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[1] The regional variability of shape parameters (such as k for the GEV distribution) may
be described by generalized least squares (GLS) regression models that allow shape
parameters to be estimated from basin characteristics recognizing the sampling uncertainty
in available shape estimators. Implementation of such GLS models requires estimates of
the cross-site correlation of the shape parameter estimators for every pair of sites. Monte
Carlo experiments provided the information needed to identify simple power
approximations of the relationships between the cross correlation of estimators of
skewness g from [log] Pearson type 3 (P3) data and of the shape parameter k of both
generalized Pareto (GP) and generalized extreme value (GEV) distributions, as functions
of the intersite correlation of concurrent flows. INDEX TERMS: 1821 Hydrology: Floods;
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1. Introduction

[2] An important problem in flood frequency analysis is
the estimation of flood quantiles and other statistics of
annual flood peaks at ungaged locations, and at gaged sites
with short records. Regional flood and rainfall frequency
analysis is an efficient approach for improving quantile
estimators at sites with short records, as well as providing
estimates at ungaged locations.
[3] Interagency Advisory Committee on Water Data

(IACWD) [1982], Fiorentino et al. [1987], Gabrielle and
Arnell [1991], Stedinger and Lu [1995], Madsen and
Rosbjerg [1997a, 1997b], and Hosking and Wallis [1997]
advocate the use of hierarchical approaches in flood fre-
quency analysis. For example, IACWD [1982] recommends
use of a weighted combination of regional and at-site
skewness coefficient estimators, while the mean and var-
iance are estimated using at-site data.Martins and Stedinger
[2000] demonstrate the value of using regional information
that reduces the uncertainty in the estimated shape param-
eter k of a GEV distribution. Regional regression proce-
dures can estimate such shape parameters by relating them
to physiographic characteristics, such as drainage area, main
channel slope, and mean elevation.
[4] The regional variability of shape parameters can be

described by use of generalized least squares (GLS) regres-
sion models that include basin characteristics as explanatory
variables. Stedinger and Tasker [1985, 1986], Tasker and
Stedinger [1987], Tasker et al. [1996], Moss and Tasker
[1991], and Kroll and Stedinger [1998] report Monte Carlo
experiments documenting the value of generalized least
squares (GLS) procedures for estimating empirical relation-

ships between streamflow statistics and physiographic basin
characteristics. Tasker and Driver [1988], Tasker and Ste-
dinger [1986, 1989], and Madsen and Rosbjerg [1997b]
illustrate the use of such methods.
[5] The GLS algorithm accounts for the heterogeneity of

variances and cross correlations of the residuals of a
regression model. It can provide more accurate estimators
in terms of mean square error (MSE) than ordinary and
weighted least squares (OLS and WLS) algorithms [Ste-
dinger and Tasker, 1985], and a nearly unbiased estimator
of the model error variance [Stedinger and Tasker, 1986]. In
the context of the index flood method, Hosking and Wallis
[1988, 1997] and Madsen and Rosbjerg [1997a, 1997b]
demonstrate that cross correlation among concurrent flows
does affect the precision of quantile estimators.
[6] Application of GLS requires estimation of a sampling

error covariance matrix. In general, the at-site variance of
the shape parameter estimators can be obtained analytically
[Madsen and Rosbjerg, 1997a; Tasker and Stedinger, 1986].
However, first-order asymptotic expressions for cross-site
correlations among shape estimators are complicated and
may be inaccurate [Stedinger and Lu, 1995]. For multi-
variate normal data, the effect of intersite dependence on the
pth central moment estimator can be expressed in terms of
the cross-site correlation of the observations

rfq̂i; q̂jg ¼ rPi;j ð1Þ

where rfq̂i; q̂jg is the cross correlation between the pth
central moment estimators at sites i and j; q̂i is the pth
central moment estimator at site i, and rPi,j is the pth power
of the cross-site correlation between concurrent flows of
stations i and j [Stedinger, 1983; Hosking and Wallis, 1988;
Gabrielle and Arnell, 1991; Madsen, 1996]. Adopting
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equation (1), Madsen and Rosbjerg [1997b] assumed that
rfk̂i; k̂jg ffi r21;j; where k̂i is the L moment estimator of the
shape parameter k of the Generalized Pareto (GP) distribu-
tion for station i, and ri,j is the cross-site correlation between
concurrent flows at stations i and j. This is consistent with
the fact that the shape parameter of the GP distribution
determines the second moment of the GP distribution (as
well as higher moments), and the estimator of the GP shape
parameter primarily depends the estimator of t2, the L
moment coefficient of variation (see equation A3).
[7] This paper uses Monte Carlo simulation to derive an

