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RESUMO

Atuadores saturantes estão presentes em todos os processos do mundo real. As correntes e

tensões em circuitos elétricos, a velocidade dos motores em sistemas robóticos, a concentração

de agentes em reações químicas, e assim por diante, são todas variáveis limitadas em amplitude.

A consideração dessas limitações em sistemas representados por modelos lineares em malha

aberta introduz alguns desafios para os engenheiros e matemáticos da área de controle. Desde

a década de 80 até os dias atuais, pesquisadores de controle vêm desenvolvendo estratégias

matemáticas baseadas na teoria de Lyapunov para a análise e síntese de controles estabilizantes

desses sistemas. Embora seja possível afirmar que esse seja um assunto já maduro na literatura,

ainda existem alguns problemas interessantes relacionados ao controle de sistemas com saturação

na entrada, principalmente quando considerado juntamente a outras questões desafiadoras.

A consideração dos atrasos de transporte é outro assunto interessante em sistemas de

controle. Nesta tese, trata-se principalmente do controle preditivo desses sistemas. Para esse fim,

utilizam-se os chamados compensadores de tempo morto, que são uma classe de controladores

derivados do preditor de Smith, desenvolvido na década de 50. As contribuições desta parte

estão divididas em dois capítulos: ii) Primeiramente, é desenvolvida uma proposta de estrutura

compensadora de tempo morto para sistemas com saturação na entrada através da adição de uma

estratégia anti-windup. Os fatos interessante sobre a estratégia consistem na demonstração que

devido à compensação do atraso no caso nominal, a estratégia pode ser aplicada de uma maneira

simples (com regras de ajustes fáceis a se seguir) e também pode ser aplicada em sistemas sem

atraso de maneira unificada. ii) Além disso, no caso de atrasos variantes no tempo, é apresentada

uma nova estratégia para a caracterização e análise da região de atração do sistema na presença de

saturação na entrada. Por meio de problemas de otimização convexa, são estabelecidas relações

entre as variáveis de ajuste do controlador, os limites do atraso variante no tempo e o tamanho da

região de atração estimada. Ambos os capítulos desta parte foram desenvolvidos no domínio do

tempo discreto.

O problema dos sistemas sobre-atuados/ com entradas redundantes também é abor-

dado na parte final desta tese. Esse assunto está intimamente relacionado a aplicações aeroes-

paciais e robóticas, onde a redundância dos atuadores é frequentemente necessária. Além das

estruturas do controlador e do anti-windup, um terceiro subsistema, denominado ‘função de

alocação’, necessita ser projetado com o objetivo de distribuir o esforço de controle desejado

entre os múltiplos atuadores. A contribuição nesta parte está relacionada ao desenvolvimento



de condições convexas para o projeto simultâneo de um alocador dinâmico e um anti-windup

estático. Além disso, é mostrado que as condições desenvolvidas são sempre factíveis sob certas

premissas. O desenvolvimento desta parte é feito no domínio do tempo contínuo.

As contribuições nesta tese são, portanto, relacionadas à análise, controle e estratégias

anti-windup para sistemas com saturação na entrada em conjunto com atrasos de transporte ou

funções de alocação. Deste modo, não pretende-se de alguma forma argumentar que foram

desenvolvidas novas metodologias gerais para o estudo do maduro campo da não-linearidade

de saturação. No entanto, as contribuições reportadas são importantes para os casos especiais

considerados.

Palavras-chave: Saturação do atuador. Compensadores de tempo morto. Atraso variante no

tempo. Funções de alocação. Desigualdades matriciais lineares.



ABSTRACT

Saturating actuators are ubiquitous to real-world processes. Currents and voltages in circuits,

motors speed in robotics systems, the concentration of agents in chemical reactions, and so on,

are all variables limited in amplitude. The consideration of such limitations in otherwise open-

loop linear systems introduces some special challenges to the control engineer/ mathematician.

From the ’80s to the early years of the new millennium, control researchers have spent efforts

in developing mathematical tools based on the Lyapunov theory for the stability analysis and

stabilization of such systems. Although one could say that a mature stage of the subject has

been achieved, some interesting problems still arise for the control of input saturated systems,

especially when considered in conjunction with other challenging issues.

Time delays are another subject of main interest in control systems. In this thesis,

we are mainly interested in the predictor/ model-based control of such systems. Specially, we

address dead-time compensators (DTCs), which are a class of controllers derived from Smith’s

idea developed in the ’50s. The contributions in this part are split throughout two chapters: i)

First, we develop a DTC structure for systems with saturating inputs through the addition of an

anti-windup strategy. The interesting facts about the proposed strategy are that we show that due

to the compensation of the delay in the nominal case, the strategy can be used in a very practical

manner (with easy to follow tuning rules) and can also be applied in a unified way to delay-free

systems. ii) Secondly, in the case of time-varying delays, a new strategy for the characterization

and analysis of the system region of attraction in the presence of saturating inputs is presented.

By means of convex optimization problems, we establish relations between the controller tuning

variables, bounds on the time-varying delay and sizes of the estimated region of attraction. Both

chapters in this part are developed in the discrete-time domain.

The problem of over-actuated/ input-redundant systems is also approached in the final

part of the thesis. This subject is closely related to aerospace and robotics applications, where

redundancy of actuators is often necessary. Besides the controller and anti-windup subsystems, a

third subsystem, designated “allocation function", needs to be designed in order to distribute the

desired control effort among the multiple actuators. The contribution in this part is related to

the development of convex conditions for the co-design of a dynamic allocator subsystem along

with static anti-windup. Furthermore, we show that the developed conditions are always feasible

under certain assumptions. The development in this part is made in the continuous-time domain.

The contributions in this thesis are, therefore, related to the analysis, control and



anti-windup strategies for input saturated systems in conjunction with either time delays or

allocation functions. Thus, we intend by no means to argue that we have developed novel general

methodologies to the study of the mature field of the saturation nonlinearity. However, the

contributions reported here are of importance for the special covered cases.

Keywords: Actuator Saturation. Dead-time Compensators. Time-varying delays. Allocation

Functions. Linear matrix inequalities (LMIs).
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NOTATION

? Denotes symmetric blocks in the expression of a matrix.

Z Stands for the set of integer numbers.

Z+ Stands for the set of nonnegative integer numbers.

N Stands for the set of natural numbers.

R Stands for the set of real numbers.

R+ Stands for the set of nonnegative real numbers.

S+n Stands for the set of n×n positive definite matrices.

t Stands for continuous time.

k Stands for discrete-time sample.

I Denotes the identity matrix of appropriate dimensions. In is used if we want

explicitly present its dimension.

0 Denotes the null matrix of appropriate dimensions. 0n×m represents the

n×m null matrix.

Y(i) Denotes the ith row of a matrix Y ∈ Rn×m.

v(i) Denotes the ith component of a vector v ∈ Rm.

A> Means the transpose of matrix A.

He{A} Denotes the operator He{A}= A+A>.

A−1 Denotes the inverse of matrix A.

A� 0 Means that matrix A is positive definite.

A� 0 Means that matrix A is positive semidefinite.

A≺ 0 Means that matrix A is negative definite.

A� 0 Means that matrix A is negative semidefinite.

diag(A1,A2, ...,Am) Denotes the block-diagonal matrix formed with matrices Ai, i =

1, ...,m.
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1 INTRODUCTION

Actuator saturation is a major topic of research in control systems. Although most

control systems projects do not consider boundaries in the amplitude or rate of the process

control input, all real actuators present such limitations. For instance, electrical actuators have

voltage and current limits, whereas there exist bounds on both volume and rate of flow in

hydraulic actuators. This can be a cause of instability in the closed-loop system, due to a

phenomenon popularly known as windup. Instability is, however, only one of the possible

outcomes due to this condition, which might include the occurrence of limit cycles, multiple

equilibria and performance degradation (TARBOURIECH et al., 2011; ZACCARIAN; TEEL,

2011). Therefore, it is necessary to consider strategies which avoid windup and its undesirable

effects in the control loop. Moreover, in the historical perspective, saturated actuators have

had implications in many tragedies such as aircraft crashes and the Chernobyl nuclear power

station disaster (TARBOURIECH; TURNER, 2009). Thus, it is mandatory to guarantee stability

of control structures operating at such conditions. However, this is not an easy task and the

necessary mathematical rigor to make such guarantees was mainly developed in the 1990s along

with the spread of the Linear Matrix Inequality (LMI) theory.

Windup occurs when the model of the saturation to the plant input is unknown, thus

leading the states of the controller to be wrongly updated (KOTHARE et al., 1994). Especially,

this can make the output of the plant oscillatory or unstable. In other cases, the set-point tracking

response can become painfully slow. The origin of the term windup comes from the cases of

Proportional Integral (PI) and Proportional Integral Derivative (PID) controllers, in which the

integral state "winds up" to large values during saturation events; the associated energy is later

dissipated, causing the problems described above. It is import to note that although early practice

control engineers associated this phenomenon to integral action, the view of this problem has

evolved and windup in the sense of modern multivariable control theory is more linked to the

instability problems caused by the reduction on the closed-loop region of attraction, what is

not necessarily linked with the presence of integral action. To put it into words, the region

of attraction of a system is defined as the region of the state space for which given any initial

conditions within this region, the evolution of the system states over time will remain inside

this region and will converge asymptotically to the origin. In the presence of saturating inputs,

the open-loop linear system becomes nonlinear in closed loop, and global stability can only be

achieved under some strict conditions (SONTAG, 1984; LASSERRE, 1993). Therefore, the
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anti-windup problem becomes that of enlarging the estimation on regions of safe operation, that

is, regions in the state space for which the initial conditions are guaranteed to be contained within

the region of attraction.

Regarding systems with time delays, the definition of a set of initial conditions for

which stability is guaranteed in the presence of the saturation nonlinearity is non-trivial. In the

continuous-time case, time-delay systems fall within the larger class of infinite-dimensional

systems, which are not easily handled (KRSTIC, 2009; FRIDMAN, 2014). The stability of

time-delay systems is studied through augmented functionals which take into account not only

the current state but also a function describing the evolution of the states in the previous interval,

i.e. an interval ranging from (t0−d) to t0, where d is the delay and t0 the current time. In

case saturation is present, it is often necessary to characterize a set of such functions for which

asymptotic stability still holds. In this work, we deal with time-delay systems in the discrete-time

domain, which benefits of being finite-dimensional as opposed to its continuous-time counterpart.

However, discrete-time delay systems contain their own challenging issues. We will go through

details about the available strategies in the literature and the proposed ones in the later specific

chapters dealing with time delays.

In addition to avoiding windup consequences, research effort on saturated systems is

of interest because considering limitations on the control signal can lead to the synthesis of more

economic control laws. Consider the case of overactuation, which is a situation present in many

systems. For example, satellites possess redundant actuators which are combined to generate

the forces that drive them to the desired position and orientation. To a given desired set of

forces, there might exist infinitely many combinations of the multiple actuators that generate the

aimed control effort. Some law must then be implemented to distribute effort among actuators

in an optimized manner. This is realized by another subsystem besides the controller and the

anti-windup, which is commonly called an allocation function or control allocator (DURHAM et

al., 2016; DUCARD, 2009). In the case that the multiple actuators are individually saturated,

the problem becomes even more evolved as not all virtual control inputs (as the forces acting

in the satellites) are achievable by the set of available actuators. Then, the study of allocation

functions along with anti-windup strategies is necessary to properly take the saturation condition

into account, which could degrade overall system performance and stability properties.

The objective of this introduction is not to provide a fully detailed review of the

area of control saturation, which can be found in the survey works of the area (GALEANI et
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al., 2009; TARBOURIECH; TURNER, 2009), but rather to give a flat overview of traditional

and modern aspects of saturation and also to connect the subject to the problems of time delays

and allocation functions. For more specific reviews on the literature of time delays, allocation

functions, and their joint problem with saturation, the reader is referred to the later chapters of

this text, as detailed in the thesis outline (Section 1.1).

The classes of systems considered throughout the thesis are mathematically specified

within each chapter. For the sake of simplicity of notation, repeated symbols in different chapters

do not represent the same variable, unless explicitly said so.

1.1 Thesis outline

This thesis is divided into three parts, as detailed below:

• Part I is composed of the first two chapters and is dedicated to presenting the general

introduction and organization of this thesis. Besides that, the main theoretical preliminaries

necessary to establish stability of input-saturated systems are reviewed in Chapter 2.

• Part II is composed of chapters 3-6 and is dedicated to time-delay systems. Chapter 3 serves

as the introductory chapter to time-delay systems and also reviews some preliminaries on

their stability concepts. Chapter 4 aims at discussing some of the classical strategies for

the control of linear input-delayed systems. Some parts of the chapter are loosely based on

the following articles:

– TORRICO, B. C.; FILHO, M. P. de A.; ALVES LIMA, T.; SANTOS, T. L.;

NOGUEIRA, F. G. New simple approach for enhanced rejection of unknown distur-

bances in LTI systems with input delay. ISA Transactions, 2019.

– TORRICO, B. C.; FILHO, M. P. de A.; ALVES LIMA, T.; FORTE, M. D. do N.; Sá,

R. C.; NOGUEIRA, F. G. Tuning of a dead-time compensator focusing on industrial

processes. ISA Transactions, v. 83, p. 189 – 198, 2018.

– ALVES LIMA, T.; FILHO, M. P. de A.; TORRICO, B. C.; FORTE, M. D. do N.;

PEREIRA, R. D. O.; NOGUEIRA, F. G. First-order Dead-time Compensation with

Feedforward Action. European Control Conference, 2019.

Chapters 5 and 6 then present the main contributions of Part II, where some problems

related to input saturation in time-delay systems are investigated and are based, respectively,

on the following articles:

– ALVES LIMA, T.; FILHO, M. P. de A.; TORRICO, B. C.; NOGUEIRA, F. G.;
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CORREIA, W. B. A practical solution for the control of time-delayed and delay-free

systems with saturating actuators. European Journal of Control, v. 51, p. 53 – 64,

2020.

– ALVES LIMA, T.; TARBOURIECH, S.; GOUAISBAUT, F.; F.; FILHO, M. P. de

A.; GARCÍA, P; TORRICO, B. C. NOGUEIRA, F. G. Analysis and experimental

application of a dead-time compensator for input saturated processes with output

time-varying delays. IET Control Theory Appl. 2021; 1–14.

• Part III is composed of the last chapter of this thesis and is dedicated to the subject of

control allocation. To ease the comprehension of the contributions in this part, some

introductory aspects about allocation functions are initially given in Chapter 7. Then, the

rest of the chapter presents a new strategy for the design of allocation functions in the

presence of saturating actuators, which is based on the following article:

– ALVES LIMA, T.; TARBOURIECH, S.; NOGUEIRA, F. G.; TORRICO, B. C.

Co-design of dynamic allocation functions and anti-windup, IEEE Control Systems

Letters, 2021.

The thesis then ends with general conclusions, whilst possible future works are enlisted. When-

ever relevant, detailed discussion about the main contributions is drawn by the end of each

chapter.
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2 THEORETICAL PRELIMINARIES

In this chapter, preliminary contents regarding stability are presented. Initially, the

concept of LMIs, which is a powerful tool for synthesis and analysis of robust control laws is

presented in Section 2.1. The main notions regarding Lyapunov theory and stability of systems

with saturating actuators are latter presented.

2.1 Linear Matrix Inequalities

A wide variety of control problems can be described in the format of LMIs. These are

matrix inequalities which have an affine relationship with a set of matrix variables. While most

of the earlier works on Lyapunov stability were formulated using algebraic Riccati equations,

the use of LMIs became popular in the 1990s due to the development of efficient interior-point

method algorithms (BOYD et al., 1994). LMIs soon became a powerful tool in robust control

synthesis in the presence of structured uncertainties (CHILALI; GAHINET, 1996), and later

in the presence of actuator saturation (WESTON; POSTLETHWAITE, 2000). There exist

many software packages which provide implementation and solution to LMIs by using convex

optimization, such as the Yalmip toolbox (LÖFBERG, 2004).

The main attractions for the use of LMIs are listed as (SKOGESTAD; POSTLETH-

WAITE, 2005)

• LMIs can be used to solve problems which involve several matrix variables.

• Their manipulation is flexible, thus a wide variety of problems can be posed as LMIs in a

very straightforward manner.

• Restrictions that cause traditional formulations to either fail or struggle to find a solution

can often be removed by using LMIs. Furthermore, LMIs can aid their extension to more

general scenarios.

• Multiple control objectives can be gathered into a single LMI.

Consider the following definition borrowed from Boyd et al. (1994).

Definition 2.1

A linear matrix inequality (LMI) is described by the following expression

F(x), F0 +
m

∑
i=1

xiFi � 0. (2.1)

Where
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• Fi = F>i ∈ Rnxn are real given symmetric matrices.

• x = [x1, ...,xm] ∈ Rm is the decision vector.

• The inequality � 0 denotes that F(x) is positive definite, i.e. all eigenvalues are

positive. Thus, u>F(x)u> 0 for all u ∈ Rn,u 6= 0. Non-strict LMIs are defined by

using the symbol �.

The LMI problem in Equation (2.1) is to find x such that F(x) holds. This is a

convex constraint on x, i.e., the set {x|F(x)� 0} is convex. Multiple LMIs F1(x)� 0,F2(x)�
0, ...,Fm(x)� 0, can be expressed as a single LMI of the form:

F(x) =


F1(x) · · · 0

... . . . ...

0 · · · Fm(x)

� 0, (2.2)

which is also a convex set. Convex optimization may be arranged into two main problems to

be solved under the LMI framework. The first one is called a feasibility problem and consists

of either finding any x such that F(x) � 0 holds or determining that the problem is infeasible.

The second is called an optimization problem (also called eigenvalue problem) and consists of

minimizing (or maximizing) some convex cost function of the unknown variable x subject to

LMI constraints as

min criterion(x) such that F(x)� 0. (2.3)

Standard tricks used in the manipulation of LMIs such as the Schur complement and the S-

procedure can be found in Boyd et al. (1994), Duan and Yu (2013).

2.2 Lyapunov Stability

This subsection aims at reviewing some fundamental concepts regarding stability.

There are different forms of stability, being input-output stability and stability of equilibrium

points the most used. The latter, which heavily is employed in this work, is characterized in the

sense of Lyapunov functionals. Consider the following autonomous dynamical system

ẋ = f (x), (2.4)

where x(t) is called the state variable and f (x) is a Lipschitz continuous map, which guarantees

existence and uniqueness of the solutions of (2.4). The equilibrium points x∗ of (2.4) are the
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solutions to f (x∗) = 0. For convenience, let us consider x∗ = 0. There is no loss of generality in

doing so because any equilibrium point of the autonomous system (2.4) can be shifted to the

origin via a change of variables. Now consider the following definition (KHALIL, 2002).

Definition 2.2

The equilibrium point x∗ = 0 of system (2.4) is

(i) Stable if, for each ε > 0, there exists δ (ε)> 0 such that

∥∥x(t0)
∥∥< δ (ε) =⇒

∥∥x(t)
∥∥< ε,∀t ≥ t0.

(ii) Asymptotically stable if it is stable and δ (ε) can be chosen such that

∥∥x(t0)
∥∥< δ (ε) =⇒ lim

t→∞
x(t) = 0.

(iii) Unstable if it is not stable.

Technically, from Definition 2.2, we can conclude that if all states starting in a

neighborhood nearby an equilibrium point remain nearby, then this equilibrium point is stable.

An asymptotically stable equilibrium point is a point for which the trajectories of states with

different initial conditions converge to the origin as time approaches infinity. The region of

attraction of an equilibrium point x∗ is the set of all initial conditions x0 for which x(x0, t)→ x∗

as t goes to infinity. Furthermore, an equilibrium point is said to be globally stable if its region

of attraction is the whole space, e.g. Rn (KHALIL, 2002).

Once we establish the notions of stability, it is necessary to find ways to determine

the stability of equilibrium points. In this sense, it is well known that such a task might be very

difficult (or even impossible) to realize in analytically manner. The celebrated Lyapunov theorem

is thus stated as follows (KHALIL, 2002).

Theorem 2.1

Let x∗ = 0 be an equilibrium point of (2.4) in a domain D ⊂ Rn around x∗ = 0. Let

V :D 7→ R be a continuously differentiable function such that

V(0) = 0 and V(x)> 0,∀x ∈ D−{0},

and

V̇(x)≤ 0,∀x ∈ D,
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then x∗ = 0 is stable. Moreover, if

V̇(x)< 0,∀x ∈ D−{0},

then x∗ = 0 is asymptotically stable.

Slightly modified conditions are used to establish global stability and are given in

the following theorem (KHALIL, 2002).

Theorem 2.2

Let x∗ = 0 be an equilibrium point of (2.4) and let V : Rn 7→ R be a continuously differen-

tiable function such that

V(0) = 0 and V(x)> 0,∀x 6= 0,

‖x‖→ ∞ =⇒ V(x)→ ∞,

V̇(x)< 0,∀x 6= 0,

then x∗ = 0 is said to be globally asymptotically stable.

In the global case, the extra necessary condition ‖x‖ → ∞ =⇒ V(x)→ ∞ means that V(x) is

radially unbounded. One can look at Khalil (2002) for the proofs of Theorems 2.1 and 2.2 to

see that these conditions are sufficient to establish stability since f (x) in (2.4) is, by definition, a

Lipschitz continuous map.

In the discrete-time domain, the time t dependence is usually replaced by the sample

k. Consider the discrete-time dynamical system

x(k+1) = f (x(k)).

Similarly to the continuous-time case, the origin of the above system is locally asymptotically

stable if there exists a positive definite function V(x(k)) such that

∆V(x(k)) := V(x(k+1))−V(x(k))< 0,∀x(k) ∈ D−{0},

where D is a region of the state-space. Furthermore, if D is the whole state-space and V(x(k)) is

radially unbounded, the system is globally asymptotically stable.
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2.3 Absolute Stability of Lure Systems

Many practical systems can be represented by the interconnection between a linear

system and a memoryless nonlinearity. Consider the unforced system given by
ẋ(t) = Ax(t)+Bu(t)

y(t) = Cx(t)+Du(t)

u(t) = ψ(t,y)

(2.5)

where x ∈ Rn, u and y ∈ Rm, the pairs (A,B) and (A,C) are controllable and observable,

respectively, and ψ(·) is a memoryless, possibly time-varying, nonlinearity. System (2.5) is

represented in Figure 1, where the transfer function G(s) = C(sI−A)−1B+D is square and

proper.

Figure 1 – Feedback interconnection between linear system and memoryless nonlinearity.

ψ(·)

G(s)

yu

Source: The author.

The nonlinearity ψ(·) is assumed to be piecewise continuos in t, locally Lipschitz in

y, and is required to satisfy a sector condition as follows (TARBOURIECH et al., 2011).

Definition 2.3

A memoryless nonlinearity ψ(t,y) is said to satisfy a sector condition if

[ψ(t,y)−Ωminy]>[ψ(t,y)−Ωmaxy]≤ 0, ∀t ≥ 0, ∀y ∈ D ⊆ Rm (2.6)

for real matrices Ωmin and Ωmax where Ω = Ωmax−Ωmin is symmetric positive definite

and the origin is contained in the subset D. Furthermore, if D = Rm, then the nonlinearity

ψ(t,y) globally satisties the sector condition.

When ψ(t,y) satisfies (2.6) for D ⊆ Rm, the nonlinearity ψ(t,y) is said to belong

locally to sector (Ωmin,Ωmax). If D = Rm, the nonlinearity ψ(t,y) is said to belong globally to

sector (Ωmin,Ωmax). Figure 2 illustrates these two cases.
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Figure 2 – Sector conditions.

(a) Global case (with Ωmin(i,i) = 0). (b) Local case.

Source: The author.

The problem of stability of system (2.5) is often called the Lure problem in literature.

From definition 2.3 the absolute stability of system (2.5) can be defined (KHALIL, 2002).

