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“If you can’t fly, then run, if you can’t run, then

walk, if you can’t walk, then crawl, but whatever

you do, you have to keep moving forward.”

(Martin Luther King)



RESUMO

A separação cega de fontes (BSS) é uma ativa área de pesquisa em processamento estatístico

de sinais devido às suas inúmeras aplicações, como análise de dados de imagens médicas,

comunicações sem fio e processamento de imagens. Devido ao amplo uso da tecnologia de

multi-sensores, a análise de múltiplos conjuntos de dados está no centro de muitos problemas

desafiadores na engenharia. Isso motiva o desenvolvimento de modelos de separação cega de

fontes para múltiplos conjunto de dados (JBSS) assumindo dependência estatística entre fontes

latentes através de misturas. A análise de componentes independentes (ICA) é um método de BSS

amplamente utilizado que pode alcançar a recuperação da fonte de forma exclusiva, sujeito apenas

a ambigüidades de escala e permutação, por meio da suposição de independência estatística

por parte das fontes latentes. Embora o ICA seja um dos algoritmos mais comumente usados,

ele só pode decompor um único conjunto de dados. Isso tem impulsionado o desenvolvimento

da análise de vetores independentes (IVA) uma generalização recente do ICA para múltiplos

conjuntos de dados que pode alcançar um desempenho aprimorado em relação ao desempenho

do ICA em cada conjunto separadamente, explorando dependências entre os conjuntos de dados.

Embora os algoritmos ICA e IVA possam ser modelados com base na estrutura de máxima

verossimilhança de modo que todos os tipos de diversidade disponíveis sejam levados em

consideração simultaneamente por meio do uso de modelos de densidade geral para as fontes

multivariadas latentes, eles frequentemente se desviam de suas propriedades de otimização

devido à estimação inadequada da função densidade de probabilidade. Portanto, para garantir a

eficiência dos algoritmos de IVA, é necessário um método de estimação de densidade eficiente.

Nesta dissertação, apresentamos uma técnica de estimação de densidade multivariada com

base no princípio da máxima entropia que utiliza conjuntamente funções de medição multidi-

mensionais globais e locais para fornecer funções densidade de probabilidade flexíveis e além

disso, integramos no algoritmo proposto uma técnica de integração multidimensional baseada

no método de Monte Carlo. Então, derivamos um novo algoritmo de IVA, que aproveita a

capacidade do método proposto de estimação de densidade para aprimorar o desempenho de

separação de fontes em uma ampla gama de distribuições. Utilizamos experimentos numéricos

para demonstrar o desempenho superior sobre algoritmos amplamente utilizados.

Palavras-chave: Análise de vetores independentes. Estimação de função densidade de probabil-

idade multivariada. Princípio da máxima entropia. Métodos de Monte Carlo.



ABSTRACT

Blind source separation (BSS) is an active area of research in statistical signal processing due to its

numerous applications, such as analysis of medical imaging data, wireless communications, and

image processing. Due to the wide use of multi-sensor technology, analysis of multiple datasets

is at the heart of many challenging engineering problems. This motivates the development of the

field of joint blind source separation (JBSS), which extends the classical BSS to simultaneously

resolve several BSS problems by assuming statistical dependence between latent sources across

mixtures. Independent component analysis (ICA) is a widely used BSS method that can uniquely

achieve source recovery, subject to only scaling and permutation ambiguities, through the

assumption of statistical independence on the part of the latent sources. Although ICA is

one of the most commonly used, it can only decompose a single dataset. This has driven the

development of independent vector analysis (IVA), a recent generalization of ICA to multiple

datasets that can achieve improved performance over performing ICA on each dataset separately

by exploiting dependencies across datasets. Though both ICA and IVA algorithms cast in the

maximum likelihood (ML) framework such that all available types of diversity are taken into

account simultaneously through the use of general density models for the latent multivariate

sources, they often deviate from their theoretical optimality properties due to improper estimation

of the probability density function (PDF). Therefore, in order to guarantee the effectiveness of

IVA algorithms, an efficient density estimation method is required.

In this dissertation, we present a multivariate density estimation technique based on the maximum

entropy principle (MEP) that jointly uses global and local multidimensional measuring functions

to provide flexible PDFs while keeping the complexity low by integrating into the proposed

algorithm a multidimensional Monte-Carlo (MC) integration technique. Finally, we derive a

new IVA algorithm, which takes advantage of the accurate estimation capability of the proposed

density estimation method to greatly improve separation performance from a wide range of

distributions. We use numerical experiments to demonstrate the superior performance over

widely used algorithms.

Keywords: Independent vector analysis. Multivariate probability density estimation. Maximum

entropy distributions. Monte Carlo methods.
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1 INTRODUCTION

1.1 Motivation

The problem of blind source separation (BSS) is one of the most relevant subjects in

unsupervised signal processing and has been intensively studied by this research area because of

its potential applications such as speech recognition systems, telecommunications, and medical

signal processing. The first general framework to deal with BSS was introduced by Jeanny

Hérault and Bernard Ans from 1984 and is founded on the concept of independent component

analysis (ICA). Although ICA is one of the most efficient algorithms for the BSS problem,

its framework is able to analyze one single set of data, which greatly limits its applicability

because, with the growth of multi-sensor technology, the analysis of multiple data sets has been

widely addressed in many current engineering problems. This has been the main reason for

the development of the joint blind source separation (JBSS) area, a generalization of the BSS

problem for joint analysis of multiple datasets (ROMANO et al., 2010).

Figure 1 – Analysis of brain activity using electroencephalogram (EEG) data collected from
multiple subjects.

An effective solution to the JBSS problem is independent vector analysis (IVA), a

recent extension of independent component analysis (ICA) that makes full use of the statistical

dependence across multiple datasets to achieve source separation. Real-world problems that

IVA provides an effective solution include detection of a target in a given video sequence or
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multi-spectral remote sensing data, separation of music signals, stock prediction, and analysis of

brain activity using medical image data collected from multiple subjects among many others.

