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RESUMO

As comunicações móveis em cenários de quinta geração enfrentam desafios significativos devido
à adoção de aplicativos em tempo real e serviços de missão crítica com requisitos rigorosos,
como maior largura de banda e confiabilidade, menor latência e capacidade de suportar um
grande número de usuários com uma intensa transferência de dados com as estações base. A fim
de enfrentar alguns desses desafios, a presente tese analisa soluções para problemas de previsão
baseados em processamento de sinais em grafo em conjunto com técnicas de aprendizagem
supervisionada (ML, do inglês machine learning), para lidar de forma eficiente com dois casos
de uso relevantes em sistemas de comunicações móveis, isto é: (i) gerenciamento de feixe e,
(ii) aumento da carga do canal de feedback. Especificamente, ferramentas de amostragem e
reconstrução baseadas em grafos são exploradas a fim de reduzir a carga do canal de feedback,
que é usado para relatar as medições de usuário que alimentam os preditores baseados em ML.
Antes de abordar esses dois casos de uso, é apresentada uma visão geral de algumas definições da
teoria de grafos e são apresentadas algumas das ferramentas e conceitos que são empregados ao
longo desta tese. Com relação ao problema de gerenciamento de feixes, é proposto um framework

adaptativo de rastreamento de feixes para comunicações altamente direcionais, que explora as
amostras em um conjunto de dados histórico de usuário, para estimar e prever eficientemente o
estado do canal na estação base. Primeiramente, um algoritmo de aprendizado supervisionado,
isto é  -vizinhos mais próximos ( -NN do inglês,  -nearest neighbors), é proposto e avaliado
para rastreamento e predição de canal. Em seguida, como estágios preliminares do algoritmo
 -NN, uma estratégia de amostragem e reconstrução baseada em grafo, denominada  -vizinhos
mais próximos com reconstrução ( -NN-R), é proposta a fim de reduzir o espaço de busca do
feixe durante a etapa de medição, o que permite um uso mais eficiente do canal de feedback.
Depois disso, a estrutura bloco-diagonal sobre o grafo que representa um conjunto de dados
de medições em uma rede celular veículo-para-tudo (C-V2X do inglês, cellular vehicular-to-

everything) é explorada e, com base nela, uma estratégia de amostragem baseada em grafo, isto
é amostragem Laplaciana inteligente (SLS, do inglês smart Laplacian sampling), é proposta
para que (i) a estrutura/conectividade do grafo seja preservada e (ii) a quantidade de medições de
usuário amostradas seja reduzida. Por fim, a proposta SLS é avaliada através de um problema de
predição de latência, no qual é predito se um pacote pode ser entregue dentro de uma restrição
de latência predeterminada.

Palavras-chave: processamento de sinais em grafo, amostragem e reconstrução de sinais,
aprendizado de máquina, gerenciamento de feixe, carga do canal de feedback.



ABSTRACT

Mobile communications in fifth generation (5G) scenarios still face significant challenges due to
the adoption of real-time applications and mission-critical services with stringent requirements,
such as greater bandwidth and reliability, lower latency and the capacity to support a massive
number of user equipments (UEs) with an intense data transfer between them and the base-
stations (BSs). In order to tackle some of these challenges, the present thesis analyzes solutions
for prediction problems based on graph signal processing (GSP) jointly with machine learning
(ML) techniques, to efficiently deal with two relevant use cases of mobile communication
systems, that are: (i) beam management and, (ii) increased feedback channel burden. Specifically,
graph-based sampling and reconstruction tools are exploited in order to reduce the feedback
channel burden, which is used to report the UE measurements that feed the ML-based predictors.
Before addressing these two use cases, it is presented an overview of some graph-theoretic
definitions and were introduced some of the tools and concepts that are employed throughout
this thesis. Concerning the beam management problem, it is proposed an adaptive beam tracking
framework for highly directional communications, that exploits the samples in a historical UE
dataset (HUD), to efficiently estimate and predict the channel state at the BS. First, a supervised
learning algorithm, namely  -nearest neighbors ( -NN), is proposed and evaluated for channel
tracking and prediction. Then, as preliminary stages of the  -NN algorithm, a graph-based
sampling and reconstruction strategy, called  -nearest neighbors with reconstruction ( -NN-R),
is proposed in order to reduce the beam search space during the beam measurement stage, which
allows a more efficient usage of the feedback channel. After that, the block-diagonal structure
over graph that represents a cellular vehicular-to-everything (C-V2X) measurement dataset is
exploited, and based on it, a graph-based sampling strategy, namely smart Laplacian sampling
(SLS), is proposed so that (i) the graph structure/connectivity is preserved, and (ii) the amount
of sampled UE measurements is reduced. Finally, the SLS proposal is evaluated through a
latency prediction problem, in which is predicted whether a packet can be delivered within a
predetermined latency constraint.

Keywords: graph signal processing, signal sampling and reconstruction, machine learning,
beam management, feedback channel burden.
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1 INTRODUCTION

Mobile communications systems have revolutionized the way people communicate,
combining communication and mobility. The recent years have witnessed a significant devel-
opment in mobile technologies, such that the evolution of each technology has brought with
it a new generation of mobile communications systems with remarkable advances related to
performance and efficiency of communications.

Deployed in the eighties, the first generation (1G) used analog systems which served
only to transmit voice with low security in communications. The second generation (2G) in the
nineties evolved to digital systems capable of transporting voice and data at low speed (e.g., the
short message service (SMS)), while improved the quality and security of communications. The
third generation (3G) emerged in the year 2000, incorporating broadband speeds which allowed
the use of mobile networks to access the Internet and its services (e.g., websites, emails, among
others). Ten years later it starts the fourth generation (4G), which provides access to various
telecommunications services combined with high mobility and/or high data rate applications, to
support, for example, multimedia services.

The fifth generation (5G) mobile communications were introduced in response to the
need for exponential growth in mobile data traffic and the provision of new generation real-time
services and applications. In this context, three use cases are envisioned to work together to
satisfy the requirements of new 5G networks and may be categorized as:

• Enhanced mobile broadband (eMBB): This category aims to deliver high quality
of service (QoS) of Internet access in environments under otherwise challenging or
prohibitive conditions, providing a significant increment of data traffic and transmis-
sion rates. Specifically, eMBB may enhance broadband access in densely populated
areas, may deliver wide-bandwidth connections to a massive number of users in
environments with heavy data traffic and may provide continuous high-definition
video streaming, mobile TV, among others.

• Massive machine type communication (mMTC): This scenario involves a large
number of low cost connected devices, in which the requirements mainly focus
on long battery life and scalability. In particular, mMTC is a key enabler of the
internet of things (IoT), which will reach a wide variety of areas and applications
such as in transport and navigation, e-health, buildings management, smart cities and
smart grids, smart agriculture, industrial automation and intelligent use of natural
resources.

• Ultra-reliable and low-latency communications (URLLC): This category targets
real-time critical services and applications where latency and reliability of the com-
munication are the highest priority requirements. For example, some URLLC use
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cases involve applications in factory automation, remote medical surgery, smart
grids, and cellular vehicular-to-everything (C-V2X).

The adoption of these services and applications of 5G systems will impose stricter
technical requirements and different needs for each particular service, representing different
QoS requirements. In general, 5G applications and services will have specific and diverse
requirements, such as greater bandwidth, high reliability, lower latency, greater energy efficiency,
critical synchronization, and the capacity to support a massive number of UEs with an intense
data transfer from devices and guaranteeing a QoS at different levels [1].

To deal with the above requirements, it has been considered the exploitation of
millimeter wave (mmWave) spectrum and massive multiple-input-multiple-output (MIMO)
systems [2] that are promising solutions for the future demands of 5G systems. Specifically,
the use of the high frequency spectrum in 5G systems incorporates small mmWave cells (also
called small-cells) with new radio (NR) technology, being standardized by the third generation
partnership project (3GPP).

The mmWave BSs enable the use of a large number (in the order of hundreds) of
antenna elements through massive MIMO, which allows highly directional communications
through the use of narrow beams, also called pencil beams [3]. They provide coverage and
services for mobile UEs (e.g. smart phones, vehicles, sensors, etc), which may also have several
(in the order of dozens) antenna elements each one. The narrow beams offer a high array gain,
which together with the large bandwidth available in the mmWave band, provide BSs with
NR/5G technology with the ability to achieve higher data rates, support a large number of UEs
and allow communications with greater energy efficiency. These make the mmWave spectrum in
a vital technology to ensure the high throughput requirements in eMBB use case, and to develop
high demanding application and services in URLLC.

Regarding the 5G networks architectures, two deployment options were defined
in 3GPP specification 38 series Release 15 [4], viz. (i) non-standalone architecture (NSA)
and, (ii) standalone architecture (SA). Delivered in December 2017, NSA anchors the control
plane connections of NR/5G network to an enhanced 4G core (called evolved packet core
(EPC)), then, it must be built over an existing 4G network using long term evolution (LTE)
technology. On the other hand, SA was released six months later, allowing to connect the NR/5G
directly to the 5G core, and does not need to rely on LTE/4G network for the control plane
communications. In summary, 3GPP Release 15 [5] was the first full set of 5G standards, in
which its initial specifications enabled NSA NR/5G systems integrated into previous-generation
LTE/4G networks, and whose expansion managed to cover the completely independent operation
of SA NR/5G systems.

Figure 1.1 illustrates an example of a typical 5G scenario, where BSs with NR/5G
technology use multiple narrow beams to serve multiple UEs, while a BS with LTE/4G tech-
nology uses a wide beam. As illustrated, the NSA 5G architecture relies on 4G EPC, while SA
architecture uses a 5G core.
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Figure 1.1 – Typical 5G scenario with two technologies, LTE and NR, coexisting. Depending on
the assumed 5G architecture, the NSA relies on 4G EPC, while SA uses a 5G core.

Source: Created by the author.

1.1 Challenges in 5G scenarios

1.1.1 Establishing and maintaining a connection

Despite high expectations, communications in 5G scenarios still face significant
challenges due to, for example, higher path loss, large and small scale fading, lower diffraction
and interference [6]. In particular, the use of the mmWave frequencies and highly directional
communications through narrow beamforming make establishing and maintaining a connection
between a BS and a UE a very difficult process [7]. Specifically, in these scenarios, any envi-
ronmental change, such as device rotation, link blockage, or a slight beam misalignment, may
cause a considerable drop in signal strength and, therefore, a potential link failure between a BS
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and a UE. Moreover, highly directional communication limits the multipath diversity and makes
communication susceptible to channel fluctuations.

In order to deal with these disadvantages, network resources and significant over-
heads are generally wasted on training (during initial access, e.g., in channel estimation) and
beam tracking (while connected) procedures in order to determine the best directions of transmis-
sion/reception between a BS and a UE. Beam tracking and training mechanisms are necessary
for good beamforming performance, which is essential for the high reliability of data reception.
On the other hand, the low latency requirements of 5G systems make it difficult to optimize
these mechanisms, because beamforming weights must be frequently calibrated to avoid channel
aging as a result of high mobility [8, 9].

In this context, fast and efficient beam management mechanisms are of paramount
importance for the efficient operation of 5G networks, maintaining high data rates, high re-
liability and/or low latency communication. Consequently, conventional beam tracking and
training strategies which are mainly based on control theory (e.g., physical state transitions) are
inadequate in satisfying strict reliability and/or latency constraints and low overheads of 5G
systems [10]. Therefore, for the challenging requirements in 5G scenarios, it is not enough for
beam management procedures to just track the beams. In fact, the mmWave BS must have the
ability to predict the beams some time ahead, especially in high mobility scenarios.

In this thesis, it is proposed an adaptive beam tracking framework for highly direc-
tional communications, that exploits the samples in a historical UE dataset (HUD) to efficiently
estimate and predict the channel state at the BS. Our proposal provides better performance in
terms of NMSE and successful hit rate than three traditional/baseline prediction techniques.

1.1.2 Treatment of large amount of data

Regarding the 5G system’s complexity, the amount of data generated, collected,
stored and communicated represent an unprecedented challenge, which is commonly called
mobile big data. Specifically, the amount of UE measurements and reports will drastically
increase, and therefore, will burden feedback channels with a considerable amount of bandwidth-
intensive data transfers [11].

These abundant sources of information provide countless opportunities to develop
strategies capable of efficiently dealing with the problems described above and, thus, designing
efficient and reliable 5G networks.

With the reduced costs of data storage devices and advancement of computational
technologies, data-driven machine learning (ML) predictors seems to be the most promising
approach in order to meet the stringent 5G requirements [12]. Generally, ML-based approaches
represent an effective and versatile set of tools to explore and mine the enormous amounts of
data generated and facilitate decision-making to improve performance on 5G networks. However,
usually these strategies lead to expensive processing cost and intensive use of feedback channels
for each BS-UE link. Thus, the challenge here is how to make an efficient use of feedback



Chapter 1. Introduction 24

resources and still provide accurate prediction features to efficiently deal with the problems
described above, meeting the stringent requirements in the 5G communications, such as low
latency and high reliability.

Graphical modeling of signals and their related signal processing tools, or simply
graph signal processing (GSP), composes an emerging line of research for analyzing large
volumes of data. It provides a flexible range of tools that usually outperform traditional signal
processing techniques [13, 14]. The goal of GSP is to analyze and process large datasets and
find any relation of similarity, dependency, physical proximity, or other properties among data
samples which are modeled and inter-related over arbitrary graphs. Among many potential
use cases of GSP tools, one is of great interest for UE measurement reporting: sampling and
reconstruction of signals.

In this thesis, it is envisaged the use of graph-based sampling and reconstruction
strategies in order to reduce the UE measurements feedback in the uplink and therefore, reduce
the feedback channel burden. Specifically, the data or signals pre-processed by the GSP tools
will be the input parameters of the ML-based prediction tasks for both a beam tracking problem
in highly directional communications and a latency prediction problem in a C-V2X scenario.

Concerning the beam tracking problem, our proposal it is not much affected in terms
of estimation/prediction error and exhibits a lower computational complexity when compared to
the three baseline approaches. Regarding the latency prediction problem, our proposal outper-
forms some baseline greedy sampling strategies in terms of reconstruction error and feedback
saving. Moreover, as for prediction accuracy, a small accuracy loss is observed when compared
to full dataset availability case.

1.2 State-of-the-art

1.2.1 Related works on beam management in mmWave communications

The use of the mmWave band for communication in 5G systems presents several
technical challenges, being one of the most important the management of narrow beams [15,
16, 17]. In this context, the use of efficient beam management mechanisms becomes a critical
challenge in order to meet the stringent 5G requirements such as low latency in the URLLC
use case. In general, it is possible to identify two beam management challenges in mmWave
communications [18], as illustrated in Figure 1.2:

a) Initial beam alignment or beam training;

b) Beam tracking.

a) Initial beam alignment or beam training: The BS and the UEs (e.g., smart
phones, vehicles, etc) initially align their beams to establish a mmWave link, as shown in
Figure 1.2a. As described above, in mmWave communications beamforming with narrow beams
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Figure 1.2 – Beam management challenges in mmWave communications.
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Source: Created by the author.

or directional antennas is generally used to provide high array gains. However, the use of narrow
beamforming increases the overhead of the initial beam alignment, because the synchronization
signals are transmitted by the BS repeatedly, one at a time, until "sweeping" all beamforming
directions of interest. In general, as the directionality increases, the overhead of beam alignment
increases due to the increase of beam candidates to be searched. The main challenge is that,
because of the low-latency requirements in 5G scenarios, the initial beam alignment needs to be
done quickly. This is even more challenging if high mobility terminals are considered.

b) Beam tracking: Even after the initial beam alignment, any environmental change
due to UE mobility, direction change, device rotation, link blockages, among others, may cause
a beam misalignment between the BS and UEs. To deal with misalignment of beams, it is not
efficient to use the "sweeping" procedure, because the initial beam alignment does not use any
temporal correlation of previously used beams. Therefore, a more efficient procedure is needed
to reduce the beam tracking burden. A typical beam tracking procedure requires the transmitter
(i.e., the BS) and receiver (i.e., the UEs) adjust their beams periodically (ideally at each beam
coherence time1) to maintain the mmWave link, as shown in Figure 1.2b.

Several methods of beam alignment (including training and tracking in mmWave
scenarios have been proposed in the literature, using well studied approaches such as, compressive
sensing (CS), least square (LS) or matching pursuit (MP) techniques, see [20, 21, 22], and
references therein. However, in scenarios with high overhead, these methods need a sufficiently
large SNR or custom codebooks to efficiently handle the beam alignment with no prior channel
state information (CSI).

Another widely used research line in the literature for beam alignment is the use of
classical control theory, for example, mechanisms based on classical Kalman filters (KF). In this
context, the pioneering work [23] showed that mmWave channel estimation can be performed
efficiently by using the angular domain representation of channel, because most of the received
energy is contained in only a few angular bins, which correspond to the angle of arrival (AoA)
and the angle of departure (AoD). Both AoD and AoA can be estimated using a beam training
1 Coherence time, refers to the time duration over which the beams remain aligned, depending on the beamwidth

and the beam-pointing error [19].
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procedure, and if one identifies the dominant angular bins one can make channel estimation
without incurring in excessive computational complexity. In [24], a beam tracking method based
on the AoD was proposed. This beam tracking technique exploits the continuous nature of
time varying AoD for beam selection. The authors in [24] showed that the transmission of only
two training beams is enough to track the time-varying AoD with good accuracy. However,
this method relies on the AoD slow-varying assumption, being inadequate for non-stationary
scenarios. In [25], a full scan of all possible beam combinations is used to create a measurement
matrix to which the extended Kalman filter (EKF) is applied. A main drawback of this method
is the requirement for a full scan, which makes it difficult to track fast-changing environments
due to the long measurement time. In [15] it was proposed a beam tracking method which uses
an estimation of only one pair of AoA and AoD measurement (i.e., not a full scan), tracking a
particular propagation path defined by this pair. With a time-variant approach, an EKF was used
as a tracking filter, which is applied at each step on the elements of the measurement matrix, in
contrast with the technique proposed in [25]. The main drawback in the beam tracking technique
proposed in [15] is the performance degradation when too narrow beams are assumed, due to
beam misalignment during the measurement. In [26], the angular velocity was introduced in the
EKF state estimation. Moreover, three received reference signals were used to jointly mitigate
the influence of noise. However, the transmission of reference signals induces an extra burden on
the communication channel. The unscented Kalman filters (UKF) and the particle filter (PF) are
proposed in [27] and [28], respectively, to solve the beam tracking problem in highly directional
non-linear systems. However, the disadvantage in this case is its high complexity. Moreover,
these techniques use only a small number of pilots for beam tracking, leading to a limited
combined filtering gain for angle estimation, and can therefore, suffer a serious performance loss,
for example, in vehicle applications that require location tracking services with high precision.

However, all these methods described above based on KF assume simplified channel
models, which are mainly applied to stationary channels. Scenarios with high mobility, such
as C-V2X networks, pose severe challenges for an accurate training/tracking based on KF-like
schemes, due to the difficulty in obtaining the state transition equations and prior information in
non-stationary environments.

Using others strategies, the authors in [29] formulated a probabilistic optimization
problem to model the temporal evolution of the mmWave channel under mobility and proposed a
tracking strategy in which the information needed to update the steering directions (i.e., angular
changes) was extracted from data packets. This allows that a spatial scan is not necessary during
the transmission of data. However, this method needs assumptions on the prior distributions of
the angular changes to operate correctly. Through adoption of the sparse beam space MIMO
channel representation, the authors in [30] formulated the AoD and AoA tracking problem
as a support recovery problem. To track the temporal evolution of AoD and AoA, it was
proposed and modified an iterative approximate message passing (AMP) algorithm based on
directional sounding beam design techniques. This modification, made it possible to counteract
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the performance deterioration of the AMP algorithm, especially at the low signal-to-noise
ratio (SNR) regime. The main drawback of this technique is the assumption that the previous
estimate has small difference to the current AoA/AoD pair. Moreover, it does not exploit any
dynamics of the channels. In [31] it was proposed a priori aided channel tracking scheme for
mmWave massive MIMO systems. Specifically, physical direction between the BS and UE was
used to obtain the prior information, i.e., the support, of sparse beamspace channel without
channel estimation. Then, from this known support, the time-varying beamspace channels are
tracked with low pilot overhead. However, this wireless transmission scheme lacks the ability to
fully exploit time diversity, which limits its tracking performance in fast fading channels. The
authors in [32] developed a low complexity beam tracking algorithm for mmWave systems that
simultaneously optimizes the analog beamforming vector and estimates its directions. Based on
stochastic approximation and recursive estimation with a control parameter, two variants of the
beam tracking algorithm were implemented, i.e., for static and dynamic scenarios, respectively.
However, this method assumes known channel coefficients, while both channel coefficient and
beam direction might be unknown and time-varying in a real mobile system.

While the aforementioned works have a system modeling/signal processing per-
spective, the use of ML-based procedures has gained considerable attention lately to efficiently
handle the beam management of mmWave systems. The main advantages of using ML-based
solutions over the other beam management techniques described above are twofold: (i) they can
capture the channel and environment dynamics well and, (ii) their relative low complexity of
mathematical operations. The second advantage can be achieved if the complex mathematical
operations needed by ML training step can be done in an offline phase at the BS side, not inter-
fering in the dynamic estimation/tracking process. Once the training step has been completed,
ML-based solutions typically require basic mathematical operations that can be performed easily
in real-time applications.

The authors in [33] use neural networks (NNs) to predict the AoA at the UE side
from observable features at the BS side. Specifically, UE pilot broadcasts are observed and
processed by the BS to extract information about propagation channel features (e.g., received
signal strength and relative path delay), which are used to predict the AoAs of the dominant
propagation paths in the UE channels. However, this work focuses on single band and no beam-
selection algorithm is developed. In [34], it was used an recurrent neural network (RNN) to track
the AoA at the UE side when only the channel coefficient and previous estimates of AoAs are
available. In particular, the authors proposes a RNN with a modified cost function and a long
short term memory (LSTM) network architecture for the AoA tracking problem. However, this
method needs to create features and label sets before proceeding with the training and testing
steps, which represents a challenge for beam tracking problem in which the true label depends
on the beam-steering decision of the UE in a previous time step. An ML-based beam prediction
scheme was proposed in [10], where four ML tools and situational awareness were combined to
learn the beam information, including power and optimal beam index from past observations.
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The main drawback of this method is the need for the UE location information to train the ML
algorithm, which incurs extra system overhead.