Definition 2.4

Consider system (2.5), where the nonlinearity ψ(·) satisfies a sector condition as presented

in Definition 2.3. Then, (2.5) is absolutely stable if the origin is globally uniformly

asymptotically stable for any nonlinearity in the given sector. It is absolutely stable with a

finite domain if the origin is uniformly asymptotically stable.

2.4 Sector Nonlinearity Models

Systems with saturating actuators are on the boundary between linearity and non-

linearity. Even if an open-loop process is linear, the saturation of the actuator will turn the

closed loop into a nonlinear system. The presence of the saturation nonlinearity can induce

some unexpected behaviour to closed-loop systems. Thus, it is important to find a model for the

saturation in order to propose strategies to avoid its undesirable effects, or at least analyze the

stability of the closed-loop system under its presence. There are different ways to model the

saturation nonlinearity. In this work, we follow the sector nonlinearity model approach, which

allows solving the stability analysis problem of a system with saturating actuators by fitting it

into the general framework of stability of lure systems, i.e. a linear system interconnected with

a decentralized memoryless nonlinearity. To ease comprehension, the modelling, as well as
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the sector conditions, are presented for the special case of Single-Input Single-Output (SISO)

systems, which is the case approached in Part II and represents the biggest part of this thesis.

Extensions for the Multiple-Input Multiple-Output (MIMO) case are only needed for the last

chapter when dealing with the allocation problem and therefore will be presented therein.

Consider τsat as the following linear system subject to input saturation

τsat ,


ẋ(t) = Ax(t)+Bu(t) (2.7)

u(t) = sat(v(t)) (2.8)

v(t) = Kx(t) (2.9)

where x(t) ∈Rn is the state vector, v(t), u(t) ∈R are the computed control effort and the system

saturating input, respectively. Matrices A, B, and K are of appropriate dimensions. Let us

formally define the saturation nonlinearity for SISO systems as

sat(v) =


umax if v> umax

v if umin ≤ v≤ umax

−umin if v<−umin

(2.10)

where umin and umax define lower and upper bounds on the control signal, respectively. Such

function is graphically illustrated in Figure 3a.

Figure 3 – Nonlinearities.

(a) The saturation function. (b) The deadzone function.

Source: The author.

Note that τsat clearly presents a connection between a linear system and the sat(·)
nonlinearity. However, such representation might not be interesting since the linear system (2.7)
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may be unstable (due to system matrix A). In order to overcome this problem, the following

deadzone nonlinearity is defined

ϕ(v(t)) = v(t)− sat(v(t)), (2.11)

which is graphically shown in Figure 3b. System τsat can then be equivalently rewritten as

τϕ ,

ẋ(t) = (A+BK)x(t)−Bϕ(v(k)), (2.12)

v(t) = Kx(t). (2.13)

Note that τϕ also clearly presents a connection between a linear system and the memoryless

nonlinearity ϕ(·). However, in this case, the linear system (2.12) is stable if (A+BK) is Hurwitz,

that is, if v(t) = Kx(t) is a stabilizing control law. Thus, stability can be conveniently analyzed

under Lure’s framework. The following two sector conditions are employed throughout this

work.

2.4.1 Classical sector condition

Consider the following set

L (v,umin,umax) = {v ∈ R;−umin ≤ v≤umax}, (2.14)

where umin =
umin

1−Λ
and umax =

umax

1−Λ
, 0 ≤ Λ < 1 ∈ R. We state the following lemma (TAR-

BOURIECH et al., 2011; TURNER; POSTLETHWAITE, 2007).

Lemma 2.1

If v belongs to set L (v,umin,umax), then the deadzone nonlinearity ϕ(v) satisfies the

following inequality, which is true for any positive definite (one-by-one) matrix W ∈ R

ϕ
>(v)W[ϕ(v)−Λv]≤ 0. (2.15)

Proof. The following holds for 0≤ Λ< 1.

0≤ v≤umax =⇒ ϕ(v)≥ 0 and ϕ(v)≤ Λv

−umin ≤ v≤ 0 =⇒ ϕ(v)≤ 0 and ϕ(v)≥ Λv

Thus, ϕ>(v)W[ϕ(v)−Λv]≤ 0 provided that W> 0. In this case, L (v,umin,umax)⊂
R and ϕ(v) is said to belong locally to the sector (0,Λ).

For the global case, the following lemma can be stated (TARBOURIECH et al.,

2011; TURNER; POSTLETHWAITE, 2007).
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Lemma 2.2

For all v ∈ R, the deadzone nonlinearity ϕ(v) satisfies the following inequality, which is

true for any positive definite (one-by-one) matrix W ∈ R

ϕ
>(v)W[ϕ(v)− v]≤ 0. (2.16)

Proof. Following statements hold.

v≥ 0 =⇒ ϕ(v)≥ 0 and ϕ(v)≤ v

v≤ 0 =⇒ ϕ(v)≤ 0 and ϕ(v)≥ v

Thus, ϕ>(v)W[ϕ(v)− v]≤ 0 provided that W> 0. In this case, ϕ(v) is said to belong globally

to the sector (0,1).

Figure 4 illustrates the ϕ(v) nonlinearity in the global and local cases. Note that

when Λ = 0, umin = umin, umax = umax and L (v,umin,umax) corresponds to the region of linearity

of the system, that is the region for which ϕ(v) = v. As Λ increases, the set L (v,umin,umax)

increases, and when Λ→ 1, L (v,umin,umax) tends to cover the whole space.

Figure 4 – Deadzone nonlinearity in sectors.

(a) Global sector. (b) Local sector (0≤ Λ< 1).

Source: The author.

2.4.2 Generalized sector condition

The classical sector condition presented in subsection 2.4.1 not only applies to the

deadzone nonlinearity, but also for a wider family of nonlinearities. This is a hint that it may
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yield conservative results. In order to solve this problem, the generalized sector condition, which

applies specifically for deadzone nonlinearities (as highlight in the last paragraph of page 42

in Tarbouriech et al. (2011)), was introduced in Gomes da Silva Jr. and Tarbouriech (2005).

Therefore, conditions derived with this sector condition tend to be less conservative and are useful

in order to enlarge estimations1 on the region of attraction of closed-loop saturated systems.

Consider the following set (GOMES DA SILVA JR.; TARBOURIECH, 2005; TARBOURIECH

et al., 2011)

L (v−θ ,umin,umax) = {v ∈ R;θ ∈ R;−umin ≤ v−θ ≤ umax}. (2.17)

We then state the following result (GOMES DA SILVA JR.; TARBOURIECH, 2005; TAR-

BOURIECH et al., 2011).

Lemma 2.3

If v and θ belong to set L (v−θ ,umin,umax), then the deadzone nonlinearity ϕ(v) satisfies

the following inequality, which is true for any positive definite (one-by-one) matrix W ∈R

ϕ
>(v)W[ϕ(v)−θ ]≤ 0. (2.18)

Proof. Assume that v and θ are elements of L (v− θ ,umin,umax). Then, it follows that v−
umax−θ ≤ 0 and v+umin−θ ≥ 0. Consider now the three cases below.

• Case 1: v > umax. It follows that ϕ(v) = v− umax > 0. Also, ϕ>(v)W[ϕ(v)− θ ] =

ϕ>(v)W[v−umax−θ ]< 0 provided that W> 0.

• Case 2: −umin ≤ v≤−umax. In this situation, ϕ(v) = 0 and ϕ>(v)W[ϕ(v)−θ ] = 0.

• Case 3: v < −umin. It follows that ϕ(v) = umin + v < 0. Also, ϕ>(v)W[ϕ(v)− θ ] =

ϕ>(v)W[v+umin−θ ]< 0 provided that W> 0.

Thus, if v and θ are elements of L (v−θ ,umin,umax), we can conclude that (2.18) holds.

Note that (2.15) is a special case of (2.18) when θ = Λv. Consider, for example, the

case when the control law is given by v = Kx. The free term θ helps to yield less conservative

results in the estimation of regions of guaranteed stability since one can define, for example,

θ = Gx, where G is an auxiliary variable allowing the set L (v−θ ,umin,umax) in (2.17) to grow

while avoiding nonlinear terms when developing LMIs. This allows maximizing estimates on the
1 Sometimes, in this text, we call such estimations on the region of attraction a region of asymptotic stability

(RAS).
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region of attraction. The derivation with the classical condition, however, would include the term

ΛKx, which impairs the gathering of convex conditions for the design of K unless Λ is fixed,

thus prejudicing the elaboration of more efficient optimization problems for the maximization of

L (v,umin,umax) in (2.14).

Remark 2.1: About the sector conditions

Both the classical and the generalized sector conditions were presented for the case where

the deadzone nonlinearity is defined by relation (2.11). Such definition was applied, for

example, in Turner and Postlethwaite (2007) and Gomes da Silva Jr. and Tarbouriech

(2005) and is used for Chapters 5 and 6 in this thesis. Alternatively, some references

define the deadzone nonlinearity as

ϕ(v(t)) = sat(v(t))− v(t). (2.19)

This is the case, for example, in Tarbouriech et al. (2011), and is the identity that will be

used in Chapter 7 of this thesis. In this situation, conditions (2.15) and (2.18) need to be

appropriately changed to

ϕ
>(v)W[ϕ(v)+Λv]≤ 0, (2.20)

and

ϕ
>(v)W[ϕ(v)+θ ]≤ 0, (2.21)

respectively. The definitions of the sets L (v,umin,umax) in (2.14) and L (v−θ ,umin,umax)

in (2.17) remain, however, unaltered. See Tarbouriech et al. (2011) for the proofs in this

case. It is important to remark that there is no difference in terms of conservatism in using

either of the two definitions for the deadzone.

2.5 Application of sector conditions to stability analysis

In order to analyse the stability of linear systems interconnected with a isolated

nonlinearity, one can use a combination of the Lyapunov theorem and some sector condition.

Particularly, the quadratic Lyapunov function V (x) = x>Px, with P in S+n , is often used to this

end. We will not go through all the details for the gathering of convex conditions for the stability

analysis of system τϕ , given by (2.12)-(2.13), since the LMIs for this type of analysis can be

readily found in Tarbouriech et al. (2011), among others. However, it is interesting to comment
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that the proof is based on the application of the following inequality

V̇(x)−ϕ
>(v)W[ϕ(v)−θ ]< 0,

with θ = Gx, which implies that V̇(x)< 0 for any x belonging to the ellipsoidal region ε = {x ∈
Rn : xPx ≤ 1} as longs as we use a second inequality to ensure inclusion of ε in the resulting

set L (ū) = {x ∈ Rn; |Kx−Gx| ≤u}, where u is a symmetric saturation level. Applications of

the generalized sector condition with other choices for θ can also be found in the literature, as

θ = Kx−Gx or θ = Kx+Gx.



Part II

Time-delay systems
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3 INTRODUCTION TO TIME DELAYS

Time delays appear in a wide variety of real processes from biology to economics

and communication systems. The source of delay can be related to many causes such as mass

or energy transportation in the process. For instance, in the case of economics, time delay

looks quite natural since there exist time intervals between information acquisition, decision

making and their effects in the market. Time delay is a rather challenging issue in the process

control area because the transport delay can lead the system to undesired oscillatory closed-loop

response or even instability. According to Fridman (2014), the stability analysis and the robust

control of time-delay systems are, therefore, of theoretical and practical importance. Despite

being historically related to degrading effects in the closed loop and imposing difficulties for the

control engineer, some techniques have also purposefully introduced delays in control laws to

generate a stabilizing effect or improve other aspects of the closed loop. As an illustration of

this, one can look, for instance, at Example 5.3.5 presented on page 177 of Briat (2015).

Stability and control of systems with constant delays have received most of the

attention in the last decades, whereas the problem of time-varying delays has gained more

importance in recent years due to the rise of Networked Control Systems (NCSs) (ZHANG et

al., 2017; GUPTA; CHOW, 2010). Time-varying delays can be more harmful to control systems

than constant ones since the rate of variation of the delay has a non-negligible effect on stability.

For illustration, consider the example taken from Louisell (2001), re-enunciated on page 178 of

Briat (2015). The example demonstrates that the time-delay system described by

ẋ =−x(t)−1.5x(t−d)

is exponentially stable for any constant delay d ∈ [0,d), where d= 2√
5
arccos

(
−2
3

)
≈ 2.05765.

Nonetheless, the example also demonstrates that for a certain class of sawtooth time-varying

delays d(t), the system is stable for d(t)< log(5)≈ 1.6094 <d, which shows that the system

can become unstable even though the time-varying delay takes values inside the interval for

which stability is assured in the case of constant delays. This situation is commonly known in

the literature as the quenching phenomenon (BRIAT, 2015; PAPACHRISTODOULOU et al.,

2007). Moreover, another difficulty when dealing with time-varying delays is that, due to the

fact that the delay can change at each sampling time, the use of classical analysis tools such as

state augmentation (in the discrete-time case) becomes involved (FRIDMAN, 2014).

Time-varying delays naturally appear in networked control systems since they are dis-



39

tributed systems in which data is transmitted between actuators, sensors, and controllers through

communication networks, often relying on protocols such as Transmission Control Protocol

(TCP). This research area is identified as a key for the future of control systems (LAMNABHI-

LAGARRIGUE et al., 2017; HESPANHA et al., 2007) due to its diverse application; networks of

mobile vehicles, smart grids and the healthcare industry are a few examples. A general structure

of a networked output-feedback control system is depicted in Figure 5, where y(k) is the process

measured output, v(k) is the decoded computed control signal and dk is a time-varying delay due

to the communication network.

Figure 5 – General networked output-feedback control system.

Source: The author.

Time delays affect dynamical systems in different manners, thus classification ac-

cording to the type of delay is necessary. Three popular sub-classes which are widely recovered

in the literature are those of systems with output, input, and state delays. Remarkably, the first

two are, in many situations, treated as a unique problem, mainly when the delay is constant and

the system is modelled using frequency-domain representations as in Normey-Rico and Camacho

(2007). This might not be interesting, however, when distinguishing the problem of time-varying

measurement delays from the case of input delays in time-domain models. In a theoretical point

of view, the case of state delays has gained a lot of attention in recent years due to the application

of Lyapunov-Krasoviskii methods for its stability analysis and also stabilization, mainly with

feedback gain techniques (SEURET; GOUAISBAUT, 2015; ZHANG et al., 2017; SEURET;

GOUAISBAUT, 2018; LIU et al., 2017; HE et al., 2008; DE SOUZA et al., 2019; CASTRO et

al., 2020). It is worth to remind that systems with input or output delays become state-delayed

systems in closed loop, thus justifying the attention given to this last case in the literature.

In the next sections, we will go through some important aspects of time-delay
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systems, starting by their solution concept and finishing with some remarks about their stability

analysis in the presence of saturating inputs. We then end by giving out some clues on the content

of the subsequent chapters of Part II.

3.1 Systems with input and output delays

Input and output delays normally occur due to actuator and sensor dynamics. A

discrete-time system with constant input delay can be represented by the following state-space

model 
x(k+1) = Ax(k)+Bu(k−d),

y(k) = Cx(k),

u(k) = φ(k), k ∈ [−d,−1],

(3.1)

where d > 0 is the delay, x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rq is the output, and

matrices A, B, C are of appropriate dimensions. Furthermore, x(0) and φ(k) define the initial

condition. Similarly, in case of measurement (output) delays, the following model takes place
x(k+1) = Ax(k)+Bu(k),

y(k) = Cx(k−d).
(3.2)

The solution of (3.1) can easily be found by recursion and is given by
x(k) = Akx(0)+

k−1
∑
j=0

Ak− j−1Bu( j−d),

y(k) = Cx(k) = CAkx(0)+C

(
k−1
∑
j=0

Ak− j−1Bu( j−d)

)
.

(3.3)

The solution to (3.2) can be found likewise. From (3.3) it becomes clear that the solution depends

on the initial condition x(0) and φ(k). One interesting fact about (3.1) and (3.2) is that they

are input to output equivalent, meaning that they admit the same frequency domain model.

Application of the z-transform to both of them lead to the representation

Y (z) = G(z)z−dU(z), (3.4)

where G(z) = C(zI−A)−1 B represents the delay-free part of the plant, and U(z), Y (z) are the

z-transform of the input and output signals, respectively. This frequency-domain representation

has been widely used by control engineers for the design of control systems. It is important to



41

remark that, as opposed to their continuous-time counterpart, (3.4) is of finite dimension, as there

are a finite number of roots for their characteristic polynomial. We will not go into details over

that since the contributions reported in the time delay part of this thesis deal with discrete-time

systems.

3.2 Discrete-time state-delayed systems

Consider the linear discrete-time state-delayed system
x(k+1) = Ax(k)+Adx(k−dM), k ∈ Z+, x(k) ∈ Rn,

x(k) = φ(k), k ∈ [−dM,0] ,
(3.5)

where A, Ad are matrices of appropriate dimension, dM > 0 is a constant delay and φ(k)

is the initial condition at the interval [−dM,0]. This type of system emerges when apply-

ing some closed-loop control strategy to systems (3.1) and (3.2). However, it can also nat-

urally appear in open-loop processes. The fundamental distinction between (3.5) and non-

delayed difference equations is that the state of 3.5 is given by the augmented vector x(k) =[
x(k)> x(k−1)> · · · x(k−dM)>

]>
instead of simply x(k). The solution of (3.5) can easily

be found by recursion and is given by

x(k) = Akx(0)+
k−1

∑
j=0

Ak− j−1Adx( j−dM) (3.6)

which clearly depends on the initial value sequence φ(k), k ∈ [−dM,0]. One option to analyse

stability of (3.5) is to rewrite it as the following augmented delay-free system

x(k+1) =Ax(k), k ∈ Z+, x(k) ∈ R(dM+1)n, (3.7)

A=



A

(dM−1) times︷ ︸︸ ︷
0 · · · 0 Ad

I 0 · · · 0 0

0 I . . . ...
...

... . . . . . . 0 0

0 · · · 0 I 0


, (3.8)

and use the conventional quadratic Lyapunov function for delay-free systems V (x) =x> Px, with

P in S+
(dM+1)n. This technique, however, may not be numerically robust to solve in case the order
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of augmented system (3.7) is high. Other inconvenience appears when the delay is time-varying,

that is, instead of the constant dM > 0 delay in (3.5), we have the time-varying delay dk such that

0≤ dk ≤ dM. In this case, the augmented system becomes the switched one

x(k+1) =A( j) x(k), k ∈ Z+, x(k) ∈ R(dM+1)n, (3.9)

where j ∈ J = {0,1, . . . ,dM} and the value of the delay at each sampling time defines the matrix

A( j) with

A(0)
=



A+Ad 0 · · · 0 0

I 0 · · · 0 0

0 I . . . ...
...

... . . . . . . 0 0

0 · · · 0 I 0


, A(1)

=



A Ad · · · 0 0

I 0 · · · 0 0

0 I . . . ...
...

... . . . . . . 0 0

0 · · · 0 I 0


, · · · , A(dM)

=



A 0 · · · 0 Ad

I 0 · · · 0 0

0 I . . . ...
...

... . . . . . . 0 0

0 · · · 0 I 0


.

Although exploring the stability of systems with time-varying delays using the equivalent

switched system is a nice idea which has attracted the attention in some important works (HETEL

et al., 2008; SUN et al., 2008; ZHANG; YU, 2009), in this thesis we are more interested in

applying so-called delay-dependent stability conditions through a special class of Lyapunov

functionals, as contextualized in the next section.

3.3 Delay-Dependent Stability

In this section, bases for the stability analysis of discrete-time systems with time-

varying delays are presented. As explained in the introduction, the motivation for the study of

stability in the case of time-varying delays lies on the recent advance of networked controlled

systems. In general, stability of time-delayed systems can be tackled by using either delay-

independent or delay-dependent conditions. The later case (in which bounds on the delay are

explicitly considered) is preferred in this work. For this, initially let us consider the following

discrete-time linear system with time-varying delay dk
x(k+1) = Ax(k)+Adx(k−dk), k ∈ Z+, dk ∈ N,0≤ dk ≤ dM.

x(k) = φ(k), k ∈ [−dM,0]
(3.10)

where φ(k) is the initial condition at the interval [−dM,0]. For simplicity, denote x(k), x(k+ j),

j =−dM,−dM +1, . . . ,0, and dk , d(k). In the Lyapunov-Krasoviskii framework, system (6.22)
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is asymptotically stable if, for all k ∈ Z+ = {0,1,2, . . .}, there exists a functional

Vk ,V (k,x(k)) : Z+×
dM+1 times︷ ︸︸ ︷

Rn× . . .×Rn→ R+ (3.11)

such that, for all x(k) 6= 0, Vk > 0 and its forward difference is negative, i.e., ∆Vk =Vk+1−Vk < 0.

Basically, that implies that the problem of providing stability analysis for systems with delayed

states can be solved by choosing an appropriate functional Vk. These are referred as Lyapunov-

Krasovskii functionals and their choice and subsequent manipulation lead to sufficient conditions

that can be more or less conservative in terms of bounds on the delay for which stability

is assured. When dealing with stability of systems with time-varying delays, all Lyapunov-

Krasovskii functionals (LKFs) employ summation terms that need to be upper bounded in order

to derive tractable LMI conditions. Due to this, careful deliberation has been raised by the time

delay research community in the last decades concerning the search and application of less

conservative summation inequalities in LKFs. This is an active field of research, with many

works published in the last ten years. For more details see, for example, the works of Zhu and

Yang (2008), Zhang et al. (2008), Shao and Han (2011), Liu and Zhang (2012), Seuret et al.

(2015). More discussion on this matter will be provided within Chapter 6, where we apply

delay-dependent conditions for the stability analysis of a predictor controller structure in the

presence of output time-varying delays and saturating input.

3.3.1 Sector conditions and stability of time-delayed systems

Consider now a modified version of the delayed system (3.10) interconnected with

the deadzone nonlinearity ϕ(v(k)), v = Kx.
x(k+1) = Ax(k)+Adx(k−dk)+Bϕ(v(k)), k ∈ Z+, dk ∈ N,0≤ dk ≤ dM.

x(k) = φ(k), k ∈ [−dM,0]
(3.12)

Let Vk : Rn× . . .×Rn︸ ︷︷ ︸
dM+1 times

→ R+ be a Lyapunov-Krasovskii functional, and ∆Vk its forward differ-

ence along system trajectories. By using Lemma 2.3 with v = Kx and θ = Gx, where G is a free

matrix, and applying the S-procedure (BOYD et al., 1994), we find out that

∆Vk−2ϕ
>(v(k))W

[
ϕ(v(k))−Gx(k)

]
< 0

implies that ∆Vk < 0, ∀x(k)∈L (ū) = {x∈Rn; |Kx−Gx| ≤u}, whereu is a symmetric saturation

level. In this case, condition from Lemma 2.3 is locally satisfied. If we make G = K, then
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condition (2.18) holds for ∀x(k) ∈ Rn, thus Lemma 2.3 is globally satisfied. Since the state of

(3.12) is given by the augmented vector x(k) =
[

x(k)> x(k−1)> · · · x(k−dM)>
]>

, and no

longer by simply x(k)> as in the delay-free case,it is necessary to estimate yet another setD(x(k))
such that for all x(k) ∈ D(x(k)), we guarantee that x(k) ∈L (ū), so that the sector condition

can be effectively validated for the set of initial conditions of the delayed system. In order to

guarantee regional asymptotic stability, the set of initial conditions must be contained within

the region of attraction of the system. As the exact characterization of the region of attraction is

almost impossible to accomplish, optimization procedures must take place in order to maximize

the estimated sets. There exist different strategies in the literature of constrained time-delay

systems to characterize such a set, which usually consists in using the LKF to find a set of norm

bounded functions of the initial condition. It is important to remark that other approaches for

the consideration of the saturation condition can be used instead of the sector conditions, such

as the polytopic model approach (TARBOURIECH et al., 2011), which we do not consider in

this thesis. More details about the definition of the set initial conditions of a input-saturated

state-delayed system with time-varying delays will be given within Chapter 6 of this thesis,

where we will also characterize a set of functions of an input disturbance affecting the system

for which stability is mathematically assured despite the presence of the saturating input and

time-varying delays.