IVA can be formulated in a maximum likelihood (ML) framework such that all available types

of diversity are taken into account simultaneously. The key issue that will enable the application

of IVA to many problems with effective solutions is the development of effective models for the

underlying source density and their estimation.

In this master thesis, we present a multivariate density estimation technique based

on the MEP that jointly uses global and local multidimensional measuring functions to provide

flexible PDFs while keeping the complexity low by integrating into the proposed algorithm a

multidimensional Monte-Carlo (MC) integration technique. Next, using the proposed density

estimator we derive an efficient IVA algorithm, in order to accurately separate sources from a

wide range of multivariate PDFs. We use numerical experiments to demonstrate the superior

performance over popular IVA algorithms.

1.2 Contributions

The framework as well as the contributions of this dissertation are organized as

follows.

a) Chapter 3 - Multivariate density estimation

In order to provide an optimal framework for the IVA model using the ML

framework, the knowledge of the multidimensional PDF that best matches the

underlying properties of the latent sources is necessary. The main goal regarding

this estimation problem is to achieve a desirable balance between flexibility

while maintaining a simple form that would enable generalization, and efficient

implementation.

– To provide a new multivariate density estimator based on entropy maximization

with kernels by jointly using global and local measuring functions yielding

flexible PDFs while keeping the complexity low;

– Demonstrate the superior performance of M-EMK over competing density

estimation algorithms using simulated as well as real-world data;

– To propose a multidimensional Monte Carlo (MC) integration technique, that

uses sequences of quasi-random numbers in order to achieve computational

efficiency;
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b) Chapter 4 - Multivariate EMK IVA Algorithm

Motivated by the efficient density estimation obtained by the proposed estimation

method, we integrate our density estimator into the IVA model. Hence, the

following contributions can be listed:

– To develop a new IVA algorithm, IVA by multivariate entropy maximization

with kernels (IVA-M-EMK);

– To demonstrate superior source separation performance of IVA-M-EMK

among widely used algorithms using simulated data.

1.3 Overview

This thesis is organized as follows. In chapter 2 we present all the theoretical

formulation of the IVA algorithm under the ML umbrella. Chapter 3 provides a new flexible and

efficient multivariate density estimator and verify its effectiveness. In chapter 4, we apply this

density estimator to the development of an effective IVA algorithm that successfully matches

multivariate latent sources from a wide range of distributions and demonstrate the superior

performance of the new IVA algorithm numerically using simulated data. Finally, in chapter 5

we discuss the conclusions and future research topics of the proposed work.
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2 INDEPENDENT VECTOR ANALYSIS

Independent vector analysis (IVA) is a recent generalization of independent compo-

nent analysis (ICA) that enables the joint factorization of multiple sets of data. Similar to ICA,

IVA can be formulated in a maximum likelihood (ML) framework such that all available types

of diversity are taken into account simultaneously through the use of general density models for

the latent multivariate sources. Originally IVA was formulated for solving the convolutive ICA

problem in the frequency domain using multiple frequency bins (KIM, 2010). This led to the

development of IVA-Laplacian (IVA-L) (KIM et al., 2006; KIM et al., 2007), an algorithm that

takes only higher-order statistics (HOS) into account and assumes a Laplacian distribution for the

underlying source component vectors. Conversely, IVA-Gaussian (IVA-G) (ANDERSON et al.,

2012; VIA et al., 2011) exploits linear dependencies but does not take HOS into account. Finally,

IVA based on the multivariate generalized Gaussian distribution (ANDERSON et al., 2013b;

ANDERSON et al., 2014; BOUKOUVALAS et al., 2015; BOUKOUVALAS et al., 2015) are

more general IVA implementations where both second and higher order statistics are taken into

account. Although current IVA algorithms based on the underlying density model of the latent

sources have shown great success in a number of applications. Therefore, the key issue that

will enable the successful application of IVA to many problems where such multivariate density

modeling is needed (BOUKOUVALAS et al., 2018a; BHINGE et al., 2016; ADALI et al., 2018),

is the development of flexible models for the underlying source density and their estimation.

In this chapter, we begin mathematically formulating the IVA algorithm based on a

ML framework. Then, we derive the ML objective functions for the mutual information (MI)

objective function, which provides a framework that enables the exploitation of multiple forms of

diversity, while at the same time enjoying all the theoretical advantages of ML theory. Finally, we

introduce the IVA model from an algorithmic point of view ending in an optimization problem

that is motivated by unreasonable results and poor convergence of optimization problems with

matrix parameters and present a decoupling procedure to overcome this problem.

2.1 IVA

As previously mentioned, IVA is a generalization of ICA. Due to this fact, IVA is

mathematically formulated in a similar way, except that now we have K datasets x[k], k = 1, ...,K

where each dataset is a linear mixture of N statistically independent sources. Using random
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vector notation under the assumption that samples are i.i.d, the noiseless IVA model is given by

x[k] = A[k]s[k], k = 1, ...,K, (2.1)

where A[k] ∈ R
K×K , k = 1, ...,K are invertible mixing matrices and s[k] = [s

[1]
1 , ...,s

[k]
N ]⊤ is the

vector of latent sources for the kth dataset.

Figure 2 – JBSS structure.

In addiction, the components within each s[k] are assumed to be independent, while

at the same time, dependence across corresponding components of s[k] in multiple datasets are

allowed. This comes from the definition of the source component vector (SCV) that is defined

by vertically concatenating the nth source from each of the K datasets and is denoted by

sn =
[

s
[1]
n , ...,s

[k]
n

]⊤
, (2.2)

where sn is a K-dimensional random vector. An illustration of SCV is shown in

Figure 2. In contrast to ICA, the goal in IVA is to estimate K demixing matrices to yield

maximally independent source estimates y[k] = W[k]x[k].