In contrast to prior ML-based works, in Chapter 3 the problem of beam tracking
is tackled as a channel prediction tool, to obtain the channel matrix some time instants ahead
from UE measurements (collected only throughout an observed temporal window) and taking
advantage of the availability of a historical UE dataset (HUD). Another advantage of our ML-
based framework is the feedback saving, in which just sampled version of the whole beam space
measurement will be reported by the UEs in order to predict the channel at the BS. Moreover,
the bulk of the processing is done in the BS, and the HUD generation is performed in an offline
phase from the sampled version of UE measurements, reducing the computational complexity
and not interfering in the dynamic tracking process. To the best of our knowledge, there has been
no case in the literature that improves the robustness of beam tracking by such manner.

1.2.2 Related works on sampling and reconstruction strategies based on GSP

As mentioned before, graph signal processing (GSP) compose a potentially relevant
line of research for analyzing large volumes of data. The goal of GSP is to analyze signals, defined
over an irregular discrete domain, that are modeled over graphs. Graphs and its connections are
built by finding any relation of similarity, dependency, physical proximity, or other properties
among data samples.

However, in most real datasets the structural relations among data samples are
usually unknown. Thus, it is necessary to implement graph learning strategies to obtain the graph
topology and the edge weights. In [35], a framework for learning and estimating graphs from
raw data was proposed. Specifically, three graph learning approaches are introduced, aiming at
the estimation of graph Laplacian matrices from some observed data and under given structural
constraints (e.g., graph connectivity and sparsity level). In [36], new contributions toward the
development of an adaptive graph signal processing framework was provided, extending classical
adaptive processing strategies for the analysis of signals defined over time-varying graphs. Two
adaptive estimation methods for adaptive learning of graph signals were introduced, i.e., least
mean square (LMS) and recursive least square (RLS). Both methods are based on a probabilistic
sampling mechanism over the graph.

In the literature, a large number of applications is found, in which observed data can
be modeled as signals defined over graphs, aimed at solving problems in diverse areas such as
climate analysis [37, 38], biological networks [39, 40], statistical learning [41, 42] or sensor
networks [43, 44].

Among many potential use cases of GSP tools, one that is of great interest is sampling

and reconstruction of graph signals. Not surprisingly, many state-of-the-art works on sampling
and reconstruction strategies based on GSP have been proposed in the literature. Some of these
strategies are: natural neighbor interpolation [45], low-rank matrix completion [46], the Tikhonov
regularization method [47], the smooth graph signal reconstruction method [48] and the smooth
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graph-time difference [49].
In [45] it was proposed a grid based method to resample the data on a uniform

grid, namely natural neighbor (Sibson) interpolation. However, this method is computationally
expensive, especially when applied to higher-dimensional data. In [46], a matrix completion
method was proposed to solve the nuclear norm minimization of a matrix by Bregman iterative
algorithms. The main drawback of this method is the need of a sufficient number of observed
entries, which leads to high computational cost when the matrix size is large. In [47], the
Tikhonov regularization is used in the context of regularization by graph Laplacians to solve a
problem of labeling a partially labeled graph. The authors in [48] formulated the reconstruction
of smooth graph signals as a convex optimization problem. Specifically, it was proposed a cost
function in which the signals on a subset of graph vertexes are predicted based on the smoothness
of known signal values from other vertexes. In [49], the authors demonstrated that the temporal
differences of real-world time-varying graph signals usually exhibit better smoothness on the
graph representation than the signals themselves, in contrast with the technique proposed in [48].
According to this result, a batch reconstruction method of time-varying graph signals was
proposed, by exploiting such smoothness. Driven by practical applications faced with real-time
requirements, an online distributed strategy was proposed, based on the local properties of the
temporal difference operator and the graph Laplacian matrix. Both strategies exhibited better
performance than the other methods mentioned above.

Time-variance of real-world signals, which include those inherent to mobile com-
munication systems, brings an interesting motivation to exploit signal processing techniques
that deal with system dynamics. In this context, applying GSP tools to mobile communication
systems has gained considerable attention lately, where applications span different use cases,
such as interference coordination and resource allocation [50, 51, 52, 53], anomaly detection [54]
and estimation [55].

In [50], it was proposed graph-based dynamic frequency reuse method on Femtocell
Networks. A UE-oriented graph based frequency allocation algorithm is proposed in [51], aiming
at coordinating the downlink interference in the densely deployed femtocell network. In [52], it
was proposed a graph-based algorithm, in which mode selection jointly with resource allocation
are used to maximize the system sum rate on a sparse code multiple access (SCMA) enabled
uplink cellular network. The authors in [53] proposed a coloring-based cluster resource allocation
algorithm based on the graph theory in order to improve spectral efficiency and coordinate the
downlink interference for ultra dense network (UDN). The authors in [54] proposed a graph-based
sensors anomaly detection algorithm on IoT sensor networks. The graph is built based on the
nonlinear polynomial graph filter (NPGF), in which the irregular spatial information of the IoT
sensors is utilized to learn the adjacency matrix from the distances among different sensors, and
then, detect the existence of anomaly and localizing the faulty sensors. A distributed algorithm
to estimate the singular values of the adjacency matrix for large-scale mobile communication
networks is proposed in [55], aiming at network graph representation. Specifically, a UKF-based
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model is established in order to track for real-time the estimation of graph eigenspectra.
In contrast to the aforementioned graph-based works for mobile communication

systems, in this thesis it is envisaged the use of GSP tools to reduce the UE measurements
reporting, using sampling and reconstruction techniques of time-varying signals. Specifically, in
Chapters 3 and 4 are explored sampling and reconstruction tools in order to reduce the feedback
channel burden and, therefore, counteracting the measurement process challenges.

The graph-based tools are used jointly with the supervised learning techniques,
in order to solve efficiently and with less complexity the two prediction problems mentioned
above, and, in which the data or signals pre-processed by the GSP tools will be the input
parameters of the supervised learning techniques. To the best of our knowledge, no study
has been performed to improve the feedback saving on mobile communication systems using
sampling and reconstruction tools based on GSP.

1.3 Objectives and thesis structure

Considering the issues discussed in the previous sections, the main objective of this
thesis is to study solutions for prediction problems in mobile communications. These solutions
are based on GSP jointly with supervised learning techniques to address two relevant problems
of mobile communication systems, which are: (i) beam management and, (ii) increased feedback
channel burden. Specifically, sampling and reconstruction tools based on GSP are exploited in
order to reduce the feedback channel burden, which is used to report the UE measurements that
feed the ML-based predictors.

The thesis structure is presented in Figure 1.3 and is described in the following.

• Chapter 2 - Graph Signal Processing Overview: reviews basic graph-theoretic
definitions, as well as, describes some of the tools and concepts that will be used
throughout this thesis. First, it is introduced the concepts of graphs, signals on graphs
and Laplacian of the graph. Next, it is described a graph learning method to obtain
optimally the graph structure and connectivity from real measured datasets. Finally,
some graph-based sampling and reconstruction techniques (namely, batch and online
reconstruction strategies) that will be used to reduce the feedback channel burden in
next chapters are explained.

• Chapter 3 - Supervised Learning and Graph Signal Processing Strategies for
Beam Tracking in Highly Directional Mobile Communications: proposes an
adaptive beam tracking framework for highly directional mobile communications,
which exploits the samples in the HUD to efficiently estimate and predict the channel
state at the BS. More specifically, a supervised learning method, namely  -nearest
neighbors ( -NN), is evaluated as a means of finding the  most similar historical
observation samples in the HUD to predict the corresponding channel state. More-
over, a sampling and batch reconstruction strategy based on GSP, called  -nearest
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Figure 1.3 – Thesis structure.
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neighbors with reconstruction ( -NN-R), is introduced as a pre-processing stage
to the KNN algorithm, in order to reduce the beam search space during the beam
measurement stage, which allows a more efficient usage of the feedback channel.
Specifically, it is assumed a random sampling (RS) mechanism and the smooth
graph-time difference (SGTD) batch reconstruction strategy as graph-based tools.
Finally, some simulation results are exposed, which illustrate a better estimation and
prediction performance in terms of complexity, NMSE and successful hit rate.

• Chapter 4 - Graph Signal Processing for QoS Prediction in Cellular V2X Com-
munications: turns its attention to QoS predictability concept in a C-V2X scenario.
Latency prediction is modeled as a binary classification problem, in which the goal
is to predict whether a packet can be delivered within a predetermined latency
constraint. However, it is assumed that the uplink feedback channel is limited. To
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reduce the need for feeding UE measurements back to the network, sampled and
reconstruction graph-based strategies were employed to i) model feature vectors
as graph signals, ii) downsample feature vectors along the entries related to UE
measurements, and iii) reconstruct the missing entries at the network side. A sam-
pling strategy is proposed, namely smart Laplacian sampling (SLS), that i) exploits
block-diagonal structure of the graph Laplacian and ii) reduces the UE measurement
feedback. Moreover, an online reconstruction strategy is adopted, namely O-SGTD.
Finally, a performance evaluation of the proposal is conducted, in terms of number
of unsampled UE measurements, reconstruction error and prediction accuracy.

• Chapter 5 - Conclusions: the main conclusions of this thesis are summarized, and
the possible avenues for further research are discussed.

1.4 Scientific contributions

Currently, the content and contributions of this thesis have been partially published
and submitted with the following bibliographic information:

Published Journal Papers

• ORTEGA, Y. R.; GUERREIRO, I. M.; HUI, D.; CAVALCANTE, C. C.; CAVAL-
CANTI, F. R. P. Supervised learning and graph signal processing strategies for beam
tracking in highly directional mobile communications. Transactions on Emerg-
ing Telecommunications Technologies, v. 30, n. 9, p. 825–841, July 2019. ISSN
1932-4553. DOI: 10.1002/ett.3687

Submitted Journal Papers

• ORTEGA, Y. R.; GUERREIRO, I. M.; MOREIRA, D. C.; CAVALCANTE, C. C.;
CAVALCANTI, F. R. P. Graph Signal Processing for QoS Prediction in Cellular
V2X Communications. Transactions on Vehicular Technology, Under Review,
Aug. 2020

It is worth mentioning that this thesis was developed under the context of Erics-
son/UFC technical cooperation project:

• UFC.46 - Network Assisted Intelligent Vehicle-to-Everything Communications
(NAIVE), November/2018 - October/2020

in which a number of four technical reports have been delivered.

https://doi.org/10.1002/ett.3687
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2 AN OVERVIEW OF GRAPH SIGNAL PROCESSING FUNDAMENTALS

GSP deals with signals which feature an underlying complex and irregular structure.
GSP seeks to model that underlying structure by a graph and signals by graph signals, gener-
alizing concepts and tools from classical discrete signal processing to graph signal processing.
The intrinsic geometric structure and connectivity of the underlying graph is taken into account
in order to efficiently represent and process graph signals. Some signal characteristics, such as
smoothness, depend on the irregular topology of the graph on which the signal is defined.

In the last years, much effort has been dedicated to design new graph-based tools and
algorithms that can handle efficiently the new challenges that arise from the irregular structure
of communications networks and in other GSP applications. These graph tools are generally
based on a combination of computational harmonic analysis with algebraic and spectral graph
theoretical concepts [58].

For the sake of completeness, in this chapter some graph-theoretic definitions and
some of the tools and concepts that will be employed throughout this thesis are provided.
Although not all of them are going to be used in our evaluation scenarios we believe they are
of interest to place the tool on the proper context. First, some basic definitions and notation for
graphs and signals on graphs are given. This includes the concept of Laplacian matrix of a graph
and the smoothness of graph signals, quantified through the Laplacian quadratic term. Next, the
use of graph-based signal processing tools in different applications is reviewed. In particular, it
is focused on learning of the graph structure and connectivity from observed signals, relying on
a tool of learning/estimation of graph Laplacian matrices. Finally, the time-varying graph signal
sampling and reconstruction techniques are briefly reviewed.

This overview does not intend to exhaust the graph theory topic and its applications.
A greater in-depth analysis and much wider view of the topic can be found at some relevant
classic references, such as [13, 59, 60, 61], among others.

2.1 Graphs

Graphs can be represented by different types of matrices, e.g., adjacency and Lapla-
cian matrices. The choice of a matrix type depends on properties of the desired graph, modeling
assumptions and the application of interest.

Structured data can be modeled as an #-vertex, undirected, connected, and weighted
[60] graph G = (a,Y,W), where a = {D1, D2, . . . , D#} is the set of # vertexes and Y is a set of
weighted edges 4. In addition, W is the weighted adjacency matrix, which denotes the collection
of all the nonnegative weights E7 8. A nonnegative weight E7 8 indicates the strength of the pairwise
relation between two distinct vertexes 7 and 8 in a. More specifically, if there is a link from vertex
8 to vertex 7 with 7, 8 ∈ a, then E7 8 > 0, otherwise E7 8 = 0. Note that W is an # × # symmetric
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matrix, i.e., [W] 7, 8 = [W] 8,7 , where [·] 7, 8 stands for the (7, 8)-th entry of a matrix. Moreover, the
connectivity adjacency matrix A is also an # ×# matrix, in which [A] 8,7 = 1 if [W] 8,7 ≠ 0, and
[A] 8,7 = 0 if [W] 8,7 = 0.

Furthermore, a subgraph G9 of a graph G is a graph whose vertex set a9 is a subset
of the vertex set a, i.e., a9 ⊆ a, and whose edge set Y9 is a subset of the edge set Y, i.e., Y9 ⊆ Y.
Besides, an isolated vertex is a vertex with zero degree; that is, a vertex that is not an endpoint of
any edge. In this thesis, the isolated vertexes are called trivial subgraphs and give a notion of
independence or not affinity of them with the others vertexes in a set.

2.2 Signals on graphs

Examples of graph signals exist in numerous engineering and science fields, and are
modeled depending on the problem to be analyzed. For example, time series, such as acoustic
data and financial data, may be indexed by time stamps and are signals supported on a directed
cyclic graph [62]. Each vertex corresponds to a time stamp, and each value is related to the value
at the previous time stamp, reflecting the causality of a time series. This relation is asymmetric,
hence all edges are directed. Images are indexed by pixels and are signals supported on a
lattice graph [63]. That is, each vertex corresponds to a pixel, and each pixel value (intensity)
is related to the values of the four adjacent pixels. This relation is symmetric, hence all edges
are undirected, with possible exceptions of boundary vertexes that may have directed edges,
depending on boundary conditions.

In communications networks, one may be interested in analyzing attributes describing
the users or measurements collected by them over time. Those attributes or measurements are
signals supported on relational graphs, where vertexes correspond to users and edges correspond
to the relationship between users and the variation of the signal on the graph depends on the
graph connectivity.

A graph signal x in the vertex domain is a real-valued function defined on the
vertexes of the graph G, such that x(7) is the value of the function at vertex D7 ∈ a. In other words,
assuming a one-to-one mapping between the elements of a and the entries of x, a graph signal
is defined as a function x : a→ℝ that assigns a scalar value to each vertex of G. Given a fixed
ordering of vertexes, a sign coefficient is assigned to each vertex, and a graph signal can be
written as a vector,

x = [F1 F2 . . . F#]) ∈ ℝ# , (2.1)

where F7 is the signal coefficient corresponding to the vertex 7.

2.2.1 Time-varying graph signal

In time series data, one may be interested in the variation of the signal on the graph.
Then, time-varying graph signals which can be represented as functions of time supported on the
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nodes of a fixed graph are considered. In other words, the time-varying graph signals are scalar
functions on G, which represent vector-valued sequences of vector x indexed by time g, such
that {xg : a→ℝ}g. Thus, the structure of a time-varying graph signal xg may be expressed by a
matrix Xg, that represents a collection of temporal samples of xg from instant 1 to #g as

Xg = [x1 x2 . . . x#g] ∈ ℝ#×#g , (2.2)

Note that, each row of Xg represents vertexes of the graph signal x and each column denotes the
graph signal evaluated at different time instants g during a temporal window #g.

2.3 Laplacian of the graph

The Laplacian matrix L of a graph will play a fundamental role in the tools ad-
dressed in this thesis. As it will be seen, this matrix has intimate connections to a variety of
graph-theoretic notions. Much graph information is embedded on the Laplacian matrix, e.g.,
structure, connectivity, sparsity and affinity relations [64]. Thus, obtaining L ends up being an
important step toward exploiting the graph structure for graph signal processing tools, such as,
sampling/reconstruction strategies.

To define the Laplacian matrix, let us consider the #-vertex, undirected, connected,
and weighted graph G = (a,Y,W), defined above. Now, the Laplacian matrix L ∈ ℝ#×# of the
graph G is defined as

L = D−W, (2.3)

where D ∈ ℝ#×# denotes the diagonal degree matrix with [D] 7,7 =
∑

8, 8≠7E7 8. That is, its 7-th
diagonal element is the sum of the weights of all edges connected to vertex 7, namely vertex or
node degree.

The definition in Equation (2.3) is widely used in the literature and is known as
combinatorial graph Laplacian (CGL) [61], [65], which represents graphs with zero vertex
weights, i.e., graphs with no self-loops. Then, the definition in Equation (2.3) for a CGL matrix
satisfies the following conditions

L��! =

{
L|L � 0,L7 8 ≤ 0 for 7 ≠ 8,L1 = 0

}
, (2.4)

where � stands for the positive semidefinite matrix operator, 1 is a column vector of ones and 0
is a column vector of zeros. Note that, the L1 = 0 constraint is a mandatory condition to L be an
L��! matrix. One can easily check that the entries of the L��! matrix are given by

[L] 7, 8 =


∑

8, 8≠7E7 8, if 7 = 8,

−E7 8, if there is a link from vertex 8 to vertex 7,

0, otherwise.

(2.5)
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where the off-diagonal entries of the L��! matrix are nonpositive and the main diagonal entries
match to the values of the matrix D.

Although several works and applications mainly focus on CGL and their normalized
version, there are recent studies in which the use of generalized graph Laplacian (GGL) matrices
(i.e., graphs with nonzero vertex weights) are shown to be useful [66], [67] and [68]. Specifically,
GGL matrices are proposed to model image [69] and time series [70] signals. Moreover, in [71]
it was discussed several potential machine learning applications using GGL.

In this context, a GGL matrix L��! can be defined as [35]

L��! = D−W+V, (2.6)

where V ∈ ℝ#×# is the self-loop diagonal matrix, with [V] 7,7 = 5D(D7), in which 5D(D7) is the
vertex (self-loop) weight function. That is, it is the matrix whose the 7-th diagonal element is the
real-valued weight of vertex D7, namely self-loop weight. By the definition in Equation (2.6), the
GGL matrix can also be written as

L��! =

{
L|L � 0,L7 8 ≤ 0 for 7 ≠ 8

}
. (2.7)

As observed in Equation (2.7) and by the definition of a generalized Laplacian matrix in Equa-
tion (2.6) with nonnegative edge weights, the L��! will be a real symmetric positive semidefinite
matrix, in which the off-diagonal entries are nonpositive and the main diagonal entries match to
the values of the matrix D plus the self-loop weights in that same position, adjusting all vertexes
degrees. Due to this fact, the L��! matrix no longer has the L1 = 0 constraint.

2.3.1 Spectral graph representation from Laplacian

The fundamental analogy between traditional signal processing and graph signal
processing is established through the spectral graph theory [61]. In particular, the generalization
of the classical discrete Fourier transform (DFT) to graph settings (i.e., graph Fourier transform
(GFT)) has been established through the eigenvectors and the eigenvalues of the graph Laplacian
matrix, which carry a notion of frequency for graph signals. The spectral properties of matrix
L, that is, its eigenvalues and eigenvectors structure, are of particular importance to study the
spectral graph theory.

The Laplacian matrix L, regardless of its type (i.e., L��! or L��!), is a real symmetric
positive semidefinite matrix that has a complete set of real orthonormal eigenvectors U =

{u1 u2 . . . u#} with corresponding non-negative eigenvalues _1 ≤ _2 ≤ . . . _# . Then, its
full eigen-decomposition can be written as [72]

L = U�U) , (2.8)

where � is the diagonal matrix whose diagonal elements are the set of real eigenvalues _< ≥ 0 for
< = 1, . . . , #. The matrix U is called GFT matrix and its eigenvectors are therefore considered to
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represent a Fourier basis for graph signals. In U, the number of eigenvectors (or graph frequency
components) is the number of graph nodes #. The eigenvectors provide a natural way to order
the GFT basis vectors in terms of frequency (i.e., the variations of their values on the graph).
Further, the set of eigenvalues in � represents graph frequencies and is also named as graph
sorted spectrum, satisfying Lu< = _<u<. Specifically, the graph Laplacian eigenvectors associated
with small eigenvalues correspond to signals that vary slowly across the graph, hence they can
be associated with the notion of low frequency. In other words, if two vertexes are connected by
an edge with a large weight, the values of the low frequency eigenvectors at those locations are
likely to be similar. The eigenvectors associated with larger eigenvalues take values that change
more rapidly on the graph; they are more likely to have dissimilar values on vertexes connected
by an edge with high weight. Note that, according to the L1 = 0 constraint, if L is a L��! matrix,
the smallest eigenvalue is always zero, and the corresponding eigenvector is a constant vector.
Moreover, the largest eigenvalue depends on the maximum degree of the graph.

Figure 2.1 illustrates an example of different graph Laplacian eigenvectors for a
random sensor graph. Specifically, Figure 2.1a shows an arbitrary sensor graph with # = 20
vertexes, in which the signal on the graph is generated randomly from a Gaussian distribution,
with zero mean and standard deviation of 5. Figures 2.1b, 2.1c, 2.1d and 2.1e show some Lapla-
cian eigenvectors of the graph represented in Figure 2.1. For connected graphs, the Laplacian
eigenvector u1 associated with the eigenvalue _1 is constant and equal to 1√

#
at each vertex.

Since the expansion into the eigenbasis is given by the multiplication with the
transpose of Fourier basis matrix, the GFT of a graph signal x can be defined as [58]

x̃ = [F̃1 F̃2 . . . F̃#] = U)x, (2.9)

Filtering a graph signal x with a graph filter ℎ (L) corresponds to element-wise multiplication
(Hadamard product) in the frequency domain [_] by a scalar function (ℎ : [0 _;0F]), referred
to as the graph frequency response. When a graph filter ℎ (L) is applied to x, the output is [73]

ℎ(L)x =
Δ GFT−1{ℎ(�) �GFT{x}} = Uℎ(�)U)x, (2.10)

where (�) is the Hadamard product and GFT−1 denotes the inverse graph Fourier transform
(IGFT) defined by x = F̃1u1 + F̃2u2 + . . . + F̃#u# = Ux̃. The function ℎ in Equation (2.10) is
applied to each diagonal entry of matrix �.