3.4 About the next chapters

For the sake of convenience, we will shortly refresh the reader’s mind with a brief

description of the upcoming chapters in the time delay part of this thesis:

• Chapter 4 provides an overview of some common control strategies for the control of input

and output time-delay systems, with focus on predictive strategies.

• Chapter 5 presents a control plus anti-windup strategy that is suitable to deal in a unified

way with both delay-free and delayed systems. Both the linear controller and the anti-

windup are based on the model of the plant.

• Chapter 6 then addresses robust stability analysis of a simplified dead-time compensator,

which is a variant of the Filtered Smith Predictor (FSP), for the case of systems with both

output time-varying delays and saturating inputs. Some novelties regarding the definition

of the region of attraction for this type of system are presented.
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4 CONTROL STRATEGIES

In this chapter, we review some of the strategies that have historically been applied

to the control of input delayed systems. Initially, we explain the paradigm of predictor strategies

in the control of time delay systems. Then we briefly go through the celebrated Smith Predictor

(SP). Later we contextualize what are the so-called Dead-time Compensators (DTCs) and review

the Simplified Dead-time Compensator (SDTC) from Torrico et al. (2018). Much of the basic

content regarding the predictor idea is inspired by other thesis dealing with the subject (SANZ,

2018; PRUDÊNCIO DE ALMEIDA FILHO, 2020). Even though Smith’s idea was originally

published in the Laplace domain for continuous-time systems, we will write the equivalent ideas

for the case of discrete-time systems. In case the reader is already comfortable with the subject

of prediction in time delay systems, there is no harm in going straight to section 4.4, where the

base controller used in chapters 5 and 6 of this thesis is reviewed.

4.1 The predictor paradigm

Consider the control loop depicted in Figure 6, where C(z) is the feedback controller

and P(z) = G(z)z−d is the delayed plant. The input-output transfer functions from the reference

r and the disturbance q are given by

Hry =
G(z)C(z)z−d

1+G(z)C(z)z−d , (4.1)

Hqy =
G(z)z−d

1+G(z)C(z)z−d . (4.2)

As it can be observed, the delay appears in the characteristic equations of transfer functions

(4.1)-(4.2). Bad behaviour of the closed loop such as oscillations in the output or even instability

can occur, since the delay reduces the system phase margin in this situation. Consider now

the ideal closed loop scheme in Figure 7. This implementation is unfeasible since we do not

have access to measurements of the delay-free output ȳ. Such ideal feedback would yield the

following input-output transfer functions

Hry =
G(z)C(z)z−d

1+G(z)C(z)
, (4.3)

Hqy =
G(z)z−d

1+G(z)C(z)
. (4.4)
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Figure 6 – Generic control structure for discrete time-delay system.
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Figure 7 – Ideal control loop for discrete time-delay system (unfeasible).
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One great advantage in this situation is that since the delay is eliminated from the feedback loop,

it vanishes from the characteristic equations of (4.3)-(4.4). Thus, any appropriate control strategy

for the delay-free plant G(z) could be applied. The idea of predictive controllers for time-delay

systems was born from the paradigm of estimating, somehow, the signal ȳ(z) = y(z)zd , which

corresponds to the output of the delay-free plant, in an attempt to obtain the same characteristics

of the ideal feedback loop from Figure 7. In the case of state-space representation (3.1) this

would be equivalent to estimating the value of y(k+d). Suppose now that now that system (3.1)

is affected by disturbances such the state equation is now written as:

x(k+1) = Ax(k)+Bu(k−d)+Bqq(k), (4.5)

where q(k) is the disturbance signal. From the solution of (4.5), the exact prediction for
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y(k+d) = Cx(k+d) can be computed with

y(k+d) = CAdx(k)+C

d−1

∑
j=0

Ad− j−1Bu(k−d + j)+
d−1

∑
j=0

Ad− j−1Bq(k+ j)

 . (4.6)

Nonetheless, implementation of this equation is also unfeasible since it implies knowledge of

the values of q in the interval [k,k+d−1], that is, it requires knowledge of future values of the

disturbance. This is unthinkable in almost all real practical situations. A simplified version of

(4.6), in which the terms due to the disturbance q(k) are disregarded, takes place in the famous

Artstein’s predictor1 strategy. Such simplification, however, leads to the inevitable existence of

prediction errors. The development of strategies that envisage the minimization of such an error,

and therefore an improvement of the prediction of x(k+d), has been an active field of research.

See, for example, the works of Castillo and García (2021), Sanz et al. (2016), Léchappé et al.

(2015), dealing with the continuous-time counterpart of this problem.

4.2 The Smith Predictor

One of the most well-known strategies for the control of systems with inputs and

output delays is the seminal Smith Predictor (SP). Smith’s idea was introduced prior to Arstein’s

predictor, in Smith (1957), and was conceived in the frequency domain. The idea consists of

eliminating the effect of the delay from the feedback loop by means of employing a model

Pn = Gnz−dn of the system to the feedback path. Henceforth, any strategy for delay-free systems

could be efficiently applied. The structure of the Smith predictor is shown in Figure 8. Block

diagram algebra leads to the following input-output transfer functions in the nominal case2

(P = Pn):

Hry =
Gn(z)C∗(z)z−d

1+Gn(z)C∗(z)
, (4.7)

Hqy =
Gn(z)z−d

1+Gn(z)C∗(z)
. (4.8)

As it can be seen from (4.7)-(4.8), the delay is successfully eliminated from the characteristic

equation in case the model perfectly matches the plant. Therefore, under this circumstance,
1 Although Artstein’s original work considered the continuous counterpart of (4.5), we herein present the discrete

version to keep consistency with the discrete time formulation in the thesis.
2 The expression nominal case refers to a perfect modelling of the plant, i.e., P = Pn.
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the primary controller C∗(z) can be conceived using any design technique that applies to the

delay-free plant G(z), as was the case for the ideal control loop of Figure 7. Interestingly, Smith’s

visionary idea made use of the Laplace transform for continuous-time systems and could not

be implemented with the tools available at the epoch. Only much later, with the advent of

digital computers, it became possible to implement the strategy. Herein we have presented the

discrete-time (z-transform) equivalent of his ideas.

Figure 8 – Smith Predictor conceptual structure. Pn =Gnz−dn stands for the plant nominal model.
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4.3 Dead-time Compensators

One main drawback of the Smith Predictor is its inability to deal with open-loop

unstable plants. This is due to the poles of the process model appearing in the disturbance

rejection transfer function. Different solutions to overcome this limitation have been proposed

over time, with special attention given to the Filtered Smith Predictor (FSP) presented in Normey-

Rico et al. (1997), which solved this problem by means of the introduction of a so-called

robustness filter to the path of the signal ep in Figure 8 that is used to eliminate the unstable

and/or integrative poles of the process model from the disturbance rejection response. Many

other variations of the SP and the FSP have been proposed over time, which now form a family

of predictive control strategies commonly known as Dead-time Compensators (DTCs) due to
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their ability to compensate3 the dead time4 when the process model Pn(z) perfectly matches that

of the real process P(z).

4.3.1 Frequency domain robust stability condition

Since all process models possess uncertainties, it important to use some condition to

establish the robust stability of predictive structures. In the case of the traditional DTCs applied

to linear systems, a widely used analysis tool is the frequency domain robust stability condition

from Morari and Zafiriou (1989) briefly reviewed in this subsection. Consider again the closed

loop in Figure 6. The SISO plant P(z) can be written either as

P(z) = Pn(z)+∆P(z),

or

P(z) = Pn(z)
(
1+δP(z)

)
,

where Pn(z) is the nominal process model, ∆P(z) and δP(z) are the addictive and multiplicative

modelling errors, respectively. Morari and Zafiriou (1989) uses the Nyquist criterion to establish

the following robust condition in case of addictive uncertainties (here translated to the discrete-

time case)

|Ir(ω)|z=e jωTs > |∆P(z)|z=e jωTs ,∀ω such that 0< ω < π/Ts, (4.9)

where Ir(ω) = |1+C(z)Pn(z)|
|C(z)| and Ts is the sampling time. In case of multiplicative uncertainty, the

condition can be equivalently redefined as

|Ir(ω)|z=e jωTs > |δP(z)|z=e jωTs ,∀ω such that 0< ω < π/Ts, (4.10)

where Ir(ω) = |1+C(z)Pn(z)|
|C(z)Pn(z)| . The stability of the closed loop in the presence of modelling

uncertainties is then guaranteed if either the robust condition (4.9) or (4.10) is satisfied. These

conditions can be graphically verified in a nice manner in order to compare the robustness of

different control strategies.
3 Compensate in this context means to eliminate the delay influence from the feedback loop.
4 Dead time is another common expression to designate time delays. From now on we will use both interchange-

ably.
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Remark 4.1: On the robustness of linear DTCs

By means of block diagram algebra, all DTC strategies can be rewritten as Figure 6 where

C is actually a combination of the primary controller C∗ and the predictor components.

For example, in the case of the Smith predictor (section 4.2), one would use the relation

C(z) = C∗(z)
1+C∗(Gn(z)−Pn(z))

to obtain valid robust stability conditions through substitution of

Ir(ω) in (4.9) and (4.10) by Ir(ω) = |1+C∗(z)Gn(z)|
|C∗(z)| and Ir(ω) = |1+C∗(z)Gn(z)|

|C∗(z)Gn(z)| , respectively.

4.4 The Simplified Dead-time Compensator

This section presents a review of the Simplified DTC (SDTC) strategy from Torrico

et al. (2018), which is the base controller used for chapters 5 and 6 of this thesis. The controller

scheme is presented first, followed by the tuning procedure for set-point tracking, robustness

and disturbance rejection. Finally, the section is closed with discussion about the controller

implementation structure and its usefulness dealing with delayed systems.

4.4.1 Conceptual scheme

The SDTC conceptual scheme is depicted in Fig. 9, where Pn(z) = Gn(z)z−dn is the

nominal process, with Gn(z) and dn being the fast model and the nominal dead time, respectively.

The block P(z) = G(z)z−d represents the real process.

The input-output transfer functions for the nominal case (Pn(z) = P(z)) and the

robust stability condition are given by

Hry(z) = Pn(z)H(z)F0, (4.11)

Hqy(z) = Pn(z)Td(z), (4.12)

Hnu(z) =−Pn(z)H(z)Fr(z), (4.13)

Ir(ω) =
∣∣∣(Pn(z)H(z)Fr(z)

)−1
∣∣∣
z=e jωTs

> |δP(z)|z=e jωTs , (4.14)

where H(z) =
[
1+F1(z)+Gn(z)F2(z)

]−1, Td(z) =
(
1−Fr(z)Pn(z)H(z)

)
; Hry(z), Hqy(z), and

Hnu(z) are the input-output transfer functions of the closed loop in Fig. 9, which can be obtained

by block diagram algebra; Ir(ω) is defined as the robustness index, Ts is the sampling time (with

0< ω < π/Ts), and |δP(z)|z=e jωTs is the norm of the multiplicative uncertainty, as explained in

the previous section. By inspection of transfer functions (4.11)-(4.13), note that the time delay

has been properly eliminated from their characteristic equations, as required by DTC strategies.
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Figure 9 – SDTC conceptual structure. Pn = Gnz−dn stands for the plant nominal model.
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It is important to highlight from (4.11) to (4.14) that the static gain F0, and the filters

F1(z) and F2(z) can be tuned in order to obtain a desired set-point tracking response, while the

filter Fr(z) can be set for disturbance rejection and robustness.

4.4.2 Set-point tracking response tuning

Tuning rules for the primary controller of the SDTC, defined by F0, F1(z), and F2(z)

are reviewed in this subsection. Consider feedback Finite Impulse Response (FIR) filters F1(z)

and F2(z) as

F1(z) =
n−1

∑
i=1

f1iz
−i, F2(z) =

n−1

∑
i=0

f2iz
−i, (4.15)

where n is the order of the fast model Gn(z). Coefficients of F1(z) and F2(z) are obtained by

means of classical design techniques in order to reach a desired set-point tracking response, e.g.

through pole placement in (4.11). The static gain F0 is then computed to yield zero steady-state

error between the reference and the output, i.e. Hry(z)
∣∣
z=1 = 1, yielding

F0 = P−1
n (z)H−1(z)

∣∣∣
z=1

. (4.16)
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4.4.3 Robustness and disturbance rejection tuning

Robustness filter Fr(z) is tuned aiming: (i) to reject undesired disturbances applied

in the control signal; (ii) to eliminate the poles of the plant model Pn(z) from Hqy(z); (iii) to

establish the desired compromise between robustness and disturbance rejection. Such goals can

be met by applying the following filter

Fr(z) =
1

(1−ρz−1)n+1

n

∑
i=0

friz
−i, (4.17)

where 0 < |ρ| < 1 is the filter tuning parameter. In order to achieve objectives (i) and (ii),

following conditions must be attended
Td(z)

∣∣
z=pi 6=1 = 0, i = 1...np

d j

dz j Td(z)
∣∣∣
z=1

= 0, j = 0...m

(4.18)

where np are the number of stable and unstable delay-free process model poles, m = m1+m2−1,

m1 is the order of the disturbance signal (1 for steps, 2 for ramps, etc) and m2 is the number of

integral poles of the plant. Equation (4.18) set a linear system so that coefficients fri from (4.17)

can be readily found, achieving design of the robustness filter Fr(z) for a chosen value of the

filter tuning parameter ρ . To reject other kinds of disturbance, (4.18) can be expanded to include

the condition Td(z)
∣∣
z=qi

= 0, where qi, i = 1...nd , are the nd poles of the Laplace transform of

the disturbance signal.

From (4.12) and (4.14) note that Fr(z) appears in the numerator of Hqy(z) and

in the denominator of Ir(w). That way, the objective (iii) can be met by user adjustment

of 0 < |ρ| < 1 parameter. By setting higher values of ρ , one can increase the robustness

of the system, while smaller values of ρ speedup the disturbance rejection response. The

noise attenuation characteristics can also be improved by using higher-order robustness filters

(TORRICO et al., 2018).

4.4.4 Implementation structure and discussion

A problem of many DTCs for unstable processes is that they cannot be implemented

in its conceptual structure (NORMEY-RICO; CAMACHO, 2007). That way the structure shown

in Fig. 10 must be used for implementation purposes, where S(z) = F1(z)+Gn(z)(F2(z)−
Fr(z)z−dn). One can verify that proper design of Fr(z) by following the rules established in the
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Subsection 4.4.3 guarantees that F2(z)−Fr(z)z−dn cancels the poles of Gn(z) in S(z). That way,

the implementation structure is always internally stable. Therefore, differently from the Smith

Predictor, the SDTC is able to deal with stable, integrative, and unstable open-loop process.

Furthermore, some other characteristics of the SDTC strategy deserve to be discussed

in further detail.

• The strategy does not add zeros in the closed-loop transfer function which may be dominant

and cause undesired overshoot. This allows the reference filter to be defined as a simple

gain (see (4.16)).

• The controller tuning is simplified due to the fact that the designer only needs to specify two

tuning parameters, that is, the desired closed-loop set-point tracking poles (see Subsection

4.4.2) and the robustness filter Fr(z) poles given by the ρ parameter (see Subsection

4.4.3). This makes the controller adjustment quite intuitive, and therefore quite useful for

control engineers. Also, the discrete-time nature of the controller should provide a secure

computer-based implementation.

Figure 10 – SDTC implementation scheme.
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4.5 Other Strategies

Many other strategies for the control of input and output time-delay systems have

been explored in the literature. For example, regarding predictive strategies, many variations

of model predictive controllers (MPCs) (CAMACHO; BORDONS, 2007; BOUOUDEN et al.,
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2016) have been applied, specially when dealing with control constraints. Another variation of

predictors consists of the so-called predictor observer structures. These are structures that do not

suffer from the internal instability problems of the DTCs derived from the Smith predictor, which

might represent an advantage since there is no need to define some strategy for the cancellation

of the unstable and integrative poles of the plant model. In this context see, for example, chapter

3 in Krstic (2009) and the extended observer ideas in Sanz et al. (2020), Sanz et al. (2018b).

We will go through more details on the relevant literature of controllers for time-delay systems

within the next two chapters, as the main objective of the current chapter was to present the basis

related to predictors with particular focus to dead-time compensators (DTCs), which is the class

of controllers explored in this thesis.
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5 A PRACTICAL ANTI-WINDUP STRATEGY

This chapter presents a predictor-based structure that is suitable to deal with both

time-delayed and delay-free systems with saturating actuators. Such condition, well known

in the literature to cause the windup phenomenon, is usually coped within the control area by

techniques that commonly lead to the controller augmentation. However, it seems to exist a

lack of simple approaches to deal with the design of linear controllers for both systems with

and without delay. Thus, this chapter addresses the saturation problem by both proposing a

linear controller design and an associated anti-windup compensator design. The controller tuning

is realized in three distinct phases, initially considering set-point tracking adjustment, then

robustness and disturbance rejection tuning, and finally the associated anti-windup compensator

synthesis. Linear matrix inequalities (LMIs) which include both performance and stability

requirements are employed for the anti-windup synthesis. The proposed controller presents better

results when compared with recently published anti-windup controllers as well as a constrained

MPC algorithm. Experimental results on a neonatal intensive care unit are also presented in

order to validate the usefulness of the proposed strategy.

5.1 Introduction

Dead-time compensators (DTCs) is a class of predictor-based controllers that have

been widely studied for about the past 25 years mainly due to their ability to improve the

performance of classical proportional-integral (PI) and/or proportional-integral-derivative (PID)

controllers when the process presents time delay between the input and output. The first DTC

was proposed by Smith (1957), also known in the literature as the Smith Predictor (SP). Some

drawbacks of the proposal have limited its applications as it is restricted to open-loop stable plants,

while the slow poles of the plant dominate the disturbance rejection response (NORMEY-RICO;

CAMACHO, 2007). Since then several extensions have been proposed to improve robustness,

disturbance rejection, and measurement noise attenuation characteristics of the SP (ASTROM et

al., 1994; MATAUSEK; MICIC, 1996; MATAUSEK; MICIC, 1999; RAO et al., 2007; KAYA,

2003; RAO; CHIDAMBARAM, 2008; NORMEY-RICO; CAMACHO, 2008b; KIRTANIA;

CHOUDHURY, 2012; DE OLIVEIRA et al., 2017; SANZ et al., 2018a; GARCÍA et al., 2006;

ALBERTOS; GARCÍA, 2009; GARCÍA; ALBERTOS, 2008; RAO; CHIDAMBARAM, 2005).

However, a problem with the aforementioned works is that they are not concerned with actuator
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saturation, which places a nonlinearity into the otherwise linear DTC structures, thus causing

their effectiveness to drop. Such a condition is common in practical applications and can cause

problems due to two reasons:

Problem 5.1

Slow and/or integral poles in the primary controller have been historically related to

windup issues.

Problem 5.2

Differences between the controller output and the actual plant input can cause prediction

errors; thus it is essential to include the saturation model to the control structure.

Some previous works have proposed different approaches to deal with saturating

actuators in the control of time-delay systems with model-based controllers. An appropriate

solution of the modified Smith predictor (MATAUSEK; MICIC, 1996; MATAUSEK; MICIC,

1999) with anti-windup was proposed in Matausek and Ribic (2012), although an optimization

procedure is necessary to define some desired robustness and noise sensitivity constraints. In

Huba (2013), a predictive disturbance observer-based filtered PI control for first-order plus

dead-time (FOPDT) processes is presented. Recently, in Flesch et al. (2017) an anti-windup

structure for the filtered SP (FSP) was proposed. Another alternative to deal with input constraints

considers the use of model-based predictive controllers (MPCs) (CAMACHO; BORDONS, 2007;

NORMEY-RICO; CAMACHO, 2007). However, in the MPC case, a constrained quadratic

problem needs to be solved at each sampling time. Non-model-based approaches have also

successfully been applied in the control of time-delay systems with actuator saturation. As

an example, Fridman et al. (2003) deals with the regional stabilization problem by designing

a constant state-feedback controller, while Tarbouriech et al. (2003) solves the problem of

computing an anti-windup compensator in order to maximize the region of stability of the closed-

loop system when a dynamic output feedback controller is supposed to have been previously

designed.

Much of the modern approach for dealing with actuator saturation considers the

design of anti-windup structures that are only activated during saturation of the control signal. In

this manner, very often the goal of the design is to improve performance by forcing the closed-

loop out of the nonlinear region so that the system response is preserved as close as possible to
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the linear case. Some classical works containing well established anti-windup design techniques

with this goal can be found in Turner and Postlethwaite (2004), Weston and Postlethwaite (2000),

Turner et al. (2004), Gomes da Silva Jr. and Tarbouriech (2005).

The inclusion of the saturation model leads to a nonlinear approach to the control

synthesis, so that, many works related to nonlinear control have dealt with windup issues

(GALEANI et al., 2007; TEEL; KAPOOR, 1997; MEGRETSKI, 1996; TEEL, 1996). More

recently, the design of nonlinear anti-windup techniques that improve the performance of

previously designed low-order and full-order anti-windup controllers have been searched, as

in Turner and Kerr (2018). Despite many works dealing with anti-windup compensator design,

and even the design of anti-windup compensators for systems with time delays (GOMES DA

SILVA JR. et al., 2006; TARBOURIECH et al., 2004; TARBOURIECH; GOMES DA SILVA

JR., 2000), relatively few papers treat the delay and the delay-free case in a simple and unified

framework. Furthermore, many approaches do not consider, explicitly, practical issues such as

tracking, robustness and disturbance rejection.

5.1.1 The simplified approach for the control of time-delay systems

In Torrico et al. (2013), simple tuning rules were proposed for the Filtered Smith

Predictor (FSP) applied to the control of stable, integrative, and unstable first-order plus dead-

time processes. The primary controller is free from integral action, differently from the traditional

FSP, and ensures a good trade-off among disturbance rejection, robustness, and noise attenuation.

In Torrico et al. (2016), the results obtained in Torrico et al. (2013) were extended to the case of

multiple-delay SISO systems of any model order; this is referred to as the Simplified Dead-Time

Compensator (SDTC), which was recently further explored in Torrico et al. (2018). Works above,

however, do not consider the design for delay-free or input saturated systems.

5.1.2 Contribution

A gap has been noticed in the control field, whereby there does not appear to be a

simple approach to design a linear controller for both the time-delay and delay-free case. This

work addresses this by developing the SDTC for time-delay and delay-free SISO systems and,

also, providing LMIs for the design of anti-windup compensation if saturating actuators are

present; this was not explored in Torrico et al. (2016) or Torrico et al. (2018). To summarize,

this chapter presents:
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• A new methodology for linear controller design which deals directly with actuator satu-

ration. The key feature of this scheme is that it employs a predictor-based structure that

implements integral action implicitly, thereby avoiding integrator wind-up traditionally

associated with actuator saturation.

• A unified framework which can be used to deal with the design of controllers for systems

with actuator saturation, both with and without time-delays.

• By means of an analysis structure which decouples the system into linear and nonlinear

loops, it is shown that stability of the nominal nonlinear loop neither depends on the delay

(which is compensated by the conditioning scheme) nor the robustness filter.

• Such nice aspects allow for the design of the controller in a three-degree of freedom

fashion, such that set-point tracking, disturbance rejection, and anti-windup compensation

are independently tuned. Therefore, although the whole proposed controller structure

(including the anti-windup filter) can be seen as one entity, the tuning is realized in

three distinct phases. Furthermore, performance constraints related to the anti-windup

compensator dynamics are included in the LMIs by using D-stability regions. This is a

new approach for including pre-specified dynamic requirements within the anti-windup

design.

It is emphasized that the approach not only deals with the joint problems of time-

delays and saturation but also considers disturbances, tracking, and robustness. This makes the

approach proposed here quite practical and useful for the engineer.