2.2 IVA cost function

IVA can be formulated in a ML framework. The ML objective function for IVA is

given by (BOUKOUVALAS, 2018)

LIVA =
N

∑
n=0

E {log p(yn)}+
K

∑
k=0

log
∣

∣

∣
det
(

W[k]
)∣

∣

∣
, (2.3)

where yn is the nth estimated random vector and p(yn) denotes its multidimensional PDF. It

has been shown by the asymptotic equipartition property, as sample size tends to infinity, the
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Figure 3 – Illustration of SCV and source vector.

minimization of mutual information (MI) cost function becomes equivalent to the maximization

of the ML cost function (ADALI et al., 2014a; BOUKOUVALAS, 2018; COVER; JOY, 2006),

hence, making available all the theoretical advantages associated with the ML theory. Thus, the

maximally independent sources can be achieved achieved by minimizing the MI cost function,

which is given by (FU et al., 2015)

IIVA =
N

∑
n=0

H (yn)−
K

∑
k=0

log
∣

∣

∣det
(

W[k]
)∣

∣

∣−C, (2.4)

where H (yn) denotes the differential entropy of the nth SCV and C is the constant term

H(x[1], ...,x[K]), and its gradient is given by (BOUKOUVALAS, 2018)

∂ IIVA

∂W[k]
=−E

{

∂ log p(yn)

∂y
[k]
n

∂y
[k]
n

∂W[k]

}

−
(

W[k]
)−⊤

, (2.5)

where p(yn) denotes its probability density function (PDF). It has been shown that the mini-

mization of (2.4) is equivalent to the maximization of the IVA ML cost function (ADALI et al.,

2014a; BOUKOUVALAS, 2018; COVER; JOY, 2006), hence, we may use the results from MI

to handle IVA maximization. It is clear that minimizing (2.4) is not a straightforward task since

there is no access to the true underlying PDF of each estimated SCV.

To mathematically demonstrate this, if p̂(yn) denotes the multivariate PDF of the nth

estimated SCV then, its differential entropy can be expressed as

H(yn) =− f (p(yn) || p̂(yn))−E{log p̂(yn)}, (2.6)

where f (p(yn) || p̂(yn)) denotes the Kullback–Leibler (relative entropy) distance between the

density of the nth estimated SCV and the true density of yn (COVER; JOY, 2006). From (2.6),
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we can achieve perfect source recovery as long as the assumed model PDF matches the true

latent multivariate density of the nth SCV, i.e., f (p(yn), p̂(yn)) = 0.

2.3 IVA from an algorithmic point of view

Using the IVA MI objective function the derivative with respect to each of the

demixing is given by (BOUKOUVALAS, 2018)

∂ IIVA

(

W[k]
)

∂W[k]
= E

{

φ [k](x[k])⊤
}

−
(

W[k]
)−⊤

, (2.7)

where φ [k] is called score function and is given by

φ [k] =−

[

∂ log pp1(y1)

∂y
[k]
1

, ...,
∂ log ppN

(yN)

∂y
[k]
N

]

. (2.8)

Therefore, each of the K demixing matrices is updated using

(

W[k]
)new

←
(

W[k]
)old
− γ

∂ IIVA (W)

∂W[k]
, (2.9)

where γ is the step size. However, optimization problems with matrix parameters arise in many

BSS algorithms. In particular, for the IVA update rules, performing the optimization procedure on

the space of all invertible matrices, may result in poor convergence due to inversion of W matrix

at each iteration as shown in Equation (2.5). This motivates the division of the minimization

of (2.4) into a series of subproblems such that instead of minimize (2.4) with respect to Wk we

minimize the MI objective function with respect each of the row vectors w1, ...,wK individually.

This simplifies the density matching problem as the estimation of a given source will not affect

the estimation of the others, improve the convergence characteristics of the algorithm, and

simplifies the incorporation of constraints in the IVA framework.

A simple approach, introduced in (HYVARINEN, 1999), is to assume that W is

orthogonal, i.e., WW⊤ = 1. This assumption yields |det(W)|= 1, and allows for the optimiza-

tion of (2.4) with respect to each of the rows of W. Although assuming W to be orthogonal

simplifies the objective function and may improve the stability of the algorithm, the solution

space is limited, which may significantly affect the overall separation performance. To avoid this

issue we present a decoupling procedure that transforms the matrix optimization into a series of

vector optimization problems without constraining W to be orthogonal.
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2.3.1 Decoupling procedure

In order to achieve improved source separation performance, we use a decoupling

procedure (LI; ZHANG, 2007; ANDERSON et al., 2012), which instead of minimizing (2.4)

with respect to W[k], minimizes with respect to each row vector w
[k]
i , i = 1, ...,N. In order to

maintain a simple mathematical notation, we demonstrate the decoupling procedure approach

within the ICA framework. It is worth mentioning that for IVA the procedure is straightforwardly

formulated.

Let Wn = [w1, ...,wn−1,wn+1, ...,wN ]
⊤ ∈ R

(N−1)×N denote the matrix that contains

all rows of W except the nth term. As the determinant of a matrix is invariant under row

permutation up to a sign ambiguity, the square of det(W) is written as

det(W)2 = det(WW⊤)

= det









Wn

W⊤
n





[

Wnw⊤n

]





= det









WnW⊤n Wnwn

w⊤n W⊤n w⊤n wn









= det
(

WnW⊤n

)

w⊤n

(

I−W⊤n

(

WnW⊤n

)−1
Wn

)

wn,

(2.10)

where Hn = I−W⊤n
(

WnW⊤n
)−1

Wn is the orthogonal projection onto the null space of Wn.