2.3.2 Block-diagonal structure from Laplacian

From the Laplacian matrix, the underlying graph may have multiple connected
components and even isolated vertexes. That is, the graph itself may be a composition of  
disjoint connected subgraphs and several isolated vertexes.



Chapter 2. An overview of graph signal processing fundamentals 38

Figure 2.1 – Different graph Laplacian eigenvectors for a random sensor graph with 20
vertexes. Graph vertex colors in (a) represent graph signal values, while in
(b)-(e) they correspond to eigenvector values.

(a) Random signal defined on 20 vertexes.
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In this context, the multiplicity of the zero eigenvalues of L is equal to the number
of connected components  . When the graph G is fully-connected there is only one zero
eigenvalue [59]. That is, an edge connects each pair of vertexes in the graph and  = 1. However,
the graph G has  connected components if and only if [74]

_<

{
= 0, for < = 1, . . . ,  , ,
> 0, for < =  +1, . . . , #.

(2.11)

where _<, for < = 1, . . . , #, are in ascending order.
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This  -block structure leads to a block-diagonal graph Laplacian, i.e.,

L =


L1

. . .

L 

 , (2.12)

allowing matrix L to be split into  sub-matrices L9, in which each matrix L9 has one zero
eigenvalue and the spectrum of L is given by the union of the spectrum of each L9.

Given the block-diagonal structure of L, it is straightforward to realize that the
time-varying graph signal represented by vector xg can also be split into  parts as

xg =
[
x)
g,1 · · · x)g, 

])
, (2.13)

where xg,9 is the signal over subgraph G9.
Figure 2.2 illustrates an example of graph with ten vertexes. In this example, there

are two connected components, i.e., two connected subgraphs, one comprising five vertexes and
the other having three vertexes, and two isolated vertexes or trivial subgraphs.

Figure 2.2 – Example of graph with multiple connected components.
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2.4 Learning of the graph structure and connectivity

The graph structure and connectivity can be estimated taking into account different
criteria of a given vertex with respect to the others, such as the interdependence and the correlation.
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Then, the existence or not of an edge between two vertexes, would depend on the analyzed
criterion. For example, concerning the interdependence criterion:

• if the vertexes are dependent, there would be an edge;

• if they are independent, there would be no edge.

Regarding the correlation, two criteria can be used to build a graph, that is

• non-zero correlation, there would be an edge;

• null correlation there, would be no edge.

or

• correlation greater than a threshold1, there would be an edge;

• correlation less than a threshold, there would be no edge.

Based on the aforementioned criteria, the values of the weighted adjacency matrix
would be chosen, where higher values of weights would correspond to those edges with greater
dependence for the interdependence criterion, and in the case of correlation criterion, in which
edges with lower correlation, lead to choosing lower values of weights.

However, the construction of the graph structure and connectivity would require prior
knowledge of these statistical properties, which is not always possible. In most real measured
datasets the structural relations between data collected samples are usually unknown. That is, the
graph information that underlies the structured data, such as the hidden structure (i.e., edges) and
affinity relations (i.e., weights), is not explicitly available. Thus, it is crucial to use graph learning
methods to estimate the graph topology and the edge weights. One of the most widely used graph
learning approach found in the literature is the estimation of the Laplacian matrix L [35, 75].
Not surprisingly, several GSP techniques and applications, which have some equivalence with
classical signal processing [76], rely on the knowledge of the Laplacian matrix.

In this regard, a general optimization framework for learning/estimation of three
types of graph Laplacian matrices (i.e., CGL, GGL and diagonally dominant generalized graph
Laplacian (DDGL)) from observed/collected signal is proposed in [35]. For this purpose, it was
assumed that the signal has structural constraints, e.g., graph connectivity and sparsity level.
Then, based on multiple observed signal vectors over time, the goal is to optimize a weighted
graph in which the nonnegative edge weights characterize the correlation or affinity relationship
between the entries of a signal vector.

In this thesis, it is paid special attention to the learning of the GGL, through the
estimation of generalized Laplacian matrix L��!, which has been shown to be useful in graph
modeling of time series signals [70]. The following section describes the GGL learning method
in more detail.
1 The threshold value can be chosen to control the sparsity level of the graph.
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2.4.1 GGL learning method

Let Xg be a matrix whose rows correspond to vertexes of the graph signal over
time, and whose columns represents the graph signal evaluated at different time instants g, as in
Equation (2.2). A matrix S can be empirically obtained from the actual data as the covariance
matrix of X. Alternatively, it can be obtained by using some kernel function [77]. In practice,
the use of kernel functions is more useful, as they capture nonlinear relations among random
variables. The goal is to learn the GGL matrix L��! ∈ ℝ#×# from a data statistics matrix
S ∈ ℝ#×# .

In this thesis, as the input of the learning GGL algorithm, the data statistics matrix
S is obtained by using a unit-variance Gaussian kernel function. To this end, let s7 be a vector
defined as

s7 =
[
[X] 7,1 [X] 7,2 · · · [X] 7,#g

])
, 7 = 1, . . . , # , (2.14)

Thus, the entries of matrix S are finally defined as

[S] 7, 8 = 4−s)
7
s 8 , 7, 8 = 1, . . . , # . (2.15)

The GGL method formulation in [35] involves the obtained matrix S and a symmetric
regularization matrix � ∈ ℝ#×# to minimize an objective function whose solution yields L from
the following problem:

minimize
L

Tr(LK) − logdet(L)

s.t. [L] 7, 8 ≤ 0 , 7 ≠ 8 ,
(2.16)

where Tr(·) stands for the trace operator and K = S+�. Note that, the constraint {[L] 7, 8 ≤ 0, 7 ≠ 8}
ensures that the optimization variable L is an L��! matrix, based on the GGL definition in
Equation (2.7), which forces the edge weights to be non-negative. Regarding the regularization
matrix �, it can be written based on the standard :1-regularization term with parameter r as [78]

� = r(2I−11) ) , (2.17)

where I ∈ ℝ#×# is the identity matrix and r being a parameter that controls the sparsity level of
the resulting L��! matrix. In practice, the value of r is tuned until some desired level of sparsity
is reached.

2.5 Smoothness of time-varying graph signal

From the point of view of graph theory, the term x)Lx is known as the graph
Laplacian quadratic form [79]. Through algebraic manipulation x)Lx = x) (D−W+V)x (in
which the existence of vertex loops is assumed), the graph Laplacian quadratic form can be
interpreted in terms of edge and vertex weights as [58]

2x)Lx =

<∑
7=1

V77F
2
7 +

∑
(7, 8)∈Υ

W7 8(F7− F 8)2 , (2.18)
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where V77 =
∑<
7=1 (L) 7 8, with [·] 7,7 standing for the (7, 7)-th entries of matrix V and W7 8 = − (L) 7 8.

Moreover, Υ =
{
(7, 8) | (D7, D 8) ∈ Y

}
is the set of index pairs of vertexes associated to weighted

edge set Y. By direct inspection of (2.18), it can be noticed that assigning a greater edge weight in
W7 8 increases the probability of having a smaller squared difference between the corresponding
F7 and F 8 data points. Similarly, the smaller edge weight, the larger probability that the difference
between the same points is greater.

The quadratic term x)Lx in (2.18) is commonly used to quantify and characterize
the smoothness ((x) of a graph signal x [35]. Thus,

((x) = x)Lx . (2.19)

In this sense, ((x) can be interpreted as a quantitative characteristic that expresses how frequently
a graph signal varies with respect to the underlying graph [80]. The smaller the ((x) value, the
smoother the graph signal x on the graph tends to be. Additionally, from the point of view of the
vertex domain, ((x) value will be low when neighboring vertexes connected by an edge with
a greater weight has similar x values. On the other hand, from the point of view of the graph
frequency domain, the smaller the frequency components associated with large eigenvalues, the
lower the ((x) value.

Regarding the structure of matrix Xg, the smoothness of time-varying graph signal
xg can by defined as [49]

((Xg) =
#g∑
g=1

((XB) = Tr(X)
gLXg) . (2.20)

2.5.1 Temporal difference signal

The smoothness of a time-varying graph signal is widely used in several tools based
on GSP, e.g., sampling and reconstruction techniques. However, in many practical problems
with real datasets, xg is not smooth enough on the graph. For some graph-based techniques such
as reconstruction, it may be interesting to maximize the smoothness level of the graph signal in
order to optimize the algorithm’s performance. For example, if a graph signal xg is not smooth
enough on the graph it could cause poor reconstructions with low quality [49]. One way to
mitigate this problem is to exploit the correlations of the signal both on graph and along the time
direction, that improves significantly the reconstruction quality [49].

Usually, the temporal difference signal (i,e,. xg−xg−1) exhibits smoothness on graph
for most time-varying graph signals obtained from real datasets and exhibits better smoothness
property compared with the original signals. The temporal difference operator ∇g can be denoted
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as [49]

∇g =



−1
1 −1

1 . . .

. . . −1
1


∈ ℝ#g×(#g−1) , (2.21)

where the maximum singular value of ∇g is larger than one. Similarly, the temporal difference
signal operator is given by

[X∇]g = [x2−x1,x3−x2, . . . ,x#g −x#g−1] , (2.22)

Note that, the reduction in the quantity (( [X∇]g) is associated to the inherent data structure
and not due to that the operator ∇g reduces the magnitude of Xg. Then, the Y-structured set of
time-varying graph signals ΦY(Γ) is defined as

ΦY(Γ) = {Xg : Tr
(
[X∇])gL[X∇]g

)
≤ (#g−1)Y} . (2.23)

where ΦY(Γ) is composed of smoothly evolving graph signals and Y ≥ 0 denotes the smoothness
level, i.e., the smaller Y, the smoother the underlying graph signals.

2.6 Sampling via GSP

The sampling of a time-varying graph signal xg can be represented by a linear model
at every time instant g as

yg = M̄gxg , (2.24)

where yg is the undersampled version of xg and M̄g is a diagonal matrix that acts as a linear
mask sampling operator defined as [81]

[M̄g]C,C =
{

1, C ∈ %g,
0, C ∉ %g,

(2.25)

with %g ⊆ a denoting the set of sampled vertexes at time instant g.
Recalling the structure of the # ×#g matrix Xg, Equation (2.24) can be conveniently

expressed in matrix form as
Yg = Mg �Xg , (2.26)

where Yg is the matrix that contains the unsampled and/or missing entries of Xg and Mg being
the linear mask sampling operator with dimension # ×#g defined as

[Mg]C,g =
{

1, C ∈ %g ,
0, C ∉ %g,

(2.27)

with %g ⊆ a denoting the set of sampled vertexes at each time instant g.
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2.6.1 Random sampling (RS)

In [56] and [49], it was used an RS mechanism where vertexes of a graph are sampled
following a uniform distribution. The number of measurements depends on a pre-established
sampling rate 'A and there is no sampling constraint on the graph structure and connectivity. The
non-exploitation of the graph structure may cause the loss of valuable pieces of information used
by reconstruction strategies. In this sense, it may occur that all vertexes of a given subgraph are
unsampled (including trivial subgraphs), hindering the reconstruction process of that subgraph.

Figure 2.3 – Result of sampling nodes using a random sampling strategy. Note that each
of subgraph 2 is sampled.
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Source: Created by the author.

Figure 2.3 illustrates an example of an RS mechanism with 'A = 50% over a graph
with multiple connected components and ten vertexes. Denoting the sampled vertexes with the
color red, five vertexes are randomly sampled regardless the subgraphs structure and connectivity.
As can be seen, the vertex set of the subgraph 2 and the trivial subgraph represented by vertex 7
are unsampled, missing its connectivity and structure information to reconstruct them.

In order to mitigate the problem of RS and preserve the structure and connectivity of
each subgraph, it will be proposed in later sections of this thesis a novel sampling strategy based
on the graph Laplacian matrix.
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2.7 Reconstruction of time-varying graph signal

The reconstruction of bandlimited graph signals requires that the signals must be
exactly bandlimited on graph [49]. However, in real datasets, most graph signals tend to be smooth
on graph, rather than strictly bandlimited. Theoretically, from an approach of reconstruction of
smooth graph signals, if all signals xg, g ∈ {1, . . . , #g}, are smooth on graph, then it is possible
to recover Xg column by column using graph reconstruction methods.

In this section, two reconstruction techniques via GSP are described, namely batch
and online reconstruction strategies, which will be used throughout this thesis. In general, given
the implemented sampling method and with the knowledge of the Laplacian matrix, a reconstruc-
tion strategy is carried out that collects the data over the time-varying graph and reconstructs the
missing and/or sampled graph signal values. In the case of a batch reconstruction strategy, the
aim is to reconstruct the matrix Yg =

[
y1 y2 . . . y#g

]
, composed of all the undersampled

vectors yg along the temporal window #g. On the other hand, the online reconstruction strategy
seeks to reconstruct the yg vector at every time instant g in a sequential manner.

As will be seen in later sections, the reconstructed measurement matrix X̂g or the
reconstructed vector x̂g for the batch and online distributed strategies, respectively, may be used
as input data of the machine learning (ML) approaches, in order to address the different problems
treated later in this document.

2.7.1 Batch reconstruction strategies

The batch reconstruction of time-varying graph signal xg requires to obtain the
sampled values within a temporal window (e.g., #g) before reconstructing them all together into
the matrix Xg. The general batch reconstruction unconstrained optimization problem based on
graph regularization is given by

X̂g = argmin
Xg

| |Mg �Xg−Yg | |2� +iTr
(
X)
gLXg

)
+ WTr

(
[X∇])gL[X∇]g

)
+X| | [∇̆X]g | |2� , (2.28)

where i, W and X are regularization parameters, | | · | |� denotes the Frobenius norm, Yg is the
undersampled version of the target matrix Xg, Mg is the mask sampling operator defined in
Equation (2.27), [X∇]g is the temporal difference signal operator defined in Equation (2.22) and
∇̆ is the gradient of the signal X.

The problem in (2.28) may be reduced to three sub-problems known in the literature,
i.e., the smooth graph signal reconstruction (SGSR) [82], the graph-time Tikhonov reconstruction
(GTTR) [47] and the smooth graph-time difference (SGTD) [56]. These reconstruction strategies
will be discussed more extensively in the following.

2.7.1.1 Smooth graph signal reconstruction

By setting W = X = 0 in Equation (2.28), the general reconstruction optimization
problem may be reduced to the SGSR method proposed in [82]. Then, the objective function
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in (2.28) can be rewritten as

X̂SGSR
g = argmin

Xg

| |Mg �Xg−Yg | |2� +iTr
(
X)
gLXg

)
. (2.29)

The first term in Equation (2.29) is an energy term which constrains the denoised
points to be close to their original positions. Theoretically, taking into account only this term, it
would be possible to reconstruct the original matrix Xg from the partial noisy observations Yg,
by applying low-rank matrix completion (LR-MC) techniques [83]. However, the reconstruction
quality depends on many prior suitable conditions and assumptions for matrix Xg, (e.g., degrees
of freedom, matrix rank and number of sampled entries), which are hard to predict or control in
real datasets.

Taking advantage that most graph signals are not usually strictly band-limited and
tend to be smooth on graph, SGSR exploits the smoothness of time-varying graph signals in
order to improve the reconstruction quality. Specifically, by controlling the value of i in the
second term of Equation (2.29), the smaller the Tr

(
X)
gLXg

)
value, the smoother the signal on

graph tends to be. As mentioned above, from the point of view of vertex domain, the Tr
(
X)
gLXg

)
value will be low when neighboring vertexes connected by an edge with a greater weight has
similar signal values. Thus, a smaller variation value would mean similar sample reconstructions
between strongly connected vertexes.

Recalling the graph Laplacian eigendecomposition L = U�U) described in Sec-
tion 2.3.1, an <-bandlimited signal lives in the span of the first < eigenvector of U, i.e., where
the eigenvalues of L are the smallest. The regularization term in Equation (2.29) satisfies
X)
gLXg =

(
X)
gU

)
�

(
U)Xg

)
. Thus, this term penalizes signals with energy concentrated at high

frequencies (i.e., greater eigenvalues ) more than signals with energy concentrated at low fre-
quencies (i.e., smallest eigenvalues ). In other words, this regularization term encourages the
reconstruction of low-frequency signals, i.e., signals approximately bandlimited.

The advantage of SGSR is that it can be solved efficiently by iterative methods even
for large graphs, e.g., the conjugate gradient algorithm [84]. Indeed, each step of this algorithm
can be implemented by using only matrix-vector multiplications with Mg and L, which are both
sparse matrices.

2.7.1.2 Graph-time Tikhonov reconstruction

First implemented in [85], Tikhonov’s regularization became one of the most used
methods to filter or denoise graph signals. Specifically, the general regularization term X| |∇̆x| |>>
is added to known convex optimization problems, in which ∇̆ is weighted by the selection of a
scalar X.

Tikhonov’s regularization based on the :1-norm (i.e., >= 1) is widely used in literature
as image denoising and reconstruction [86, 87]. Also known as total variation (TV) regularization,
it gained rapid popularity from its ability to produce denoised images that retain sharp intensity
boundaries.
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The quadratic Tikhonov-type regularization, based on the :2-norm (i.e., > = 2),
promotes smooth solutions over graph signal, reducing the high-frequency content such as
noise. This represents an undesirable feature in image denoising problems, due to sharp intensity
boundaries that are smoothed, thereby smearing sharp features embedded in the image. However,
the smoothness enforced by the :2-norm regularization, can be usefully exploited in order to
improve the solution of reconstruction problems in which time-varying signals are assumed.
Thus, by setting W = 0 in Equation (2.28), the problem is reduced to the GTTR method proposed
in [47]

X̂GTTR
g = argmin

Xg

| |Mg �Xg−Yg | |2� +iTr
(
X)
gLXg

)
+X| | [∇̆X]g | |2� . (2.30)

As noted, the GTTR method basically adds the term X| | [∇̆X]g | |2� , corresponding to
the Tikhonov’s regularization based on the :2-norm, in the SGSR optimization problem given by
Equation (2.29). In this way, it is possible to reinforce the smoothness level of the time-varying
signal Xg provided by the term iTr

(
X)
gLXg

)
, and an improve in the reconstruction quality is

expected.

2.7.1.3 Smooth graph-time difference reconstruction

In many practical problems with real datasets, signal xg is not smooth enough on
graph, which can cause poor reconstructions with high reconstruction error levels. One way to
mitigate this problem is by exploiting the correlations of the signal both on graph and along the
time direction, which may significantly improve the reconstruction quality. In this context, the
quadratic term

(
[X∇])gL[X∇]g

)
in Equation (2.28), which represents the temporal differences of

time-varying graph signals, usually exhibits better smoothness on the graph representation than
the signals themselves [56]. Then, by setting i = X = 0 in Equation (2.28), the SGTD problem
can be rewritten as [49]

X̂SGTD
g = argmin

Xg

| |Mg �Xg−Yg | |2� + WTr
(
[X∇])gL[X∇]g

)
. (2.31)

Figure 2.4 illustrates an example of graph signal reconstruction using the three batch
reconstruction methods described above. For a better understanding of the reconstruction process,
the graph signals are represented by a heatmap (i.e., the graph vertex colors represent graph
signal values), in which its values are randomly distributed between the vertexes of the graph.
Specifically, Figure 2.4a shows a graph signal over an arbitrary graph with # = 50 vertexes at
a certain time instant g. Figure 2.4b illustrates the graph signal yg at the same time instant g,
after the application of the mask sampling operator Mg given in Equation (2.27). In this example,
Mg is chosen with a sampling rate '( = 50% (i.e., the graph signal of half of the vertexes has
been set to 0). Figures 2.4c, 2.4d and 2.4e show the reconstructed graph signal x̂g by solving
the SGTD, GTTR and SGSR reconstruction problems, respectively. The near-optimal values
of the regularization parameters W, X and i were found through a exhaustive grid search. By
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Figure 2.4 – Example of graph signal reconstruction using the three batch reconstruction
methods.

(a) Original graph signal xg at a certain time
instant g.
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(b) Undersampled graph signal yg, with '( =

50%.
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(c) Result of graph signal reconstruction using
the SGTD method.
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(d) Result of graph signal reconstruction using
the GTTR method.
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(e) Result of graph signal reconstruction using
the SGSR method.
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Source: Created by the author.

direct inspection of graph vertex colors, it can be noted which of the three batch reconstruction
methods provides better reconstruction, when compared with the original graph signal values
in Figure 2.4a. As can be seen, the SGTD solution in Figure 2.4c more closely resembles the
original signal colors than the others two batch reconstruction techniques in Figures 2.4d and 2.4e.
This result is expected because the graph signal used in the GTTR and SGSR methods is not
smooth enough, which causes a significant reconstruction performance loss when compared to
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the SGTD, that uses the temporal difference to improve the smoothness of the signal.

2.7.2 Online reconstruction strategy

The batch reconstruction strategy described above requires one to obtain the sampled
values within a long time before reconstructing them all together. This can lead to a high
reconstruction delay and a high computational complexity, not being suitable for practical
applications that face real-time requirements and low latency. In this context, an online strategy
proposed in [49], which is based on the local properties of the temporal difference operator and
the graph Laplacian matrix, is adopted.

The online smooth graph-time difference (O-SGTD) reconstruction strategy aims
to reconstruct the current missing graph signal values according to the sampled graph signal
of current and previous time instants. Thus, the unconstrained optimization problem given by
Equation (2.28) with V = X = 0 can be rewritten for the O-SGTD strategy as [49]

x̂g = argmin
xg
| |M̄gxg−yg | |22 + W (xg− x̂g−1)) L (xg− x̂g−1) , (2.32)

where xg is the current (i.e., at time instant g) signal to be reconstructed and x̂g−1 is the recon-
structed signal at the previous g− 1 time instant. Note that, M̄g is the linear mask sampling
operator defined in Equation (2.25).