Simulation results are used to analyze the tuning and establish a fair comparison

with the anti-windup strategies presented in Flesch et al. (2017), Turner and Kerr (2018), Li et

al. (2016), Zhang and Jiang (2008). Also, a constrained model predictive controller (MPC) is

considered where constraints are set to deal with the saturating issue. Furthermore, an experiment

was performed for temperature control in a neonatal intensive care unit.

5.2 Preliminaries

Consider a discrete-time LTI system P(z) described by the following equations

P(z)∼


xp(k+1) = Axp(k)+B[u(k−d)+w(k−d)],

y(k) = Cxp(k)+D[u(k−d)+w(k−d)]+n(k),
(5.1)
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where xp(k) ∈ Rn is the state vector, u(k) ∈ R is the actual plant input, y(k) ∈ R is the measured

output, w(k) is a matched input disturbance, and n(k) is due to measurement noise, respectively.

Matrices A ∈ Rn×n, B ∈ Rn, C> ∈ Rn, D ∈ R, and delay d ≥ 0 are all constant and known.

Following assumptions are taken:

Assumption 5.1

The pair (A,B) is controllable.

Assumption 5.2

The unknown disturbance signal is bounded by |w(k)|< Dw, and is locally integrable.

Assumption 5.3

The process input, u(k), is given by u(k) = sat(v(k)), where v(k) is the computed control

action and the saturation function is defined as

sat(v(k)) = sign(v(k))×min{|v(k)|, ū}, ū> 0, (5.2)

where ū denotes the control amplitude bound.

This work makes use of some critical conditions which are necessary for anti-windup

synthesis with guaranteed regions of stability. Therefore, they are briefly reviewed as follows.

5.2.1 Sector Condition

For this chapter, consider the deadzone operator ϕ(·) defined in (2.11) and the

classical sector condition from Equation (2.15). Also consider the associated set given by

L (v, ū) = {v ∈ R;−η ū≤ v≤ η ū}, (5.3)

where η =
1

1−Λ
, 0≤ Λ< 1 ∈ R.

5.2.2 Quadratic Lyapunov Function

Consider the discrete-time system

x(k+1) = f (x(k)) (5.4)
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where f (x(k)) = Ax(k)+Bϕ(v(k)), v(k) = Kx(k). Then, making use of the sector condition,

the origin of the above system is locally asymptotically stable if there exists a positive definite

function V(x(k)) such that

∆V(x(k)) := V(x(k+1))−V(x(k))−2ϕ(v)>W[ϕ(v)−Λv]< 0,∀x(k) ∈L (Kx(k), ū),

where L (Kx(k), ū) is a region of the state space obtained from application of the sector condition.

Furthermore, if L (Kx(k), ū) is the whole state-space, the system is globally asymptotically

stable.

In this chapter, we chose to use the quadratic Lyapunov function

V(x(k)) = x>(k)Qx(k),

where Q=Q> is a positive definite matrix. Furthermore, the ellipsoid ε(Q,1)= {x∈Rn;x>Qx≤
1} is a region of asymptotic stability (RAS) of (5.4) if the following restriction is satisfied

x>K>Kx≤ x>Qxη
2ū2,

which ensures inclusion of ε(Q,1) in the set L (Kx(k), ū).

5.2.3 L2 gain

One import measure of performance of anti-windup strategies in saturated systems

is the so-called L2 gain. A nonlinear system with input ψ(k) and output Ω(k) has an induced L2

gain of γ when

∀ψ ∈ l2, ‖Ω‖< γ‖ψ‖+θ (5.5)

where ‖ψ(k)‖ denotes

√
∞

∑
k=0

(
ψ(k)>ψ(k)

)
, and θ is a positive constant. Moreover, whenever

the vector valued function ψ(k) obeys ‖ψ(k)‖< ∞, we say that ψ ∈ l2. The L2 gain, defined in

equation (5.5), represents a bound on the root mean square energy gain of a nonlinear system.

The following condition is sufficient to ensure L2 gain less than γ from an input ψ to an output

Ω (while also holding stability guarantees)

∆V(x(k))+Ω
>

Ω− γ
2
ψ
>

ψ−2ϕ(v)>W[ϕ(v)−Λv]< 0, (5.6)

which is a combination of the quadratic Lyapunov functional from Subsection 5.2.2, the classical

sector condition (2.15), and the term Ω>Ω− γ2ψ>ψ which is used to ensure a level of L2
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performance. Note that since the sector condition guarantees −2ϕ(v)>W[ϕ(v)−Λv] > 0,

equation (5.6) implies that

∆V(x(k))+Ω
>

Ω− γ
2
ψ
>

ψ < 0 (5.7)

also holds for a Lyapunov function V(x(k)) and for all x(k) in the set resulting from the applica-

tion of a sector condition. Then, by computing

∞

∑
j=0

(
∆V(x( j))+Ω( j)>Ω( j)− γ

2
ψ( j)>ψ( j)

)
< 0, (5.8)

it follows that

V(x(∞))−V(x(0))+
∞

∑
j=0

(
Ω( j)>Ω( j)

)
− γ

2
∞

∑
j=0

(
ψ( j)>ψ( j)

)
< 0, (5.9)

which, by taking square roots and using the facts that
√

a2 +b2 ≤ a+ b for a,b ∈ R+, and

V(x)> 0, leads to

‖Ω‖< γ‖ψ‖+
√

V(x(0)) (5.10)

for all initial conditions x(0) inside the stability set. The reader is referred to the work in

Herrmann et al. (2006) to see other details regarding the explanation of condition (5.6).

5.2.4 D-Stability

Although the previously presented conditions are sufficient to provide performance

and stability analysis conditions, it might be desired to include some dynamical information to

the anti-windup design. This is done in this work by using the concept of D-stability regions. So

let us borrow the following definition from Duan and Yu (2013).

Definition 5.1

Let D be a domain on the complex plane, which is symmetric about the real axis. Then, a

matrix A ∈ Rn×n is said to be D-stable if

λi ∈ D, i = 1,2 . . .n, where λi are the n eigenvalues of A.

In this work, the following particular case of D-stability is employed

D=Hζa,ζb
= {λ = σ + jω | ζb < σ < ζa}, (5.11)

such that the following proposition holds (see Duan and Yu (2013) for the proof).
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Proposition 5.1

The matrix A ∈ Rn×n is Hζa,ζb
-stable if and only if there exists a positive definite matrix

Q = Q> such that 
A>Q+QA−2ζaQ< 0,

A>Q+QA−2ζbQ> 0.
(5.12)

5.3 Unified anti-windup controller

The proposed unified anti-windup SDTC (AW-SDTC) control structure to deal with

both time-delayed and delay-free SISO systems with saturating actuators is depicted in Fig.

11, where Pn(z) = Gn(z)z−dn is the nominal process, with Gn(z) and dn being the fast model

and nominal dead time, respectively. Plant P(z) = G(z)z−d is the model of the real process.

Additive uncertainty enters the system such that P(z) = Pn(z)+∆P(z). M(z) is the anti-windup

conditioning filter, while Fr(z) and S(z) are calculated to improve set-point tracking, disturbance

rejection and robustness properties of the controller.

Figure 11 – Proposed unified anti-windup scheme.
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By using the deadzone nonlinearity identity (2.11), the AW-SDTC scheme in Fig. 11

is redrawn in a equivalent form depicted by Fig. 12. The equivalency between the two structures

is valid if and only if

S(z) = F1(z)+Gn(z)(F2(z)−Fr(z)z−dn) and H(z) =
[
1+F1(z)+Gn(z)F2(z)

]−1
. (5.13)
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Figure 12 – Mismatch equivalent structure for analysis.
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From Fig. 12 note that the system is conveniently divided into three parts, namely

the linear loop, the nonlinear loop and the disturbance filter, with output given by y(k) =

ylin(k)− ynl(k). This kind of decoupled structure is widely used for design and analysis of

closed-loop systems under input saturation (see Turner and Postlethwaite (2007) and Turner et

al. (2007) for instance). Some of the aspects which make this structure attractive for the work

herein are described as follows.

First, note that the linear loop determines the system behavior in the absence of

control saturation. This allow us to design the system to obtain a desired response in the nominal

case, i.e. Pn(z) = P(z) and u(k) = v(k). For this, the linear loop is tuned in a two-degree of

freedom fashion, where F1(z) and F2(z) can be used to achieve a desired set-point tracking

response, whilst Fr(z) can be adjusted to deal with disturbance rejection, robustness and noise

attenuation characteristics of the proposed controller. Note that the structure of the linear loop

exactly matches that of the linear SDTC presented in Chapter 4.



64

On the other hand, note that both the disturbance filter and the nonlinear loop depend

on the anti-windup conditioning filter M(z). Also recall that when saturation events end, the

output of the dead-zone nonlinearity ũ(k) becomes null. Nevertheless, possible windup effects

caused by the saturation are not instantaneously over, as the states of the disturbance filter are not

instantaneously null. Therefore, the disturbance filter is responsible for determining both speed

and manner of recovery of the closed-loop system after saturation ceases. On what concerns

stability, by considering that the linear loop is stable (which obviously should be by proper

design of F1(z), F2(z) and Fr(z)), the stability of the proposed structure depends solely on the

stability of the nonlinear loop. Thereby, it is evident that the design of the conditioning filter

M(z) should tackle both performance and stability issues of the system under saturation.

5.3.1 Tuning of the linear loop

The input-output transfer functions for the unsaturated nominal case (Pn(z) =

P(z) and u(k) = v(k)) are given by

Hry(z) =
Y (z)
R(z)

= Pn(z)H(z)F0, (5.14)

Hqy(z) =
Y (z)
Q(z)

= Pn(z)Td(z), (5.15)

Hnu(z) =
U(z)
N(z)

=−Pn(z)H(z)Fr(z), (5.16)

where Td(z) =
(
1−Fr(z)Pn(z)H(z)

)
; U(z), Y (z), R(z), N(z) and Q(z) refer to the Z-transform

of the linear control action ulin(k), process linear output ylin(k), reference r(k), measurement

noise n(k), and input load disturbance q(k), respectively, and H(z) has been defined in (5.13).

For this situation, robust stability of the linear loop is achieved if the condition

Ir(ω) =
∣∣∣(Pn(z)H(z)Fr(z)

)−1
∣∣∣
z=e jωTs

> |δP(z)|z=e jωTs , (5.17)

is satisfied, where Ts is the sampling time, 0 < ω < π/Ts, δP(z) is the multiplicative uncer-

tainty, and Ir(w) is defined as the robustness index, as explained in the previous chapter. The

multiplicative uncertainty enters the system such that P(z) = Pn(z)+∆P(z) = Pn(z)[1+δP(z)].

It is important to highlight from equations (5.14) to (5.17) that F0, F1(z) and F2(z)

can be tuned in order to obtain a desired set-point tracking, while the filter Fr(z) is set to obtain a

desired trade-off between disturbance rejection and robustness.
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5.3.1.1 Set-point tracking

Tuning rules for the primary controller, defined by F0, F1(z), and F2(z) are established

in this subsection. For this, consider feedback FIR filters F1(z) and F2(z) as

F1(z) =
n−1

∑
i=0

f1iz
−i, F2(z) =

n−1

∑
i=0

f2iz
−i (5.18)

where n is the order of the fast model Gn(z). Coefficients of F1(z) and F2(z) are obtained through

standard pole placement design procedure in order to reach a desired set-point tracking response

(5.14). Notice that in this strategy, FIR filter F1(z) has the additional term f10 when compared

with the SDTC strategy from the previous chapter. This allows to compute pole placement for

delay-free systems with instantaneous response. For this, one must solve an equation of the type

Γc = o, with

Γ =



1 0 . . . 0 b0 0 . . . 0

a1 1
... b1 b0

...
... a1 0

... b1 0

an
... 1 bn

... b0

0 an a1 0 bn b1
... 0 a2

... 0 b2

0
...

... 0
...

...

︸ ︷︷ ︸
n

0 0 an ︸ ︷︷ ︸
n

0 0 bn



,c =



f10
...

f1n−1

f20
...

f2n−1


,o =



0

s1−a1
...

sn−an

sn+1
...

s2n−1


, (5.19)

where Γ is a non-singular 2n square matrix, a1 . . .an and b0 . . .bn are the coefficients of the

delay-free model

Gn(z) =
b0 +b1z−1 +b2z−2 . . .bnz−n

1+a1z−1 +a2z−2 . . .anz−n , (5.20)

and s1 . . .s2n−1 are the coefficients of the desired characteristic polynomial

1+ s1z−1 + s2z−2 + · · ·+ s2n−1z−2n+1 = (1−α1z−1)(1−α2z−1) . . .(1−α2n−1z−1). (5.21)

Therefore, closed-loop poles α = [α1 . . .α2n−1], with 0 ≤ |αi| < 1, are the set-point tracking

tuning parameter. For example, if faster set-point is desired, then smaller values of αi can be

chosen, and vice-versa. The static gain F0 is then computed to yield zero steady-state error, that

is F0 = P−1
n (z)H−1(z)

∣∣∣
z=1

.
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5.3.1.2 Disturbance rejection and robustness

Robustness filter Fr(z) is tuned aiming: (i) to reject step-like disturbances applied

in the control signal; (ii) to eliminate the modes of the plant model Pn(z) from the disturbance

rejection Hqy(z) response; (iii) to obtain a desired trade-off between robustness and disturbance

rejection. Such goals can be met by applying the filter (4.17), where 0 < |ρ| < 1 is the filter

tuning parameter.

5.3.2 Tuning of the nonlinear loop and the disturbance filter

Previous works have shown that most conditioning schemes for systems with actu-

ator saturation can be interpreted as different choices of conditioning filter M(z) (WESTON;

POSTLETHWAITE, 2000). For the proposed structure, such filter is defined as

M(z) =
Dg(z)

(1−ν1z−1)(1−ν2z−1) . . .(1−νnz−1)
, (5.22)

with Gn(z) = Ng(z)/Dg(z). Note that the zeros of M(z) are equal to the poles of the process

model while the νi poles of M(z) can be defined in order to meet certain criteria. Such choice

yield some interesting characteristics for the strategy in this work. The equivalent disturbance

filter is given by

Gn(z)M(z) =
Ng(z)

(1−ν1z−1)(1−ν2z−1) . . .(1−νnz−1)
,

so that the poles of Gn(z) are canceled by the numerator of M(z); therefore the disturbance filter

is always stable with user-defined poles νi. On the other hand, poles νi define system recover

manner after saturation while also playing a role on the stability of the nonlinear loop. Then, it is

clear that there exists a trade-off between performance and stability of the saturated system. For

|νi| → 0, the system should present faster recover from saturation events. On the other hand, for

poles |νi| → 1 the nonlinear loop region of stability should increase.

From Fig. 12, note that due to uncertainties in the system, the filter Fr(z) plays some

influence in both the linear and the nonlinear loops. Even though this is true, notice that the

linear and nonlinear loops are decoupled, i.e., their responses are not feedbacked to each other.

Furthermore, since robustness filter Fr(z) is previously designed to deal with uncertainty and

yield robustness characteristics of the linear loop, the design of the anti-windup conditioning

filter M(z) is done considering the nominal system behavior, i.e., ∆P(z) = 0.
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5.3.2.1 Anti-windup synthesis

Works using the mismatch equivalent representation (Fig. 12) often consider that the

goal of the anti-windup design is to maintain the response of the system as close as possible to the

response of the linear system, that is, the response of the system had saturation not been present.

Moreover, previous studies have proven that global stability of the closed-loop in the presence

of actuator saturation cannot be achieved by a bounded input in the case of unstable processes

(SONTAG, 1984; LASSERRE, 1993). Therefore, another common goal in anti-windup design is

to seek a compensator which enlarges the region of attraction of the closed-loop system.

Consider the analysis structure in Fig. 12. As previously explained, all the poles of

the disturbance filter should be within the unit circle, therefore considering that the linear loop is

stable through robust condition (5.17), stability under actuator saturation depends only upon the

stability of the nonlinear loop. Therefore, the goal of the proposed strategy is to design M(z) such

that there are guaranteed regions of stability while also keeping desired output performance. In

this work, the first goal is met by using classical Lyapunov theorem along with the classical sector

condition, while performance characteristics are introduced employing D-stability conditions

(5.12), which allow the designer to allocate the poles of M(z) within a desired region.

Herein, anti-windup design for both the regional and global stability cases is estab-

lished using LMIs, which are suitable to assure stability conditions for stable, integrative and

unstable open loop plants. Consider the state-space realization of the process fast model Gn(z),

given by matrices A,B,C, D. The state-space equivalent representation of M(z) in (5.22) is given

as

M(z)∼

 A+BK B

K I

 (5.23)

where the νi poles of the conditioning filter M(z) are equal to the eigenvalues of A+BK.

Therefore, computation of M(z) is accomplished by finding a suitable matrix K ∈ R1×n which

attends to pre-specified stability and performance design requirements. Since M(z)− I is

always strictly proper, no direct feedthrough exists from ũ(k) to ud(k), thus the system is well

conditioned.
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In order to find the gain K, consider the mapping τpn : ulin→ yd defined as

τpn ,



x(k+1) = (A+BK)x(k)+Bũ(k),

yd(k) = (C+DK)x(k)+Dũ(k),

ud(k) = Kx(k),

ũ(k) = ϕ(ulin(k)−ud(k))

, (5.24)

It is important to highlight that this mapping is defined for the nominal case, i.e. ∆P(z) = 0 in

Fig. 12. Therefore, although the presence of delays indeed influence the closed-loop behavior in

the uncertain case, they do not affect the anti-windup design. The following theorem establish

conditions to find the anti-windup conditioning filter M(z) with guaranteed regions of stability.

Theorem 5.1

There exists an anti-windup conditioning filter M(z) if there exist matrices X in S+n , J in

S+1 , L in R1×n, and scalar γ > 0 such that LMIs

−X −L>Λ 0 XC>+L>D XA>+L>B>

? −2J Λ JD> JB>

? ? −γI 0 0

? ? ? −γI 0

? ? ? ? −X


≺ 0, (5.25)

and X L>

? η2ū2

� 0, (5.26)

are feasible for given η = 1/(1−Λ). Additionally, the poles of the conditioning filter

M(z) will be within a Hζa,ζb
-region in the unit circle (see Fig. 13) if following LMIs hold

along with (5.25) and (5.26)
XA>+L>B>+AX+BL−2ζaX≺ 0,

XA>+L>B>+AX+BL−2ζbX� 0,
(5.27)

where ζa, ζb are scalars to be chosen. Then, a suitable K achieving finite L2 gain γ of the

τpn operator is given by K = LX. Moreover, the ellipsoid ε(Q,1) = {x ∈ Rn;x>Qx≤ 1},
with Q = X−1, is a region of asymptotic stability (RAS) of the nonlinear loop in Fig. 12.
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Figure 13 – Hζa,ζb
-region inside unit circle on the complex plane.

Source: The author.

Proof. Using the previously defined Lyapunov functional, sector condition, and L2 gain, a

sufficient condition for stability of τpn is written as (TURNER; POSTLETHWAITE, 2007)

∆V(x(k))+ yd
>yd− γ

2ulin
>ulin−2ũ>W[ũ−Λ(ulin−ud)]< 0. (5.28)

Then, by defining λ =

[
x> ũ> ulin

>
]>

, we can write inequality (5.28) in an equivalent

quadratic form given by (5.29), where ϒ11 = (A+BK)>Q(A+BK)−Q+(C+DK)>(C+DK)

and ϒ12 = (A+BK)>QB+(C+DK)>D−K>ΛW.

λ>


ϒ11 ϒ12 0

? B>QB−2W WΛ

? ? −γ2I

λ< 0. (5.29)

By applying Schur complement twice to the matrix in (5.29), one obtains

−Q −K>ΛW 0 C>+K>D> A>+K>B>

? −2W WΛ D> B>

? ? −γI 0 0

? ? ? −γI 0

? ? ? ? −Q−1


≺ 0. (5.30)
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Next, by using diag(Q−1,W−1, I, I, I) to apply a congruence transformation with (5.30), the

following matrix inequality is obtained

−Q−1 −Q−1K>Λ 0 Q−1(C>+K>D>) Q−1(A>+K>B>)

? −2W−1 Λ W−1D> W−1B>

? ? −γI 0 0

? ? ? −γI 0

? ? ? ? −Q−1


≺ 0. (5.31)

Finally, by defining new variables X = Q−1, J = W−1, and by making the change of variables

L = KQ−1, LMI (5.25) is obtained, with X� 0, J� 0 and γ > 0. In order to ensure that ϕ(·) is

within the sector [0,Λ], when ulin = 0, it is necessary that

|ud|= |Kx| ≤ η
2ū2. (5.32)

Then, LMI (5.26) is used in order to guarantee that the ellipsoidal set ε = {x ∈ Rn : xQx≤ 1} is

an estimation on the region of attraction of the nonlinear loop (5.24). This holds if

x>K>Kx≤ x>Qxη
2ū2, (5.33)

which is equivalent to Q K>

? η2ū2

� 0. (5.34)

LMI (5.26) is then obtained by applying a congruence transformation to (5.34) using diag(Q−1, I).

Consider now equations (5.12). In order to obtain (5.27), replace A by A+BK, apply congruence

transformation with Q−1 and make X = Q−1, L = KQ−1. This completes the proof.

Additionally, for the case of stable processes, it is useful to establish the following

corollary.
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Corollary 5.1

The origin is globally asymptotically stable for the nominal (Pn(z) = P(z)) closed-loop

system in Fig. 11 if there exist matrices X in S+n , J in S+1 such that LMI

−X −L> 0 XC>+L>D XA>+L>B>

? −2J I JD> JB>

? ? −γI 0 0

? ? ? −γI 0

? ? ? ? −X


≺ 0 (5.35)

is feasible. Furthermore, the poles of the conditioning filter M(z) will be contained within

a Hζa,ζb
-region in the unit circle (see Fig. 13) if (5.35) holds along with (5.27). Then, a

suitable K gain is given by K = LX.

Proof. Proof of corollary 5.1 is straightforward. In the global stability case it suffices to replace

Λ by I in the classical sector condition, then (5.25) becomes (5.35).

5.4 Simulation results

Some works dealing with the saturating issue point out that although it is possible to

achieve global stability for open-loop stable systems, the local stability relaxation can often be

preferred in order to obtain improved local performance (see Turner and Postlethwaite (2007),

for instance). Furthermore, systems usually operate within a desired region of the space, so that

the local assumption can often be enough. Therefore, the local approach was preferred for all the

examples in this section, even the open-loop stable ones.

5.4.1 Delay-free examples

This subsection presents simulation results for systems without time-delay recently

presented in Turner and Kerr (2018) and Li et al. (2016).

5.4.1.1 Example 1 - Comparison with nonlinear anti-windup

Consider the example recently used in Turner and Kerr (2018) to illustrate a nonlinear

anti-windup technique where the plant is a third-order SISO system with input constraint given
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Figure 14 – Simulation results for example 1.
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by u = 1. By using a zero-order hold and sampling time of T = 0.1s the following discrete-time

transfer-function model is obtained:

P(z) =
−0.1045z−1 +0.1216z−2−0.03547z−3

1−2.309z−1 +1.656z−2−0.3465z−3 .

The AW-SDTC was initially tuned to obtain set tracking response similar with the compared

controller leading to α =

[
0.8 0.3 0 0 0

]
and ρ = 0.9. Then, for the tuning of the anti-

windup conditioning filter M(z), Theorem 5.1 was used with Λ = 0.855, ζb = 0 and ζa = 1,

yielding ν =

[
0.777 0.384 0.096

]
and γ = 87.3443.

Fig. 14 shows output and control signals for a sequence of steps in the reference.