Moreover, Hn = hnh⊤n since Hn is rank one by definition, where hn is perpendicular to all row

vectors of Wn. Thus,

|det(W)|=
√

det(WnW⊤n )
2w⊤n hnh⊤n wn

=

√

det(WnW⊤n )
2
(

h⊤n wn

)2

=
∣

∣

∣det
(

WnW⊤n

)∣

∣

∣

∣

∣

∣

(

h⊤n wn

)∣

∣

∣ .

(2.11)

By using (2.11), we can rewrite the MI cost function (2.4) as the following decoupled

cost function

IIVA = H (yn)− log

∣

∣

∣

∣

(

h
[k]
n

)⊤
w
[k]
n

∣

∣

∣

∣

−C
[k]
n , (2.12)

and its gradient is given by

∂ IIVA

∂w
[k]
n

= E
{

φ
[k]
n (yn)x[k]

}

−
h
[k]
n

(
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[k]
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, (2.13)
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where the kth element of the multivariate score function can be written as

φ
(

y
[k]
n

)

=
∂ log(pn (yn))

∂y
[k]
n

. (2.14)

The development of an efficient PDF estimator plays an important role on the IVA

algorithms, since to achieve perfect source separation we need the term f (p(yn), p̂(yn)) in (2.6)

to become zero.

2.4 Summary

In this chapter, based on a maximum likelihood framework, we present a theoretic

mathematical model that guides the mathematical formulation of the IVA algorithm, an efficient

algorithm for the JBSS which is a generalization of the BSS problem to multiple datasets.

Furthermore, as expected from multivariate approaches, the model becomes computationally

challenging. To overcome this challenge, we use a decoupled procedure as a mathematical tool

yielding several benefits to our approach and we guide the importance of developing an efficient

PDF estimator which is provided in the next chapter.
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3 MULTIVARIATE DENSITY ESTIMATION

The estimation of a multivariate probability density function (PDF), as observed in

Chapter 2, is a key part of the IVA model. However, this information is usually not available

in most real-world applications. Algorithms that use fixed or simple models for the underlying

distribution of the latent sources can yield poor separation performance when the data deviates

from the assumed model. Thus, effective characterization of the density is vital to the success of

these approaches.

In this chapter, we present a multivariate density estimator that is based on the MEP

and by jointly using global and local measuring functions we provide flexible PDFs. Moreover,

in order to keep the complexity low we integrate into the proposed algorithm a multidimensional

Monte-Carlo (MC) integration method. Finally, we demonstrate superior density estimation

performance compared to widely used algorithms. We call the new estimator multivariate entropy

maximization with kernels (M-EMK) and consider it as an extension of the univariate case (FU

et al., 2015).

3.1 Multivariate density estimation techniques

Multivariate density estimation approaches can be broadly classified as either para-

metric and non-parametric. Parametric methods, such as the multivariate Gaussian mixture

model (GMM) (MCLACHLAN; D.PEEL, 2004), provide a simple form for the PDF and are

computationally efficient, however they are limited when the underlying distribution of the data

deviates from the assumed parametric form. On the other hand, non-parametric methods, such as

multivariate kernel density estimation (KDE) (KUNG, 2014; ROJO-ÁLVAREZ et al., 2018),

can provide flexible density matching since they are not limited to any specific distribution.

However, they are generally computationally demanding, especially when sample size is large,

and they highly depend on the choice of tuning parameters. Semi-parametric methods combine

the flexibility of the non-parametric techniques with the relatively simple density form of the

parametric technique. Semi-parametric methods, such as those based on the maximum entropy

principle (MEP) (BEHMARDI et al., 2011; FU et al., 2015; LI; ADALI, 2010), provide a

desirable trade-off between non-parametric and parametric methods, yielding a global solution

provided by the MEP (JAYNES, 1957a).
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3.2 Maximum Entropy Principle

The maximum entropy principle states that the probability distribution which best

represents the current state of knowledge is the one with the largest entropy (JAYNES, 1957a;

JAYNES, 1957b). The maximum entropy density, subject to known constraints, can be written

as the following optimization problem (COVER; JOY, 2006):

max
p(y)

H(p(y)) =−
∫

RK
p(y) log p(y)dy

s.t.
∫

RK
ri(y)p(y)dy = αi, for i = 0, ...,M,

(3.1)

where y ∈RK , p(y)≥ 0, and ri(y) ∈C(RK,R) for i = 0, ...,M. The space C(RK,R),

represents all measuring functions with domain R
K and co-domain R, and αi = ∑

T
t=1 ri(yt)/T

for i = 0, ...,M represent their corresponding sample averages, given observations y(t) ∈ R
K ,

t = 1, ...,T . We note that the first constraint needs to be
∫

RK p(y)dy = 1, equivalently r0 = 1 and

α0 = 1, in order p(y) to be a valid PDF. The optimization problem in (3.1) can be rewritten in a

Lagrangian form and is given by

L (p(y)) =−
∫

RK
p(y) log p(y)dy

+
M

∑
i=0

λi

∫

RK
(ri(y)−αi)p(y)dy,

(3.2)

where λi, i = 0, ...,M, are the Lagrangian multipliers. Through the use of functional variation,

we can “differentiate” (3.2) with respect to p(y). By setting ∂L p(y)/∂ p(y) = 0, we obtain the

equation of maximum entropy distribution,

p̂(y) = exp

{

−1+
M

∑
i=0

λiri (y)

}

, (3.3)

where Lagrangian multipliers are chosen such that p satisfies the constraints in (3.1). By

substituting (3.3) into the constraints in (3.1), we generate a nonlinear system of M+1 equations

for the M+1 Lagrangian multipliers.
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3.3 M-EMK

3.3.1 Mathematical formulations

We can evaluate the Lagrangian multipliers in (3.3) by the Newton iteration scheme,

given by (FU et al., 2015)