approximation of the relationship between the cross-site
correlation among concurrent flows and the correlation of
estimators of the skewness coefficient g based upon [log]
Pearson type 3 (P3) data, and of the shape parameter k of
both GEV and GP models. P3 data can correspond to the
logarithms of log-Pearson type III data [IACWD, 1982]. The
regional variability of such shape parameters can then be
described by a GLS regression model that allows the shape
parameters to be estimated from basin characteristics, while
accounting for the heterogeneity among their variances and
the cross correlations among shape parameter estimators.

2. Monte Carlo Experiments

[8] Monte Carlo experiments provided estimates of
rðk̂x; k̂yÞ for both GEV and GP distributions, and rðĝx; ĝyÞ
for P3 data, given the observed cross correlation between
the concurrent observations at any two sites r̂x;y. These
experiments were performed with simulated pairs of annual
flood or precipitation series (x, y) with the sample sizes in
Table 1, and intersite correlation coefficients for concurrent
values in the range �0.75 � rx,y � 0.95; this range surely
exceeds the range of practical interest in hydrology given
that negative cross correlations are unlikely in practice,
though the results with negative correlations are of intellec-
tual curiosity and may have applications in other fields. The
x series has a total record length of nxy + nx, and y series a
record length of nxy + ny. Here nxy is the record length for
the common period.
[9] Three experiments were performed employing, respec-

tively, P3, GEV and GP distributions. The shape parameters
for these experiments were in the ranges: �0.3 � k � + 0.1
for both GEV and GP experiments, and 0 � g � + 1 for the
P3 experiment. (If X 	 P3 with skewness coefficient g, then
�X 	 P3 has skew �g; thus the correlation of skew
estimators for gx = gy< 0 is the same positive value as
obtained for gx = gy > 0.)
[10] The experiments had four fundamental steps.
1. The first step was to generate bivariate normal

deviates zx and zy with cross correlation rx,y, and sample
sizes nxy + nx and nxy + ny, respectively.
2. These normal deviates were transformed to have the

desired marginal distribution, as in the work of Hosking and
Wallis [1988].
3. The sample intersite correlation coefficient r̂x;y

between the x and y series was computed.
4. For the GEVandGP experiments, Lmoment estimators

of kx and ky (see Appendix A, equation A1 and A3) were
computed using the entire x and y series, respectively:
k̂x; k̂y
� �

. For the P3 experiment, estimators of gx and gy (see
Appendix A, equation A4) were computed using the entire x
and y series, respectively: ĝx; ĝy

� �
.

Steps (i)– (iv) were repeated s=10,000 times to compute the mean

�rx;y of r̂x;y and the needed intersite correlation coefficients
for the shape parameters using

r̂q̂x;q̂y ¼

Ps
i¼1

q̂xi � �qx
� ��

q̂yi � �qy
� ��

Ps
i¼1

q̂xi � �qx
� �2

� � Ps
i¼1

q̂yi � �qy
� �2

� � ð2Þ

where �qx ¼
Ps
i¼1

q̂xi
s
and �qy ¼

Ps
i¼1

q̂y
i

s
. Here q represents the shape

parameter of interest.
[11] Caution should be exercised before applying these

results to estimators of shape from a GP/Poisson partial
duration series (PDS) analysis [Stedinger et al., 1993;
Martins and Stedinger, 2001] wherein peaks-over-threshold
series are developed for two sites. In that framework,
particularly if the cross correlation is small, or thresholds
with very different exceedance probabilities, one will not
always record concurrent peaks greater than the threshold at
both sites. This could result in a different cross correlation
between k estimators. In that situation, the cross correlation
between the estimators may be described by the adjustment
employing the total number of observations used to compute
each estimator with a concurrent length corresponding to the
number of events that resulted in floods peaks at both sites.
The Monte Carlo simulations reported here use GP pairs (xi,
yi), which for the concurrent period of record always contain
both x and y values so there is no issue whether or not both
values are observed, as there could be with two PDS.
[12] The next step was to derive a relationships between