From the output graph, one may notice that the AW-SDTC controller does not exhibit overshoots

and undershoots while the nonlinear controller from Turner and Kerr (2018) does. Hence, settling

time is much smaller for the proposed controller herein. It is important to highlight that the

control signal of the AW-SDTC does not present high-frequency ripples as the controller from

Turner and Kerr (2018), thus being better behaved. Furthermore, it is evident that the AW-SDTC

controller recovers faster from saturation events while presenting better output results. This
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behavior will be shown to exist in all further simulation examples. It should be highlighted that

the better behavior of the approach herein comes with the cost of providing regional stability only,

whereas the approach from Turner and Kerr (2018) guarantees global stability. This illustrates the

trade-off between local stability relaxation and performance that was mentioned in the beginning

of Section 5.4. The region of stability obtained by using Theorem 5.1 is shown in Fig. 15.

Figure 15 – Ellipsoidal region of stability for example 1.

Source: The author.

5.4.1.2 Example 2 - Comparison with 4-degree-of-freedom anti-windup

Consider the second-order SISO plant

G(s) =
0.5s2 +0.5s+1
s2 +0.2s+0.2

,

with input constraint such that u = 0.5. By using a zero-order hold and sampling time of T = 0.1s

the following discrete-time transfer-function model is obtained:

P(z) =
−0.5+0.941z−1−0.4549z−2

1−1.978z−1 +0.9802z−2 .

In this example, comparison with the recent 4-degree-of-freedom anti-windup from Li et al.

(2016) and the classical low-order IMC anti-windup scheme from Turner and Postlethwaite (2004)
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are presented. Controllers from Li et al. (2016) and Turner and Postlethwaite (2004) are defined

as therein. The AW-SDTC controller is tuned with α =

[
0.947+0.128i 0.947−0.128i 0

]
and ρ = 0.7. The poles ν =

[
0.945+0.129i 0.945−0.129i

]
of the anti-windup conditioning

filter were found by applying Theorem 5.1 with Λ = 0.45, ζb = 0.946 and ζa = 0.948, yielding

γ = 9.4416.

Fig. 16 shows the results for a step change in the reference, followed by a negative

input load disturbance of magnitude 0.5. For the set-point tracking the AW-SDTC and the

controller from Li et al. (2016) exhibit very similar responses. However, it is possible to note

that the AW-SDTC is the first controller to reject the input disturbance completely.

Figure 16 – Simulation results for example 2 - Set-point tracking and input disturbance.
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As in Li et al. (2016), a second simulation (shown in Fig. 17) was realized in order

to evaluate performance against output disturbance. Although both the AW-SDTC and the

controller from Li et al. (2016) seem to present similar rejection of the disturbance, there is a

slight advantage to the AW-SDTC, which completely rejects the disturbance faster and in a less

oscillatory manner.
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Figure 17 – Simulation results for example 2 - Output disturbance rejection.
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It is worth to mention, once more, that the proposal herein preferred to use the local

assumption for stability in order to prioritize performance. On the other hand, other approaches

as the one from Turner and Postlethwaite (2004) are suitable to guarantee global stability for this

plant. The ellipsoidal region of stability for this example obtained employing Theorem 5.1 is

shown in Fig. 18.

5.4.2 Time-delay examples

This subsection presents two simulation case studies using the integrative plant

presented in Zhang and Jiang (2008) and the unstable process recently presented in Flesch et

al. (2017). Comparison with a constrained MPC is also performed. Evaluated controllers are

compared under input saturation, dead-time uncertainties, input and output disturbances, and

step reference variations.
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Figure 18 – Guaranteed ellipsoidal region of stability for example 2.

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Source: The author.

5.4.2.1 Example 3 - Integrating case

This example presents comparative simulation results obtained with the following

controllers: an input constrained MPC from Camacho and Bordons (2007), controller reported in

Zhang and Jiang (2008), the recently published strategy in Flesch et al. (2017) and the proposed

AW-SDTC. For this purpose, the following process model presented in Zhang and Jiang (2008)

is considered:

P(s) =
e−5s

s
.

The input limit is given by ū = 1. By using a zero-order hold and sampling time of T = 0.2s the

following discrete-time transfer-function model is obtained:

P(z) =
−0.5+0.941z−1−0.4549z−2

1−1.978z−1 +0.9802z−2 .

Parameters of the controller from Zhang and Jiang (2008) are defined as therein. The MPC

from Camacho and Bordons (2007) was tuned in order to present a step response quite similar

to the controller from Zhang and Jiang (2008) in the nominal case without input saturation.
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The MPC from Camacho and Bordons (2007) uses the Controlled Auto-Regressive Integrated

Moving-Average (CARIMA) model to compute predictions and is adjusted with the limits of the

prediction window as N1 = dn +1, N2 = dn +100, the control horizon Nu = 70, and the control

weights given by φ1 = 0 and φi = 250, i = 2, . . . ,Nu.

For the AW-SDTC controller two different tunings are considered. The first one,

named AW-SDTC1, was tuned aiming to improve disturbance rejection, leading to the following

parameters α = 0.955 and ρ = 0.865. The pole ν = 0.9548 of the anti-windup conditioning

filter was found by applying Theorem 5.1 with Λ = 0.7, ζb = 0.95, yielding γ = 113.1629. Figs.

19 and 20 show simulation results for a step reference. An input disturbance pulse with amplitude

of −1.5 was applied from t = 40 s to t = 50 s. A step input disturbance with amplitude of −0.5

was applied at t = 100 s.

Fig. 19 shows simulation results without uncertainties. One can observe that all

the controllers follow the reference in a similar way. However, in the case of both input pulse

disturbance and input saturation, the proposed AW-SDTC1 controller is the only not presenting

overshoot at recovery. Regarding the step input disturbance performance, all controllers perform

in very similar manner, as the control signals do not saturate.

Figure 19 – Simulation results for example 3 (no uncertainties).
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Fig. 20 shows simulation results using +20% dead-time uncertainty. It can be seen

that the proposed AW-SDTC1 retains better output performance for pulse disturbance while

may be taken as equivalent to the compared controllers for step disturbance. It is important to

highlight that the proposed AW-SDTC achieves better performance than the MPC, which is a

much more complex controller.

Figure 20 – Simulation results for example 3 (20% dead-time uncertainty).
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In order to establish comparison with the anti-windup strategy in Flesch et al. (2017),

the AW-SDTC2 was tuned to yield a similar set-point tracking response by using the following

parameters α = 0.5 and ρ = 0.3. The pole ν = 0.493 of the anti-windup conditioning filter

was found by applying Theorem 5.1 with Λ = 0.96, and ζb = 0.45, yielding γ = 560.4146. The

increase in the L2 gain can be justified by the more aggressive tuning of the anti-windup filter.

Fig. 21 shows the results for the nominal case, while Fig. 22 presents the results

using +5% dead-time uncertainty. Notice that, contrary to the controller from Flesch et al.

(2017), the AW-SDTC2 does not present overshoot for either pulse or step disturbances in the

nominal case. Also, note from Fig. 22 that even in the uncertain case, the proposed controller

had improved performance against the compared controller.
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Figure 21 – Simulation results for example 3 (no uncertainties).
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Figure 22 – Simulation results for example 3 (5% dead-time uncertainty).
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5.4.2.2 Example 4 - Unstable case

This example also compares the proposed AW-SDTC with the strategy proposed in

Flesch et al. (2017). The controlled process, which represents an isothermal chemical reactor, has

been studied in many works and is originally found in Liou and Yu-Shu (1991). The following

differential equation gives the nonlinear model

dC
dt

=
Q
V
(C f −C)− k1C

(k2C+1)2 ,

where C f and C are the process control and output variables, respectively, given in mol/L. The

operating parameters are given as k1 = 10 L/s, k2 = 10 L/mol, V = 1 L and Q=0.03333 L/s. The

bound on the process input is given by ū = 0.05.

An unstable linearized model obtained around the steady-state condition with C f =

3.288 mol/L and C = 1.316 mol/L is given by

P(s) =
3.433

103.1s−1
e−20s,

where a measurement delay of L = 20s is considered. By using a zero-order hold and sampling

time of T = 5s the discrete-time model is obtained as

P(z) =
0.1706z−1

1−1.0497z−1 z−4.

The controller from Flesch et al. (2017) is defined as therein. Once more, the AW-SDTC

was tuned to obtain set tracking response similar to the compared controller. However, faster

disturbance rejection was aimed with AW-SDTC controller tuned with α = 0.68 and ρ = 0.65.

The pole ν = 0.6804 of the anti-windup conditioning filter was found by using Theorem 5.1

with Λ = 0.5, and ζb = 0.65, yielding γ = 38.2798.

The process nonlinear model is used in all simulations for a step reference of 0.1

mol/L at time t = 0 s, in addition to application of input and output disturbances of amplitude

0.015 mol/L and 0.02 mol/L in t = 200 s and t = 500 s, respectively.

From Fig. 23, one may note the controller from Flesch et al. (2017) exhibits slower

rejection for both input and output disturbances and undershoot in the rejection of the output

disturbance due to the dominant zero imposed by its primary controller. On the other hand, the

proposed AW-SDTC does not present any of these issues which may become inconvenient. It

may be interesting to comment that the proposed AW-SDTC overall better performance might be

related to the addition of the tuning parameters ζa and ζb, which allow fine adjustment of the
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poles of the anti-windup conditioning filter. On the other hand, the anti-windup technique from

Flesch et al. (2017) does not employ any tuning parameters.

Figure 23 – Example 4 - Simulation results for unstable case.
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Consider now that the process measurement delay is actually 10% larger, L= 22s. As

shown by Fig. 24, the AW-SDTC maintains its performance characteristics related to disturbances

rejection even under such circumstances, while issues mentioned earlier for the nominal case

remains unchanged to the comparing controller. It is important to highlight that for the proposed

strategy such results are obtained by using simple gains in the primary controller, and a first-order

robustness filter. On the other hand, the strategy from Flesch et al. (2017) applies a PI as the

primary controller, a first-order reference filter and a second-order robustness filter, which clearly

shows a design advantage in favor of the AW-SDTC algorithm as it becomes much simpler

than the compared one. Table 1 summarizes the results for other modeling uncertainty cases in

Examples 3 and 4. The Integral Square Error (ISE) of the output signal and the control signal

variance were calculated. Overall, the proposed strategy presents betters results, in addition to

being simpler, as previously explained.
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Figure 24 – Example 4 - Simulation results for unstable case with 10% dead-time uncertainty.
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Table 1 – Output ISE and control variance for dead-time simulation examples.
Example 3

Dead-time
uncertainty (%)

Output Signal ISE Control Signal Variance
AW−SDTC2 Ref. (FLESCH et al., 2017) AW−SDTC2 Ref. (FLESCH et al., 2017)

0 1540.40 1550.51 0.1449 0.1592
2 1543.88 2311.56 0.1475 0.2805
5 1543.11 1163.23 0.1561 0.5459

10 1502.72 1059.56 0.4308 0.3035
20 2551.09 2619.82 0.7154 0.6037

Example 4
Dead-time

uncertainty (%)
Output Signal ISE Control Signal Variance

AW−SDTC Ref. (FLESCH et al., 2017) AW−SDTC Ref. (FLESCH et al., 2017)
0 0.3953 0.3961 0.00040 0.00042

10 0.4122 0.4140 0.00043 0.00044
20 0.4609 0.4394 0.00059 0.00049
40 0.5907 0.5117 0.00085 0.00065
70 0.8141 0.8454 0.00083 0.00080

Source: The author.

5.5 Experimental results

This section intends to show the usefulness of the proposed AW-SDTC, applied

for temperature control of a commercial neonatal intensive care unit (NICU) depicted in Fig.

25. The plant has been identified using a step-test identification procedure (NORMEY-RICO;
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CAMACHO, 2007), whose model is given by

Pn(s) =
0.483e−10.2s

254.7s+1
,

where the time is measured in minutes and the control is constrained within the range from 0 to

100 % as it is the current flowing through a heating resistor, which is limited by its maximum

power. The following discrete-time model is obtained using a sampling time of T = 0.2 min

Pn(z) =
0.0003791
z−0.9992

z−51.

Figure 25 – Picture of the neonatal intensive care unit.

Source: The author.

The AW-SDTC control structure was tuned with α = 0.92, ρ = 0.98 and ν = 0.9203.

The pole of the anti-windup conditioning filter was found by running Corollary 5.1 with ζa =

0.925 and ζn = 0.915, thus global stability of the system has been guaranteed. It is important

to notice that with this controller the nominal desired closed-loop transfer function Hry(z) is

chosen to obtain much faster set-point tracking response than the open-loop plant, thus justifying

the choice of small sampling time. Furthermore, the robustness filter Fr(z) increases system

robustness with a proper measurement noise attenuation.

Experimental results using the proposed structure for a temperature set-point of

28oC are shown in Fig. 26. The initial temperature inside the NICU is 21.3oC, whilst the

temperature of the room was kept around 18oC during the whole experiment. It is important to

remark that the acrylic dome which involves the NICU does not provide a good level of thermal
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isolation between the internal and external environments. Therefore, the external temperature

is an unmodeled disturbance which is present during the experiment. Due to saturation, the

reference tracking response is not as fast as designed to be. However, observe that, as expected,

the output can track the reference without oscillations. Furthermore, it is important to note that

even though the plant input became saturated during the first 41 minutes, the controller did not

present windup issues.

In order to assess controller robustness, portholes of the NICU were kept opened

between t = 85 min and t = 95 min leading to an undershoot of 1.2oC. However, such disturbance

was adequately rejected as set-point was achieved again within 30 minutes. Note that even though

the control signal saturated again during the disturbance rejection phase, no windup issues

emerged, which further demonstrates the strategy ability to deal with the saturation condition.

Figure 26 – Experimental results: temperature control of a NICU.
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5.6 Discussion

An anti-windup strategy along with a linear DTC structure applied to the control

of both time-delayed and delay-free SISO systems of any order with saturating actuators has
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been presented. LMIs which incorporate D-stability regions have been used to synthesize the

anti-windup compensator in order to guarantee good performance of the design. Different

from most previous saturation related works, this work addresses the problem of saturation in

a practical manner such that problems as tracking, robustness, and disturbance rejection are

explicitly considered. Furthermore, it has been shown that disturbance rejection response of the

proposed AW-SDTC during saturation events presents better results when compared to strategies

previously proposed in the literature.

The developed experiment effectively assures that the proposed strategy does not

present windup issues, while keeps the excellent performance of a conventional linear SDTC.

Due to its inherent simplicity, the proposed scheme is supposed to present great potential to be

implemented in practical applications, therefore being quite useful for control engineers. The

discrete-time nature of the controller should provide a secure computer-based implementation.



86

6 A SATURATED DTC STRATEGY WITH TIME-VARYING DELAYS

Dead-time compensators (DTCs) are a family of classical controllers derived from

the Smith Predictor (SP). Their main characteristic is that they explicitly employ the model of

the open-loop process to feedback a predicted value of the non-delayed system, thus obtaining

compensation of the delay. Such a perfect compensation is not achievable in the case of time-

varying delays. In this chapter, we address stability analysis of a DTC structure in this situation,

in addition to considering saturating actuators and disturbances of limited energy. Specific

challenges related to the DTC closed loop are taken into account in the developed theoretical

conditions, which are expressed in terms of linear matrix inequalities (LMIs) by using an adequate

Lyapunov-Krasovskii functional (LKF) and generalized sector conditions. Furthermore, a new

approach for the definition of the set of initial conditions in an augmented space in conjunction

with the LKF is presented. Besides theoretical innovations, practical discussion about the relation

between the tuning of DTC controllers and robustness for this class of systems is presented

through numerical examples. An experimental application on a neonatal incubator prototype is

carried out to emphasize the effectiveness of the results.

6.1 Introduction

Time delay, which appears in many industrial processes, is a challenging issue in

the process control area since the transport delay can lead the system to undesired oscillatory

closed-loop response or even instability (NORMEY-RICO; CAMACHO, 2007). According

to Fridman (2014), Seuret and Gouaisbaut (2013), the stability analysis and the robust control

of time-delay systems are also of theoretical importance since it belongs to the wide class of

infinite-dimensional systems (in the continuous-time case), which are not so easy to handle

theoretically.

Besides time delay, another major topic in control systems is actuator saturation

(TARBOURIECH et al., 2011; ZACCARIAN; TEEL, 2011). Most variables in industrial

processes work near or at their maximum and minimum limits in order to optimize production.

The nonlinear nature of the closed loop can also lead to instability. Therefore, such constraints

must be taken into account during closed-loop stability analysis prior to the controller practical

implementation. The presence of isolated nonlinearities, as the actuator saturation, is yet an

active topic of research, see e.g. Wang et al. (2018), Wang and Ji (2020), Hu et al. (2020). The
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problem of sensor saturation has also recently been studied in Zhang and Zhou (2019), Shen et

al. (2020).

Regarding time delays, the so-called dead-time compensators (DTCs) have been

widely studied over the years due to their ability to improve the performance and robustness of

the closed-loop system for processes with constant input or output time delay (NORMEY-RICO;

CAMACHO, 2007). The first DTC was proposed in Smith (1957), also known in the literature

as the Smith predictor (SP). Since then, several extensions have been proposed to deal with

stable, unstable, and integrative processes, and to improve robustness, disturbance rejection, and

measurement noise attenuation (NORMEY-RICO; CAMACHO, 2008a). Some recent works

intended to improve these characteristics can be found in García and Albertos (2013), Liu et

al. (2018), Sanz et al. (2018a), Torrico et al. (2018), Torrico et al. (2019), among others. Other

solutions not involving the classical DTCs have also been proposed in recent years, for example

in Sun and Fu (2016) the adaptive control of a class of time-varying nonlinear systems with

constant delay is investigated. The robust control of nonlinear systems with constant delays was

also explored in Yang and Sun (2019). In Rodríguez et al. (2020), tuning rules for low-order

controllers (including proportional-integral-derivative (PID) controllers) are revisited and the

robust control of time-delayed single-input single-output (SISO) is addressed.

Nonetheless, due to the growing importance of Networked Control Systems (NCSs)

(YANG, 2006; GUPTA; CHOW, 2010; ZHANG et al., 2017) the problem of time-varying delays

started to gain more importance in the recent years when compared to the case of constant delays

(even if the constant delay is uncertain). To cite a few works, the stability of structures for the

control of time-varying delay systems has recently been studied along the problems of linear

time-varying (LTV) processes (SANZ et al., 2019), nonlinear systems (SANZ et al., 2020), non-

minimum phase systems (GENG et al., 2019), and mismatched disturbances (GONZALEZ et al.,

2019). In this case, the traditional DTC will no longer be able to provide perfect compensation of

the delay, that is, will not be able to eliminate the delay from the feedback loop, which is its main

characteristic. Due to this problem, the work in Normey-Rico et al. (2012) develops stability

analysis of the Filtered Smith Predictor (FSP) for the case of time-varying delay processes in

order to evaluate the FSP ability to deal with this case. However, saturating actuators, which is

common in practical applications and places an undesired nonlinearity in the closed-loop system,

has not been considered in the aforementioned work.

Concerning the classical DTCs, in Normey-Rico and Camacho (2007), it is argued
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that one strategy to take the saturation into account in DTC structures is to include the model of the

saturation at the input of the model of the plant. As highlighted by the authors, the fundamental

property of the Smith Predictor still holds in this situation: the dead time is eliminated from

the main feedback loop in the case of no modelling errors and no disturbances. However, time-

varying delays are not considered and formal stability analysis with the characterization of a

set of initial conditions of the plant and/or disturbances for which the internal stability of the

closed loop is preserved is not presented by the authors. In Alves Lima et al. (2020), which

inspired Chapter 5, a practical solution for the control of systems with constant delay and input

saturation is presented based on the design of a DTC for the linear system plus the addition of

anti-windup to deal with saturation aspects. Nevertheless, a procedure for estimating the region

of attraction of the plant and the DTC controller in the case of uncertain (or time-varying) delays

is not presented either.

In the current chapter, we revisit the DTC structure to provide theoretical conditions,

expressed through linear matrix inequalities (LMIs), for the stability analysis of the closed loop

considering systems with both input saturation and output time-varying delays. One of the

objectives is to characterize the region of admissible initial conditions for which the closed-loop

stability is ensured despite the presence of saturating input. To do this, we consider an adequate

Lyapunov-Krasovskii functional and generalized sector conditions. Additionally, we aim at using

the analysis to relate the tuning of DTCs with both robustness and performance of the closed loop.

Although seminal works addressing the joint problems of time delays and input saturation can

be found in the literature (TARBOURIECH; GOMES DA SILVA JR., 2000; FRIDMAN et al.,

2003; GOMES DA SILVA JR. et al., 2006; GOMES DA SILVA JR. et al., 2008), fundamental

differences can be cited: i) All of them consider state delays, while we consider output delays, a

different kind of delay present in numerous applications, as in chemical reaction processes. ii)

All of them are in continuous-time since they do not deal with model-based controls. On the

other hand, we propose the use of DTCs, which are high-order predictive controllers employing

the model of the process and that have been frequently used in practical applications in the last

decades. Since all strategies employing the plant model for the control of time-delay systems

need to be, in practice, digitally implemented, we work in the discrete-time domain which is

more realistic in this case. iii) Neither of them deals with time-varying delays, which appear in

many real applications and are more difficult to treat in a theoretical point of view. Additionally,

in this chapter, we propose a new methodology for the estimate on the region of stability along
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with Lyapunov-Krasovskii functionals which might lead to less conservative results than those

commonly used (see Sections 2.3 and 4.1 of the chapter). Such a novel methodology can be

applied in any work using LKFs for the stability of discrete-time time-delayed systems and is,

therefore, a technical contribution not necessarily linked with the DTC controller.

The chapter is organized as follows. Section 6.2 describes the complete system under

consideration, the involved contributions, and states the mathematical problem we intend to

solve. Section 6.3 is dedicated to some preliminary results. In Section 6.4, the main results

are presented. Section 6.5 brings simulation results of the DTC, followed by the experimental

application in Section 6.6. Finally, concluding remarks are brought in the last section of the

chapter.

6.2 Problem formulation

6.2.1 General view

In the chapter, we consider a discrete-time system controlled by a DTC and subject

to input saturation. The structure is depicted in Fig. 27 constituted by a plant P , a reference filter

F0, subsystem S and a filter Fr. In this chapter, we consider the regulatory case, with reference

r = 0, and the simplified DTC controller from Torrico et al. (2018), presented in Chapter 4.

However, the developed LMIs can easily be applied to other variations of the Filtered Smith

Predictor. The complete system under consideration issued from the connection of the plant, the

system S, and the filter Fr is described as follows:

P ,


xpk+1 = Apxpk +Bp (uk +qk)

yk = Cpxpk−dk

(6.1)

S ,


xsk+1 = Asxsk +Bsuk

ysk = Csxsk

(6.2)

Fr ,


x fk+1 = A f x fk +B f yk

y fk = C f x fk +D f yk

(6.3)

where xpk ∈ Rnp is the plant state vector, xsk ∈ Rns is the state of S , and x fk ∈ Rn f is the state of

Fr. yk ∈ R is the measured output and uk ∈ R is the control input, while ysk ∈ R and y fk ∈ R
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Figure 27 – Saturated DTC controller implementation scheme.
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are the outputs of S and Fr, respectively. Matrices Ap, Bp, and Cp are all constant, known,

and of appropriate dimensions. The plant output delay is bounded and time-varying such as

1≤ dm ≤ dk ≤ dM, and can arbitrarily vary within such limits. Integers dm and dM are known,

whereas the value of dk at each sampling time is unknown. Additionally, the plant is subject to

an input disturbance qk which supposedly belongs to the following set of functions

Q= {qk : R+ 7→ R;
∞

∑
k=0

q>k qk ≤ δ}, (6.4)

where δ > 0 represents a bound on the signal energy of qk. The connection between P , S and

Fr is realized by

uk = sat(vk)

vk =−ysk− y fk

(6.5)

where the saturation is classically defined as

sat(vk) = sign(vk)×min{|vk|,u},u> 0, (6.6)

u being the level of saturation.