It is worth recalling that the batch reconstruction problem SGTD, as described in
Equation (2.28), needs to receive every vector yg to compose matrix Y prior to the reconstruction
of Xg. On the other hand, the online strategy O-SGTD, as formulated in Equation (2.32), can
obtain every xg in a sequential fashion given only yg and xg−1.

In next chapters, it will be used some of the graph-based tools and concepts described
throughout this chapter, in order to reduce the feedback channel burden and therefore, improve
the ML-based prediction tasks for two problems in mobile communications.

The main motivation of using the graph-based tools is identify and properly exploit
data structures generated by the different sources of information in the 5G systems. Such data are
usually very complex since they are intrinsically and possibly irregularly structured. For instance,
mobile and wireless networks are irregularly deployed in space and their measurements depend
on their geographical positions. Then, analysis and compression of such data is a challenging
task, which can be tackled by using tools based on GSP.
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3 SUPERVISED LEARNING AND GRAPH SIGNAL PROCESSING STRATEGIES
FOR BEAM TRACKING IN HIGHLY DIRECTIONAL MOBILE COMMUNICA-
TIONS

The use of efficient beam tracking mechanisms becomes necessary in highly di-
rectional communication of the 5G systems. In this context, this chapter analyzes the tracking
problem and proposes a framework that exploits the samples in the HUD to efficiently estimate
and predict the channel state at the BS. The framework is composed of two steps. First, a
supervised learning algorithm, namely  -NN, is evaluated as a means of (i) finding the most
similar historical samples to some beam measurements reported by the UE, and (ii) predict the
corresponding channel state. As a second step, a sampling and reconstruction strategy based on
GSP called  -NN-R is introduced in order to reduce the beam search space during the beam
measurement stage, which allows a more efficient usage of the feedback channel. Simulation
results illustrate the performance of the proposal in terms of NMSE in comparison with three
traditional/baseline prediction techniques. The  -NN technique provides a better performance
than the baseline approaches for any length of the observed temporal window and with full beam
sweep. Meanwhile, the  -NN-R framework outperforms the baseline approaches with only half
of the beam pairs and throughout a significantly low length of observed temporal window.

3.1 Introduction

Capacity demand in mobile communications has been continuously increasing and
this trend is expected to continue. To improve system capacity, the use of mmWave bands
are envisioned as a feasible solution in 5G systems, incorporating mmWave small cells into
current 4G systems. Millimeter waves make possible the usage of a large number of antenna
elements, which allows highly directional communications through the use of beams with
very narrow beamwidth (called pencil beams). Pencil beams offer high array gain, providing
mmWave small cell base-station (BS) with the capability of achieving the desired link budget
targets, and enabling energy efficient communication. However, the use of mmWave frequencies
also brings new challenges caused by severe path loss due to the communication channel,
blockage and other environmental obstructions. Link establishment and maintenance between a
BS and a user equipment (UE) in highly directional communications are often rather difficult
processes. In order to cope with this disadvantage, significant overhead and network resources
are usually wasted in beam training procedures with the aim to determine the best directions
of transmission/reception pairs between a BS and a UE. In this context, fast and efficient beam
training and beam tracking strategies are of paramount importance for efficient operation of
mmWave in mobile environments.

Beam management problems can benefit from the availability of a HUD samples to
provide solutions. The nature of the historical data may be quality measurements, e.g. SNR, CSI,
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channel coefficients, AoD and AoA, performed by UEs that (once or periodically) report them
to the network. As an example, in beam tracking, such set of data samples can help modeling
the interdependency among BSs, beams and UEs data samples, which is suitable for ML-based
solutions, such as supervised learning. Advantageously, beam tracking can then be performed
more efficiently by predicting/estimating the direction changes of UEs, even some time instants
ahead.

In this chapter the concept of an adaptive beam tracking framework is proposed,
where the time evolution of the AoA and the AoD can be estimated to efficiently reduce the beam
search space, relying on measurements of the UE output observations (once or periodically)
and the AoA/AoD pairs associated with these measurements, which are stored in a HUD. A
supervised learning method, namely  -NN, is evaluated as a means of finding the  most similar
historical observation samples and learn to predict the corresponding channel state. Further,
a sampling and reconstruction strategy based on GSP called  -NN-R is introduced, as a pre-
processing stage to the  -NN algorithm. Such data pre-processing aims to reduce the feedback
bandwidth and, therefore, counteracting the measurement process challenges. The evaluation
of the proposed methods is carried out for the channel estimation perspective at each time
instant during a reporting temporal window and as channel prediction tool, in which, from the
measurements collected only throughout an observed temporal window, the channel matrix is
predicted some time instants ahead.

3.2 System model

In this section we describe the system model for MIMO mmWave communications.
First, we describe the spatial channel model and its state evolution model in the angular domain
and then we introduce the procedure for beam training. Generally speaking, we formulate the
state evolution model as

Fg , 5 (Fg−1) +Eg−1 , (3.1)

where Fg stands for the state at time instant g, 5 (·) is the transition function which evolves a state
from a time instant to the next, and Eg−1 is the process noise that is assumed to be white and
Gaussian distributed. The role of Eg is to capture effects in the evolution process which are not
modeled by 5 (·). Additionally, the measurements are modeled as

Gg , 6(Fg) + Dg , (3.2)

where Gg denotes a measurement at time instant g, 6(·) is the observation function that maps
a given state to a value that is measured (or observed), and Dg is the measurement noise also
assumed to be white and Gaussian distributed.

As it will be discussed throughout this chapter, the channel model is parameterized
by state variables in terms of arrival/departure angles and path gains. Besides, the observation
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function 6(·) is described in terms of steering vectors that are mathematically modeled as complex
exponential functions, i.e., it is nonlinear while the transition function 5 (·) is formulated as a
linear one. At last, a measurement (or observation) is simply the received beamformed signal
that is combined and sampled at time instant g.

3.2.1 Channel model

In conventional mobile communications systems, with frequencies below 6 GHz, it
is usual to consider rich-scattering channel models. However, MIMO mmWave channels are
modeled with a few scatterers due to high directivity characteristics, narrow beams and strong
attenuations. The number of propagation paths for these channel models is then limited, which
results in a sparse channel matrix [88]. Due to this sparse nature, the channel matrix in the angular
domain can be well defined in terms of AoA, AoD and path gains as a parametric channel model.
Therefore, channel estimation can be reduced to the estimation of such parameters.

As described in [88], empirical measurements of MIMO mmWave channels show
that delayed versions of the signal (paths) arrive at the receiver in clusters, such that each cluster
has similar statistical characteristics of angles, power and delay. Thus, a cluster is a group of
scatterers with similar statistics, and represents a macro region in which reflection, diffraction,
attenuation and scattering are around well-defined statistical averages.

We assume a single user MIMO mmWave system in which the BS is equipped with
an antenna array of #B elements, indexed by ; = 1,2, . . . , #B, and a UE is equipped with #@

antenna elements, indexed by < = 1,2, . . . , #@. We also consider ! clusters of a single scatterer.
For each combination between a receiving antenna element <, a transmitting antenna element ;
and a cluster :, there exists a single path > of index (<,;, :) as illustrated in Figure 3.1.

Figure 3.1 – Spatial mmWave channel model.
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Still in Figure 3.1, a mmWave channel can be expressed in relation to the parameters
defined for each path: AoA, AoD and complex gain U. Hence, the frequency response of the
time-varying geometric 3D channel model with ! paths at time g is described by [15]

H(g) =
!∑
:=1

U:,ga@ (\�,:,g,q�,:,g)a�B (\�,:,g,q�,:,g) , (3.3)

where H(g) ∈ ℂ#@×#B and �, �, B and @ indicate AoD, AoA, transmitter and receiver, respectively.
The superscript � indicates the Hermitian conjugate, U:,g is the :-th path gain at time g, and
\�,:,g,q�,:,g is the :-th path AoD at time g, where \ and q are the elevation and azimuth compo-
nents of the transmission direction, respectively. Similarly, \�,:,g,q�,:,g is the :-th path AoA. If
we restrict the channel model for 2-dimensional (2D) coordinates, we only need to cope with
angles in the azimuth.

Still in Equation (3.3), aB (·) and a@ (·) are the beam steering vectors for the BS
(transmitter) and the UE (receiver), respectively. The steering vectors, also known as array
response, describe the phase delays of each plane wave generated (or received) by an antenna
array element, and depend on the geometry of the array. Consider a 2D model (\ = 0) and
a uniform linear array (ULA) at both the transmitter and the receiver, the steering vectors in
Equation (3.3) at each g are given by

aB (q�,:,g) =
1
√
#B
[1, 4 83Z(q�,:,g) , 4 823Z(q�,:,g) , . . . , 4 83(#B−1)Z(q�,:,g)]) , (3.4)

and

a@ (q�,:,g) =
1
√
#@
[1, 4 83Z(q�,:,g) , 4 823Z(q�,:,g) , . . . , 4 83(#@−1)Z(q�,:,g)]) , (3.5)

for the transmitter and the receiver, respectively [15], where 3 is a distance between the adjacent
antennas. In addition, Z(q�,:,g) = 2c

_
[sin(q)] where q ∈

[
−c2 ,

c
2
]

is a angle for AoD and _ is the
carrier wavelength. Finally, Z(q�,:,g) for AoA is defined similarly.

3.2.2 State evolution model

Let qqq�,g = [q�,1,g . . .q�,!,g], qqq�,g = [q�,1,g . . .q�,!,g], be vector variables that repre-
sent AoD in the azimuth, and AoA in the azimuth, respectively. In addition, UUUg = [U1,g . . . U!,g]
is the complex gain vector with real and imaginary part UUU@40:g = R(UUUg) and UUU7;6g = I(UUUg), respec-
tively. Then, for a 2D channel model the state vector is defined as

Xg =

[
qqq�,g qqq�,g UUU@40:g UUU

7;6
g

]
, (3.6)

such that Xg has �! = 4! dimensions. Note that by using the real and imaginary parts of UUUg,
the state vector Xg is a real vector which helps to avoid implementation issues when real and
complex numbers are mixed. It is assumed that these vector variables are independent of each
other. For each variable in Xg a variance will be assigned. The variance indicates the extent
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of the mobility for the UE. The higher rate mobility corresponds to higher values of variance.
Hence, the appropriate variance value can be found by mapping the average speed of the UE. In
this chapter, the variances of the angles will be written as a function of a single variance f2

C.
Let us also consider that UUUg follows the linear model given by [15]

UUUg = dUUUg−1 +k:,U,g−1 , (3.7)

where d is the channel time correlation coefficient and k:,U,g−1 ∼ N
(
0, (1− d2)

)
. It is assumed a

generic evolution model for the AoA/AoD angles that is driven by a linear Gaussian process.
The state evolution model can be written as

Xg = ZXg−1 +ug−1 , (3.8)

where Z = diag( [11×2!, d11×2!]), with diag(·) representing diagonal matrix. The vector ug−1 ∼
N(0,�C) with �C = diag( [fffq, fffq, fffU, fffU]) for the 2D channel. Since the state vector Xg in (3.8)
contains all the parameters that characterize the channel matrix in (3.3), one can express the
channel matrix H in terms of Xg, so that H (Xg), which acts as the observation function. This
way, once the state vector is estimated/tracked, the channel matrix can be straightforwardly
obtained.

3.2.3 Beam training cycle

Consider the downlink communication in a ULA 2D channel model where a transmit
codebook containing #B transmit directions and a receive codebook containing #@ receive
directions are used for beam training purposes. Specifically, it is assumed a DFT codebook
proposed in [89]. Moreover, it is assumed that for each beam tracking instant a beam training
cycle is performed during which the channel does not change. Each beam training cycle consists
of a full scan within the beam space, which comprises all the #1 = #B#@ transmit-receive direction
pairs. More specifically, the >-th beamforming vector (BV) f> for transmission and the ?-th
combining vector (CV) w? for reception are given by

f> = aB
(
arcsin

(
−1+ 2(>−1)

#B

))
, > = 1, . . . , #B , (3.9)

w? = a@
(
arcsin

(
−1+ 2(?−1)

#@

))
, ? = 1, . . . , #@ , (3.10)

where f> ∈ ℂ#B×1, w? ∈ ℂ#@×1, aB (·) and a@ (·) are the steering vector functions described in
Equations (3.4) and (3.5), respectively. Note that the azimuth angles that parameterize the
steering vector functions above come from the #B-point (or #@-point) discretization of the sin(·),
defined in the function Z(·) in the interval [−1,1). Such an interval is chosen to be in compliance
with the azimuth angular spread which is within the interval

[
−c2 ,

c
2
]
.

Moreover, a pilot signal A is transmitted for each transmit-receive direction pair. For
simplicity, it is assumed A = 1. Now, let 6?,> (Xg) ∈ ℂ be the equivalent channel gain at time
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instant g when the >-th BV f> and the the ?-th CV w? are selected and given by

6?,> (Xg) = w�
? H (Xg) f> , (3.11)

where H (Xg) is the channel matrix parameterized by the state vector Xg. It is worth observing
that 6?,>(·) acts as a nonlinear observation function in our general measurement model. Then,
the received signal beamformed by the >-th BV and combined by the ?-th CV at time instant g is
given as follows:

G?,> (g) = 6?,> (Xg) +w�
? vg , (3.12)

where vg ∼ CN(0, f2
DI#@ ) represents an i.i.d. Gaussian noise vector at time instant g. Besides, all

the #1 = #B#@ received signals can be conveniently expressed in matricial form. To this end, let
F ∈ ℂ#B×#B be the transmit codebook matrix defined as

F =

[
f1 · · · f#B

]
. (3.13)

Let W ∈ ℂ#@×#@ be the receive codebook matrix defined as

W =

[
w1 · · · w#@

]
. (3.14)

Thus, the received signal matrix Y ∈ ℂ#@×#B during the beam training cycle and parameterized
by state vector Xg is described as

Y (Xg) = W�H (Xg)F︸          ︷︷          ︸
G(Xg)

+W�V , (3.15)

where V represents the vg vector at each time instant g and G ∈ ℂ#@×#B is the observation matrix
whose (?, >)-th entry denotes the observation function 6?,>(·) in (3.11) evaluated at Xg.

Also for the sake of convenience, both the observation and received signal matrices
can be expressed in vector form using the vectorization operator vec(·) as follows:

gg = vec (G (Xg)) , (3.16)

where gg ∈ ℂ#1×1, and
yg = vec (Y (Xg)) , (3.17)

where yg ∈ ℂ#1×1. Besides, in order to avoid handling complex numbers, gg and yg can be split
into their real and imaginary parts, which yield

gℝ|I =

[
ℝ(gg)
I(gg)

]
, (3.18)

and

yℝ|I =

[
ℝ(yg)
I(yg)

]
. (3.19)

where ℝ(·) and I(·) stand for the real part and the imaginary part, respectively, of the corre-
sponding input argument.
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3.3 Tracking with supervised learning

Machine learning methods typically present two mainstreams, namely supervised
learning and unsupervised learning. In supervised scenarios, each observed input data has a
desired output/label so that, via an offline training phase, a function that maps input and output
data can be learned. Then, for any new observed data its associated output can be obtained.
Applications lying in this learning category are those of classification, prediction and regression.

An example of method to evaluate the learning aspect in the tracking problem is the
so-called  -NN [90] for regression. A brief explanation of the general idea behind it goes as
follows. Consider a generic unlabeled observation data FC, i.e., its label GC is unknown. One may
then want to find (or predict) the label GC of FC. To this end, let us assume that one can rely on
the availability of a (desirably rich) set Ψ of #A training (or supervision) data pairs (F, G), where
G corresponds to the label of F. Thus,

Ψ =
{
(F1, G1), (F2, G2), . . . , (F#A , G#A)

}
. (3.20)

Then, by using some metric of similarity (e.g. Euclidean distance function 3(·, ·)) one can find
the  nearest training input data in Ψ to the unlabeled data FC by (i) calculating the distance
between FC and every training input data, and (ii) taking the  nearest ones. That is,

89 = argmin(9)
8

3(FC, F 8) , (3.21)

where F 8 is the input data of (F 8, G 8) ∈ Ψ and min(9) stands for the 9-th smallest value of the
corresponding input argument. Once the  -NN input data are found, the estimate of the label of
FC is given by

ĜC =
1
 

 ∑
9=1

G 89 , (3.22)

where G 89 is the output data of (F 89 , G 89) ∈ Ψ . The right-hand part of (3.22) is simply the average
of the  -NN output data found, but different functions can be used (e.g, weighted average, where
weight may be the normalized distances). The prediction error in this case is the difference
between the actual GC and its estimate ĜC.

In general, the input data F can be multidimensional, each dimension standing for a
feature of that data. In this case, each input data F is a vector whose entries are features. In a
more general case, the evolution (in time, for instance) of each feature may also be stored as a
single input, which makes input data F be a matrix. Then, distance function d(·, ·) is conveniently
generalized to be the Frobenius norm. The output G may also have multiple dimensions, each
being a label. Besides, values for features and labels can generally belong to the set of real
numbers.

Finding the best value for  is challenging due to the so-called bias-variance trade-
off [90]. That is, extreme values of (either too small or too large) do not necessarily lead to a
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small estimation/prediction error. In general, small values, say  = 1, corresponds to a predictor
with low-bias and high-variance. In this case, it will always pick the nearest neighbor, which
may vary as new training data is added into Ψ. On the other hand, large values, say  = 100,
lead to a predictor with high-bias and low-variance. That is, the resulting estimate will be an
average of a very large number of data samples with contribution of many labels different from
the actual one. Besides, adding new training data does not affect much the prediction in this case.
Consequently, in practice, none of them provides good predictions.

3.3.1  -NN tracking framework

Bringing the idea behind the  -NN to the tracking problem, a label is defined as
a given state vector Xg, while an input data, either observation or training one, is a given
observation vector yg. Recall that the observation vector yg is the measured beamformed signal
vector at time instant g for every pair of BV and CV. Thus, the goal here is to apply  -NN
to predict the corresponding state vector of the channel that generated the observation vector
measured by the UE.

Now let us assume that the serving BS has a HUD available and stored in a central
entity or in the cloud, whose entries are the observation vectors yg and their corresponding state
vectors Xg, which represent historical measurements at some (relative) time instant g. Moreover,
(yg,Xg) pairs may span consecutive time instants to account for measurements along a trajectory
of interest. It is worth mentioning that the measurement and estimation processes that feed the
(yg,Xg) pairs into the HUD are carried out offline, not interfering or aggregating overload in
the dynamic tracking process. Specifically, the received observation vectors and the estimated
state vectors are fed back to the HUD, in order to update the historical samples and improve the
richness of the database. However, the measurement and estimation processes are not error-free,
being necessary the scheduled database refresh operations to periodically purge old data.

More specifically, since the channel model described in Section 3.2 is purely stochas-
tic, the entries of the HUD are defined as being correlated versions of a given (yg,Xg) pair whose
input data label needs to be predicted. The idea behind that is to emulate some randomness in
the measurement and estimation processes of the channel within a trajectory of interest, as if
they were carried out in multiple different days. To this purpose, for each unlabeled yg, a set of
HUD samples are generated as follows:

X′g, 8 = Xg+X +
√
V�C)N8 , (3.23)

where V ∈ [0,1] is a correlation factor that scales the variance of the state variable noises,N8 is a
zero-mean white Gaussian noise vector, and X is a random delay uniformly distributed within
[−Δ,Δ]. The delay X introduces some delayed state vectors in the training data at time instant g;
otherwise,  -NN would act as an unbiased estimator, and the  value would be chosen as large
as possible. Moreover, for each X′g, 8, its corresponding observation vector y′

g, 8
is simply obtained

as in Equation (3.17).



Chapter 3. Supervised learning and graph signal processing strategies for beam tracking in highly directional
mobile communications 58

Therefore, for a given yg whose label is unknown at time instant g, there is set from
the HUD given as

ΨHUD,g =

{
(y′g,1,X

′
g,1), (y

′
g,2,X

′
g,2), . . . , (y

′
g,#A

,X′g,#A)
}
, (3.24)

which is used by the  -NN procedure, described in Section 3.3, to estimate the label (i.e., the
state vector) of yg. That is, the 9-th nearest neighbor to yg is given by

89 = argmin(9)
y∈ΨHUD,g

d(yg,y) . (3.25)

Once the  -NN input data are found in ΨHUD,g, the estimate X̂g of the yg’s label is finally given
by

X̂g =
1
 

 ∑
9=1
X′g,9 , (3.26)

where X′g,9 is the output data of (y′
g,9
,X′g,9) ∈ ΨHUD,g .

It is worth mentioning that our supervised learning tracking framework does not
demand the track of state vectors on the UE side, as illustrated in Figure 3.2. Thus, the largest
part of computational load occurs at the BS. In other words, only the measurement process of
observation vectors yg is carried out at the UE. Upon reception of such measurements from the
UE, the serving BS applies the  -NN procedure, with the assumption of the HUD be available, to
predict the state vector of the reported observation vector. Also note that, in practice, the HUD is
built up from measured observation vectors and their (desirably precise and accurate) estimated
state vectors. Thus, the state evolution model does not need to be known. The computational
complexity of the  -NN method can then be defined as O(#A#1) where #1 = #B#@ is the number
of beam pairs.

Figure 3.2 –  -NN Tracking Framework.
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3.4 Graph signal processing strategies

As discussed in the Section 3.3, an advantage of our  -NN tracking framework is
that it does not need the AoD/AoA online estimation phase at the UE. The bulk of the processing
is done in the mmWave BS, and the HUD generation is performed in an offline phase, reducing
the computational complexity and not interfering in the dynamic tracking process. However, our
 -NN method require the whole beam space measure at the UE and an exhaustive use of the
feedback channel to report the full observed vector yg or the full state vector Xg at each time
instant g, respectively. Although it is possible to work with the estimation on the BS and reporting
of it to the UE, the limited feedback may be quite a problem and, in a practical environment, the
feedback channel is likely to be limited. In addition, at mmWave frequencies, the measurement
process can be a challenge due to severe path loss, blockage and other environmental obstructions.
In this contex, sampling and reconstruction strategies based on GSP are envisaged.