λn+1 = λn−J−1Epn
{r−α} , (3.4)

where pn is the estimated PDF for the nth iteration, Epn
is the expectation over the distribution

pn, and r = [r0, ...,rM], λ= [λ0, ...,λM], α= [α0, ...,αM] ∈ R
M+1 denote the vectors of global

and local measuring functions, the Lagrangian multipliers and sample averages, respectively. By

J ∈ R
M×M we denote the Jacobian matrix where the i j-th entry of J is given by

Ji j =
∫

RK
ri(y)r j(y)p(y)dy = Epn

{

rir j

}

. (3.5)

The i-th entry of Epn
{r−α} is given by

Epn
{r−α}=

∫

RK
ri(y)p(y)dy−αi. (3.6)

As we can see from (3.6), accurate estimation of the Lagrange multipliers highly

depends on the proper selection of the constraints both in terms of their number as well as the

different types of measuring functions that provide information about the underlying statistical

properties of the data. Failure to do so, may result in high complexity as well as poor data

characterization.

3.3.2 Measuring functions

We jointly use global and local constraints to provide flexible multivariate density

estimation while keeping the complexity low. Similar to (FU et al., 2015; LI; ADALI, 2010) we

use 1,y,y2,y/(1+y2) as the global constraints, since they provide computational efficiency and

desirable performance for a wide range of distributions. Furthermore, these global constraints
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provide information on the PDF’s overall statistics, such as the mean, variance, and higher order

statistics (HOS). For the local constraint we use the following Gaussian kernel, given by

q(y) =
1

√

|Σ|(2π)K
exp(−

1
2
(y−µ)⊤Σ−1(y−µ)), (3.7)

where µ denotes the mean vector, Σ denotes the covariance matrix and | · | stands for the

determinant of the argument. The use of Gaussian kernels provides localized information about

the PDF, This localized information plays an important role in the estimation procedure since we

do not have access to the underlying true PDF local behavior only using global constraints. It

is important to note that when we add the Gaussian kernel to the multidimensional integrals in

(3.5) and (3.6), their computation becomes challenging due to the fact that the Gaussian kernel

has infinite support.

3.3.3 Multidimensional integration

As noted in the previous section, the multidimensional integration is one of the

main challenges in our estimation problem. To overcome this difficulty, we make use of an

efficient multidimensional integration technique that is based on Quasi-Monte Carlo (QMC)

methods. QMC methods are variants of the classical Monte Carlo (MC) methods and have

shown to be efficient in terms of their rate of convergence becoming ideal for our proposed

approach (O’LEARY, 2009). QMC methods achieve a convergence rate of order O((logT )K/T )

or faster if sufficient smoothness of the function is assumed (DICK et al., 2013).

In order to introduce the QMC integration methods in our approach, we need to

generate a sequence of quasi-random points which presents an advantage in terms of convergence

rate compared to sequences of pseudo-random point (NIEDERREITER, 1992) that MC integra-

tion methods use. To achieve this, we use the van der Corput sequence, which is an example of a

one-dimensional low-discrepancy sequence that uniformly covers the unit hypercube and can

be constructed using a computational efficient procedure (NIEDERREITER, 1992). The z-th

quasi-random number wz, is constructed in the following way:

1) Let bk denote the k-th prime number, for instance, when k = 1 then b1 = 2, when

k = 2 then b1 = 3 and so forth, and Zbk
= {0,1, ...,bk−1} denotes the least residue system mod
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Figure 4 – Example of a generation of 16 samples in [0,1] ∈ R. The van der Corput sequence
is obtained by reversing the bits in the binary decimal representation of the naive
sequence.

bk. Every integer t ≥ 0 has a unique digit expansion given by

t =
T−1

∑
i=0

ai(t)b
i
k (3.8)

in base-bk, where T is the sample size of quasi-random numbers and ai(t) ∈ Zbk
. The t-th

quasi-random number is given by the following radical-inverse function in base-bk,

wt =
T−1

∑
i=0

ai(t)b
−i−1
k . (3.9)

2) Using the numbers generated by (3.9), we approximate the multidimensional

integrals in (3.5) and (3.6) in a similar manner as we do using traditional MC methods. Thus,

each of the integrals is evaluated by

QT,K (p(y)) = Ω

(

1
T

T−1

∑
i=0

p(wt)

)

, (3.10)

where Ω denotes the dimensional measure of the region of integration. For instance, length, area

and volume for one, two and three-dimensional space, respectively.
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3.4 Experimental results

In this section, by using simulated data, we first demonstrate how the performance

of the density estimation is affected if we include only global measuring functions. Then,

we demonstrate superior estimation performance, computational efficiency, and flexibility of

M-EMK by comparing with KDE, which is a widely used non-parametric method, and GMM,

which is classical parametric method. Finally, we show the estimation capability of M-EMK

using several real datasets.

3.4.1 Simulated data

We generate data according to a mixture of generalized Gaussian distributions. The

PDF is given by

p(x;β ,µ,σi) =
L

∑
i=1

πigi(x;β ,µ,σi), x ∈ R
K

where each gi is a multivariate generalized Gaussian distribution defined in (ANDERSON et al.,

2012). The shape and mean parameters for each of the components are chosen to be β = 0.5

and µ = 1 respectively. The weight parameters π1 and π2 are chosen to be equal to 0.3 and 0.7,

respectively. For all the experiments we select K = 2, also we set the mean of the Gaussian

kernel equal to the zero vector and equal to the identity matrix.

3.4.2 Density estimation performance

For the first experiment, we demonstrate how the performance of the density estima-

tion is affected if we include only global measuring functions and if we jointly include global

and local measuring functions into the estimation phase. For this experiment the number of

sample size is T = 10000. Figure 5, shows the histogram of the generated data as well as the

estimated density by using only global measuring functions and the estimated density by jointly

using global and local measuring functions.

We can see that by only including global measuring functions we are not able to

capture the local behavior of the true underlying PDF and thus we achieve sub-optimal estimation

performance in terms of matching with the histogram.