Then, the closed-loop system (6.1), (6.2), (6.3) and (6.5) reads:

xk+1 = Axk +Adxk−dk +Bsat(vk)+Bqqk

vk = Kxk +Kdxk−dk

xk = φk, k ∈ [−dM,0]

yk = Cxk−dk

(6.7)
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with

A =


Ap 0 0

0 As 0

0 0 A f

 ,Ad =


0 0 0

0 0 0

B f Cp 0 0

 ,


K

Kd

C

=


0 −Cs −C f

−D f Cp 0 0

Cp 0 0

 ,
[

B Bq

]
=


Bp Bp

Bs 0

0 0

 ,

where xk =

[
x>pk

x>sk
x>fk

]>
∈Rn, n = np+ns+n f , and φk is the initial condition at the interval

[−dM,0].

Remark 6.1

There is no loss of generality in considering the regulatory case, since industrial processes

can be modelled around an operation point, and a simple change of variables can transform

the desired output in zero.

6.2.2 Notes on the controller design

The controller matrices As, Bs, Cs, A f , B f , C f and D f have been designed following

the steps in Torrico et al. (2018), presented in Section 4.4, that is, to establish a desired response

of the nominal linear system. In other words, the controller design considered that the time

delay dk was constant dk = dn, and the non-occurrence of the saturation. Since the objective of

this chapter is not the controller design, but rather closed-loop stability analysis, we just briefly

review some properties of the controller. The computation of S depends on the process model

with nominal delay dn
1, the desired 2np−1 closed-loop tracking poles, and the robustness filter

Fr. Furthermore, S provides perfect delay compensation for the nominal case, that is, nominal

delay and no input saturation. The robustness filter Fr should be designed to guarantee an

internally stable implementation structure (A f and As must be Schur stable matrices), to make

the equivalent controller have integral action, and to establish a desired compromise between

robustness and disturbance rejection.

The state matrix A f can be defined as A f = ρInp+1, where 0< ρ < 1 is the robustness

filter tuning parameter. In the linear time-invariant (LTI) case, by setting higher values of ρ , one
1 The nominal delay dn is defined as the rounding to the nearest integer of (dm +dM)/2.
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can increase the robustness of the system to modelling uncertainties, while smaller values of

ρ speedup the disturbance rejection response. More details on the design and tuning of DTC

structures for LTI systems can be found in its vast literature (NORMEY-RICO et al., 2012;

SANZ et al., 2018a).

Remark 6.2

In DTC structures, the choice of the robustness filter parameter ρ is essential, being

its most important tuning variable since it deals with the trade-off between disturbance

rejection performance and overall system robustness. Also, although ρ designates the

robustness filter Fr poles, its value directly influences almost all of the other controller

matrices (As, Cs, B f , C f , D f ), which hampers the development of LMI based stabilization

of the whole system due to the difficulty to deal with nonlinearities. This will be subject

of a succeeding work.

6.2.3 More details on the formulation and contributions

Although the open-loop process (6.1) has output delay, the closed-loop system

representation (6.7) is in the form of a state-delayed discrete-time system with control saturation.

Many works can be cited regarding the continuous counterpart of this kind of system (CHEN et

al., 2015; CHEN et al., 2017; SEURET et al., 2019). Fewer are dedicated to the discrete-time

case, however, one can cite Chen and Fei (2014), Naamane et al. (2017), and most recently de

Souza et al. (2019), which deals with the linear parameter varying (LPV) case. Besides dealing

with the LPV case, it is important to highlight other differences from the formulation in this work.

First of all, the control law in de Souza et al. (2019) does not deal with the NCS case where

the delay appears in the plant output rather than in the plant state. Furthermore, the formulation

proposed in de Souza et al. (2019) implements a control law that assumes knowledge of the

full history of the plant state, that is the extended state xpk =

[
x>pk

x>pk−1
· · · x>pk−dM

]>
, and its

closed-loop representation does not contain the term Kdxk−dk since it would require knowledge of

the value dk at each sampling time. This is not the case in this work since the actual implemented

control law only requires knowledge/measurement of the output yk, and thus the control vk in

(6.7) is just the equivalent system for analysis.

It is also interesting to comment that, although works in this area usually employ

Lyapunov-Krasovskii functionals, de Souza et al. (2019) uses the approach of augmented

Lyapunov. As highlighted by the authors therein, the main drawback of the works based in the
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Lyapunov-Krasovskii approach is that all of them characterize the region of attraction based on

the norm of the sequence of initial conditions, which often leads to conservative estimates. In

order to deal with this problem, in de Souza et al. (2019) the estimate on the region of attraction is

characterized in an augmented space, which is convenient by means of the use of the augmented

functional approach.

One of the theoretical innovations in this work comes from a mix of the ideas above.

When dealing with DTC structures, it is necessary to keep in mind the problem of high order

dimensions of the closed loop, which increases proportionally to the nominal delay dn and

the plant order np. The total order of the closed loop (6.7) is given by n = np +ns +n f , with

n f = np +1, ns = n f +dn, resulting in n = 3np +dn +2. As DTCs are usually applied to control

systems with big delays (where conventional controllers such as PID and feedback gains alone

are not as effective), the LMI conditions should, ideally, have a low number of decision variables

to avoid tractability problems due to the high dimensionality of (6.7). Due to that, the augmented

functional approach of de Souza et al. (2019) is not practical and can lead to high numerical

complexity. On the other hand, differently from the works based on Lyapunov-Krasoviskii

functionals, we define the initial conditions in an augmented space, avoiding the conservatism

linked with the norm of the sequence approach therein.

On the practical side, we apply the developed conditions to link the DTC tuning

variable ρ with the system robustness in the case of time-varying delays and input saturation.

The specific challenges related to the DTC closed loop are taken into account in the developed

theoretical conditions, and the relation between the tuning of DTCs and the robustness of the

closed loop is established. To the best of our knowledge, no work in the literature of DTC has

done that for the case of both time-varying delays and saturation. The experimental application

considering both these conditions is also unprecedented.

6.2.4 Problem statement

The central objective with respect to system (6.7) can then be summarized as follows:

Problem 6.1

Given a process model defined by Ap, Bp, Cp and the nominal delay dn, the controller

matrices As, Bs, Cs, A f , B f , C f , and D f , provide LMI-based stability analysis in the case

of simultaneous output time-varying delays and control saturation. More specifically, one
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aims at providing adequate conditions to estimate:

i. The size of sets of guaranteed asymptotic stability for the closed loop.

ii. The energy bound on the external disturbance belonging to the set Q.

iii. Lower and upper bounds on the time-varying delay.

Then, by means of numerical examples, one aims at using the solution to Problem

6.1 to relate the DTC tuning parameter ρ to items (i), (ii) and (iii).

6.3 Preliminary Results

In general, the stability of time-delayed systems can be tackled by using either

delay-independent or delay-dependent conditions (FRIDMAN, 2014). The latter case (in which

bounds on the delay are explicitly considered) is adopted in this work. The problem of providing

stability guarantees for systems with delayed states can be solved by choosing an appropriate

Lyapunov functional Vk and its consequent manipulation, which can lead to more or less

conservative results. In recent years, many works have been dedicated to the construction

of such Lyapunov functionals. All these methods are relying on an appropriate choice of a

Lyapunov Krasovskii functional (LKF), and the way to upper bound some sums. Recently, many

researchers have been dedicated to the goal of decreasing the conservatism inherent of these

upper-bounds by discovering new inequalities. For more details, see the works of Zhang et

al. (2008), Shao and Han (2011), Liu and Zhang (2012), Seuret et al. (2015), Hien and Trinh

(2016), Zhang et al. (2017), Seuret and Gouaisbaut (2018). However, in this work, we choose to

use the classical Jensen’s inequality (ZHU; YANG, 2008), which in combination with the use

of Finsler’s Lemma and the reciprocally convex approach (PARK et al., 2011) can potentially

yield a good compromise between numerical complexity and the level of conservatism of the

developed condition, as it will be shown later. Although the use of more complex inequalities

could be interesting, it will be done in the future.

6.3.1 Auxiliary lemmas

In the development of our conditions, we apply Finsler’s Lemma (DE OLIVEIRA;

SKELTON, 2001), the discrete-time version of the Jensen’s inequality, taken from Zhu and

Yang (2008), Hien and Trinh (2016), and the reciprocally convex approach (PARK et al., 2011;

SEURET; GOUAISBAUT, 2013), stated in the following three Lemmas.



95

Lemma 6.1

(DE OLIVEIRA; SKELTON, 2001) Consider γ ∈ Rn, ϒ = ϒ> ∈ Rn×n, and Γ ∈ Rm×n.

The following facts are equivalent:

i. γ>ϒγ < 0, ∀γ such that Γγ = 0, γ 6= 0.

ii. Γ⊥
>

ϒΓ⊥ ≺ 0, where ΓΓ⊥ = 0.

iii. ∃J ∈ Rn×m such that ϒ+ JΓ+Γ>J> ≺ 0.

Lemma 6.2

(ZHU; YANG, 2008; HIEN; TRINH, 2016) For integers a< b, a function f : Z[a,b]→Rn

and a matrix R� 0, the following inequality holds

b

∑
k=a

f>k R fk ≥
1
l

(
b

∑
k=a

f>k

)
R

(
b

∑
k=a

fk

)
, (6.8)

where l = b−a+1 denotes the length of interval [a,b] in Z.

Lemma 6.3

(PARK et al., 2011; SEURET; GOUAISBAUT, 2013) For given positive integers n, m,

a scalar α ∈ (0,1), a matrix R1 in S+n and two matrices W1, W2 in Rn×m. Define, for all

vector ζ ∈ Rm, the function Θ(α,R1) given by:

Θ(α,R1) =
1
α

ζ
>W>1 R1W1ζ +

1
1−α

ζ
>W>2 R1W2ζ .

If there exists U12 ∈ Rn×n such that

R1 U12

? R1

� 0, then the following inequality holds

min
α∈(0,1)

Θ(α,R1)≥

W1ζ

W2ζ


>R1 U12

? R1


W1ζ

W2ζ

 .
6.3.2 Stability in the unsaturated case

We initially develop results for the unsaturated case (i.e. uk = vk) with no disturbance

(qk = 0). This is an important step in order to check if the trade-off between the numerical

complexity of the condition and the obtained results is well balanced. Especially, the ideal

scenario for analysis of DTCs is to obtain conditions that have fewer decision variables and work
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well with bigger delays. Also, some of the content of the proof in this section will be used in the

main results in section 4. The developed conditions will be tested in a benchmark example from

the literature.

The simplified version of (6.7) by taking into account the connection uk = vk, and

qk = 0, is given by: 
xk+1 = Axk +Adxk−dk

xk = φk, k ∈ [−dM,0]
(6.9)

where 1≤ dm≤ dk ≤ dM, xk ∈Rn, φk is the initial condition at the interval [−dM,0], A=A+BK,

and Ad = Ad +BKd. The system (6.9) has the same format of those studied in Seuret et al.

(2015), Nam et al. (2015), for example. The following theorem establishes a sufficient condition

to prove stability of system (6.9).

Theorem 6.1

Consider d∆ = dM−dm, and assume the existence of matrices Q, R, U, R1, U1 in S+n , and

matrix U12 in Rn×n such that:

T=

R1 U12

? R1

� 0, Γ
⊥>

ϒΓ
⊥ ≺ 0 (6.10)

where Γ⊥ =

A 0 0 Ad

I4n

 and

ϒ =



ϒ11 ϒ12 0 0 0

? ϒ22 R 0 0

? ? ϒ33 U12 R1−U12

? ? ? −U1−R1 R1−U>12

? ? ? ? ϒ55


,
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with

ϒ11 = Q+Rd2
m +R1d2

∆,

ϒ12 =−Rd2
m−R1d2

∆,

ϒ22 = Rd2
m−R+R1d2

∆−Q+U,

ϒ33 = U1−R1−R−U,

ϒ55 = U12 +U>12−2R1.

Then system (6.9) is asymptotically stable for any time-varying delay dm ≤ dk ≤ dM.

Proof. Consider the following Lyapunov-Krasovskii functional from Fridman (2014), which

is the discrete-time counterpart of the functional used for continuous-time systems in Fridman

(2006):

Vk = VQk +VRk +VUk +VU1k
+VR1k

(6.11)

with

VQk = x>k Qxk,

VRk = dm

−1

∑
m=−dm

k−1

∑
j=k+m

η
>
j Rη j,

VUk =
k−1

∑
j=k−dm

x>j Ux j,

VU1k =
k−dm−1

∑
j=k−dM

x>j U1x j,

VR1k = d∆

−dm−1

∑
m=−dM

k−1

∑
j=k+m

η
>
j R1η j,

where η j = x j+1− x j and Q,U,R,U1, and R1 are matrices in S+n . Evaluating ∆Vk = Vk+1−Vk

along the trajectories of (6.9), one gets

∆VQk = x>k+1Qxk+1− x>k Qxk (6.12)

∆VRk = d2
mη
>
k Rηk−dm

k−1

∑
j=k−dm

η
>
j Rη j (6.13)

∆VUk = x>k Uxk− x>k−dm
Uxk−dm (6.14)

∆VU1k = x>k−dm
U1xk−dm− x>k−dM

U1xk−dM (6.15)
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∆VR1k = d2
∆

η
>
k R1ηk−

k−dm−1

∑
j=k−dM

η>j R1η j

d∆

 (6.16)

By applying Lemma 6.2 to the summation term in the right-hand side of equation (6.13) we

obtain the bound

dm

k−1

∑
j=k−dm

η
>
j Rη j ≥

dm

dm

 k−1

∑
j=k−dm

η
>
j

R

 k−1

∑
j=k−dm

η j

 .
Since

(
∑

k−1
j=k−dm

η>j
)

R
(

∑
k−1
j=k−dm

η j

)
=
(

x>k − x>k−dm

)
R
(
xk− xk−dm

)
, we obtain

∆VRk ≤ η
>
k Rd2

mηk−
(

x>k − x>k−dm

)
R
(
xk− xk−dm

)
,

which is equivalent to

∆VRk ≤


xk+1

xk

xk−dm


>

Rd2
m −Rd2

m 0

? Rd2
m−R R

? ? −R




xk+1

xk

xk−dm

 . (6.17)

To deal with the summation term in (6.16), first note that it can be split in two parts, one gathering

terms in the interval k−dk to k−dm−1 and the second between k−dM and k−dk−1. Then,

apply Lemma 6.2 to get d∆ ∑
k−dm−1
j=k−dk

η>j R1η j ≥H1 and d∆ ∑
k−dk−1
j=k−dM

η>j R1η j ≥H2, where

H1 =
d∆

dk−dm

(
x>k−dm

− x>k−dk

)
R1
(
xk−dm− xk−dk

)
,

H2 =
d∆

dM−dk

(
x>k−dk

− x>k−dM

)
R1
(
xk−dk− xk−dM

)
.

Consider then Lemma 6.3 with Θ(α,R1) =H1+H2, α = dk−dm
d∆

, ζk =

[
x>k−dm

x>k−dM
x>k−dk

]>
,

W1 =

[
I 0 −I

]
, W2 =

[
0 −I I

]
to obtain H1 +H2 ≥ χ>k Tχk, where

χk =

xk−dm− xk−dk

xk−dk− xk−dM

 , and T =

R1 U12

? R1

� 0,

for some full matrix U12, leading to:

∆VR1k ≤ d2
∆

(
x>k+1− x>k

)
R1 (xk+1− xk)−χ

>
k Tχk. (6.18)

Adding (6.12), (6.14), (6.15), (6.17), and (6.18), and considering extended vector

γk =

[
x>k+1 x>k x>k−dm

x>k−dM
x>k−dk

]>
,
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we obtain the bound ∆Vk ≤ γ>k ϒγk, ∀γ such that Γγ = 0, γ 6= 0, with Γ =

[
−I A 0 0 Ad

]
.

Thus, by guaranteeing that γ>k ϒγk < 0, we ensure that ∆Vk < 0 and the asymptotically stability

of system (6.9). By application of Lemma 6.1, this holds if Γ⊥
>

ϒΓ⊥ ≺ 0, where Γ⊥ is a basis

for the null space of Γ, thus completing the proof of Theorem 6.1.

Remark 6.3

The condition in Theorem 6.1 could also be obtained by means of the equivalent form

(iii) of Lemma 6.1. However, this would lead to an increase of 5n2 in the total number

of decision variables. In fact, the use of (iii) is more advantageous in case of controller

synthesis, due to the flexibility to choose special forms for the Lagrange multiplier J.

6.3.3 Benchmark test of Theorem 6.1

In order to understand the level of conservatism of the conditions in Theorem 6.1, an

example usually employed in the literature is recovered. Consider system (6.9) with:

A=

 0.8 0.0

0.05 0.9

 , Ad =

−0.1 0.0

−0.2 −0.1


Table 2 shows the obtained results in comparison with others from the literature (see Table 1 in

Pandey et al. (2018)). Although there is a clear disadvantage in the results for lower bounds on

the minimum delay dm ≤ 10, we can see an interesting improvement as it becomes higher. As

a matter of fact, the obtained results are very close to the best obtained for delays with lower

bound dm ≥ 25. Also, note that the numerical complexity of the condition is much lower than

that of most of the other approaches. This is very important since DTCs are frequently applied to

systems with big delay, and the order of the closed loop depends on it, with n = 3np +dn +2,

as highlighted earlier in the chapter. For comparison, for a process model with plant order

np = 2 and nominal delay dn = 4, the number of variables of the second condition with least

variables (SHAO; HAN, 2011) is 122% higher than the approach here, and the number of

variables in Kwon et al. (2013) is 648% higher. This is a huge difference that could impact the

numerical performance of the conditions. Therefore, we conclude that the choice of LKF and its

manipulation has been adequate for the DTC problem in this work, although it can be improved

in future research. In the next section, we use this LKF in conjunction with a generalized sector

condition to provide stability analysis to system (6.7).
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Table 2 – Admissible upper bound dM for various dm applying Theorem 6.1. Other results from
the literature come from Table 1 in Pandey et al. (2018).

Methods dm= 2 4 6 7 10 15 20 25 30 No. of variables

Theorem 6.1 17 17 17 18 20 23 27 31 35 3.5n2 +2.5n
Proposition 1 (SHAO; HAN, 2011) 17 17 18 18 20 23 27 31 35 8n2 +3n
Theorem 2 (KWON et al., 2013) 22 22 22 22 23 25 28 32 36 27n2 +9n
Theorem 5 (SEURET et al., 2015) 20 21 21 22 23 25 29 32 36 10.5n2 +3.5n
Theorem 7 (HIEN; TRINH, 2016) 20 21 21 22 23 25 29 32 36 20n2 +5n

6.4 Main results

In this section, we present stability analysis conditions for the saturated closed-loop

system (6.7). Theoretical preliminaries are initially reviewed, including the generalized sector

condition and the definition of a set of initial conditions for which stability guarantees will be

inspected.

6.4.1 Theoretical preliminaries

Consider the deadzone nonlinearity ϕ , defined as follows

ϕ(vk) = vk− sat(vk), (6.19)

and the following set

L (v−θ ,u) = {v ∈ R;θ ∈ R;−u≤ v−θ ≤u}. (6.20)

We then recall the following result which was introduced in Gomes da Silva Jr. and Tarbouriech

(2005), here adapted for the simpler case of systems with a one-dimensional control input.

Lemma 6.4: Generalized sector condition

If v and θ belong to set L , then the deadzone nonlinearity ϕ(v) satisfies the following

inequality, which is true for any matrix W in S+1

ϕ
>(v)W[ϕ(v)−θ ]≤ 0. (6.21)

By taking into account the original system (6.7) and the identity (6.19), the following
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equivalent closed-loop representation is obtained
xk+1 = Axk +Adxk−dk−Bϕ(vk)+Bqqk

vk = Kxk +Kdxk−dk

xk = φk, k ∈ [−dM,0]

(6.22)

where A= A+BK and Ad = Ad+BKd. This representation allows us to analyze the system sta-

bility using a combination of the Lyapunov functional (6.11) and the generalized sector condition

provided in Lemma 6.4. Due to the saturating actuator, we need to analyse regional stability of

(6.22), i.e. we need to find a set of initial conditions φk for which the asymptotic stability of the

closed loop is ensured. First of all, note that we can rewrite the Lyapunov-Krasovskii functional

(6.11) in the following augmented form Vk =x>k Pxk, with xk =

[
x>k x>k−1 · · · x>k−dM

]>
and:

P=



P0 Pb1
0 · · · 0 · · · 0

? Pa1

. . . . . . ... . . . ...

?
. . . . . . Pbdm

0 · · · 0

... . . . ? Padm
Pd1

. . . ...

? · · · ? ? Pc1

. . . 0

... . . . ... . . . . . . . . . Pdd∆

? · · · ? · · · ? ? Pcd∆



,

where

P0 = Q+Rd2
m +R1d2

∆,

Pai = U+2R1d2
∆ +Rdm (2dm−2i+1) ,

Pbi =−R1d2
∆−Rdm (dm− i+1) ,

Pc j = U1 +R1d∆ (2d∆−2 j+1) ,

Pd j =−R1d∆ (d∆− j+1) ,

for i ∈ [1,dm] and j ∈ [1,d∆]. Then, we define the set of initial conditions as Dφ = {φk ∈
R(dM+1)×n;φ>k Pφk ≤ β}, with β >0.

6.4.2 Stability in the saturated case

The following theorem provides a solution to Problem 6.1.
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Theorem 6.2

For given positive scalar σ , assume the existence of matrices Q, R, U, R1, U1 in S+n ,

matrices U12 in Rn×n, Z in R1×n, W in S+1 , and positive scalars δ , µ such that

T =

R1 U12

? R1

� 0, Ξ
⊥>

ΦΞ
⊥ ≺ 0, (6.23)

Σ =

Q K>W−Z>

? 2Wσ −µ

(
σ

u

)2

� 0, (6.24)

µ−δ > 0, (6.25)

with Ξ⊥ =

A 0 0 Ad −B Bq

I4n+2

 and

Φ =



ϒ



0 0

Z> 0

0 0

0 0

Kd
>W 0



?

−2W 0

? −I





,

where ϒ has been given in Theorem 6.1. Then

1. For any q∈Q and all φk ∈Dφ = {φk ∈R(dM+1)×n;φ>k Pφk ≤ β}, β = µ−δ , the tra-

jectories of (6.22) do not leave the ellipsoid given by Dx= {xk ∈R(dM+1)×n;x>k Pxk ≤
µ}, for all k > 0.

2. For qk = 0, the set Dx is a region of asymptotic stability of (6.22).

Proof. First, consider an auxiliary matrix G ∈ R1×n and application of Lemma 6.4 with v =

Kxk +Kdxk−dk , θ = Gxk +Kdxk−dk . If xk belongs to the resulting set

L (|K−G| ,u) = {x ∈ Rn;−u≤ (K−G)x≤u}, (6.26)
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then the inequality:

−2ϕ
>(vk)W

[
ϕ(vk)−Gxk−Kdxk−dk

]
≥ 0 (6.27)

is satisfied for some W in S+1 .

Consider also relation (6.24). Use the fact that

(
µσ

u2 −W
)>

µ−1u2

σ

(
µσ

u2 −W
)
� 0

to replace 2Wσ −µ

(
σ

u

)2
by W>µ−1u2W in (6.24). Then, pre- and post-multiply the obtained

inequality by diag
(

I,W−1
)>

to obtain relation:Q (K−G)>

? µ−1u2

� 0

which ensures the inclusion of the ellipsoid ε(Q,µ) = {xk ∈ Rn;x>k Qxk ≤ µ} in the polyhedral

set L . Since x>k Qxk ≤ x>k Pxk ≤ µ , if φk ∈ Dφ , then xk ∈ ε(Q,µ) ⊂L , ∀k > 0, and the sector

condition is effectively validated.

