	Câncer pulmonar		
		2016	Linfoma de Hodgkin		
		2016	Câncer de cabeça e pescoço		
		2017	Carcinoma urotelial		
		2017	Carcinoma hepatocelular		
Pembrolizumab	antiPD-1	2014	Melanoma		
		2015	Câncer pulmonar		
		2016	Câncer de cabeça e pescoço		
		2017	Linfoma de Hodgkin		
		2017	Carcinoma urotelial		
		2017	Carcinoma gastrico		

Fonte: COSTA, 2019 – adaptado.