In the second experiment, we verify the effectiveness of our approach by comparing
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Figure 5 – Estimation performance only using global constraints and using global and local
constraints represented in the second and third line, respectively.
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Figure 6 – Comparison in terms of matching with the histogram. First line–histogram of the gen-
erated data, first column–parametric method (GMM), second column–non-parametric
method (KDE), third column–semi-parametric method (M-EMK).

M-EMK with KDE as well as GMM in terms of matching with the histogram of the generated

data for different number of sample sizes. As we can see in Figure 6, when the number of sample

size is T = 1000, M-EMK performs similarly to GMM and KDE in terms of matching with the

histogram. However, when T = 500, GMM and KDE are not able to capture the details of the

shape of all three peaks while, M-EMK is able to effectively estimate the three highest peaks.

In addition to the estimation capability, another important aspect that we examine

is the computational efficiency in terms of the CPU time of M-EMK when compared to KDE,

GMM, and M-EMK by using only global constraints. Data are generated in the same way as

in the first experiment, by varying the number of sample size. From Figure 7, we can see that

M-EMK provides the best performance in terms of CPU time when compared to KDE and GMM.

As the number of sample size increases, KDE becomes computationally demanding making it
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Figure 7 – Performance comparison in terms of CPU time.

impractical for high dimensional data applications. The low CPU time for M-EMK, has been

observed due to the fast convergence rate introduced by the efficient integration technique. It is

worth mentioning that adding local constraints to our approach does not have a significant impact

to the average CPU time as number of sample size increases, verifying the low computational

complexity of M-EMK.

Moreover, in order to show the flexibility of our approach, we submit our estimator

to a real world dataset. The dataset represents the relation between the wind speed and power

generated by a wind turbine. These collected data yield performance monitoring and an appro-

priate analysis of the energy generation. In Figure 8, we can see that M-EMK is able to capture

the details of the dataset.

Figure 8 – Estimation performance in terms of matching with the histogram. First col-
umn–histogram of the wind turbine data, second column–M-EMK.
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Figure 9 – Density estimation comparison. First column– parametric method (GMM), second
column–non-parametric method (KDE), third column–semi-parametric method (M-
EMK).

These details are clearly noticeable when we compare our method to the other

estimation methods, GMM and KDE. We can see from Figure 9, that both the parametric and

non-parametric methods are not able to capture the two peaks while, M-EMK is able to efficiently

estimate the two peaks.

3.5 Summary

In this chapter, we introduced the estimator multivariate entropy maximization

with kernels (M-EMK), a new multivariate PDF estimation technique using the maximum

entropy principle. By jointly using global and local constraints functions, M-EMK enjoys

a high level of flexibility providing a simple exponential form for multivariate PDFs while

keeping the complexity low. Next, we present a efficient multidimensional integration technique

which yields several computational benefits to the estimation problem. Finally, we show by

experiments that M-EMK yields a very effective density estimation in terms of matching with

the histogram. Therefore, in the next chapter, based on the success of the proposed multivariate

density estimation technique, we derive a novel IVA algorithm using the M-EMK.
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4 MULTIVARIATE EMK IVA ALGORITHM

In this chapter, we propose a new IVA algorithm based on the efficient multivariate

density estimation technique presented in the previous chapter. We make use of M-EMK to

derive a novel IVA algorithm, IVA by multivariate entropy maximization with kernels (IVA-M-

EMK) through the use of the flexible and efficient estimation capability of M-EMK to greatly

improve separation performance. Then, we demonstrate the superior performance of the new

IVA algorithm numerically using simulated data.

4.1 IVA by entropy maximization

By using (3.3) as the maximum entropy PDF and the Lagrange multiplier estimates

from using (3.4) provided by M-EMK, the kth element of the score function (2.14) can be

rewritten as

φ
(

y
[k]
n

)

=−
M

∑
i=0

λi
∂ ri (yn)

∂y
[k]
n

. (4.1)

and its gradient update rule is given by

∂ IIVA

∂w
[k]
n

=−
M

∑
i=0

λi
∂ ri (yn)

∂y
[k]
n

E
{

x[k]
}

−
h
[k]
n

(

h
[k]
n

)⊤
w
[k]
n

. (4.2)

Thus, with the mutual information function to be minimized by the gradient update

rule and the efficient multivariate density estimation technique in our hands, we are able to

proceed to the simulated experiments.

4.2 Experimental results

In this set of experiments, we show the effectiveness of the IVA-M-EMK algorithm

by comparing its performance with six widely used IVA algorithms, These include, IVA-Gaussian

(IVA-G) (ANDERSON et al., 2012; VIA et al., 2011) that uses second-order statistics, and

does not constrain the demixing matrices to be orthogonal. The IVA-GGD (ANDERSON et

al., 2013a) and IVA-A-GGD (BOUKOUVALAS et al., 2015) are based on the multivariate

generalized Gaussian distribution model, and take all order statistical information into account.

The IVA-Laplacian (IVA-L), and its extensions IVA-L-Decp, IVA-L-SOS (KIM et al., 2006;
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KIM et al., 2007), use higher-order statistics to estimate the demixing matrices assuming that the

sources are multivariate Laplacian distributed. We compare them in terms of the the CPU time

and in terms of the joint inter-symbol-interference (ISI) as defined in (ANDERSON et al., 2014).

Joint ISI is a global metric for performance evaluation when the ground truth is available where

zero ISI indicates perfect separation.

4.2.1 Source separation performance

For the following experiments, we consider two cases when generating the data

for the SCVs. For the first case, we have K = 2 and generate three SCVs where each SCV

is a mixture of MGGD sources where β ,µ are chosen from the range (0.5,1) and (0.5,10)

respectively.