r̂ k̂x; k̂y
� �

for both GEV and GP models, or r̂ ĝx; ĝy
� �

for P3
data, and the observed intersite correlation of concurrent
values r̂x;y. For rxy = 0 (independent series), the correlation
between the shape parameters must be zero. Similarly, when
rxy = 1, one should see a perfect correlation between the
shape parameters. When the shape parameter is controlled
by the third moment, negative values of rxy will result in
negative values for the cross-site correlations: r̂ k̂x; k̂y

� �
for

the GEV model and r̂ ĝx; ĝy
� �

for the P3 distribution. These
arguments and equation (1) motivate use of the simple
power function

r̂q̂x;q̂y ¼ Sign r̂x;y
� �

cfxy r̂x;y
�� ��d with cfxy ¼

nxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nxy þ nx
� �

nxy þ ny
� �q

ð3Þ

though the same exponent d need not provide the best fit to
both positive and negative correlations with the asymmetric

Table 1. Sample Sizes of the Series in the Monte Carlo

Experiments Used to Verify the Effect of Sample Sizes Differences

on the Relationships Between r̂x;y and r̂ k̂x; k̂y
� �

for Both GEV and

GP Data and Between r̂x;y and r̂ ĝx; ĝy
� �

for P3 Data

Series nx nxy ny

1 0 40 0
2 20 40 0
3 40 40 0
4 80 40 0
5 20 40 20
6 40 40 40
7 80 40 80
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GEV distribution, as it should for the P3 distribution for
which negative skews �g are obtained by using the
negative of a P3 variate with positive skew g.
[13] This power function was fit to the fr̂x;y; r̂ðq̂x; q̂yÞg

pairs. Sign ðr̂x;yÞ is plus or minus one depending upon the
sign of r̂x;y. The only parameter to be identified, d, was
obtained by minimizing the mean square error between
observed and fitted values. The cfxy term in equation (3)
accounts for the sample size differences between the two
series, following Stedinger and Tasker [1985, equation 4].
The validity of this function will be demonstrated.
[14] When the shape parameter is controlled by the

second moment, as it is with the GP model, negative
correlation among flows (rxy < 0) generated positive
cross-site correlation r̂ k̂x; k̂y

� �
among the k estimators. With

normal flows such behavior is also observed between
variance estimators, where r̂fŝ2x; ŝ2yg ¼ r2xy, as follows from
equation (1). For the shape parameter of the GP distribution,
the model in equation (3) without the term Sign ðr̂x;yÞ was
fit to the fr̂x;y; r̂ðq̂x; q̂yÞg pairs when r̂x;y is negative and also
to the pairs when r̂x;y is positive, to identify two exponents
d� and d+, respectively.

3. Results

[15] The model in equation (3) was fit to f�rx;y; r̂ ĝx; ĝy
� �

g
pairs generated in the P3 Monte Carlo experiments, where
�rx;y is the average of the 10,000 sample correlation. Table 2
reports the R2 and d values identified. Generally, 2.8 � d �
3.3, depending upon the skewness coefficient (0 � g �
+1). Figure 1 displays the data and the fitted power
function for gx = gy = 0.2, and gx = 0 with gy = +1. For
the normal model (obtained with g = 0), the cross corre-
lation among third moments should depend upon r3xy,
whereas the variance should depend upon r2xy (see equation
1). Because the skewness coefficient depends upon sample
estimators of both of these statistics, one would expect d to
fall between 2 and 3 when g = 0, as it did. For nonnormal
distributions with g > 0.6, d > 3 indicating that the cross
correlations among the skewness estimators are smaller
than for normal data (because rd decreases with increasing
d for 0 < r < 1). The r̂ ĝx; ĝy

� �
values for series 2–7,

corresponding to different combinations of nonconcurrent
and concurrent records as indicated in Table 1, were
divided by cfxy to check how close the corrected values
are to the series 1 results. As shown in Figures 1a and 1b,
the coefficient cfxy works reasonably well for skewness
coefficients in the range �1 � g � +1 when the skewness
coefficients are equal, and with different skewness coeffi-

cients for the x and y series, as is the case when gx = 0 with
gy = +1.
[16] The power function in equation (3) was also fit to

f�rx;y; r̂ k̂x; k̂y
� �

g. Table 3 reports the R2 and d values
identified. Figures 2a and 2b shows the f�rx;y; r̂ k̂x; k̂y