3.4.1 Graph signal model

A scenario as described in Section 3.2 is assumed. Once the observation process
is carried out, the UE sample the measured signals for the purpose of reporting a sampled
observation vector yg to the mmWave BS, assuming that the feedback channel is limited. Thus,
from the BS perspective, the reported UE measurements are by definition a sampled version
of the whole beam space measure yg. That is, the reported data are measurements of just a few
monitored beams, while the beam space usually comprises a much larger set of beams.

For a better understanding of the observation and sampling process, the measure-
ments of the five beams are represented by a heatmap, in which the temporal window is divided
into ten equal time instants, which can be seen in Figure 3.3. The intensity of each beam varies
at each time instant, following the sequence of measurements performed while the UE moves
around.

In our example in Figure 3.3, the statistics within a temporal window of beam
monitoring could be modeled as 10 graphs (one for each time instant g) with 5 nodes each. Of
course, in a more realistic analysis, the temporal window will be divided into a greater number
of time intervals (e.g., 2 millisecond or less), better describing the signal quality behavior of the
beams over time, and each of those small intervals will correspond to a graph as described.

Once the measurements have been collected, it is visualized that the GSP strategy
needs two well-defined steps: 1) learning of the graph structure and connectivity from real
data; and 2) a time-varying graph signal sampling and reconstruction step. Finally, our  -NN
tracking framework will be used as the prediction step. Essentially, in the first step, the historical
observation vectors y′

g, 8
defined in Equation (3.24) and stored in the same HUD will be modeled

as a time-varying graph through the use of techniques of learning/estimation of graph structure
and connectivity. The second step requires the development of an effective sampling method
capable of learning and tracking dynamic graph signals of the time-varying sampling set. The
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Figure 3.3 – Observation process over graph.
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chosen sampling method is crucial to the strategy performance, reducing the sampling rate
and creating the initial conditions for the reconstruction strategy. Subsequently, based on the
implemented sampling method, a reconstruction strategy that collects the data over the time-
varying graph and reconstruct the unsampled or nonexistent nodes is carried out.

The construction of the graph structure and connectivity can be estimated taking into
account the interdependence of a given beam with respect to the others. Based on the observation
vectors y′

g, 8
stored in the HUD, it would be possible to determine how much the variation of

one beam affects another beam. The existence or not of an edge between two beams, would
depend on the existence of a correlation between the measure values of both vertexes, or if they
are independent of each other. If there is dependency, it would be possible to evaluate if the
correlation between the measure values is positive or negative, as well as the magnitude of how
dependent is a vertex of another. Based on this criterion, the values of the weighted adjacency
matrix would be chosen, where higher values of weights would correspond to those edges with
greater dependence, and in the case of low correlation, lower values of weights would be chosen.

3.4.2 Learning of the graph from GGL method

In this section, the graph structure and connectivity is learned from the GGL algo-
rithm described in Section 2.4.1. Specifically, the structure and connectivity of the time-varying
graph is estimated from real data that represent measurements of the received signal quality per
beam and over time. The criterion used to construct the graph is the correlation between the
measure values of the vertexes.

From the HUD defined in (3.24), it can be obtained the arithmetic mean of the
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collected #A observation vectors y′g as

ȳg =
1
#A

#A∑
8=1

y′g, 8 . (3.27)

Then, let Ȳ =

[
ȳ1 ȳ2 · · · ȳ#g

]
be a matrix whose rows correspond to vertexes

of the graph signal stored in the HUD and over time, and whose columns represent the graph
signal evaluated at different time instants g. The graph Laplacian matrix L is learned from a data
statistics matrix S, which is used as the input of the learning GGL algorithm. Note that, in this
problem, L and S matrices have the same dimension #1×#1.

The data statistics matrix S is obtained by using a unit-variance Gaussian kernel
function. To this end, the vector s7 defined in Equation (2.14) can be rewritten as

s7 =
[ [

Ȳ
]
7,1

[
Ȳ
]
7,2 · · ·

[
Ȳ
]
7,#g

])
, 7 = 1, . . . , #1 ,

and the entries of matrix S are finally defined as in Equation (2.15), with 7, 8 = 1, . . . , #1.
The GGL problem formulation is performed as described in Section 2.4.1, in which

the target matrix L is obtained from the minimization optimization problem defined in Equa-
tion (2.16). To solve the optimization problem in (2.16), an iterative block-coordinate descent
algorithm [91] was implemented. The use of this algorithm allows to decompose the original
optimization problem into a series of lower-dimensional subproblems that facilitate their solu-
tion. Basically, the algorithm obtains each block-coordinate update (iteration) through fixing
some of the elements in the set of target variables and updating the rest. For the specific GGL
optimization problem that concerns us, the available structural constraints are also incorporated
into the subproblem and the update variables are shaped by a row/column of the target L matrix
at each block-coordinate. Specifically, the algorithm iteratively update rows/columns of L matrix
and its inverse L−1, repeating the cycle of #1 row/column updates until a convergence to the
global optimal point is achieved after at most #1 iterations for the worst-case. However, based
on convergence criterion used in [35] with a certain error tolerance, a sufficiently accurate
solution can be obtained after fewer iterations. Depending on the sparsity of graph solutions,
each block-coordinate iteration has O(e(A) + (#1)2) complexity [35] where the term (#1)2 is due
to updating L−1 and e(A) is the complexity of solving the subproblem with dimension A. For the
worst-case, e(A) has dimension #1, but usually A is the maximum number of edges connected to
a vertex, which is less than #1.

However, for the specific problem that concerns us, the GGL algorithm is carried
out offline (similar to the HUD update process), not interfering or aggregating computational
complexity in the dynamic tracking process.

3.4.3 Time-varying graph signal sampling and reconstruction

In the previous section, the structure and connectivity of the Laplacian graph from
the HUD stored in a central entity or in the cloud were estimated. Then, it is assumed that the
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obtained Laplacian matrix L is always available in the mmWave BS. Moreover, an observation
process is carried out at the UE at every time instant g. Assuming that the feedback channel
is limited, the UE may need to sample the measured signals for the purpose of reporting to
the mmWave BS, being necessary a sampling mechanism that ensures that the reported UE
measurements are a sampled version of the received signal. That is, the reported vector ygA
are measurements of just a few monitored beams, while the beam space usually comprises a
much larger set of beams. Subsequently, based on the implemented sampling method in the
UE and with the knowledge of the Laplacian matrix, a reconstruction strategy is carried out
in the mmWave BS, which collects the data over the time-varying graph and reconstruct the
unsampled or nonexistent vertexes. The reconstructed measurement vector yg@ can then be used
as the input of the  -NN tracking strategy. A summary of our proposed  -nearest neighbors with
reconstruction ( -NN-R) tracking framework based on GSP can be observed in Figure 3.4.

Figure 3.4 – Proposed  -NN-R tracking strategy process.
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In this chapter, it is assumed a random sampling mechanism on the UE side where
there are measurements of just a few monitored beams according to a sampling rate 'A. For
example, for a beam space of 8×8 beam pairs, a sampling rate 'A of 25% means that the UE
receives (or observes) only 2 beam pairs at each time instant. On the other hand, the reconstruction
technique is assumed to be implemented on the BS side. The used reconstruction strategy will be
discussed more extensively in the following.

3.4.4 Time-varying graph signal reconstruction strategy

Let Yg =

[
y1 y2 · · · y#g

]
be the measured time-varying graph signal matrix,

where each row represents a vertex with measurements yg as a graph signal, and each column
denotes the temporal window #g on the corresponding vertex, and in which the graph signal
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yg is measured by the UE at different time instant g. Then, assuming the existence of the HUD
defined in (3.24), and the knowledge of the Laplacian matrix (L) in the mmWave BS, a batch
reconstruction method for time-varying graph signals is adopted in this chapter. Specifically, the
smooth graph-time difference (SGTD) batch reconstruction strategy described in Section 2.7.1.3
is employed. Recalling Section 2.7.1.3, the SGTD strategy is based on the smoothness of the
temporal difference and requires that the UE obtains the sampled beam measurements within
a predefined temporal window (#g). Thus, with the help of the Laplacian matrix, the batch
reconstruction is carried out in the mmWave BS, reconstructing them all together.

Let YgA =

[
yA1 yA2 · · · yA#g

]
be the reported matrix whose columns represent the

sampled graph signal vectors ygA within the temporal window #g. Then, using the definition
in Equation (2.23), and the general SGTD reconstruction problem, the Equation (2.31) can be
rewritten as

ŶSGTD
g@

= argmin
Yg

| |Mg �Yg−YgA | |2� + WTr
(
[Y∇])gL[Y∇]g

)
. (3.28)

where W is the regularization parameter and the resulting reconstructed matrix ŶSGTD
g@

is used as
the input of the  -NN tracking strategy. To solve the problem in (3.28), a conjugate gradient
algorithm [84] is used. Specifically, at each iteration, the algorithm works in two well-defined
steps: 1) the determination of stepsize, and 2) the update of the next search direction. For the
specific problem that concerns us, the global optimal point is usually found after at most #1
iterations. Although when #1 is large, a sufficiently accurate solution can be obtained after fewer
iterations based on the stopping criteria used in [49] with a certain error tolerance. Thus, the
algorithm has complexity O(#2

1
) for the worst-case [84]. Additionally, the solution of (3.28)

is the signal with the smoothest temporal difference, and not strictly the original signal. This
means that there may be a signal which is the same as the original one at sampled points, but
with smoother temporal difference than the original signal.

3.5 Simulation results

In this section, it is numerically investigated the performance of the proposed tracking
framework. The system model as described in Section 3.2 is considered, where a single moving
UE is served in the downlink direction by one BS. Additionally, analog beamforming is assumed.
The system, channel and simulation parameters are summarized in Table 3.1, while the tracking
algorithms parameters are listed in Table 3.2.

Regarding the general simulation parameters, the number of paths (i.e., scatterer
clusters) equals 4 and the center frequency is 28 GHz. There is a single BS serving one UE
and the SNR is set to 20 dB. A ULA with 8 antenna elements equips the UE, while the BS is
equipped with a ULA with 32 or 64 antenna elements. Each ULA has element spacing equal to
half-wavelength and its elements radiate energy omnidirectionally. As for channel parameters,
the initial AoD and AoA angles were generated following aU

(
−c2 ,

c
2
)

and the initial path gains

following a CN
(
0, #1

!

)
. At last, the total number of simulation runs is for averaging purposes.
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Table 3.1 – Channel, system and simulation parame-
ters.

Center frequency [GHz] 28
Number of BSs 1
Number of UEs 1
signal-to-noise ratio (SNR) [dB] 20
BS antenna array ULA 32 or 64
UE antenna array ULA 8
Antenna radiation pattern Omnidirectional
Antenna element spacing 3 Half-wavelength
Number of scatterer clusters 4
Number of simulation runs 2000
Codebook DFT

Source: Created by the author.

Table 3.2 – Tracking algorithms setup.

Time correlation coefficient d 0.995
Angular std. deviation fC [deg.] 0.5
Reporting temporal window #g (multiple of g) 50
Observed temporal window #́g (#́g < #g) 5, 10, 20 or 30
Baseline algorithms LS, CS and EKF
CS solving algorithm OMP
Grid size � (OMP) 180
 values ( -NN) [1 ,20]
Similarity metric Frobenius norm
Average metric Arithmetic mean
HUD size #A 100
Correlation factor V (%) 10, 15 or 25
Max. random delay Δ (multiple of g) 5
Sampling rate 'A (%) 25 or 50

Source: Created by the author.

With respect to the state evolution parameters, the standard deviation fC equals 0.5◦,
which in practice dictates how fast the angles vary [15]. Although this angular variation seems
very small, the period between two consecutive time instants g takes a few milliseconds, e.g., 2
ms or less. This actually corresponds to rather fast angular changes. Besides, the time correlation
d is set to 0.995, which according to [92] is an adequate value for a moving UE at speed of 5
km/h.

From the channel estimation perspective, the proposed tracking framework is evalu-
ated at each time instant g during a reporting temporal window #g of 50 consecutive g. Along this
period, the UE has a random movement profile following the state evolution model. Regarding
the  -NN algorithm, the number of neighbors  varies from 1 to 20, the HUD has #A = 100
samples with correlation factor V set to 10, 15 or 25% and random delay X ∼ U(−5,5). The
 -NN algorithm uses the Frobenius norm and the arithmetic mean as similarity and average
metrics, respectively. For the  -NN-R framework, the random sampling has sampling rate 'A set
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to 25 or 50%.
Additionally, the proposed framework is evaluated as a channel prediction tool to

obtain the channel matrix H during a reporting temporal window #g, from the measurements
collected only throughout an observed temporal window #́g in which #́g < #g. The temporal
window #́g is set to 5, 10, 20 or 30 consecutive time instants g, while #g = 50 is fixed.

3.5.1 Baseline approaches

As classical/baseline approaches, three well-known prediction algorithms found in
the literature are adopted, i.e., LS [93], CS [93] and EKF [15], which are compared with our
proposed framework in terms of complexity and performance.

3.5.1.1 Classical LS

Consider the algebraic identity vec(ABC) = (C) ⊗A) ·vec(B) , where ⊗ represents
the product of Kronecker. Equation (3.15) can be rewritten as yg = Qhg + vec(W�V) , where
hg = vec(Hg) and Q =

√
%(F) ⊗W�) ∈ ℂ#1×#1 with transmit power %. The channel estimation

can be obtained directly by LS as hg = (Q�Q)−1Q�yg [93].

3.5.1.2 CS using OMP

Assuming the CS method based on orthogonal matching pursuit (OMP) implemented
in [93], first a set of discrete angles is selected, which can be defined as �� = {q6 ∈ [0,c) : 6 =
1,2, . . . ,�}, which are uniformly distributed and are an approximation of the channel angular
domain. The size of the grid � must be � >> ! to achieve the desired resolution. Then, it can
be defined the array response matrices ÂB ∈ ℂ#B×� and Â@ ∈ ℂ#@×� whose columns entries are
the array response vectors corresponding to the candidate angles in ��. Thus, the channel
model in (3.3) can be approximated in matrix form as Hg � Â@Ĥ0Â�

B , where Ĥ0 ∈ ℂ�×� is
an !-sparse matrix. Equation (3.15) can be rewritten as yg = Q̂ĥ0 + vec(W�V) , where Q̂ =

(Â�
B F)) ⊗ (W�Â@) ∈ ℂ#1×�2

. Finally, the vector ĥ0 = vec(Ĥ0) is obtained with the OMP sparse
signal recovery technique. In this work, � = 180 is adopted as in [93].

3.5.1.3 Kalman filter using EKF

The EKF prediction technique [25] is the suboptimal KF variation that recursively
searches for the estimated state X̂g of Xg , based on the previous estimate X̂g−1 and the current
observations yg. Specifically, the EKF approximates nonlinearities by making linear approxi-
mations around the current state. Thus, the Jacobian matrix Cg is substituted into the normal
KF equations for the linear transformations. Then, it is necessary to calculate the partial deriva-
tive matrix Cg ∈ ℂ#1×�! , in which the rows and columns represent the derivatives of gg(Xg)
with respect to the variables qqq and UUU. In this work, the EKF algorithm is implemented based
on [15], in which as input parameters the initial AoD and AoA angles as well as the initial



Chapter 3. Supervised learning and graph signal processing strategies for beam tracking in highly directional
mobile communications 66

path gains were generated following the same channel parameters. The state evolution model
Xg = X(Xg−1) +ug−1 is assumed, where ug−1 ∼ ℂN(0,Qg), and Qg = f

2
CI�! . As for the measure-

ment model, yg = W(Xg) +vg , where vg ∼ ℂN(0,Rg), and Rg = f
2
DI2#1 , for fD =

√
%
2 10 SNR

20 .
The EKF works in two steps: i) a prediction or forecast step, and ii) an update or data

assimilation step. Specifically, in the first step the predicted state and the predicted covariance
Pg are estimated:

Xg|g−1 = X
(
X̂g−1|g−1

)
,

Pg|g−1 = Jg−1Pg−1|g−1J)g−1 +Qg−1 ,
(3.29)

where Jg−1 is the Jacobian matrix of the evolution function X. In the second step, the variables
are updated based on the observation vector yg:

Kg = Pg|g−1C)
g

(
CgPg|g−1C)

g +Rg

)−1
,

X̂g|g = Xg|g−1 +Kg

(
yg− W

(
Xg|g−1

) )
,

P̂g|g =
(
I�! −KgCg

)
Pg|g−1 .

(3.30)

3.5.2 Complexity analysis

Usually, the computational complexity of the beam tracking algorithms is strongly
linked to the number of beam pairs #1. This issue is especially critical in mmWave communica-
tion in which #1 is usually large.

Recalling Section 3.3, the complexity of  -NN algorithm has order of magnitude
O(#A#1). Note that, complexity of  -NN directly depends on #A, i.e., the amount of training data
available. On the other hand, while the GGL learn process is carried out offline, the complexity
of reconstruction algorithm based on GSP, which is described in Section 3.4.4, has complexity
O(#2

1
). Thus, the complexity of  -NN-R is O(#A#1 +#2

1
).

Moreover, the computational complexity of the LS and CS methods are O(#3
1
) and

O(�2#1), respectively, according to [93]. In the case of LS, this is due to inverse operation of
Q�Q and the large number of antenna elements. Concerning CS complexity, since the AoDs
and AoAs are generated from a continuous uniform distribution, increasing the number of grid
points � in the CS method based on OMP can improve the estimation performance. However,
using large � in OMP algorithm leads to heavy computational load.

At last, following the complexity analysis in [94], it is calculated the complexity of
the EKF algorithm for our mmWave scenario. Specifically, the complexity of EKF has order of
magnitude O(#3

1
), mainly due to the multiplication and inverse operations of the Jacobian Cg in

the update step.
Now, in order to evaluate the different tracking algorithms in terms of complexity,

the HUD with #A = 1,000 is set, the number of grid points � = 180 and ULA with 64 elements
at BS and 8 elements at UE. Figure 3.5 illustrates the computational complexity of all tracking
algorithms against the number of beam pairs #1. As can be seen,  -NN and  -NN-R exhibits
the lowest complexity for #1 > 10. Besides, as will be seen in Section 3.5.6, #A = 100 is enough
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Figure 3.5 – Computational complexity of the tracking algorithms for #A = 1000 and
� = 180. The antenna configuration is ULA with 64 elements at BS and 8
elements at UE.
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for  -NN to outperform the baseline algorithms in terms of estimation error. Therefore, either
increasing #A or decreasing � can only enlarge the performance gap between, for instance,  -NN
and CS. In order words, for large #1 the  -NN algorithm and our proposed  -NN-R framework
are less complex than the baseline algorithms herein evaluated.

3.5.3  -NN-R tuning

A cross-validation procedure was carried out to find the  value that minimizes the
estimation and prediction errors in terms of NMSE for the simulation scenario described above.
To this end, the NMSE is averaged over the temporal window #g, as follows below:

NMSE =
1
#g

#g∑
g=1

| |H(Xg) −H(X̂g) | |2�
| |H(Xg) | |2�

.

Regarding  -NN, Figure 3.6 shows that for any value of V the best value of  is 6.
To capture only the effect of V in the estimation error, no sampling or reconstruction is applied.
Additionally, one may observe that some increase in the algorithm performance is observed as
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the value of V decreases. This makes sense because V controls the correlation between HUD
samples, according to Equation (3.23).

Figure 3.6 – Cross-validation  -NN for different values of V showing estimation
error against  . There are 64 elements at BS and 8 elements at UE.
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A further cross-validation was performed by varying the sampling rate 'A along with
V regarding  -NN-R. The stopping criteria for the GGL algorithm discussed in Section 3.4.2
are such that the maximum number of iterations is 102 and the error tolerance is 10−6. Besides,
for the batch reconstruction discussed in Section 3.4.3, the stopping criteria are such that the
maximum number of iterations is 104 and the error tolerance is 10−6. As expected, the higher 'A
the lower NMSE, for any value of  , which is shown in Figure 3.7. Regardless of the V value,
curves referring to 'A = 50% show lower estimation error than the ones referring to 'A = 25%.
Besides, as previously seen, the lower V the lower the estimation error. Moreover, the best  
value found in the previous cross-validation, i.e.,  = 6, maintains its status for 'A = 50% and
V = 10%, while the best value of  varies for the other combinations of V and 'A but stays around
 = 6, reaching values between  = 5 and  = 7.

On the other hand, a cross-validation procedure was carried out for the prediction case
by varying the observed temporal window #́g. Analyzing only the  -NN algorithm, Figure 3.8
illustrates that for any value of #́g the best value of  is also 6. Additionally, one may observe
that the higher #́g the lower prediction NMSE. This makes sense because the  -NN algorithm
can have an improved learning experience with more training data.

Setting the same parameter values for the GGL and batch reconstruction algorithms
used above, Figure 3.9 shows the effect of the #́g in  -NN-R framework for different sampling
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Figure 3.7 – Cross-validation of  -NN-R for different values of V and 'A, show-
ing estimation error against  . There are 64 elements at BS and 8
elements at UE.
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Figure 3.8 – Cross-validation of  -NN for V = 10% and different values of #́g
showing prediction error against  . There are 64 elements at BS
and 8 elements at UE.
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Figure 3.9 –  -NN-R cross-validation for V = 10%, 'A = 25%,50% and different
values of #́g, showing prediction error against  . There are 64
elements at BS and 8 elements at UE.
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Figure 3.10 – Analysis for different HUD size in tracking of the channel matrix
H, for V = 10%,  = 6 and 'A = 25%,50%. There are 32 elements
at BS and 8 elements at UE.
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rates, i.e., 'A = 25% and 'A = 50%. As expected, considering similar #́g values, the curves that
represent 'A = 50% show lower prediction error than the ones refering to 'A = 25%. Besides, the
best value of  stays around  = 6 for all combinations.