Now, consider relation (6.23). Replace Z> by G>W in Φ and note that left and right

multiplication of the resulting matrix by ξ>k and ξk =

[
γ>k ϕ(vk)

> q>k

]>
, respectively, leads

to the expression

ξ
>
k Φξk=γ

>
k ϒγk−q>k qk−2ϕ

>(vk)W
[

ϕ(vk)−Gxk−Kdxk−dk

]
, (6.28)

where the vector γk =

[
x>k+1 x>k x>k−dm

x>k−dM
x>k−dk

]>
was first given in the proof of Theorem

6.1. From the proof of Theorem 6.1 and relation (6.21), we have that γ>k ϒγk ≥ ∆Vk and

−2ϕ>(vk)W
[

ϕ(vk)−Gxk−Kdxk−dk

]
> 0, respectively, leading to

ξ
>
k Φξk ≥ γ

>
k ϒγk−q>k qk ≥ ∆Vk−q>k qk. (6.29)

Therefore, by guaranteeing that ξ>k Φξk < 0 we guarantee that ∆Vk− q>k qk < 0 for all xk ∈
Dx, provided that xk ∈L . Then by computing ∑

k
i=0

(
∆Vi−q>i qi

)
< 0 it follows Vk−V0−

∑
k
i=0 q>i qi < 0, ∀k ≥ 0. In other words, this implies that

• Vk <V0+‖qk‖2 ≤ β +δ = µ , for all k≥ 0, thus the trajectories of (6.22) remain bounded

by the ellipsoid given by Dx= {xk ∈ R(dM+1)×n;x>k Pxk ≤ µ}.
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• If qk = 0, ∀k ≥k≥ 0, then ∆Vk ≤ 0, ensuring that xk→ 0, without leaving Dx, as k→ ∞.

From Finsler’s Lemma, satisfaction of ξ>k Φξk < 0, ∀ξ such that Ξξ = 0, ξ 6= 0, with Ξ =[
−I A 0 0 Ad −B Bq

]
(and therefore of ∆Vk − q>k qk < 0) along the trajectories of

(6.22) is equivalent to the satisfaction of Ξ⊥
>

ΦΞ⊥ ≺ 0, where Ξ⊥ is a basis for the null space of

Ξ, thus leading to (6.23). This completes the proof of all the items in Theorem 6.2.

Remark 6.4

Although the dimension of the matrix P can be high, specially for long delays, it does

not lead to some numerical burden of the optimization schemes since the matrix P is

not a decision variable in Theorem 6.2. In fact, the matrix P is assembled with the LKF

matrices {Q,R,R1,U,U1}, which are the decision variables in the theorem. Furthermore,

as introduced in Section 2.3, all the works dealing with the LKF approach to stability of

saturated discrete-time delayed systems characterize the region of attraction by bounding

some norm of the sequence of initial condition (see for example Chen and Fei (2014)). In

this case, conservative operations are involved to find the scalar bound on the norm. No

such conservatism is present in the case we utilise the matrix P since it is an augmentation

of the LKF, which does not require any extra bounding.

Additionally, for open-loop stable systems, one may look for a condition ensuring

the global stability of the closed-loop system.

Corollary 6.1

Assume the existence of matrices Q, R, U, R1, U1 in S+n , matrices U12 in Rn×n and

W in S+1 such that T � 0, Ξ⊥
>

ΦΞ⊥ ≺ 0 with T, Ξ, and Φ defined in Theorem 6.2 and

Z> = K>W, then

1. For qk = 0, the whole state-space is a region of asymptotic stability of (6.22).

2. For any q ∈ Q, and any initial condition φ ∈ R(dM+1)×n, the trajectories of (6.22)

remain bounded as follows:

Vk ≤ V0 +δ ,∀k ≥ 0.

Proof. Proof is straightforward by noting that (6.27) is satisfied for all xk ∈ Rn when G = K. In

this case, both relations (6.24) and (6.25) become pointless.
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6.4.3 Computational Issues

Theorem 6.2 provides conditions to prove regional stability results for the closed-loop

system along with a characterization of the ellipsoidal region of stability and the energy-bounded

disturbance that affects the system. By application of the presented convex conditions, different

analysis results can be exploited. In the following, we present two particular cases of interest.

First, we would like to find out the maximum energy bound (δ ) on the external disturbance

belonging to the set Q when the system is at equilibrium (x0 = 0). Secondly, we are interested in

maximizing, in some sense, the estimate of the region of attraction.

6.4.3.1 Disturbance tolerance maximization

In the case of x0 = 0, it follows that β = 0 and µ = δ , and we seek to maximize the

system tolerance to disturbances, that is, we aim at maximizing the energy bound on the set Q.

For given positive scalar σ , the following optimization procedure should be applied:
max

{Q,R,U,R1,U1,U12,Z,W,µ}
µ

subject to (6.23), (6.24)
(6.30)

6.4.3.2 Maximization of the plant initial conditions set

Consider system (6.7) affected by a fixed level of disturbance, that is a fixed δ . In this

case, one is interested in maximizing the estimate on the region of attraction, that is the ellipsoid

Dx. Many different criteria can be adopted, such as volume maximization and maximization of

the ellipsoid semi-minor axis. In this work, we adopt the later criteria, which is equivalent to

the minimization of the biggest eigenvalue of the matrix Pµ−1. The length of the semi-minor

axis of the ellipsoid is equal to the radius of the maximum ball inside the ellipsoidal region of

stability, and can be a useful qualitative measurement of the region in order to relate it to both the

DTC tuning parameter ρ and the size of the delay. A convex optimization procedure to indirectly

achieve this goal is to run the following optimization problem
min

{Q,R,U,R1,U1,U12,Z,W,µ}
κ1λ −κ2µ

subject to (6.23), (6.24), (6.25),P≺ λ I(dM+1)×n

(6.31)

with κ1 and κ2 tuning weighting on λ and µ . The length of the semi-minor axis can then be

computed by ωb = λ
−1/2
max , where λmax is the maximum eigenvalue of the matrix Pµ−1. In the
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case that no perturbation affects system (6.7), we have δ = 0. Since, we can remove the last

column as well as the last line of Ξ⊥
>

ΦΞ⊥ in (6.23) while running optimization problem (6.31).

Remark 6.5

Note that the initial condition for the open-loop plant (6.1) is characterized only by xp0 .

Although for the time-delay closed-loop system (6.7) we could choose to consider the past

states as zero and consider the initial condition as the special case φk =

[
x>0 0 · · · 0

]>
,

x0 =

[
x>p0

x>s0
x>f0

]>
, we chose to consider the more general case in this work with the

sequence φk so that the initial condition can be anything as long as it is inside the set

Dφ = {φk ∈ R(dM+1)×n;φ>k Pφk ≤ β}.

6.5 Numerical Examples

6.5.1 Case study 1

This first example is dedicated to understanding how the DTC tuning parameter

ρ relates to the system robustness. Simulations are performed for the open-loop unstable

process G(s) = 1
4s−1 , studied in Normey-Rico et al. (2012). This model represents the linearized

dynamical behaviour of the output concentration of some chemical reactors around the unstable

operation point.

As in Normey-Rico et al. (2012), it is assumed that there exists a measurement delay

due to the time needed by the concentration transducer to give the output variable, which can

vary between 0.5 and 0.7 seconds. By considering a sampling time of 0.1 seconds we obtain

the discrete-time process model (6.1) with Ap = 1.0253, Bp = 0.1250 and Cp = 0.2025 and

time-varying delay 5≤ dk ≤ 7.

Initially, we consider the DTC design from Torrico et al. (2018), in Chapter 4,

with dn = 6, ρ = 0.90, and desired closed-loop pole {0.92}, so that fast set-point regulation is

achieved in the ideal case (no saturation and no time-varying delay).

To illustrate the closed-loop system time-response, Fig. 28 shows simulation results

for an initial condition φk = 0 ∀k ∈ [−dM,0], and disturbance signal of energy δ = 27.3053.

Stability is guaranteed by means of Theorem 6.2 with σ = 0.01, using optimization problem

(6.30). In this case µ = δ . Three cases are plotted:

• Ideal case, that is constant delay dk = dn and no saturation u= ∞.
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• System with time-varying delay 5≤ dk ≤ 7 and no saturation, u= ∞.

• System with both time-varying delay and saturation. In this case, for analysis purposes we

consider u= 1.5.

Figure 28 – Case study 1 simulation results.
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Source: The author.

In the following subsections, with the help from Theorems 6.1 and 6.2, and opti-

mization procedures (6.30), (6.31), we will give more comments on the simulations and how the

values of ρ and u affect the system robustness and effectiveness.

6.5.1.1 The unsaturated case

From Fig. 28, it can be noted that the DTC controller is robust to the uncertainty

introduced by the time-varying delay since the response is very close to the response of the ideal

case. For an extended analysis, by means of Theorem 6.1, Table 3 provides the admissible upper
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bound dM for various values of ρ with fixed lower bound dm = 5.

From the DTC literature, it is well known that higher values of the robustness filter

parameter ρ introduce more robustness to the system regarding uncertainties in the delay (in the

constant case). This was also confirmed in the case of time-varying delays in Normey-Rico et al.

(2012). As expected, Table 3 also illustrates this fact by showing that higher values of ρ allow

for an increase in the admissible upper bound dM on the delay. However, it is well-known in the

DTC literature that higher values of ρ can also cause slower rejection of disturbances, which

illustrates the trade-off between performance and robustness.

Table 3 – Case study 1- Admissible upper bound dM for various values of ρ with dm = 5 (unsat-
urated case).

ρ 0.89 0.91 0.93 0.95 0.97

dM 9 10 12 15 18
Source: The author.

6.5.1.2 The saturated case

From Fig. 28 note that although the control signal saturates at the beginning of the

simulation, the controller is capable of bringing the system back to equilibrium in a nice manner.

In order to better understand the relation between tuning parameter ρ , the bound

on the control signal u, the plant delay and robustness of the DTC strategy, Figures 29 and 30

show multiple 3-dimensional surfaces for different values of the maximum delay dM built by

interpolating a data grid of (ρ,u) values, in which the z−axis represent δ and ωb (the radius of

the maximum ball inside Dx), respectively. Such results are obtained by means of optimization

problems (6.30) and (6.31) (in this case, with δ = 0). One can observe that as ρ increases, the

values of both ωb and δ for which stability is guaranteed are increased. This nicely illustrates

that, as in the unsaturated LTI case, higher values of ρ improve the system overall robustness for

systems with both time-varying delays and input saturation. Of course, as the control bound u is

increased, the system also becomes suitable to deal with bigger initial conditions and disturbances

of higher energy. Additionally, as the maximum delay dM is increased, both the values of δ and

ωb decrease. This illustrates the bad impact of the time delay in the stability region, and also in

the disturbance tolerance of the closed loop.

Finally, a special case worth of comment is that of known constant delay dm = dM =

dn = 5. Using optimization problems (6.30) and (6.31) with ρ = 0.93, u= 2, we find significant
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Figure 29 – Relation between DTC tuning parameter ρ , saturation limit u, the maximum delay
dM (with dm = 5), and the energy bound of the disturbance δ .

Source: The author.

Figure 30 – Relation between DTC tuning parameter ρ , saturation limit u, the maximum delay
dM (with dm = 5), and the radius ωb of the maximum ball inside Dx.

Source: The author.



110

increases in both ωb and δ , being 1.0276 and 71.8202, respectively. This is due to the perfect

delay compensation obtained by the predictor in this case. Let us remark that, for consistency of

the results, the desired closed-loop pole for the DTC design and the Theorem 6.2 parameter σ

were kept as {0.95} and 0.05, respectively, throughout the simulations.

6.5.2 Case study 2

Consider the NCS studied in Hu et al. (2007):

ẋp =

−0.80 −0.01

1.00 0.10

xp +

0.4

0.1

u

By considering a sampling time of 0.5 seconds, an induced network time delay, and choosing

the second state as output for the DTC design, we obtain the discrete-time model (6.1) with

Ap =

0.6693 −0.0042

0.4231 1.0501

, Bp =

0.1647

0.0960

, and Cp =

[
0 1

]
. In Hu et al. (2007), the control

law is given by vk = −
[

1.2625 1.2679

]
xpk−dk

, which guarantees closed-loop stability for a

maximum induced delay of 1 second (or two samples), according to Theorem 4 of Hu et al. (2007).

By using Theorem 6.1 of the work herein with A= Ap, Ad =−Bp

[
1.2625 1.2679

]
, we obtain

that stability using the control law from Hu et al. (2007) is guaranteed for a maximum delay in

the range 1≤ dk ≤ 3. In the case of no delay, the control law from Hu et al. (2007) would yield

closed-loop poles {0.6950+0.0990i,0.6950−0.0990i}. To design the DTC controller for this

example, the desired closed-loop poles are chosen as {0.6950+0.0990i,0.6950−0.0990i,0.7},
and we initially set ρ = 0.7, which guarantees stability for the system by means of Theorem 6.1.

To illustrate the closed-loop system time-response, Fig. 31 shows simulation results

for an initial condition given by xp0 =

[
0.4919 0.4919

]>
and 0 in all other positions of φk. Even

though the original example in Hu et al. (2007) does not deal with saturation, the response of the

saturated DTC closed loop is also plotted, for illustration purposes, considering u= 1. Stability

in this case is guaranteed by means of Theorem 6.2 with σ = 0.05, using optimization problem

(6.31) with δ = 0,κ1 = κ2 = 1, obtaining µ = 0.070866. To enlarge the region of stability

in the directions of the plant states a small modification in (6.31) was used with substitution

of P ≺ λ I(dM+1)×n by
[

Inp 0

]
P
[

Inp 0

]>
� λ Inp . Although both strategies present similar

performance, the control signal of the DTC strategy is less aggressive. Moreover, opposed to the

compared control law, the DTC obtained the results by feedback of only one of the states.
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Figure 31 – Case study 2 simulation results.
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The main advantage of the DTC strategy is yet the possibility to deal with much

bigger delays by simply increasing the value of the robustness filter (Fr) tuning parameter ρ .

To illustrate this, Table 4 shows the relation between the maximum delay dM and ρ for this

example, obtained by means of Theorem 6.1. As shown in the table, with the DTC it is possible

to guarantee stability for the system even for a time-varying delay in the range 1≤ dk ≤ 7.

Table 4 – Case study 2- Admissible upper bound dM for various values of ρ with dm = 1.

ρ 0.75 0.80 0.86 0.9

dM 4 5 6 7
Source: The author.

In conclusion, the use of the DTC is advantageous when there is no access to the

measurement of the full state since the DTC is able to stabilize the system with only measurement
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of the output, and when it is desired to stabilize the system for long delays in the network.

On the other hand, the advantage with the classical state feedback law is its implementation

simplicity, with closed-loop order n = np = 2, while the closed-loop order using the DTC is

n = 3np +dn +2 = 10.

6.6 Experimental Results

This section shows practical results of the DTC structure, applied for temperature

control of an in-house neonatal intensive care unit (NICU) prototype, depicted in Fig. 32

(PEREIRA et al., 2017). The physical structure of the NICU prototype consists of two main

parts: an acrylic dome in which the temperature should be controlled; and a reservoir right

below the acrylic dome containing a heating resistor, and a fan with constant speed. These

two environments are connected by two openings so that the heated air can circulate through

the acrylic dome. The control variable is the electrical voltage applied, by means of a driving

circuitry, to the terminals of the heating resistor, and is constrained in the range from 0 to 2 Volts.

Figure 32 – Picture of the NICU prototype.

Source: The author.

The driving circuitry is commanded by a supervisory computer through the digital-

to-analog converter (DAC) channel of a data acquisition card. In order to close the control loop,

the temperature sensor inside the acrylic dome provides actual measurement to the supervisory
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computer by using a microcontroller (µC), which implements the communication protocols of

the sensor and converts the digital data from the sensor to analogue voltage values, combined

with the analog-to-digital converter (ADC) channel of the same data acquisition card. The data

acquisition card communicates with the supervisory computer through a USB cable.

In front of the acrylic dome, two portholes for manipulation of newborns are present

which, when opened, disturb the temperature inside the dome due to the interaction with the

external environment, which could be in much higher or lower temperature.

Using a step-test identification procedure (NORMEY-RICO; CAMACHO, 2007),

the plant model has been identified around an equilibrium point designated by the pair(
xpeq = 28.3oC,ueq = 1 Volt

)
and is given by Pn(s) = 1.572e−1.17s

17.35s+1 , where the time constant is given in minutes. Using a sampling

time of 0.2 minutes, the discrete-time model is obtained as Pn(z) = 0.018017
z−0.9885z−6.

In order to experimentally validate the DTC ability to deal with both saturation and

time-varying delays, we introduce an additional artificial measurement delay (dAk) which can vary

between 0 and 4 samples and has been induced by software using a random number generator.

Therefore, we obtain the discrete-time process model (6.1) with Ap = 0.9885, Bp = 0.0180,

Cp = 1, time-varying delay 6≤ dk ≤ 10 and saturation level u= 1. A detailed diagram depicting

the incubator and the experimental setting is shown in Fig. 33.

For the design of the DTC, the desired closed-loop pole is set as {0.94}, and the

robustness filter Fr is tuned with ρ = 0.93 to achieve a good trade-off between system robustness

and disturbance rejection speed. Global stability has been guaranteed by means of Corollary 6.1.

Experimental results are shown in Fig. 34 for an initial temperature of 27.3oC (one

degree below the equilibrium temperature). It is important to note that even though the plant input

became saturated during the first 12 minutes, the controller did not present windup issues and

was able to go back to the equilibrium temperature of 28.3oC. In order to further assess controller

robustness, front portholes of the NICU were opened between t = 31.4 min and t = 38.4 min.

The room temperature was at 19.9oC during the experiment, which introduces a high level of

disturbance. Even though the control signal saturates again, such a disturbance was properly

rejected and equilibrium was restored some time later.
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Figure 33 – Experimental setup diagram of the NICU. Dashed lines refer to
digital signals while solid ones refer to analogue signals.

Source: The author.

Remark 6.6

The YALMIP toolbox (LÖFBERG, 2004) was used for solving the LMIs and optimization

problems throughout the chapter. The obtained matrices {Q,R,U,R1,U1,U12,Z,W} for

the two numerical examples and the experimental application can be consulted in the

supplementary material for Alves Lima et al. (2021a) at <https://hal.archives-ouvertes.fr/

hal-02965943>.

6.7 Discussion

This work presented, for the first time, stability analysis of a dead-time compensator

structure for input-saturated processes with output time-varying delays. The simulation case

studies and the experiment for the control of temperature in a neonatal incubator effectively

showed the good qualities of DTC structures dealing with the addressed type of process. The

https://hal.archives-ouvertes.fr/hal-02965943
https://hal.archives-ouvertes.fr/hal-02965943
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Figure 34 – Experimental results: Temperature control of a NICU.
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numerical examples were useful to show that the DTC tuning parameter ρ may adjust the

classical trade-off between robustness and disturbance rejection performance. Since DTCs

are a class of controller frequently used in practical applications, the developed analysis is of

importance for the control of industrial dead-time processes.

On the theoretical side, the developed conditions were effective to properly analyse

stability of the closed loop, and a potentially less conservative methodology for the definition

of the set of initial conditions has been proposed, which can be used in works employing the

LKF approach for stability analysis of discrete-time systems. Future work will address the

stabilization problem by developing a full state-space approach for the DTC which will allow

LMI-based design of all the controller parameters or part of them. Also, we aim at using more

elaborated LKFs in conjunction with less conservative inequalities. In this work, we studied

the disturbance tolerance of the DTC, characterized by the bound on its energy given by γ .

However, the analysis of other performance indexes as the L2 gain between the disturbance and

the regulated output is also desired to be included.



Part III

Control Allocation

In this part, we change our focus from time delays and dead-time compensator

strategies in the presence of saturating inputs to the problem of constrained control

allocation. Although this part is much shorter than the previous one, it will hopefully

be equally exciting. We initially make an effort to present a general introduction to

the control allocation problem by making use of a simple example to illustrate the

challenges related to this subject. Then, our contributions in this part, which are

related to the development of theoretical conditions for the co-design of dynamic

allocation functions and anti-windup are presented. The developments will take

place in the continuous-time domain, as opposed to the previous part.
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7 DYNAMIC ALLOCATION AND ANTI-WINDUP

This chapter addresses the design of dynamic allocation functions for systems with

saturating actuators. The allocator can redistribute the desired control effort within the multiple

actuators by penalizing each actuator to be more or less used, while also taking into account

a criterium for minimization of their total energy consumption over time. Anti-windup gains

are added to both the controller and the dynamic allocator to deal with the saturation condition.

Convex conditions for the co-design of both the dynamic allocator and anti-windup gains are

expressed in the form of linear matrix inequalities (LMIs). Such conditions allow dealing with the

multiple objective problems of enlarging the estimates of the basin of attraction and minimizing

the total energy consumption of the actuators. Two examples borrowed from the literature

illustrate the proposed technique and show its effectiveness. However, we first introduce the

concept of general control allocation and make use of a illustrative example to motivate the

framework of control allocation.

7.1 Introduction to Allocation

Control allocation is widely used in over-actuated systems and consists of applying

some algorithm to distribute the computed control effort throughout multiple redundant actuators.

Control allocation arises, in general, when the regulated plant is modelled by using torques

and/or forces as inputs, which in turn are generated by a set of multiple actuators (for example

microthrusters in space applications) that jointly produce the desired control effort. The main

goal of control allocation is then to distribute the computed controller output (often called the

virtual input) among the multiple actuators in a manner such that the plant actual input (up) equals

the desired effort computed by the controller (yc) at all times. However, due to the constraints

present in all real actuators, such as amplitude and rate saturation, not all virtual controls are

achievable and the control allocator problem becomes that of minimizing the so-called allocation

error e = up− yc.

The control allocation problem is found in numerous applications and has been

primarily studied in fields related to aeronautical applications. For example, Durham et al. (2016)

dedicates an entire book to the allocation problem in aircraft control. On the other hand, it seems

that a book reuniting general techniques in the theoretical context for control allocation is yet to

be published. Nonetheless, a general overview of the problem can be found in the survey paper
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by Johansen and Fossen (2013).

Let us take a look into the overview of the control allocation problem provided in

Figure 35, where the block C represents the controller, and the block P stands for the plant. The

control allocation sublevel, highlight in grey, is composed of the blocks F , Φ, and M, where F is

the control allocator, the function Φ(·) represents some dynamics or nonlinearity in the actuators,

and M is an influence map that translates how the multiple actuators combine to generate the

plant input. Signals r ∈ Rq, yc ∈ Rmc , y f ∈ Rma , Φ(y f ) ∈ Rma , up ∈ Rmc , and yp ∈ Rq are,

respectively, the reference signal, the control command (or virtual input), the control allocator

command, the actual value of the actuators signal, the plant actual input, and the plant output.

The control allocator subsystem F is a degree of freedom for the designer and is responsible

for distribution of the computed control effort among the multiple actuators. The function Φ(·)
could be, for example, a saturation or deadzone nonlinearity. The map M : Rma 7→ Rmc could

be either a dynamic system or a static gain. Now that we have defined the signals and systems

involved, we will make use of a simple example to better illustrate the treated allocation problem.

Figure 35 – Control allocation overview.

C F Φ M P •
r yc yf up yp

+
+

Control allocation sublevel

Source: The author.

7.1.1 Motivating example

In order to better illustrate the allocation problem, let us consider a simple example.

Consider a plant described by the following equation

ẋ =
[
−1

]
x+
[

1

]
up.

Suppose that up ∈ R represents a force acting on the system, which is generated by the sum of

the forces produced by two actuators. In this case, we have the following relation up = MΦ(y f )

with M =

[
1 1

]
. Suppose that Φ(·) is a non-symmetric decentralized saturation and that each

actuator can produce a force between 0 and 0.5 Newtons. The controller C produces the value of
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the control command, which should be injected in the plant in ideal conditions. The question

that arises, then, is:

Problem 7.1

Given the plant model P , the controller C, the mapping M and the actuator model Φ(·),
how to design an allocator F : Rmc 7→ Rma that is, in some sense, optimal, and preserves

stability of the closed loop?