Figure 10 – Performance comparison of the first case in terms of Joint ISI

As we can see from Figure 10, IVA-M-EMK performs the best among the seven

algorithms in terms of Joint ISI as function of sample size demonstrating its efficient applicability.

For the second case, we have, K = 3, and generate one unimodal MGGD SCV where the shape

parameter and the correlation within the SCV for each dataset are chosen to be β = 3 and

µ = 0.6, and a mixture of two MGGD sources where β ∈ (0.6,0.8) and µ ∈ (5,10) respectively.
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Figure 11 – Performance comparison of the second case in terms of Joint ISI.

From Figure 11, we see that IVA-GGD and IVA-A-GGD provide a desirable perfor-

mance for the second case in terms of Joint ISI as function of sample size revealing the flexibility

of their underlying density models. Conversely, the algorithms based on IVA-L and IVA-G do not

provide a desirable performance due to their Laplacian and Gaussian distribution assumption for

the underlying sources. Overall however, IVA-M-EMK performs the best in both cases among

the seven IVA algorithms.

In addition to the source separation capability, another important aspect that we

examine is the computational efficiency in terms of the CPU time. In Figure 12, among the

algorithms that use a simple underlying density model, IVA-G provides the best performance for

both cases. This is due to the assumption of Gaussian distribution for the underlying sources,

which simplifies the gradient of the IVA objective function and makes the Hessian positive

definite thus, enabling second-order algorithms to improve the quality of convergence. On the

other hand, as it is expected, IVA-M-EMK is more computationally expensive, however, we see

that as number of samples increase the increase in average CPU time is negligible.
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Figure 12 – Performance comparison in terms average CPU time for different number of sam-
ple size. The first and second case represented in the first and second columns,
respectively.

4.3 Summary

In this chapter, we use the new multivariate density estimator presented in chapter 3

to derive an efficient IVA algorithm, IVA-M-EMK, that accurately separates sources from a

wide range of multivariate PDFs, enabling the application of IVA to many practical applications

where such multivariate density modeling is needed. We show by experiments that IVA-M-EMK

performs the best among widely used algorithms in terms of separation performance and CPU

time in different scenarios.
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5 CONCLUSIONS AND FUTURE DIRECTIONS

In this chapter, we present the conclusions of this dissertation, as well as future

directions for further research.

5.1 Summary

In this thesis, we introduced the multivariate entropy maximization with kernels

(M-EMK) algorithm based on a new multivariate PDF estimation technique using the maximum

entropy principle. By jointly using global and local constraints functions, M-EMK enjoys a high

level of flexibility while providing a simple exponential form for PDFs in general.

Using M-EMK, we derived an efficient IVA algorithm that accurately separates

sources from a wide range of multivariate PDFs, enabling the application of IVA to many

practical applications where such multivariate density modeling is needed

Using simulated as well as real-world datasets we demonstrate how M-EMK yields

a very effective density estimation in terms of matching with the histogram, and IVA-M-EMK

performs better than several used algorithms.

5.2 Future directions

One of the main contributions of this dissertation is the development of an effective

and efficient IVA algorithm. The success of IVA-M-EMK raises several interesting questions

that can be explored in future work. Therefore, we plan to expand IVA and its capabilities into

two major directions: algorithmic developments, as well as their use in novel natural language

processing (NLP) tasks.

5.2.1 Misinformation detection

Due to the advancement of social media, the spread of information, as well as

misinformation, plays an important role in society, particularly during high impact events, for

instance, pandemics, natural disasters, and presidential election periods. This has been shown

since the past year with Coronavirus Disease (COVID-19), where misinformation generates

chaos due to the propagation of harmful health advice, fake vaccine schedules, and conspiracy

theories, to name a few. Recent machine learning techniques have been widely used and show
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promising advances to detection of misinformation (JAIN et al., 2016; WU et al., 2019; YU

et al., 2017). In order to machine learning algorithms to be effective solutions for detection of

misinformation, they must have explainability and interpretability, i.e., the ability to summarize

in a reasonable way its decisions in an effective manner, which yields gain of trust for its

users and understandable results for analysts. Furthermore, low computational cost and a good

generalization model are desirable. Some of the most promising approaches are based on deep

learning (GIRGIS et al., 2018; S.SINGHANIA et al., 2017). They have demonstrated superior

performance in many machine learning tasks, however, the interpretation of their results is

not direct or easily accessible, and their high computational cost becomes a watershed in the

selection of an effective and flexible machine learning algorithm. In contrast to deep learning

models, a recent algorithm based on the ICA model has shown promising results in detection

of misinformation during COVID-19 (BOUKOUVALAS et al., 2020). This motivates the

formulation of the misinformation detection problem as a JBSS approach.

Therefore, based on the success of the IVA-M-EMK for the JBSS problem, as future

work, we plan to develop an effective JBSS approach through the use of the IVA-M-EMK, in

order to achieve detection of misinformation from multi-modal data, such as textual information,

videos, images, hashtag topics, user references, comments, and repostings. Furthermore, under

the JBSS and NLP umbrella, we will be able to develop algorithms for several multi-modal

machine learning tasks yielding explainable and interpretable results, effective solutions at a

reasonable computational cost, and good generalization ability.

5.2.2 Algorithmic development for misinformation detection

With its well-structured formulation, IVA provides an ideal starting point for de-

veloping a data fusion method that allows fusion of multi-modal data. Through the estimation

of the underlying SCVs it can capture unique characteristics of multi-modal data that can be

used to enhance the performance of a machine learning task. For instance, this idea has been

demonstrated by the results presented in (BOUKOUVALAS et al., 2018b) where true fusion

was used to exploit the underlying complementary information contained in different molecular

featurization methods. As seen from Figure 13, true fusion rather than simply concatenating

different molecular featurization methods resulted in enhanced prediction performance of a re-

gression model. In this development, the key steps to fully leverage the power of our true fusion

framework for our application domain include (i) further development of efficient estimation
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Figure 13 – Mean absolute error (MAE) as a function of number fused datasets. True fusion by
IVA performs better than concatenating molecular featurization methods.

techniques for the underlying SCV densities, (ii) incorporation of prior knowledge into the IVA

model through constraints, (iii) evaluation of the representation space spanned by the SCVs such

that it becomes meaningful for our application domain.