Finally, the performance of the KNN and KNN-R algorithms is evaluated by varying
the the amount of training data available. Figure 3.10 illustrates the NMSE per HUD size #A
for V = 10%,  = 6, based on the cross-validation performed above. As expected, the higher
the HUD size the lower NMSE for both KNN and KNN-R algorithms. Moreover, the  -NN
algorithm is just slightly better than the proposed  -NN-R framework with 'A = 50% for all #A
value,s and  -NN-R with 'A = 25% performs worse than all. However, it is interesting to note
that the three curves provides the same converging characteristic, that is, converge for #A = 150.

3.5.4 SNR influence analysis

To assess the SNR influence in the different tracking algorithms, the values of  and
V based on the cross-validation performed above are set, i.e.,  = 6 and V = 10%. In terms of the
estimation error,  -NN and  -NN-R are compared with the three baseline tracking algorithms
defined in Section 3.5.1.

Figure 3.11 – SNR analysis in tracking of the channel matrix H for fC = 0.5◦,
V = 10% and 'A = 25%,50%. There are 32 elements at BS and 8
elements at UE.
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Figure 3.11 illustrates the NMSE per SNR of all tracking algorithms for fC = 0.5◦.
As can be seen, the higher the SNR value the lower NMSE for all the tracking algorithms.
Note that CS performed slight better than LS for an SNR regime below 15 dB. This is because
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CS looks for maximum correlation to array responses within a dictionary, which makes it less
susceptible to noise errors than LS for lower SNR values. Moreover, the EKF algorithm exhibits
a significant performance gain than CS and LS in low SNR regime. However, it is interesting to
note that for SNR values greater or equal than 20 dB, both CS and LS perform better than EKF.

Additionally, still in Figure 3.11, both  -NN and  -NN-R framework provide a
lower NMSE than the three baseline tracking algorithms, independently of the SNR value. Only
the LS method provided a lower NMSE than  -NN-R for '( = 25% for the highest SNR value
(i.e., 30 dB), but with greater complexity. Moreover, the  -NN algorithm is just slightly better
than the proposed  -NN-R framework with 'A = 50% for all SNR values.

3.5.5 Standard deviation and UE speed influence analysis

This section analyzes the influence of the standard deviation fC and the mean speed
of the UE in the different tracking algorithms. The values of  and V are also based on the
cross-validation performed above, i.e.,  = 6 and V = 10%. Specifically, the  -NN and  -NN-R
frameworks are compared with the three baseline tracking algorithms defined in Section 3.5.1, in
terms of the estimation error for SNR = 20 dB.

Figure 3.12 – Standard deviation (fC) analysis in tracking of the channel matrix
H for SNR = 20 dB, V = 10% and 'A = 25%,50%. There are 32
elements at BS and 8 elements at UE.
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Figure 3.12 illustrates the NMSE per fC of all tracking algorithms. It is assumed an
UE speed of 5 km/h and standard deviation values between fC = 0.1◦ and fC = 2◦. As can be seen,
the angular variation has little influence on the performance of both LS and CS strategies, since
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Figure 3.13 – UE speed analysis in tracking of the channel matrix H for SNR =

20 dB, V = 10% and 'A = 25%,50%. There are 32 elements at BS
and 8 elements at UE.
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these only depend on the scan measurements of the current block. Moreover, the performance
of EKF becomes much worse by increasing the fC value. This is because rather fast angular
changes may cause uncertainties in the state model of the EKF.

Additionally, still in Figure 3.12, the performance of both  -NN and  -NN-R
framework also worsens by increasing the fC value, due to increased decorrelation between
samples at adjacent time points. However, both  -NN and  -NN-R with '( = 50% provide a
lower NMSE than the three baseline tracking algorithms for all fC values. Moreover, even for
'( = 25%, the performance loss of  -NN-R framework is still smaller than the baseline solutions
for fC values less or equal than 0.9◦, and exhibits a similar behavior than both CS and LS for fC
values greater or equal than 1◦.

On the other hand, Figure 3.13 illustrates the NMSE per UE speed of all tracking
algorithms. UE speed values between D = 1 km/h and D = 20 km/h are assumed, in which for each
speed value was uniformly assigned an fC of 0.5◦ to 1◦. Moreover, according to [92], the time
correlation d was from 0.9993 (for D = 1 km/h) to 0.7902 (for D = 20 km/h). As can be seen, both
LS and CS may suffer some performance loss due to the variation of the channel coefficients.
Moreover, the performance of EKF becomes much worse by increasing the UE speed. Further,
the performance of both  -NN and  -NN-R framework also worsens by increasing the UE speed,
due to increased decorrelation between samples at adjacent time points. However, both  -NN
and  -NN-R with '( = 50% provide a lower NMSE than the three baseline tracking algorithms
for UE speed less or equal than 13 km/h. Moreover, even for '( = 25%, the  -NN-R framework
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have lower NMSE for values of UE speed less or equal than 9 km/h. Note that, these speed
values are consistent with the pedestrian speed range.

3.5.6 Channel tracking evaluation

To assess the different tracking algorithms, the values of  and V based on the
cross-validation performed above are set, i.e.,  = 6 and V = 10%. In terms of the estimation
error per time instant,  -NN and our proposed  -NN-R framework are compared with the three
baseline tracking algorithms defined in Section 3.5.1 for different sampling rates 'A.

Figure 3.14 – Tracking of the channel matrix H for V = 10% and 'A = 25%,50%.
The antenna configuration is ULA with 32 and 64 elements at BS,
and 8 elements at UE.
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The tracking of the channel matrix H for the estimation is evaluated for a ULA array
with 32 or 64 elements at the BS and 8 antenna elements at the UE.

Figure 3.14 illustrates the NMSE per time instant of all tracking algorithms along
the reporting temporal window #g. As can be seen, the lower the number of antennas at the ULA
the lower NMSE for all the tracking algorithms. Note that the performance of EKF becomes
much worse by increasing the number of antennas at the BS. This is because when the array
size becomes larger, the analog beams become narrower. Then, the process noise can lead the
AoD/AoA to certain values that cause beam misalignment, which results in poor received signal
power at the UE. Consequently, this significantly affects the update step of EKF.

Additionally, still in Figure 3.14, both  -NN and  -NN-R framework provide a lower
NMSE than the three baseline tracking algorithms, independently of the number of antennas
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Figure 3.15 – Accuracy of the tracking methods finding the best beam for V =
10% and 'A = 25%,50%. There are either 32 or 64 elements at
BS, and 8 elements at UE.
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at the BS. The  -NN algorithm is just slightly better than the proposed  -NN-R framework
with 'A = 50%. This shows that measurements with only half of the beam pairs are enough to
reliably estimate the channel state at the BS. It advantageously uses less the uplink feedback
channel, then decreasing the signaling load. Moreover, even for 'A = 25%, the performance
loss of  -NN-R framework is still smaller than the baseline solutions along the entire temporal
window. Interestingly, it allows a certain level of flexibility when choosing the percentage of
beams to be randomly selected.

The accuracy of hitting the best transmit beam is also evaluated. That is, the best
beam obtained at time instant g based on the estimated matrix H(X̂g) is compared to the actual
best one, where a success occurs if they are the same. The cumulative distribution function (CDF)
curves of the successful hit rate for the different tracking algorithms, for a ULA with either 32
or 64 elements at BS, and 8 elements at UE, are shown in Figure 3.15. As expected, regardless
of the number of antennas at the ULA, the proposed  -NN hits more often the best beam than
the baseline approaches for any value of 'A. The proposed  -NN-R with 'A = 50% exhibits a
very close performance than  -NN, and a slight performance loss with 'A = 25%. If the number
of antenna elements increases to 64 at the BS, the performance loss of all tracking algorithms
decreases, except for the LS algorithm, which exhibited a slight performance gain. Note that, as
in Figure 3.14, the EKF algorithm exhibits a significant performance loss and a poor accuracy of
hitting the best beam.
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3.5.7 Channel prediction evaluation

In order to evaluate performance of the proposed  -NN and  -NN-R tracking
algorithms as a channel prediction tool, it is assumed a fixed reporting temporal window #g = 50
within which the channel matrix H(Xg) is predicted from measurements collected by the UE only
throughout a previous observed temporal window #́g < #g. An #́g to 5, 10, 20 or 30 consecutive
time instants g that precede the fixed #g is set. In all the simulations of this section, a ULA
array with 32 or 64 elements at the BS and 8 antenna elements at the UE are assumed, and the
values of  and V are set based on the cross-validation performed above, i.e., V = 10% and  the
value that obtained the lowest NMSE for each #́g value. The three baseline approaches are also
evaluated at each time instant g of #g = 50. Thus, the curves will exhibits a very close behavior
to that observed in Section 3.5.6.

Figure 3.16 – Channel prediction evaluation with  -NN for V = 10% and differ-
ent values of #́g. There are either 32 or 64 elements at BS, and 8
elements at UE.
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Figure 3.16 illustrates the NMSE per time instant of the  -NN tracking algorithm
along the reporting temporal window #g for different values of observed temporal window #́g.
As can be seen,  -NN provides a lower NMSE for all #́g values, regardless of the number of
antennas at the BS. Further, the #́g value did not impact significantly the performance of  -NN.
It seems that the richness of the HUD is good enough, along with the cross-validation, thus
making  -NN robust to different choices of the flexible parameter #́g.

The accuracy of hitting the best beam of the  -NN algorithm is also evaluated. The
CDF of the successful hit rate is shown in Figure 3.17. As expected due to its lower prediction
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Figure 3.17 – Accuracy of finding the best beam with  -NN method for V = 10%
and different values of #́g. There are either 32 or 64 elements at
BS, and 8 elements at UE.
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error, the  -NN algorithm hits more often the best beam than the baseline approaches for any
value of #́g and antenna configuration.

The same sort of analysis is also carried out for the proposed  -NN-R framework
with 'A equal to 50% and 25%. Figure 3.18 illustrates the NMSE per time instant of the  -NN-R
framework with 'A = 50% and for different values of observed temporal window #́g.

As can be seen, the larger #́g the lower NMSE for the  -NN-R. Moreover, the
BS with 32 antenna elements provides a lower NMSE than with 64 elements for all curves
with similar #́g value. Additionally, the proposed  -NN-R framework outperforms the baseline
algorithms for an #́g greater than 10 when 32 antenna elements at the BS are considered, and for
an #́g greater than 20 for the case with 64 antenna elements. This result show that measurements
with only 50% of the beam pairs and throughout an significantly lower observed temporal
window, e.g., #́g = 10, are enough to reliably predict the channel state on the BS side, thus
yielding bandwidth savings related to the use of the uplink feedback channel.

The accuracy of hitting the best beam of the  -NN-R algorithm with 'A = 50% is
also evaluated. The CDF of the successful hit rate is shown in Figure 3.19. As expected, for the
ULA with 32 elements, the proposed  -NN-R hits more often the best beam than the baseline
approaches for any observed temporal window length. Moreover, a general slight performance
loss is observed at the  -NN-R framework when a ULA with 64 elements is assumed, and the
#́g = 10 value is required to outperform the LS method.

Finally, the NMSE per time instant and the accuracy of hitting the best beam of the
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Figure 3.18 – Channel prediction evaluation with  -NN-R for V = 10%, 'A =
50% and different values of #́g. There are either 32 or 64 elements
at BS, and 8 elements at UE.
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Figure 3.19 – Accuracy of finding the best beam with  -NN-R for V = 10%,
'A = 50% and different values of #́g. There are either 32 or 64
elements at BS, and 8 elements at UE.
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Figure 3.20 – Channel prediction evaluation with  -NN-R for V = 10%, 'A =
25% and different values of #́g. There are either 32 or 64 elements
at BS, and 8 elements at UE.
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Figure 3.21 – Accuracy of finding the best beam with  -NN-R for V = 10%,
'A = 25% and different values of #́g. There are either 32 or 64
elements at BS, and 8 elements at UE.
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proposed  -NN-R framework with 'A = 25% are illustrated in Figures 3.20 and 3.21, respectively.
As expected, a longer observed temporal window #́g is necessary to keep a low prediction error
when a lower sampling rate 'A value is assumed. As can be seen in Figure 3.20, for 'A = 25% and
a BS with 32 elements, only the curve with #́g = 30 reached lower NMSE than all the baseline
algorithms. Meanwhile, the curves with #́g = 20 for a BS with 32 elements and #́g = 30 for a BS
with 64 elements exhibit a very close performance compared to the best baseline method, i.e.,
LS. Moreover, the configuration with #́g = 30 and 32 antenna elements at the BS is the only one
that hits more often the best beam than the LS algorithm, as shown in Figure 3.21.

3.6 Chapter summary

In this chapter it was proposed and evaluated a tracking strategy based on supervised
learning and GSP. Specifically, the use of the so-called  -NN algorithm for channel tracking
and prediction was proposed. As a supervised learning technique,  -NN relies on the availability
of a HUD set for the purpose of offline training. In addition, as preliminary stages of the  -NN
algorithm, sampling and reconstruction strategies based on GSP were introduced, which was
referred to it as  -NN-R, in order to efficiently use the uplink feedback channel. As baseline
solutions, three classical tracking/prediction algorithms were adopted, namely LS, CS and EKF.

Simulation results showed that the use of  -NN provided better estimation and
prediction performance in terms of NMSE and successful hit rate. Moreover, while the baseline
approaches and  -NN with no sampling demand full beam sweep and reporting, the proposed
 -NN-R framework selects only a few beam pairs at random to be monitored and sampled over
time. According to simulation results, the performance of  -NN-R is not affect much in terms of
estimation/prediction error. Additionally, only half of the beam pairs ('A = 50%) throughout a
significantly lower observed temporal window (i.e., #́g = 10 for 32 antenna elements and #́g = 20
for 64 antenna elements) were shown to be enough to reliably predict the channel state on the
BS side, which consequently uses more efficiently the uplink feedback channel. Furthermore,
our proposed  -NN-R exhibits the lower computational complexity when compared to the three
baseline approaches, specially in mmWave scenarios that usually lead to the use of a large
antenna arrays.
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4 GRAPH SIGNAL PROCESSING FOR QOS PREDICTION IN CELLULAR V2X
COMMUNICATIONS

In this chapter, the concept of QoS predictability in a C-V2X scenario is addressed.
Latency prediction is modeled as a binary classification problem, in which measurements taken
on both BS and UE sides are considered as features. The uplink feedback channel for UE mea-
surement reporting is assumed to be limited. In this context, it is important to reduce the feedback
overhead for the operation of the ML-based latency predictor. For this goal, a graph-based sam-
pling strategy, namely SLS, is proposed and evaluated so that i) the graph structure/connectivity
is preserved, and ii) the amount of sampled UE measurements is reduced. An online recon-
struction strategy is adopted, namely O-SGTD, which shows a lower computational complexity
compared to a batch reconstruction strategies. In turn, reconstructed data are used as input of the
ML-based predictor for the underlying latency prediction problem. Simulation results show a
better performance of the proposed approach in terms of number of unsampled UE measurements
and reconstruction error, when compared to three baseline sampling algorithms. Moreover, it
exhibits prediction performance close to the case when full data are available on the network
side.

4.1 Introduction

In the context of 5G wireless communications and beyond, rapidly-growing data
volume in C-V2X communications poses a significant challenge in data analysis and processing
tasks for the purpose of network optimization and decision-making processes [95]. For instance,
connected vehicles are constantly sharing data with either the network or neighboring vehicles,
or both, so that they can be aware of pedestrians, other vehicles — and any other object that may
potentially cause an accident — in their vicinity.

Most use cases in vehicular communications demand the delivery of critical data
within tight latency constraints [96]. It is anticipated that C-V2X will enable real-time control
applications such as high-level autonomous driving, dynamic route, accident assistance system
and collision warning system, traffic efficiency control, among others [97]. The use of these
real-time vehicular applications poses a meaningful challenge because its end-to-end latency has
to be very low and its data delivery ratio must be very reliable. However, poor channel conditions
and/or data traffic congestion can be an obstacle to a reliable delivery of such critical data
within the latency requirements accepted by the applications. In this context, the management
of radio resources somehow needs to adaptively change network parameters to overcome such
impairments.

The QoS prediction of radio links among vehicles and the network is a means of pro-
actively reacting to the aforementioned impairments. Vehicular applications may require from the
network accurate QoS indicators predictions, in order to adapt themselves to the current channel
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conditions and then react appropriately. Specifically, the main idea behind QoS prediction is to
inform to the vehicular application ahead of time about, for instance, the connectivity quality (i.e.,
that the network can support the QoS required by that application), or availability (e.g., coverage
hole), or capability (e.g., the network can or can not support this service). Such procedure may
increase the reliability and comply the latency requirements in real-time applications.

Regardless of the methodology devised for QoS prediction, the network must acquire
a potentially large amount of network/device/context data related to the connected vehicles.
In practice, vehicles’ devices, or simply UEs, carry out measurements of signals at different
layers and report them to the network. UE measurements can in general act as input to train
ML models [98]. In principle, every measurement should be reported to the network for model
training purposes. Once the model is trained, UEs keep reporting measurements for the network
to predict future QoS levels. These predictions are used by the network to make its own decisions
or notify to a vehicle in advance, so that the vehicle is able to act on this information. However,
the uplink channel for UE measurement reporting has limited feedback bandwidth. Thus, the
network should make an efficient use of it.

The challenge here is to determine which signals UEs should measure and how often
they should report them. Implicitly, some spatio-temporal interdependency can be observed
among data acquired by the network. Besides, such data can inherently have irregular domains,
e.g., signal values that depend on cell identity, device identity, among others, upon which some
basic operations on signals [59] are not directly well defined. These two aspects lead to the
interest in graphically modeling signals to capture the structure that underlies signals that convey
network data.

In this context, it is envisaged the use of GSP to incorporate additional structures and
further improve the ML-based prediction tasks reducing the search space and thus computation
efforts.

4.1.1 Contributions

The works mentioned in Section 1.2.2 model the data as graph signals in a connected
graph by assuming the existence of a dependency between each pair of vertexes in the graph.
This leads to significant challenges in data processing and understanding in scenarios in which
the amount of the generated and collected data increases quickly, as in C-V2X communications.
Moreover, many of these works use RS without any sampling constraint on the graph structure
and connectivity, hindering the reconstruction process of graph signals.

In this chapter, the graph structure that represents C-V2X measurement dataset for
QoS prediction is exploited. Two different groups of data are defined regarding their availability,
namely BS data and UE data. The former denotes C-V2X measurements already available at the
BS, while the latter stands for those available at UEs and must eventually be reported. The main
contribution then emerges by analyzing the graph Laplacian learned from C-V2X dataset. First,
under certain conditions, it can present a block-diagonal structure indicating that GSP tools can
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be applied into each sub-graph independently. If that is the case, sampling of UE data is avoided
in sub-graphs whose vertex set comprises vertexes representing both data types. In this case, the
recovery of missing UE data is based only on sampled BS ones, which drastically reduces the
need of UE measurement reporting.

By using the C-V2X measurement dataset described in [99], the proposed sampling
method is assessed in terms of reconstruction error, while the overall reconstructed dataset is
evaluated as input of an ML-based QoS prediction solution.

4.2 System model

Let + be the number of vehicle devices, or simply UEs, moving in a C-V2X scenario.
Each UE is served by one BS and a BS can serve multiple UEs. Also, such BSs form a radio
access network (RAN).

Now consider that a vehicular application requests a latency-constrained service
from the RAN. It demands a periodic data traffic for each BS-UE link. However, due to channel
impairments and network overload, the latency-constrained service may not be available for
some of the + links.

Latency prediction then emerges as a means of checking the service availability. To
this end, any supervised learning technique can be adopted to predict for each link whether a
packet can be delivered within a latency window ! in the downlink, as illustrated in Figure 4.1.

Figure 4.1 – General considerations of the problem.
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The problem is modeled as a binary classification for each link with Gg+ǵ ∈ {0,1}
denoting binary labels. Let ǵ be a future time gap. Then, Gg+ǵ indicates if at instant g a packet
transmitted at g+ ǵ can be delivered in time or will be delayed given the latency !. The prediction
is based on a feature vector xg ∈ ℝ# 5 that comprises # 5 measurements taken on both BS and UE
sides at instant g. For simplicity, link-specific indexing is omitted in labels and feature vectors.

For a given link, the influence of the other + −1 links on packet delays is captured
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by its feature vector. Moreover, its system model at time instant g is as follows:

Gg+ǵ = ℎ(xg), (4.1)

where ℎ(·) is a function that maps measurements taken at instant g into the binary label at g+ ǵ.
In practice, ℎ(·) is unknown. Thus, the goal of the supervised learning algorithm is to learn ℎ(·)
in order to predict Gg+ǵ for every link. Besides, training and prediction are assumed to be carried
out at each BS for each of its associated links.

As mentioned before, xg is composed of two parts, i.e., some of its entries represent
BS measurements, while others refer to measurements available only at the UE. Particularly,
UE measurements must be fed back to its serving BS via the uplink feedback channel as the
prediction functionality is assumed to be carried out at the BS.

The uplink channel use is assumed to be limited for each link, which makes UE
measurement reporting costly. To overcome this issue, feature vectors are modeled as graph
signals. Then, sampling and reconstruction of graph signals are exploited to decrease the need
for UE measurement reporting.

4.3 Graph representation of features

In this section, the feature vector xg is represented as a time-varying graph signal,
i.e., a signal defined on a graph G. However, the graph topology that represents the feature
vectors is not readily available. In this chapter, such a topology, or more specifically the graph
Laplacian of G, is learned from multiple observations of xg by means of a statistical approach.

Let Xg ∈ ℝ# 5×#g be the observation matrix comprising #g observations of feature
vectors and whose g-th column denotes the observation xg. That is, for a given link, # 5 measure-
ments are taken along the first #g consecutive time instants.

Then, the matrix L in Equation (2.6) is learned during the training phase from
matrix Xg, which spans the first #g time instants of the measurements, and following the GGL
graph learning technique described in Section 2.4.1. To this end, the data statistics matrix S
is obtained by using the unit-variance Gaussian kernel function defined in Equation (2.15),
with 7, 8 = 1, . . . , # 5 . Moreover, each input vector s7 of the kernel function is defined as in
Equation (2.14) with 7 = 1, . . . , # 5 as

s7 =
[
[Xg] 7,1 [Xg] 7,2 · · · [Xg] 7,#g

])
, 7 = 1, . . . , # 5 ,

Specifically, the target matrix L is obtained from the minimization optimization
problem defined in Equation (2.16). The problem in (2.16) is solved by using the iterative
block-coordinate descent algorithm described in [91], in which each block-coordinate iteration
has O(e(A) + (# 5 )2) complexity, with e(A) be the complexity of solving the subproblem with
dimension A.