� �
g

pairs obtained with the GEV experiments for kx = ky =
�0.3, and kx = �0.3, ky = +0.1, respectively. The results
from the k/GEV experiments show that the exponent for
intersite dependence can be larger or smaller than the value
of 3 for normal variates. (See equation 1.) Generally, 2.4 �
d � 3.1, depending upon the shape parameter k (�0.30 � k
� 0.10). The values of r̂ k̂x; k̂y

� �
for series 2–7 were

divided by cfxy to test this correction. As one can see in
Figures 2a and 2b, the corrected series 2–7 values are very
close to those for series 1. This was observed for shape
parameters in the range �0.3 � k � +0.1, and also for
cases with different shape parameters, including kx = �0.3,
ky = +0.1.
[17] The power model without the term Sign ðr̂x;yÞ was

fit to f�rx;y; r̂ k̂x; k̂y
� �

g pairs generated in the GP Monte
Carlo experiments. Table 3 reports R2, d� and d+ values.
Figures 3a and 3b shows the f�rx;y; r̂ k̂x; k̂y

� �
g pairs obtained

with the GP experiments for kx = ky = �0.3, and kx = �0.3
with ky = +0.1, respectively. For positive values of the
average cross-site correlation �rx;y, the effect of intersite
dependence is close to, but larger (d < 2) than those
predicted by the value of 2 employed by Madsen and
Rosbjerg [1997a]. Generally, 1.7 � d+ � 1.9, depending
upon the shape parameter k (�0.30 � k � 0.10). For
negative values of the average cross-site correlation �rx;y the
effect of intersite dependence can be much less than that
predicted by the value of 2 employed by Madsen and
Rosbjerg [1997a]: generally, 2.2 � d� � 5.8, depending
upon the shape parameter k. One can see in Figures 3a and
3b that the corrected 2–7 series correlations yield values
very close to those for series 1. This was observed for shape
parameter in the range �0.3 � k � +0.1, and also for cases
with different shape parameters, including kx = �0.3 with
ky = +0.1.

4. Conclusions

[18] Monte Carlo experiments provided the information
needed to develop simple power approximations of the
relationships between the cross correlation of estimators
of the skewness coefficient g from P3 data, and the shape
parameter k of both GEVand GP distributions, as a function
of the cross correlation of concurrent values. These relation-
ships can be used with the regional average value of the
skewness coefficient g, or of k, to calculate the cross
correlation among shape estimators for different sites. A
factor (cfxy) accounts for the lengths of concurrent and
nonconcurrent records for any two sites: it works reasonably
well for the shape parameters in the range considered
(�0.30 � k � 0.10; �1 � g � 1).
[19] For the P3 data, the exponent d is in the range 2.8 �

d � 3.3. For positive cross-site correlation between con-
current flows, the effect of positive cross correlation among
concurrent flows on estimators of the shape parameter of
GEV distribution (2.4 � d � 3.1) is about the same as
observed for the skewness coefficient for the P3 distribu-
tion, and less than when estimating the shape parameter of
the GP distribution (1.7 � d+ � 1.9). Caution should be

Table 2. Estimated d Values for the Monte Carlo Experiments

(Series 1) P3 Distribution

g for P3 d R2

gx = gy = 0.0 2.8 0.998
gx = gy = 0.2 2.9 0.998
gx = gy = 0.4 3.0 0.998
gx = gy = 0.6 3.0 0.995
gx = gy = 0.8 3.2 0.991
gx = gy = 1.0 3.3 0.988

gx = 0.0,gy = 1.0 3.3 0.999
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exercised before applying these results to models of partial
duration series because any two series may not correspond
to sets of concurrent events: some events may show up in
one series but not the other. However, the cfxy adjustment
can be employed to represent the fraction of the events that
were observed at both sites.
[20] Use of the relationships derived here allows con-

struction of generalized least squares (GLS) regression
models that correctly incorporate the sampling error and
cross correlation among GEV or LP3 shape parameter
estimators. Such models should provide better estimators
of the shape parameter of a GEV or LP3 distribution for a

Figure 1. Monte Carlo results for the P3 experiments: f�rx;y; r̂ ĝx; ĝy
� �

g pairs when (a) gx = gy = 0.2; (b)
gx = +1 and gy = 0. Model fitted to series 1. Series 1–7 refers to different combinations of sample sizes
for series x and y (see Table 1).