5.2.2.1 Incorporation of prior knowledge and definition of common and distinct sub-spaces for

misinformation detection

To motivate the incorporation of prior knowledge into the IVA model and to provide

a physical interpretation of the common and distinct subspaces, one can think of the fusion

example illustrated in Figure 14. For a collection of V tweets during a high impact event, we

generate K multi-modal datasets. Example of multi-modal datasets includes textual features such

as bag-of-words or n-grams (FÜRNKRANZ, 1998), references (@) and hashtags (#), as well

as specific social content information such as number of times a particular times a tweet has

been shared, number of followers and followees among others. IVA relies on the assumption

of statistical independence of the latent variables. Although this might be a natural assumption

in many problems, in our application, it might be too strong an assumption. Incorporation of

reliable and meaningful prior information about the problem and the data can help relax the

independence assumption, resulting in a better model match. This will result in better estimation

of the SCV, and thus its corresponding estimated covariance matrix will better reveal associations
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Figure 14 – Graphical multi-modal fusion example using IVA and its capabilities. Through the
estimation of the source component vectors and their associated covariance matrices
we identify correlation patterns among different multi-modal datasets and define
common and distinct subspaces through the estimated feature embeddings. Common
subspaces will enable the knowledge discovery and distinct subspaces will enable
the detection of misinformation.

between extracted low dimensional feature embeddings across the modalities. This will enable

the definition of common and distinct sub-spaces spanned by those feature embeddings. By

accessing the multivariate correlation coefficients on the common sub-space for each estimated

SCV and through a simple back-reconstruction stage (BOUKOUVALAS et al., 2020), we can

study which types of words, word pairs, references or hashtags, or social content characteristics

are most significant to the joint representation space, and how these are associated with each

other. This will enable us to discover how true and false information correlate during a high

impact event. Moreover, features that span the distinct sub-spaces can be used to train a model

for detection of misinformation. We plan to incorporate prior knowledge into the IVA model by

using the following types of constraints.

1. Sparsity constraints Sparsity is a widely used form of prior information and

typically implies that most of the energy of the data distribution is contained in only a few of the

coefficients (HURLEY; RICKARD, 2009). We motivate the incorporation of sparsity into the

IVA model through the fusion example illustrated in Figure 14. The data in each multi-modal

dataset is sparse in nature since each term in the datasets is expected to have a value greater

than zero in only few posts or tweets. Within these multi-modal sparse datasets, multiple highly

correlated feature embeddings may appear, dependent on a set of feature embeddings in each of

the other data sets. Hence, the estimated feature embeddings should be regrouped so as to form
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dependent subspaces. Motivated by (BOUKOUVALAS et al., 2018), we propose to start with

the IVA MI cost function

IIVA =
N

∑
n=0

H (yn)−
K

∑
k=0

log
∣

∣

∣det
(

W[k]
)∣

∣

∣−C, (5.1)

that accounts for statistical dependence across multiple datasets and incorporate prior information

about the problem through regularization terms such as sparsity constraints or through the

inclusion of sparse density models into (5.1).

A classical way to impose sparsity is by the penalization of (5.1) by the cardinality

of the support of the weight vector that needs to be estimated. However, this leads to hard combi-

natorial problems. Motivated by (CANDES; TAO, 2005; SCHMIDT et al., 2007; TIBSHIRANI,

1996; BOUKOUVALAS et al., 2018), we propose to replace the cardinality of the support with

the ℓ1-norm and thus obtain estimators as solutions of convex programs. This approach has two

optimization benefits. First, it leads to efficient estimation such as proximal algorithms (BOYD;

VANDENBERGHE, 2004), which have drawn attention due to their desirable convergence

properties and their ability to deal effectively with nonsmooth convex problems (NESTEROV,

2013). Second, it allows to answer questions related to estimation consistency and prediction

efficiency (BICKEL et al., 2009; NEGAHBAN et al., 2012).

To identify common and distinct subspaces and to discover meaningful interactions

among the variables within an SCV, we propose to use probabilistic graphical models that allow

capturing of the conditional independence relationships between variables. A standard approach

is to choose the sparsest network, i.e., the precision matrix—inverse covariance matrix. We

will achieve this by solving the IVA regularized maximum likelihood problem with the ℓ1-norm

regularization term for the precision matrix.

In addition, we will incorporate sparsity through direct inclusion of sparse density

models (SAITO, 2004; SUN et al., 2016; BIEN; TIBSHIRANI, 2011) into (5.1). This enables

us to stay within the IVA maximum likelihood solution hence preserving all the theoretical and

practical advantages associated with the maximum likelihood theory (ADALI et al., 2014b).

2. Constraints based on Fisher criterion to address the class imbalance prob-

lem in misinformation detection Prior information about the associations between the

samples and their classes could enhance the discrimination power of the extracted feature embed-

dings spanned by the SCVs (JIN et al., 2020; DHIR; LEE, 2011), especially in the case of the

class imbalance problem present in misinformation detection. Fisher discriminant cost could be

added to (5.1), encouraging the exploitation of the available class labels, thus, yielding feature
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embeddings with high discrimination power. In addition, by exploiting prior information about

the multi-modal datasets, we can achieve commonly shared feature embeddings across different

multi-modal sources as well as feature embeddings that can explain differences between the

datasets. In both cases, we form a dual maximization problem under a Lagrangian framework,

which jointly increases the mutual information within the feature embeddings of an SCV, and

at the same time, maximizes the functional measure of discrimination of the different feature

embeddings.
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