Once the Laplacian matrix is learned, the graph G may have  connected components,
such that the number of connected components is related to the spectral property of the Laplacian



Chapter 4. Graph signal processing for QoS prediction in cellular V2X communications 85

matrix as described in Section 2.3.2. That is, it can be a composition of G9 for 9 = 1, . . . ,  
disjoint connected subgraphs–including trivial subgraphs. This 9-block structure leads to a block-
diagonal graph Laplacian as formulated in Equation (2.12). In this chapter, it is paid special
attention to the use of a dataset comprising typical C-V2X measurements whose underlying
structure presents this block-diagonal graph Laplacian structure.

Thus, the feature vector xg that represents the time-varying graph signal can also be
split into the  parts or subgraphs as formulated in Equation (2.13).

4.3.1 Subgraph types

As mentioned above, each connected component  in G denotes a subgraph that
comprises one isolated vertex (IV) or multiple vertexes (MV). Besides, it can represent measure-
ments available at the BS or at the UE, or a combination of both. Thus, five types of subgraphs
are defined:

1. MV-UE: Vertexes of the subgraph are only related to UE measurements.

2. IV-UE: An isolated vertex of a trivial subgraph represents a particular UE measure-
ment.

3. MV-BS: Vertexes of the subgraph are only related to BS measurements.

4. IV-BS: An isolated vertex of a trivial subgraph represents a particular BS measure-
ment.

5. MV-BU: Some vertexes are related to BS measurements, while others are related to
UE measurements.

In practice, a graph with multiple connected components does not necessarily have all subgraph
types.

Figure 4.2 illustrates an example of a graph with multiple connected components
composed of fourteen vertexes in total. In this example, all subgraph types mentioned above
are present. Regarding MV subgraphs, there is one MV-BU subgraph comprising six vertexes,
one MV-BS subgraph having three vertexes, one MV-UE subgraph composed of two vertexes.
Furthermore, there are two IV-BS trivial subgraphs and one of the IV-UE type. This means that
the graph Laplacian of this illustrative graph can be split into  = 6 blocks.

4.4 Graph signal reconstruction

Let us suppose that at each time instant a different subset of the entries of xB is
missing at the BS. This can be represented at a time instant g by the linear model defined in
Equation (2.24). Note that in principle the missing entries may be from the set of BS and/or UE
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Figure 4.2 – Example of graph with multiple connected components showing the different
subgraph types.
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measurements. Besides, this sampling mechanism is carried out only during the prediction phase,
which begins at time instant #g +1.

Since the time-varying graph signal xg is divided into  parts according to Equa-
tion (2.13), as a consequence M̄g has also a block-diagonal structure, which gives

M̄g =


M̄g,1

. . .

M̄g, 

 , (4.2)

and therefore,
yg =

[
yg,1 · · · yg, 

]
, (4.3)

where the 9-th independent term of yg in (2.24) is given by

yg,9 = M̄g,9xg,9. (4.4)

Given a sampling strategy and the estimate of the Laplacian matrix, the signal
reconstruction of xg is carried out at the BS. In this context, it is assumed the use of the online
smooth graph-time difference (O-SGTD) strategy formulated in Equation (2.32), for full-band
graph signals (not bandlimited). Recalling Section 2.7.2, the goal of O-SGTD strategy is then to
recover the vectors xg from yg given matrices L and M̄g.

For a better understanding of the reconstruction procedure for the 9-th subgraph
signal, the objective function in Equation (2.32) can be rewritten as

x̂g = argmin 5 (x)
x

, (4.5)
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with

5 (x) = | |M̄gx−yg | |22 + W(x− x̂g−1))L(x− x̂g−1), (4.6)

where x̂g−1 is the reconstructed signal at the previous g−1 time instant and W is the regularization
parameter. The second term in the objective function acts as a smoothness constraint in the time
domain of the graph signal x.

Again, given the block-diagonal structure of the graph Laplacian, the objective
function in (4.5) can be factorized into  parts, each denoting an independent reconstruction
problem for each subgraph signal, i.e.,

5 (x) =
 ∑
9=1

57(x9) . (4.7)

where the M̄g, L and yg terms in the objective function (4.6) can be replaced by its correspondent
M̄g,9, Lg,9 and yg,9 terms given by Equations (4.2), (2.12) and (4.4), respectively. Thus, the :-2
norm in Equation (4.6) is factorized into  norms, as well as the regularization term. Thus, the
9-th term of x̂g in (4.5) can be obtained as

x̂g,9 = argmin 59(x)
x

, (4.8)

given L9, M̄g,9 and yg,9, as illustrated in Figure 4.3. As visualized, each reconstruction subprob-
lem with lower dimensionality may be solved in parallel, which leads to a lower runtime than
O-SGTD method [49]. Finally, each reconstructed signal x̂g,9 is in turn concatenated to obtain
the resulting reconstructed vector x̂g.

Figure 4.3 – Sampling and reconstruction procedures for the 9-th subgraph signal at time
instant g.
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Source: Created by the author.

4.5 Proposed graph signal sampling

In this section, it is proposed a sampling strategy that takes advantage of the block-
diagonal structure of the graph Laplacian. Sampling rules are defined in order to reduce the UE
measurement feedback signaling in the uplink. Since  independent reconstruction problems are
obtained according to (4.8), the same sampling rules can be applied to each one. The sampling
strategy is called smart Laplacian sampling (SLS).
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Similarly to (2.25), M̄g,9 is defined as

[M̄g,9]C,C =
{

1, C ∈ %g,9 ,
0, C ∉ %g,9,

(4.9)

where %g,9 ⊆ a9 for 9 = 1, . . . ,  is the set of sampled vertexes of subgraph G9. The definition of
%g,9 is guided by two sampling rules as follows:

• Sampling rule 1: At least one vertex must be sampled in each subgraph indepen-

dently of its type. It implies that the graph signal of trivial subgraphs, i.e., IV-BS and
IV-UE subgraphs, is not part of the reconstruction problem as no missing entry will
exist in such cases.

• Sampling rule 2: Every vertex related to BS measurements is sampled. The conse-
quence of this rule is threefold. First, vertexes of MV-BS subgraphs will always be
sampled implying that signal reconstruction is not needed in such cases. Second, in
MV-BU subgraphs all the vertexes related to BS measurements are sampled while
the remaining vertexes–that are related to UE measurements–are reconstructed. At
last, in MV-UE subgraphs a random sampling with sampling rate '( is performed
and the missing values are reconstructed.

It is worth mentioning that these sampling rules imply that the feedback of some UE
measurements is needed. For example, samples related to IV-UE subgraph vertexes need to be
fed back. A fraction (ruled by '() of the graph signal related to MV-UE subgraphs also need to
be fed back. On the other hand, a significant signaling saving is achieved thanks to sampling rule
2, specifically when the graph has the MV-BS and MV-BU subgraph types. Furthermore, the
number of required reconstruction subproblems in Equation (4.8) is less than  when the graph
comprises trivial subgraphs and/or MV-BS subgraphs.

Figure 4.4 illustrates an example of an SLS strategy over a graph with  = 6 con-
nected components and 14 vertexes. As can be seen, at least one vertex is sampled for each
subgraph, in accordance with the Sampling Rule 1. Moreover, both the IV-BS and IV-UE trivial
subgraphs are forced to be sampled regardless of the measurements source that they represent.
Further, the vertexes related to BS measurements in the MV-BS and MV-BU subgraph types are
sampled in accordance with the Sampling Rule 2. At last, one vertex is sampled in the MV-UE
subgraph, according to a random sampling with '( = 50%. Statistically, 33.3% (i.e., 2 of 6)
vertexes related to UE measurements are sampled. This implies that SLS saves the feedback of 4
UE measurements.

4.6 C-V2X dataset experiment

In this section, it is described a dataset comprising typical C-V2X measurements
whose underlying structure presents a block-diagonal graph Laplacian. Such a dataset will be
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Figure 4.4 – Example of SLS sampling strategy.
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used to assess the performance of the SLS. That is, it is intended to show that the performance
of a selected supervised learning technique is not significantly impacted by the sampling and
reconstruction procedures, while the uplink channel use is decreased due to the proposed
sampling strategy.

The dataset is comprised of # 5 typical BS and UE measurements as a collection
of +) feature vectors xg, where ) > #g. In accordance with (4.1), each feature vector xg is
associated with a target label Gg+ǵ.

More specifically, data were generated in a Manhattan grid [100] scenario, where +
vehicles moving at a constant speed are placed in a road grid topology with restricted moves into
regular rectangular blocks along ) time instants. Each road block has dimensions 250 m × 433
m. Both horizontal and vertical directions have four lanes, each with a width of 3.5 m. Vehicles,
or simply UEs, have a mobility pattern so they can only move in the streets and change their
directions at the intersection as follows:

• Go straight with probability 0.5,

• Turn left with probability 0.25,

• Turn right with probability 0.25.

The cellular network has a wrapped-around seven-site hexagon layout, each site
comprising three sectors as in [101]. That is, a urban scenario with 7 sites and 21 cells/sectors.
Specifically, each BS in a cell site is located in the center of the cell site, but with its antenna array
normal pointing in the direction of its corresponding sector. BSs are equipped with a 2-element
antenna with a single cell-specific reference signal (CRS) port, such that each BS serves several
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vehicles. Each vehicle is equipped with two antenna elements using an interference rejection
combination (IRC) receiver. Moreover, UEs are considered to be receiving data from the network
in downlink unicast. Figure 4.5 illustrates the considered urban scenario and the layout of the
Manhattan grid model.

Figure 4.5 – Urban scenario with a wrapped-around seven-site hexagon layout, each site
comprising three cells, on a Manhattan grid.
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A channel model that follows the 3GPP specification for low frequency ranges is
assumed [102], i.e., a 2 GHz carrier with a 5 MHz bandwidth. Moreover, a traffic model in which
fixed size packages are periodically sent with a fixed transmit time interval is adopted [101]. In
this context, every sent packet is expected to be delivered with a lower delay than a predefined
latency requirement. Herein, latency is defined from the point of view of the transport layer.
More detailed information about the dataset are available in [99].

4.6.1 Machine learning tool

Two machine learning (ML) techniques as the supervised learning tool for the
binary classification problem described in Section 4.2 are employed. Specifically, the well-
known multilayer perceptron (MLP) and random forest (RF) techniques are employed as ML
predictors. The ML techniques are trained to learn the function ℎ(·) given the observation matrix
Xg described in Section 4.3. That is, the training phase spans the first #g time instants of the
measurements, while the remaining ) −#g time instants are used in prediction mode using the
trained ML predictors.

Therefore, for #g+1 ≤ g ≤ ) the trained predictors at time instant g classifies whether
a packet generated at g+ ǵ can be delivered or not within latency window ! based on a feature
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vector as input. Figure 4.6 illustrates the prediction problem.

Figure 4.6 – Latency prediction problem.
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Recall that the input of the ML can be a reconstructed feature vector x̂g because some
UE measurements are not fed back, being reconstructed instead based on sampled measurements
as described in Section 4.4. Figure 4.7 illustrates the block diagrams of GSP and the ML tools in
the prediction problem.

Figure 4.7 – Reconstructed signals are used as the input of the machine learning experi-
ment.
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4.7 Simulation results

In this section, it is investigated the performance of the proposed sampling strategy,
namely SLS, described in Section 4.5 and in the context of the data set described in Section 4.6.
First, it is compared the chosen online reconstruction strategy with the three batch reconstruction
strategies defined in Section 2.7.1 in terms of reconstruction error and runtime. Then, it is
evaluated SLS in terms of feedback saving, as well as the resulting reconstruction error. Finally,
the QoS predictability is evaluated assuming that the predictor accounts for reconstructed feature
vectors as input.

The general simulation parameters are summarized in Table 4.1. The Manhattan grid
scenario, as described in Sections 4.2 and 4.6, is considered in the simulation setup. Specifically,
seven BSs, each with three sectors, serve + = 700 moving UEs at a speed of 60 km/h. Further,
it is assumed a packet size ( of 8,000 bits and a latency window ! of 100 ms. An underlying
orthogonal frequency-division multiplexing (OFDM)-based physical layer is assumed for data
transmission.
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Measurements are drawn from the dataset described in Section 4.6. The feature
vector is comprised of 8 BS measurements and 6 UE measurements, i.e., # 5 = 14, which are
taken in a transmission time interval (TTI). Specifically:

• BS measurements: i) past 5 packet delays1, ii) average hybrid automatic repeat
request (HARQ) block error rate (BLER), iii) average throughput of the UE serving
cell, and iv) load of the UE serving cell2.

• UE measurements: i) UE x-coordinate3, ii) UE y-coordinate, iii) average reference
signal received power (RSRP), iv) average reference signal received quality (RSRQ),
v) average downlink signal-to-interference-plus-noise ratio (SINR), and vi) average
channel quality indicator (CQI).

Table 4.1 – Simulation parameters.

Number of sites 7
Number of sectors per site 3
Bandwidth [MHz] 5
Central frequency [GHz] 2
Subcarrier bandwidth [kHz] 15
Number of UEs + 700
UE speed [km/h] 60
TTI [ms] 1
Latency window ! [ms] 100
Packet size ( [bits] 8000
Number of features # 5 14
Number of BS measurements 8
Number of UE measurements 6

Source: Created by the author.

Table 4.2 – Learning, sampling and reconstruction parame-
ters.

Training/learning phase duration # [ms] 180
Prediction phase duration [ms] 60
Sparsity level parameter r GGL [35] 0.01
Regularization parameter W [Eq. (4.5) ] near-optimal
Sampling rate '( [%] SLS 50
Number of estimators for RF 100
Number of neurons in MLP hidden layer 100

Source: Created by the author.

1 A delay is defined as the delivery time of a previous packet, e.g., analyzing the 7-th packet, the first past delay
means the delivery time of the 7−1 packet.

2 The load means the number of active UEs in the serving BS
3 In practice, each vehicle has a connected GPS informing its coordinates
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The learning, sampling and reconstruction parameters setup is shown in Table 4.2.
A single realization of ) = 240 ms is considered in the simulation setup, where both the ML
training phase and the graph learning are done in the first #g = 180 time instants, and the ML
prediction phase with reconstructed feature vectors is carried out in the following 60 ms.

From the GSP perspective, the Laplacian matrix L is learned from the training set
through the GGL optimization problem as discussed in Section 2.4.1. It is solved the GGL
problem in Equation (2.16) with an iterative block-coordinate descent algorithm [103], in which
r = 0.01 and its stopping criteria are such that the maximum number of iterations is 102 and
the error tolerance is 10−6 as in [35]. Further, a sampling rate of '( = 50% is assumed in the
SLS sampling rule over MV-UE subgraph type. Moreover, the online reconstruction problem,
given by Equation (4.8), is solved through a distributed gradient descent algorithm [84], with a
stopping criteria in which the maximum number of iterations is 104 and the error tolerance is
10−6 as in [49]. Further, it is found the near-optimal value for the W regularization parameter in
Equation (4.6) through a comprehensive grid search.

With regard to the employment ML algorithms, it is set 100 as the number of
estimators in the RF algorithm and 100 neurons as size of the hidden layer of the MLP algorithm.
Moreover, it is assumed the default values from the scikit-learn library [104] in Python for the
other algorithm parameters. As a preprocessing step, missing value issues in the dataset are
overcome by replacing any missing value of a feature with the mean of the available values of
that feature. Then, for each feature, values are normalized to be in the interval [−1,1], following
the “max abs scaler”.

4.7.1 Class imbalance treatment

Usually, estimation of the accuracy metric is good enough to evaluate binary clas-
sification problems with ML strategies, in which the accuracy is defined as the rate of correct
predictions of the algorithm. However, in binary classification models with class imbalance, the
accuracy values can be misleading due to the imbalance of both labels.

In the context of the data set described in Section 4.6, previous assessments in [99]
showed that the network performance is really imbalanced when a packet size of 8,000 bits and a
700 UE load are assumed as simulation setup. Figure 4.8 illustrates the network performance for
the different UE loads and packet size of 8,000. Note that, the values in Figure 4.8 correspond
to the proportion of each label in our binary classification problem. For lower loads, almost all
packets arrive at the destination within the desired latency window of 100 ms. That is, most
packets are delivered in time and therefore, almost all samples that will feed the ML model will be
labeled as one. As the network load increases, the number of packets delivered outside the desired
latency window increases and thus, more samples are labeled zero or delayed. Specifically, for a
700 UE load, more than 92% of the packets arrive are delivered in time and the model has class
imbalance.

In this context, a more suitable metric is the f1-score, that are defined separately for
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Figure 4.8 – Network performance.
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each label as

f1-score = 2× >@427A7=<× @420::
>@427A7=<+ @420:: .

where precision is the metric that measures the ability of the classifier not to label as positive a
sample that is actually negative. Moreover, recall metric measures the ability of the classifier to
find all the positive samples. They are defined as

>@427A7=< =
TP

TP+FP
,

and
@420:: =

TP
TP+FN

,

respectively, where TP is a "true positive" meaning an outcome where the algorithm correctly
predicts the positive class, FP is a "false positive" outcome in which the algorithm incorrectly
predicts the positive class and FN is a "false negative" outcome meaning where the algorithm
incorrectly predicts the negative class. Thus, precision and recall are a good metrics to compare
algorithms when the cost of a FP and a FN are high, respectively.

4.7.2 Reconstruction strategy evaluation

In this section, the performance of the chosen O-SGTD reconstruction strategy is
evaluated in terms of NMSE and runtime. To this end, let n be the normalized reconstruction
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Table 4.3 – Runtime of the recon-
struction algorithms.

Rec. Algorithm Runtime [s]
O-SGTD 6.06×10−3

GTTR 38.59×10−3

SGTD 40.56×10−3

Source: Created by the author.

error for a particular BS-UE link, herein defined as

n =
1

() −#g) ′
 ′∑
9=1

)−#g∑
g=#g+1

��xg,9− x̂g,9
��2��xg,9��2 , (4.10)

where  ′ ≤  stands for the number of MV-BU and MV-UE subgraphs in the graph of that
particular link. Then, the NMSE is obtained by averaging n over the + links.

Specifically, O-SGTD is compared with the three batch reconstruction strategies
described in Section 2.7.1. It is worth recalling that the batch reconstruction strategies needs
to receive every sampled feature vector xg within the prediction phase window ) −#g before
reconstructing them all together. To solve the optimization problems in Equation (2.28) it is
used a conjugate gradient algorithm with a stopping criteria in which the maximum number of
iterations is 104 and the error tolerance is 10−6. Further, the near-optimal values for the V, W and X
regularization parameters are found through a comprehensive grid search. Then, the performance
of all the reconstruction methods is tested using random sampling (RS) under different sampling
rate.

Figure 4.9 illustrates the NMSE per sampling rate ('() for the four reconstruction
strategies. The NMSE is further averaged over all + = 700 reconstruction instances. As can be
seen, the higher sampling rate, the lower NMSE for all the reconstruction algorithms. Moreover,
the reconstruction of the SGTD strategy provides a lower NMSE for all '( values. This result is
expected because the temporal difference of signal usually exhibits better smoothness than the
signal themselves.However, it is interesting to note that for values greater or equal than '( = 40%,
the GTTR and the O-SGTD algorithms exhibits a very close NMSE than the SGTD strategy.

It is analyzed the runtime of the three reconstruction algorithms with very close
NMSE performance and for '( = 50%. The hardware used to conduct analysis has the following
specifications: Desktop PC with Ubuntu 18.04 system, Intel Core i5 Processor (4x 3.1 GHz) and
16 GB DDR4 RAM. Table 4.3 shows the average runtime for 700 vehicles for reconstructing the
entire matrix X̂g. Note that, the O-SGTD algorithm needs 5 times less runtime to reconstruct
iteratively the matrix X̂g for one UE, than the batch reconstruction strategies. This result is
expected as both the GTTR and the SGTD algorithms require obtaining the sampled values
within the ) −#g window and reconstruct them all together, which increases the computational
burden.
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Figure 4.9 – Reconstruction NMSE of feature vectors using different reconstruc-
tion strategies. O-SGTD is compared with three batch reconstruction
strategies using RS with different sampling rate.
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4.7.3 SLS evaluation

The performance of SLS is assessed in terms of feedback saving by counting the
number of unsampled UE measurements during the ML testing phase considering all BS-UE
links. Note that when SLS is the sampling strategy, only some UE measurements in MV-UE
subgraphs are fed back, as well as all UE measurements in IV-UE subgraphs. Moreover, SLS
with O-SGTD is evaluated in terms of NMSE as described in Equation (4.10).

4.7.3.1 Baseline approaches

As baseline approaches, three graph-based greedy sampling algorithms found in the
literature are adopted, i.e., minimization of mean-square desviation (Min-Msd) [105], maximiza-
tion of determinant (Max-Det) [105] and maximization of the minimum nonzero eigenvalue
(Max-Mineig) [106], which are compared with our proposed SLS strategy in terms of feedback
saving and NMSE.

The baseline algorithms are adopted to find the set of sampled vertexes %g,9 regarding
every MV-BU and MV-UE subgraph types, without any restriction on the measurement source.
For the others subgraph types, the algorithms follow a similar vertex sampling mechanism as
SLS.

Specifically, the three algorithms employ at each iteration a greedy search to select
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Figure 4.10 – NMSE of the three baseline algorithms with different sampling rate.
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the vertex 7 to be added to the current %g,9, based on a certain criterion and according to a
pre-established sampling rate 'A.

Concerning the vertex selection criterion, the Min-Msd strategy selects the vertexes
from the graph that lead to the largest reduction in terms of mean-square desviation (MSD).
Moreover, the Max-Det algorithm aims at maximizing the pseudo-determinant of the matrix
U)M̄gU (i.e., the product of all nonzero eigenvalues). The idea behind that is to design a well
suited basis for the graph signal that is to be reconstructed [105]. Finally, using similar arguments
as the Max-Det strategy, the Max-Mineig algorithm selects the vertexes in order to maximize the
minimum nonzero eigenvalue of the matrix U)M̄gU.