Table 3. Estimated d Values for the Monte Carlo Experiments

(Series 1) GEV and GP Distributions

k

GEV GP

d R2 d�/d+ R2

kx = ky = �0.3 2.4 0.997 2.2/1.8 0.999
kx = ky = �0.2 2.6 0.998 2.5/1.8 0.999
kx = ky = �0.1 2.8 0.998 3.0/1.8 0.999
kx = ky = 0.0 2.9 0.998 4.0/1.8 0.999
kx = ky = 0.1 3.1 0.998 5.8/1.7 0.999
kx = �0.3, ky = +0.1 2.6 0.996 2.7/1.9 0.999
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gauged or ungauged site, as well as better and unbiased
estimators of the precision of such regional shape estimators.

Appendix A: Shape Parameters Estimators

A1. GEV and GP Shape Parameters

A1.1. K̂//GEV [L Moment]
[21] The L moment estimator for the shape parameter of

the GEV distribution [Hosking et al., 1985] was obtained
using

k̂ ¼ 7:8590 cþ 2:9554 c2; ðA1Þ

with c ¼ 2= 3þ t̂3ð Þ � log 2ð Þ=log 3ð Þ. Here the final k̂
function is a very good approximation for k̂ in the range
(�0.5, 0.5) [Hosking et al., 1985]. The L moment
estimators l̂1; l̂2; l̂3; t̂2 ¼ l̂2=l̂1 (L-CV) and t̂3 ¼ l̂3=l̂2

(L skewness) were obtained by using the unbiased estimator
of the first three PWMs br [Landwehr et al., 1979; Hosking
and Wallis, 1995]:

br ¼
Xn
i¼1

i� 1ð Þ i� 2ð Þ i� 3ð Þ . . . i� rð Þ
n n� 1ð Þ n� 2ð Þ . . . n� rð Þ x ið Þ

� 
r ¼ 0; 1; 2; . . .

ðA2Þ

Figure 2. Monte Carlo results for the GEVexperiments: f�rx;y; r̂ k̂x; k̂y
� �

g pairs when (a) kx = ky = �0.3;
(b) kx = �0.3 and ky = +0.1. Model fitted to series 1. Series 1–7 refers to different combinations of
sample sizes for series x and y (see Table 1).
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where the x(i) are the ordered observations from a sample of
size n {x(1) � x(2) � . . . � x(n)}, and where l1 = b0, l2 =
2b1�b0, and l3 = 6b2 � 6b1 + b0 [Hosking,1990; see also
Wang, 1996].

A1.2. K̂//GP [L Moment]
[22] The L moment estimator for the GP distribution

[Hosking and Wallis, 1987; Madsen and Rosbjerg, 1997a]
for the shape parameter is

k̂ ¼ 1

t̂2
� 2 ðA3Þ

where the L moment estimators l̂1; l̂2; and t̂2 ¼ l̂2=l̂1 (L-
CV) are obtained by using the unbiased estimator for the
first two PWMs given in equation (A2).

A2. Skewness

[23] A nearly unbiased estimate of the skewness used
here is

ĝ ¼ n

n� 1ð Þ: n� 2ð Þs3
Xn
i¼1

xi � xð Þ3 ðA4Þ

Figure 3. Monte Carlo results for the GP experiments: f�rx;y; r̂ k̂x; k̂yÞg
�

pairs when (a) kx = ky = �0.3;
(b) kx = �0.3 and ky = +0.1. Model fitted to series 1. Series 1–7 refers to different combinations of
sample sizes for series x and y (see Table 1).
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where �x is the mean and s is the standard deviation of the
series {xi}, which can represent either the flows or their
logarithms depending upon the domain of interest. Use of a
different function of n (as done by Tasker and Stedinger
[1986]), would not affect the correlation between skewness
estimators.
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