Figure 4.10 illustrates the NMSE per sampling rate ('A) for the three baseline
sampling algorithms. After applying the sampling, the NMSE is further obtained using the
O-SGTD reconstruction strategy and by averaging n over all the + = 700 links. As can be seen,
the higher sampling rate, the lower NMSE for all the algorithms. Moreover, although it is highly
costly to compute, the Min-Msd strategy outperforms all other methods when the number of
sampled vertexes increases, i.e., for values greater or equal than 'A = 50%. This is because
Min-Msd takes into account information from both spatial distribution of the observation noise
and graph topology [105]. Besides, the Max-Det algorithm outperforms the Max-Mineig strategy
as it considers all the eigenvalues and not just one. However, it is interesting to note that the
initial decrease in NMSE is greater until the value of 'A = 50% for the three baseline algorithms.
Because of this, a sampling rate of 'A = 50% will be used for the three baseline sampling
algorithms to be compared with our proposed SLS strategy in the next section.
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4.7.3.2 Numerical results

In this section, the performance of SLS strategy is evaluated in terms of feedback
saving and NMSE.

Figure 4.11 shows the CDF of the number of unsampled UE measurements. SLS
is compared with the three baseline algorithms mentioned above. As can be seen, the 60th
percentile can be observed when 4 out of 6, i.e., 66.6%, of the UE measurements are unsampled
for SLS. The three baseline algorithms presented a worse performance than SLS, as only 2
out of 6, i.e., 33.3%, of the UE measurements are unsampled around the 80th percentile. This
is expected because the baseline algorithms sample the vertexes following a certain selection
criterion and not aimed at the measurement source, increasing the chance of picking vertexes
related to UE measurements. Moreover, Min-Msd and Max-Det strategies provides a similar
feedback saving performance and Max-Mineig performs worse than all.

In other words, SLS manages to save an average of a little more than 4 out of 6 UE
measurements per user, i.e., 4.27, as shown in Figure 4.12. Meanwhile, none of the three baseline
algorithms achieve a feedback saving of at least 2 out of 6 UE measurements on average.

Figure 4.11 – CDF curves of the number of unsampled UE measurements. SLS is
compared with the three baseline algorithms.

0 1 2 3 4 5 6

Unsampled UE measurements

0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

Source: Created by the author.

Quantitatively, at each time instant there are +# 5 = 4,200 UE measurements. SLS
can save the feedback of 2,800 measurements, which represents 66.6%, as shown in Figure 4.13.
Meanwhile, the percentage of feedback saving for the Min-Msd, the Max-Det and the Max-
Mineig strategies is 31.6%, 32,8% and 26.1%, respectively. Consequently, SLS is 34% better in
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Figure 4.12 – Average of unsampled UE measurements per UE.
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Figure 4.13 – Number of unsampled UE measurements at each time instant.
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terms of feedback saving than the best baseline algorithm, i.e., the Max-Det strategy.
Figure 4.14 shows the NMSE against time for the reconstruction error of the O-
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Figure 4.14 – Reconstruction NMSE of feature vectors using different sampling
strategies: SLS and the three baseline algorithms.
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SGTD algorithm. Again, SLS is compared with the three baseline algorithms. As can be noticed,
O-SGTD exhibits very close performance in terms of NMSE both for all the baseline algorithms
and for SLS. This is expected since all of them manage to maintain subgraph connectivity by
taking advantage of the block-diagonal structure, which boosts the reconstruction performance of
O-SGTD. However, the Max-Mineig algorithm performs worse than all. Moreover, SLS exhibits
a similar behavior as Max-Det and a slight performance loss when compared to the Min-Msd
strategy, i.e., approximately 1 dB. However, it is interesting to notice that SLS increases uplink
feedback savings over baseline algorithms, while maintaining a good reconstruction performance.

4.7.4 Latency prediction evaluation

The prediction performance of the ML algorithms (i.e., RF and MLP) is evaluated in
terms of accuracy and f1-score against different time gaps ǵ. In this context, accuracy stands for
the rate of correct predictions. Also, ǵ = 0 means that prediction is done for a packet generation
in the present instant, while e.g. ǵ = 20 means that prediction is for a packet generation at a time
instant 20! ms ahead, i.e., 2,000 ms as ! = 100 ms.

The goal here is to evaluate how the predictability of the RF and the MLP algo-
rithms is affected by the assumption of reconstructed feature vectors. The importance of UE
measurements in the prediction problem is also assessed by assuming different subsets of UE
measurements as features, including the case of an empty subset. A full dataset case, i.e., when
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all UE measurements are perfectly fed back, is also evaluated. When sampling/reconstruction
applies, O-SGTD is evaluated with SLS and the three baseline algorithms.

Figure 4.15 – Accuracy of the RF algorithm evaluated with i) full dataset, ii) no UE mea-
surement, iii) each of the UE measurements individually, iv) reconstructed
feature vectors through O-SGTD with SLS.
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Figure 4.15 shows the accuracy of RF against different time gaps ǵ. RF is evaluated
with full dataset, without UE measurement and for each UE measurement individually. It is also
assessed with reconstructed features through O-SGTD with SLS. All the curves have a larger
initial decrease for the first five gaps values. However, once the gap length is increased, the
decrease in performance slows down. As expected, the accuracy of RF with full dataset is better
than all the other cases, which indicates that in general UE measurements are relevant for the
prediction problem. RF with reconstructed feature vectors provides a good accuracy with a small
performance loss compared to the full dataset case, and a good performance gain compared to the
other cases for ǵ > 2. Further, accuracy curves in which is assumed one or no UE measurement
lead to a worse performance in general. For instance, for ǵ = 20, RF with full dataset has an
accuracy of around 0.86, while RF with O-SGTD and SLS has approximately a 0.855 accuracy.
When up to one UE measurement is considered, RF has accuracy no better than 0.84 at ǵ = 20.

The same sort of analysis is also carried out for the MLP algorithm. To this end,
Figure 4.16 shows the accuracy of MLP against different time gaps ǵ. As can be seen, the
accuracy of MLP is slightly worse than the RF when full dataset is assumed. However, note that
MLP with reconstructed feature vectors provides a lower performance loss compared to the full
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Figure 4.16 – Accuracy of the MLP algorithm evaluated with i) full dataset, ii) no UE mea-
surement, iii) each of the UE measurements individually, iv) reconstructed
feature vectors through O-SGTD with SLS.
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dataset case than the RF algorithm. Moreover, the accuracy curves in which is assumed one or no
UE measurement performs better when the MLP algorithm is tested, decreasing its performance
for the RF. This indicates that in general UE measurements are more relevant for the prediction
problem when the RF algorithm is used.

Figure 4.17 illustrates the f1-score of the RF against different time gaps ǵ, and
assuming the same sort of analysis as in Figure 4.15. Specifically, Figures 4.17a and 4.17b show
the f1-score for the classes in time and delayed, respectively. As can be seen, the f1-score of
the class in time exhibits better performance than the delayed for all the curves. This result
is expected because the in time class is better represented for UE load due to a high network
performance. In general terms, the f1-score curves exhibits a similar behavior than the accuracy
illustrated in Figure 4.15. That is, the curves that represent the use of reconstructed feature
vectors at input exhibit a very close performance to RF with full dataset, and a good performance
gain compared to the other cases for ǵ > 2.

The same sort of analysis is also carried out for the MLP algorithm. To this end,
Figures 4.18a and 4.18b show the f1-score of the MLP against different time gaps ǵ for the
classes in time and delayed, respectively. In general terms, the f1-score curves exhibit a similar
behavior the accuracy illustrated in Figure 4.16, i.e., the curves that represent the full dataset and
the reconstructed feature vectors, respectively, exhibit a very close performance. Moreover, the
MLP algorithm curves achieve a just slightly better performance than RF algorithm in terms of
the f1-score metric for both classes.
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Figure 4.17 – f1-score of the RF algorithm evaluated with i) full dataset, ii) no UE mea-
surement, iii) each of the UE measurements individually, iv) reconstructed
feature vectors through O-SGTD with SLS.
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(b) Class delayed.
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Figure 4.19 also shows the accuracy of RF against different time gaps ǵ. In this case,
RF is evaluated with full dataset, without UE measurement, with reconstructed features through
O-SGTD with SLS, and finally with up to three UE measurement randomly chosen. As can be
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Figure 4.18 – f1-score of the MLP algorithm evaluated with i) full dataset, ii) no UE mea-
surement, iii) each of the UE measurements individually, iv) reconstructed
feature vectors through O-SGTD with SLS.
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(b) Class delayed.
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seen, the curves representing the full dataset case and O-SGTD with SLS are the same as in the
previous Figure 4.15. Both cases outperform the three curves that represent the cases with up to
three randomly chosen UE measurements. That is, RF with reconstructed feature vectors can still
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be better than randomly selecting three UE measurements to be fed back and used as feature.

Figure 4.19 – Accuracy of the RF algorithm evaluated with i) full dataset, ii) no UE
measurement, iii) up to three UE measurements randomly chosen, iv) recon-
structed feature vectors through O-SGTD with SLS.

0 2 4 6 8 10 12 14 16 18 20
Gap ( ) x Prediction window L = 100 ms

0.84

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

Full dataset
SLS graph
With 3 random UE feat.
With 2 random UE feat.
With 1 random UE feat.
Without UE features

Source: Created by the author.

The same sort of analysis is also carried out for the MLP algorithm in Figure 4.20,
in which the curves that represent one, two and three UE measurements randomly chosen,
respectively, are compared with the reconstructed features through O-SGTD with SLS. In
general, the same behaviors described for the RF case are observed for all the MLP curves.
However, note that the accuracy curves that represent up to three UE measurement randomly
chosen, perform better when the RF algorithm is tested, decreasing its performance for MLP.

Moreover, an analysis of the f1-score was performed for both RF and MLP, assuming
the same input configurations of UE measurements as in Figures 4.19 and 4.20, respectively.
These figures were not included since, in general terms, the f1-score curves exhibit a similar
accuracy behavior

Figure 4.21 shows the accuracy of RF against different time gaps, but now evaluating
different sampling strategies in case of feature vector reconstruction. More specifically, O-SGTD
is evaluated with SLS and also with the three baseline algorithms mentioned above. The curves
for full dataset case, O-SGTD with SLS, and RF without UE measurements are the same as
in the previous Figures 4.15 and 4.19. As can be seen, RF with O-SGTD exhibits very close
performance in terms of accuracy for all gaps values, both for the three baseline algorithms and
for SLS. This is expected since NMSE curves with very close performance cause a small impact
on the RF accuracy. However, RF with Max-Mineig performs worse than all. Moreover, the
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Figure 4.20 – Accuracy of the MLP algorithm evaluated with i) full dataset, ii) no UE
measurement, iii) up to three UE measurements randomly chosen, iv) recon-
structed feature vectors through O-SGTD with SLS.
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proposed SLS exhibits a similar behavior than Max-Det and a slight performance loss when
compared to the Min-Msd sampling strategy, fundamentally for gaps values greater or equal than
12. However, it indicates that the proposed SLS strategy can lead to a considerable feedback
saving without significantly impacting the prediction accuracy of the RF.

The same sort of analysis is also carried out for the MLP algorithm. To this end,
Figure 4.22 shows the accuracy of MLP against different time gaps ǵ. As can be seen, the MLP
algorithm with reconstructed feature vectors provides a lower performance loss compared to the
full dataset case than the RF algorithm. Moreover, the accuracy curves in which is assumed the
three baseline sampling algoritms perform better when the MLP algorithm is tested, decreasing
performance for the RF.

Moreover, it was performed the analysis of the f1-score performance. Again, the
f1-score curves exhibit a similar behavior the accuracy illustrated in Figures 4.21 and 4.22, for
both RF and MLP, respectively.

4.8 Chapter summary

In this chapter, it was addressed the concept of QoS predictability in a C-V2X
scenario. The goal was to predict whether a packet can be delivered within a predetermined
latency constraint. Such a latency prediction was modeled as a binary classification problem
to be handled by a machine learning (ML) algorithms, i.e., RF and MLP. Measurements taken
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Figure 4.21 – Accuracy of the RF algorithm evaluated with i) full dataset, ii) no UE
measurement, iii) three sampling baseline algorithms, iv) reconstructed
feature vectors through O-SGTD with SLS.
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Figure 4.22 – Accuracy of the MLP algorithm evaluated with i) full dataset, ii) no UE
measurement, iii) three sampling baseline algorithms, iv) reconstructed
feature vectors through O-SGTD with SLS.
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on both BS and UE sides were considered as features to the ML-based predictor carried out
on the network side. However, the uplink feedback channel was assumed to be limited. To
reduce the need for feeding UE measurements back to the network, GSP tools were employed
to i) model feature vectors as graph signals, ii) downsample feature vectors along the entries
related to UE measurements, and iii) reconstruct the missing entries on the network side. An
online signal reconstruction strategy that preserves the signal smoothness over the graph was
adopted. A sampling strategy, namely SLS, that i) exploits block-diagonal structure of the graph
Laplacian and ii) reduces the UE measurement feedback was proposed and evaluated. A dataset
with BS and UE measurements taken in a typical C-V2X scenario was used for evaluation
purposes. In terms of reconstruction error and feedback saving, SLS outperforms some baseline
sampling algorithms. As for prediction accuracy, simulation results showed that, as expected,
both the RF and MLP with reconstructed feature vectors as input have a small accuracy loss when
compared to full dataset availability case. Quantitatively, SLS can save the feedback of 2800
UE measurements at each time instant, which represents the 66.6% of the UE measurements
using the ML-based algorithms with full dataset. On the other hand, it has good accuracy when
compared to cases when smaller subsets of UE measurements are considered, and when the three
baseline sampling algorithms are used. The results then indicate that SLS can lead to a feedback
saving without significantly impacting the prediction accuracy of the ML-based algorithms in
the prediction problem.
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5 CONCLUSIONS AND PERSPECTIVES

5.1 Conclusions

Mobile communications in 5G scenarios still face significant challenges due to the
adoption of real-time applications and mission-critical services with stringent requirements, such
as low latency and high reliability.

In order to tackle some of these challenges, the main purpose of this thesis was to
study solutions for prediction problems in mobile communications. These solutions are based
on graph signal processing (GSP) jointly with supervised learning techniques to address two
relevant use cases of mobile communication systems, namely: (i) beam management and, (ii)
increased feedback channel burden.

The literature review presented in Chapter 1 helped us to identify alternative solutions
to beam management problem in highly directional communications and different approaches
from a QoS prediction perspective in URLLC. Moreover, it was showed the advantages of using
ML-based solutions over classical methods based on system modeling and/or signal processing,
mainly in non-stationary scenarios. However, ML-based prior works assumed full knowledge of
actual data in the network, including all UE measurements, and did not address the problem of
UE measurement feedback signaling reduction.

To the best of our knowledge, no study has been performed to improve the feedback
saving on mobile communication systems using sampling and reconstruction tools based on
GSP. Then, for a better understanding of the graph-based modeling of signals and their related
graph signal processing tools, in Chapter 2 some graph-theoretic definitions were introduced
along with some of the tools and concepts that were employed throughout this thesis.

The key contributions of this thesis, in Chapters 3 and 4, addressed the use of
GSP-based tools to reduce the UE measurements reporting and improve the robustness of the
ML-based prediction solutions.

In Chapter 3, it was proposed and evaluated a tracking strategy based on supervised
learning and GSP. First, it was proposed a  -NN-based algorithm to track and predict the
channel state, relying on the availability of a HUD set for the purpose of offline training. Then,
as preliminary stages of the  -NN algorithm, it was introduced sampling and reconstruction
strategies based on GSP, which was referred to as  -NN-R, in order to efficiently use the uplink
feedback channel. Simulation results showed that the use of  -NN provided better estimation and
prediction performance in terms of NMSE and successful hit rate, than three classical tracking
algorithms that were used as baseline. It was showed that while the baseline approaches and
 -NN demand full beam sweep and reporting, the proposed  -NN-R framework selects only a
few beam pairs at random to be monitored and sampled over time. With respect to the simulation
results, it was concluded that the performance of  -NN-R is not affected much in terms of
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estimation/prediction error. It was also concluded that, only half of the beam pairs throughout a
significantly lower observed temporal window were enough to reliably predict the channel state
some time ahead on the BS side. Finally, it was showed that our proposed  -NN-R exhibited
lower computational complexity when compared to the three baseline approaches, especially in
mm-Wave scenarios that usually lead to the use of a large antenna arrays.

In Chapter 4, it was exploited the graph structure that represents a C-V2X measure-
ment dataset in order reduce the amount of reported UE measurements. In this context, it was
demonstrated that, under certain conditions, the C-V2X dataset can present a block-diagonal
structure indicating that GSP tools can be applied into each sub-graph independently. Taking
advantage of this, it was proposed and employed GSP-based sampling and reconstruction tools,
in order to reduce the need for feeding UE measurements back to the network. Specifically, it
was proposed and evaluated a sampling strategy, namely SLS, that i) exploits block-diagonal
structure of the graph Laplacian and ii) reduces the UE measurement feedback. Moreover, it
was adopted an online signal reconstruction strategy that preserves the signal smoothness over
the graph. As a means of evaluating our graph-based proposal, it was adopted an ML-based
latency prediction problem that sought to predict whether a packet could be delivered within a
predetermined latency constraint. Formulated as a binary classification problem, measurements
taken on both the BS and the UE sides worked as features to feed ML-based predictors at the
network side. However, it was considered that the uplink feedback channel for UE measurement
reporting was limited, and the GSP-based sampling/reconstruction tools were used to reduce
the feedback channel burden. With respect to the simulation results, it was showed that the
proposed SLS outperforms some baseline sampling algorithms in terms of reconstruction error
and feedback saving. It was also showed that both the RF and MLP with reconstructed feature
vectors as input have a small prediction accuracy loss when compared to full dataset availability
case. Quantitatively, SLS managed to save the feedback of 2800 UE measurements at each
time instant, which represented the 66.6% of the UE measurements using the ML algorithms
with full dataset. On the other hand, it was reached good accuracy when compared to cases
when smaller subsets of UE measurements were considered, and when the baseline sampling
algorithms were used. The simulation concluded that the proposed SLS can lead to a feedback
saving without significantly impacting the prediction accuracy of the ML-based algorithms in
the latency prediction problem.

5.2 Future works

It follows a list of ideas for extensions of this thesis in future works. Regarding both
beam tracking and latency prediction problems:

• One may evaluate the problems addressed in this thesis leveraging different
machine learning tools: Although the supervised learning methods provided promis-
ing results, they need to create the features and labels sets before proceeding with the
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training and testing steps. This represent a challenge for efficient and real-time predic-
tion solutions as in latency prediction problem, in which the package labeling process
can be computationally expensive, especially when applied to higher-dimensional
data. Moreover, the scheduled HUD refresh operations in the beam tracking problem
can be time-consuming and make it difficult to optimize this mechanism, since
observation vectors and their corresponding state vectors must be frequently updated
to avoid channel aging. In this context, it is envisaged the use of algorithms that learn
to react to the environment on their own, such as reinforcement learning and deep
learning;

• One may evaluate the time-varying graph signal as approximately bandlimited
graph signal: In this thesis, reconstruction techniques based on GSP was exploited,
in which the graph signal it was assumed as smooth in the vertex domain. However, it
is natural in many graph-based tools to also assume that the time-varying graph signal
is somehow bandlimited, or approximately bandlimited, in the frequency domain. In
this context, it is envisaged the study and evaluation of graph-based reconstruction
algorithms that also exploit the graph signal properties in the frequency domain, in
order to improve the online reconstruction and tracking time-varying graph signals
in noisy environments.

Concerning beam tracking problem addressed in Chapter 3:

• A study and evaluation of prediction techniques can also be made on time-
varying graphs as a complement of the proposed  -NN-R framework: In this
work, time series data was modeled and pre-processed as signals defined over graphs,
and then, it was made the forecasting using a ML-based strategy. However, tackle
the spatial prediction and temporal prediction tasks separately can incur failures to
capture the inherent coupling between time and space domains of time series data.
Especially, when lower sampling rates are assumed. In this context, it is envisaged
the study and evaluation of graph-based strategies, which jointly interpolating and
forecasting the time-varying graph signal over the underlying graph.

• One may evaluate  -NN-R with nonrandom graph sampling schemes: In this
thesis, it was assumed a random sampling mechanism in the beam tracking problem.
However, the chosen sampling method is crucial to the graph-based step performance,
reducing the sampling rate and creating the initial conditions for the reconstruction
strategy, in the sense of minimizing reconstruction error. In this context, it is envis-
aged the study and evaluation of nonrandom graph-based sampling strategies, in
order to seek the optimal sampling sets for graph signal estimation. Specifically, it
is of great interest to explore sampling strategies in which the graph signals will be
assumed to be bandlimited or approximately bandlimited;
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Regarding the latency prediction problem addressed in Chapter 4:

• One can evaluate the impact of feature vector reconstruction in different pre-
diction tools and problems: In this thesis, it was evaluated how the predictability
of the ML-based algorithms was affected by the assumption of reconstructed feature
vector in a latency prediction problem. However, the abundant sources of information
and the open challenges in 5G networks provide countless opportunities to develop
and evaluate graph-based sampling and reconstruction strategies;

• One can considering clustering aspects and/or optimal sampling strategies in
the different subgraph types, in order to optimize the SLS strategy and further
improve the signaling feedback saving: In this thesis, it was proposed a determin-
istic sampling strategy, namely SLS, in which sampling rules are defined based on
the block-diagonal structure of the Laplacian and the measurement source. From
these rules, SLS creates the basis for the use of optimized sampling schemes at each
subgraph types, in datasets that have these diagonal block characteristics in the graph
domain. Regardless of the sampling strategy assumed, the first rule will have to be
fulfilled to preserve the structure and connectivity of the graph. As a consequence,
trivial subgraphs and MV-BS subgraphs will always be sampled. However, it is im-
portant to optimize the vertexes sampling in the MV-UE and MV-BU subgraph types.
In the MV-UE case, it is envisaged the use of a nonrandom sampling strategy, in
order to seek the optimal sampling sets. Moreover, for the case of MV-BU subgraphs,
it would be possible to adaptively analyze the need to sample some vertexes related
to UE measurements, to achieve a desired accuracy in the prediction step.
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