The answer to problem 7.1 is not a simple one. In fact, the problem could be much

more complicated than the one illustrated by the motivating example. The influence map M

could be a dynamical system and contain schedule parameters. The function Φ(·), representing

actuators, could be much more evolved than a deadzone or saturation function. In case the

number of actuators is much greater than the number of plant inputs (ma� mc), the redundancy

could be stronger and harder to deal with. Also, the plant model could be non-linear, which is by

itself a problem much complicated than that of linear plants. Finally, in case of saturation, the

multiple actuators could have been designed with different dimensions, thus owning different

saturation levels. This last situation is not so uncommon in practical system as one might think.

Coming back to our simple example, suppose, for example, that the controller

computes, at time t, the signal yc(t) = 0. Naturally, to guarantee null allocation error, one needs to

compute the allocator command y f such that MΦ(y f )= yc, which implies null allocation error, i.e.

e = up− yc = 0. Since it is not possible to impose a value directly to Φ(y f ), one alternative is to

compute y f such that My f = yc, that is
[

1 1

]
y f = 0. However, note that this equation possesses

infinitely many solutions. This introduces degrees of freedom that allows to compute the allocator

command y f by taking into account secondary optimization criterium. Such selection may not be

straightforward and care must be taken to avoid some possible “dumb” selections. For example,

y f =

[
1 −1

]>
is a valid solution. However, two evident problems arise with this selection. First

of all, this choice is not wise in terms of energy consumption, since the solution y f =

[
0 0

]>
could have been picked to avoid waste of energy. Secondly, due to the saturation, the actual

plant input would be given by up =

[
1 1

]
Φ


 1

−1


=

[
1 1

]0.5

0

= 0.5. Therefore, an

allocation error between the desired control input yc and the actual plant input up, given by

e = up− yc = 0.5, would occur, which is likely to cause bad behaviour or even instability of the
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closed loop. The minimization of such an error is, therefore, the primary objective of a control

allocator algorithm. Additionally, secondary objectives, such as the minimization of the total

energy consumed by the actuators, can be taken into account when designing F .

Different approaches in the literature exist to deal with the allocation problem,

ranging from the use of quadratic programming that periodically minimizes some cost function

of the allocation error by taking into account the constraints imposed by Φ(·) to the design of F
as a dynamical system that can be viewed as an augmentation to the controller C. As pointed out

in Johansen and Fossen (2013), Tjønnås and Johansen (2008), the advantages with the use of the

control allocation approach are, therefore, modularity and ability to handle constraints as the

redundancy of actuators allows multiple optimal criteria to be taken into account.

Hopefully, this short introduction served as an initial step to understanding the

general view of the often not so evident control allocation problem. A review of the literature

along with commonly used approaches will be realized within the next section, while later in

the chapter we propose the co-design of a dynamic allocation function in conjunction with

anti-windup to solve the allocation problem in the case that M is a static influence matrix and

Φ(·) is the standard symmetric saturation nonlinearity.

7.2 Literature review and this work

The control allocation problem is a subject treated in several papers dealing with

specific applications, in particular in the aeronautical or spatial contexts: see, for example, the

works of Jin (2005), Oppenheimer et al. (2006), Boada et al. (2013), Durham et al. (2016). It has

also been treated, very recently, by Kreiss et al. (2021), in the context of power electronic devices,

where the voltage on a resistive load is regulated by a centralized controller that computes the

total necessary current to be inserted in the load circuit, while an allocator subsystem is used

to distribute the total effort among multiple buck converters that deliver suitable currents, via a

common DC bus, to generate, as much as possible, the total desired control effort.

Besides application-focused papers, technical solutions are also proposed in the

literature from a theoretical point of view. Both the works in Galeani et al. (2015) and Serrani

(2012) consider the output regulation problem of over-actuated systems in the presence of full

information regarding the system states and exogenous inputs. More specifically, Galeani et al.

(2015) proposes an allocation mechanism that takes the form of a hybrid system and accounts

for input constraints. In Petersen and Bodson (2006), optimization-based algorithms, as interior
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point method, are detailed to compute optimal allocation given the actuators constraints. The

online implementation of this kind of technique can be, however, computationally expensive,

while stability analysis of the closed loop is not straightforward. The presence of constraints

inherently causes errors between the desired control effort and the actual plant input, which

can lead to poor response and even instability. In this context, Lyapunov-based approaches

with guarantees of stability for the constrained closed-loop system have also been searched,

for example in de Castro and Brembeck (2019), Benosman et al. (2009), Liao et al. (2007),

Johansen (2004). In this vein, the work in Alves Lima et al. (2021c) proposed the use of an

allocation function and anti-windup designed with an optimization procedure that envisaged the

minimization of this error while guaranteeing closed-loop stability. Nonetheless, the proposed

allocation format and design procedure did not take into account other important issues as the

ability to penalize the use of the different actuators and energy consumption minimization.

The work in Zaccarian (2009) formally defines the concepts of weak and strong

redundancy, in which the former implies that multiple actuators can induce the same steady-state

value for the plant output while the latter implies that they can also impose equal trajectories.

The use of a dynamic allocator system between the controller and the plant is then proposed

with the goal to distribute the control effort by penalizing the use of the multiple actuators. The

paper also deals with the cases of input and rate saturation of the actuators. The use of dynamic

allocation functions was shown to be a good alternative in terms of both computational effort

and robustness. Nonetheless, some important issues regarding the strategy can be shortlisted:

i) Zaccarian (2009) does not consider the co-design problem of the anti-windup loop and

allocation. ii) The parameters of the allocator in Zaccarian (2009) are manually selected. iii)

The formulation in Zaccarian (2009) is focused on the specific case where the size of the plant

input (noted mc here) is equal to the size of allocator output (noted ma here) and the influence

matrix (noted M here) is the identity matrix (i.e., M = I). In the current work, we can deal with

a broader range of systems since we consider the case of ma ≥ mc. iv) In the regulatory case

(null external references) with actuator saturation, the states of the allocator are not guaranteed

to asymptotically converge to the origin, which causes waste of energy in the actuators.

Indeed, this work aims at proposing a more general allocator function format and

design method that solve the above-described problems. By considering a Lyapunov-based ap-

proach, theoretical conditions are derived in terms of linear matrix inequalities (LMIs) in order to

solve the co-design of the allocator and anti-windup loop. Furthermore, an optimization scheme
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consisting of the minimization of the energy consumption in the actuators and maximization of

the closed-loop region of attraction is proposed. As in Zaccarian (2009), the use of the actuators

can also be penalized according to the user desire. Some ideas from Alves Lima et al. (2021c)

are also recovered to show that the allocator is somehow effective concerning the allocation error

between the computed control effort and the actual plant input.

The chapter is organized as follows. Section 7.3 is dedicated to present the general

view of the control allocation, and to specify the class of the plant, controller and allocation

function under consideration. Section 7.4 presents the main theoretical conditions, together

with the associated optimization scheme. In Section 7.5, two examples borrowed from the

literature emphasize the interest of the proposed approach. Finally, in Section 7.6, discussion

and forthcoming issues end the chapter.

7.3 Problem formulation

7.3.1 General view

Figure 36 – General view of control allocation problem with anti-windup.

C F M P

AW

•• •
r = 0 yc yf up yp

+
+

- +

ϕ(yf )

Source: The author.

Consider the general view of the control allocation problem with anti-windup shown

in Fig. 36. Subsystems C, F , and P are the controller, the control allocator, and the plant,

respectively, while M is the influence matrix andAW represents some anti-windup strategy. The

plant is driven by up in Rmc inputs. The controller computes a set of desired yc in Rmc efforts that

must be injected in the plant in ideal conditions. The plant input is generated by a set of ma ≥mc

actuators, represented by the signal y f in Rma . The plant input is given by up = Msat(y f ) with

the decentralized saturation function being defined as

sat(y f (i)) = sign(y f (i))min{|y f (i)|,u(i)},u(i) > 0, (7.1)
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for i = 1, . . . ,ma, where u(i) denotes the magnitude bound in each actuator, and the so-called

influence matrix M in Rmc×ma maps how each individual effort of the ma actuators combines to

generate the inputs acting on the plant. Furthermore, in this work we consider the regulatory

case, i.e., r = 0.

The simplest allocation function often considered in the literature is given by the

right pseudo-inverse of M, that is, F = M†, with MM† = I. In the case the actuator is not subject

to saturation or other nonlinearities, this allocator is able to guarantee stability of the closed loop

since the interconnection is given by up = MM†yc = yc, and therefore no error between up and

yc is produced. However:

i. This popular static allocator is not able to take advantage of the multi-actuated nature

of the system to redistribute the effort among desired actuators. This is important, for

example, in case of actuator failures and/or operational constraints that demand certain

actuators to be more or less used than others to produce the desired control effort.

ii. In the presence of nonlinearities as the actuator saturation, guarantees of stability of the

closed loop, as well as estimation of regions of safe operation, need to be assured. In

this context, more complex allocation functions with the ability to handle redundancy and

constraints should be applied.

7.3.2 Plant and controller description

Consider the plant P described by the following equations

P ∼


ẋp = Apxp +Bpup,

yp = Cpxp,

(7.2)

where xp in Rnp is the plant state vector, up in Rmc is the plant input, yp in Rq is the measured out-

put. Ap, Bp, and Cp are all constant and known matrices of appropriate dimensions. Furthermore,

the pairs (Ap,Bp) and (Cp,Ap) are supposed to be controllable and observable.

Let us assume that the plant (7.2) is stabilized by a dynamic output controller C
linearly designed via the connection up = yc, that is without taking into account the saturation

and with F = M†. The controller C is defined by the following equations

C ∼


ẋc = Acxc +Bcyp +Ecϕ(y f ),

yc = Ccxc +Dcyp,

(7.3)
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where xc in Rnc is the controller state vector and yc in Rmc is the controller output. Ac, Bc, Cc

and Dc are supposed known. In this work, we consider the anti-windup signal vaw = Ecϕ(y f ),

Ec in Rnc×ma , with the deadzone ϕ(y f ) defined as

ϕ(y f ) = sat(y f )− y f , (7.4)

where the saturation map is defined from (7.1) and y f is the output of the allocation function.

Such an anti-windup compensation is added in order to mitigate the undesired effects of saturation

(see, for example, Tarbouriech et al. (2011), Zaccarian and Teel (2011)).

Remark 7.1

By construction, the linear connection plant-controller is supposed to be stable. In other

words, the controller (7.3) (with vaw = 0) stabilizes the plant (7.2) through the linear

interconnection up = yc and therefore the matrix A0, defined below, is Hurwitz.

A0 =

 Ap +BpDcCp BpCc

BcCp Ac

 in R(np+nc)×(np+nc) (7.5)

7.3.3 Dynamic allocation function description

Consider the influence matrix M in Rmc×ma in the case ma > mc, supposedly full

row rank. Let N in Rma×n f , n f = ma−mc, be a basis for the Kernel of M, i.e. MN = 0. We then

propose the following dynamic allocation function

F∼


ẋ f =K f N>WNx f +K f N>WM†yc+E f ϕ(y f ),

y f =Nx f +M†yc,

(7.6)

where x f in Rn f is the allocator state vector, and y f in Rma is the allocator output. Matrix

W defined by W=diag(w1,w2, . . . ,wma) in S+ma
is a matrix which receives the weightings that

penalizes the use of each actuator. Matrices K f in Rn f×n f and E f in Rn f×ma must be designed to

achieve desired behavior of the allocator by taking into account the presence of saturation. This

allocation format is particularly interesting since it is in some sense optimal in terms of both the

allocation error and actuators usage, as explained in the next two remarks.
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Remark 7.2

Consider the general expression y f = C f x f +D f yc, and let us define the allocator error as

e = up−yc. Then using the definition of ϕ(y f ) in (7.4), the expression e =
(
MD f − I

)
yc+

MC f x f +Mϕ(y f ) is easily obtained. It is straightforward to see that the choice D f =

M†, C f = N leads to e = Mϕ(y f ), therefore the error is null in absence of saturation.

Furthermore, by guaranteeing convergence of the extended vector x =
[

x>p x>c x>f

]>
to

the origin, we always obtain e∗ = 0, where e∗ is the steady-state value of e.

Remark 7.3

Consider the cost function

min
x f

T(y f ) = y>f Wy f subject to y f = Nx f +M†y∗c , (7.7)

where y∗c is any controller output. The optimal solution to (7.7) is given by x f =

−(N>W>N)−1N>WM†y∗c , which corresponds to the steady-state value of x f in (7.6).

Remark 7.4: Case when ma = mc and M = I

In some papers, like the one in Zaccarian (2009), the influence matrix M enters the plant

model. In this case, ma = mc, the system has more inputs than states (mc > np) and

the input-redundancy nature of the plant is explicit. All the results in this work can

straightforwardly be applied in this case by making M = I and choosing N as a base for

the null space of Bp, that is, BpN = 0. Although in this case MN 6= 0, convergence of the

allocator error to zero takes place due to the fact that the allocator states x f converges to

zero at steady-state, thus the allocator recovers the property up = yc after some time.

7.3.4 Closed-loop system and problem formulation

By taking into account the definitions of P , C, F , the definition of ϕ(y f ) in (7.4)

and the connection up = Msat(y f ), the complete closed-loop system with x =
[

x>p x>c x>f

]>
in Rn, n = np +nc +n f , can be written as

ẋ = (A+L f K fC)x+(B+LE)ϕ(y f )

y f = Cx
(7.8)
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where L f =

[
0n f×np 0n f×nc In f

]>
, C= N>WC, and:

A =

A0 0

0 0

 ,B =

BpM

0

 ,E =

Ec

E f

 ,L =

[
Lc L f

]
,

Lc =

[
0nc×np Inc 0nc×n f

]>
,C =

[
M†DcCp M†Cc N

]
with A0 defined in (7.5). The presence of the deadzone in the closed-loop dynamics (7.8) implies

to characterize a suitable region of the state space in which the stability is ensured (see, for

example, Tarbouriech et al. (2011)). In general, the global asymptotic stability of the origin (that

is for any initial condition x(0) in Rn) does not hold except if the open loop has suitable properties

of stability (SONTAG, 1984). Hence, regional stability (that is, only for initial conditions in a

neighborhood of the origin) has to be studied. Since the exact characterization of the basin of

attraction of the origin remains an open problem, a challenging problem consists in providing an

estimate of the basin of attraction as accurate as possible.

Furthermore, we want to ensure some level of performance to the allocator in terms

of the total energy consumption of the actuators, which can be done by imposing conditions that

limit the energy of the signal sat(y f ). With respect to (7.3) and (7.6), the main objective of this

chapter is to propose the co-design of the dynamic allocation function, that is K f , and E f , along

with the controller anti-windup gain Ec. Then the problem we intend to solve can be summarized

as follows.

Problem 7.2

Given the controller matrices Ac, Bc, Cc, Dc, and the weighting matrix W, design matrices

K f , E f and Ec, such that

i. the regional asymptotic stability of the closed-loop system (7.8) is ensured and the

estimate of the region of attraction is maximized.

ii. the total energy consumption of the actuators over time is minimized.

7.4 Main results

7.4.1 Theoretical preliminaries

Consider a matrix G ∈ Rma×n, and define the set

L (ū) = {x ∈ Rn; |G(i)x| ≤u(i), i = 1, ...,ma}, (7.9)
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Then, nonlinearity ϕ(y f ), with y f in (7.8), satisfies the following Lemma directly derived from

Lemma 1.6 p.43 in Tarbouriech et al. (2011).

Lemma 7.1: Generalized sector condition

If x belongs to set L (ū), defined in (7.9), then the deadzone nonlinearity ϕ(y f ) satisfies

the following inequality for any diagonal matrix S in S+ma

ϕ
>(y f )S−1[ϕ(y f )+Cx−Gx]≤ 0. (7.10)

Another important result widely known in the literature is re-enunciated next (see,

for example, de Oliveira and Skelton (2001)).

Lemma 7.2: Finsler’s Lemma

Consider ζ in Rn, ϒ = ϒ> in Rn×n, and Γ in Rm×n. The following facts are equivalent:

i. ζ>ϒζ < 0, ∀ζ such that Γζ = 0, ζ 6= 0.

ii. ∃I in Rn×m such that ϒ+IΓ+Γ>I> ≺ 0.

7.4.2 Design of the allocator and anti-windup

The following theorem provides a solution to Problem 7.3.4.

Theorem 7.1

Assume the existence of matricesPin S+n , Jo in R(np+nc)×(np+nc), J f in Rn f×n,Kf in Rn f×n f ,

Ke in R(nc+n f )×ma , G in Rma×n, diagonal matrix S = S> in S+ma
and positive scalar γ such

that

Ψ =

Ψa Ψb

? Ψc

=


−J−J> Ψ12 Ψ13 0

? Ψ22 Ψ23 JC>W
1
2

? ? −2S SW
1
2

? ? ? −γI


≺ 0 (7.11)

P G>(i)

? u2
(i)

� 0, for i = 1, ...,ma, (7.12)
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hold with Ψ12 =P+AJ>+Z−J, Z =diag(0np+nc ,Kf ), Ψ13 = BS+LKe, Ψ22 = He{AJ>+

Z}, Ψ23 = Ψ13 +G>−JC>, and where J=
[
C⊥J>o J>f

]>
in Rn×n, C⊥ in Rn×(np+nc) is a

matrix such that CC⊥ = 0. Then, matrices E=

[
E>c E>f

]>
=KeS−1, K f =Kf

(
CJ>f
)−1

are

solution to Problem 7.3.4. In other words:

i. the closed-loop system (7.8) is asymptotically stable in the ellipsoid ε(P,1) = {x in

Rn;x>Px≤ 1}, with P = JPJ> and J = J−1;

ii. the energy of the actuators usage signal is limited and given by∫
∞

0 sat(y f (τ))
>Wsat(y f (τ))dτ ≤ γ .

Proof. Note first that the satisfaction of inequality (7.11) means that matrix J is non-singular.

Consider then a quadratic Lyapunov function V(x) = x>Px, with P� 0 in S+n . The satisfaction

of relation (7.12) ensures the inclusion of the ellipsoid ε(P,1) = {x in Rn;x>Px ≤ 1} in the

set L (ū) as defined in (7.9) by using the changes of variables G= GJ>, P = JPJ> and J =

J−1. Therefore, the satisfaction of relation (7.12) means that Lemma 7.1 applies and one gets

−2ϕ>(y f )S−1[ϕ(y f )+Cx−Gx]≥ 0, for any x in ε(P,1)⊆L (ū). Then for x∈ ε(P,1)⊆L (ū),

one gets V̇(x) ≤ V̇(x)− 2ϕ>(y f )S−1[ϕ(y f )+Cx−Gx] ≤ V̇(x)− 2ϕ>(y f )S−1[ϕ(y f )+Cx−
Gx]+ γ−1sat(y f )

>Wsat(y f ). Hence to obtain V̇(x)< 0. it suffices that

V̇(x)−2ϕ>(y f )S−1[ϕ(y f )+(C−G)x]+ γ−1sat(y f )
>Wsat(y f )< 0, (7.13)

with S � 0. Consequently, V̇(x)+ γ−1sat(y f )
>Wsat(y f ) < 0 is also satisfied, which can be

integrated resulting in

γ
−1
∫

∞

0
sat(y f (τ))

>Wsat(y f (τ))dτ < V(x(0))≤ 1, (7.14)

which leads to item ii) of Theorem 7.1. By using (7.4) and defining the augmented vector

ζ =

[
ẋ> x> ϕ(y f )

>
]>

, we can rewrite inequality (7.13) as ζ>ϒζ < 0, with the matrix ϒ given

by: 
0 P 0

? C>W
1
2 γ−1W

1
2 C (G−C)>S−1 +C>W

1
2 γ−1W

1
2

? ? W
1
2 γ−1W

1
2 −2S−1

 .

We also have that the relation Γζ = 0 holds for

Γ =

[
−I A+L f K fC B+LE

]
. (7.15)
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From Lemma 7.2, by considering I =

[
J> J> 0

]>
, we obtain the new condition Ψ= ϒ+

IΓ+Γ>I> ≺ 0. By applying a Schur complement to Ψ, followed by pre- and post-multiplying

by diag(J−1,J−1,S, I) and its transpose, respectively, and making changes of variable J= J−1,

P= JPJ>, G= GJ>, Ke = ES we obtain the equivalent condition
−J−J> P+(A+L f K fC)J

>−J Ψ13 0

? He{(A+L f K fC)J
>} Ψ23 JC>W

1
2

? ? −2S SW
1
2

? ? ? −γI


≺ 0,

Note that C⊥ in Rn×(np+nc) is the orthogonal complement of C> (i.e. CC⊥ = 0 with rank(C) =

n f ) such that
[
C⊥ C>

]
is square and nonsingular. Thanks to this, the specific structure J=[

C⊥J>o J>f

]>
, with Jo in R(np+nc)×(np+nc), J f in Rn f×n does not prevent the existence of Jo and J f

making J non singular. Hence, such a structure for J allows to have Z = L f

[
CC⊥Jo

> K fCJ>f

]
=

diag(0np+nc ,Kf ) in the term Ψ22, where the satisfaction of inequality (7.11) implies that CJ>f is

non-singular with a full row rank matrix J f (i.e. rank(J f ) = n f ), allowing the computation of

K f . Hence, it follows that if relations (7.11) and (7.12) are satisfied then (7.13) is also satisfied,

or equivalently V̇(x)< 0, for any x in ε(P,1). Then the two items of Theorem 7.1 are proven

and the proof is completed.

The following proposition can be stated about Theorem 7.1.

Proposition 7.1

LMI (7.11) in Theorem 7.1 is always feasible.

Proof. Matrix Ψ can be written as Ψ = Ψ0 +He{
[

L> L> 0 0

]>
Ke

[
0 0 I 0

]
}. Hence

by using the elimination lemma (DE OLIVEIRA; SKELTON, 2001), it follows that there are

always values of Ke (consequently of E =

[
E>c E>f

]>
) such that Ψ≺ 0 is feasible if and only

if the two conditions N>1 Ψ0N1 ≺ 0 and N>2 Ψ0N2 ≺ 0 hold where matrices

N1 =


In 0 0 0

0 In 0 0

0 0 0 Ima


>

and N2 =


In −In 0 0

0 0 Ima 0

0 0 0 Ima


>
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are the Kernel basis of
[

0 0 I 0

]
and

[
L> L> 0 0

]
. Define without loss of generality

C⊥=
[

Inp+nc Θ>
]>

with Θ=−
(

N>WN
)−1

[
N>WM†DcCp N>WM†Cc

]
, and the partition

J f =

[
J f o J f f

]
with J f o in Rn f×(np+nc) and J f f in Rn f×n f , which leads to J=

 Jo JoΘ>

J f o J f f

.

Then we can rewrite Ψa as

−He{Jo} −JoΘ>−J>f o

? −He{J f f }


A0J>o−Jo A0J>f o−JoΘ>

J f o Kf−J f f

+P

F

He{A0J>o } A0J>f o

? He{Kf }




.

The feasibility of N>1 Ψ0N1 ≺ 0 is related to ensure Ψa ≺ 0. Since A0 is Hurwitz by construc-

tion, there always exist full rank matrix Jo such that He{A0J>o } ≺ 0 and −He{Jo} ≺ 0, full

rank matrices J f f ,J f o and Kf can be computed to ensure Ψa ≺ 0. Similarly the feasibility of

N>2 Ψ0N2 ≺ 0 is directly related to −2P≺ 0. Finally, Schur complement can be used to show

that N>1 Ψ0N1 ≺ 0, N>2 Ψ0N2 ≺ 0 for large enough values of γ and S.

Remark 7.5: On the choice of matrix W

From Remark 3 and item ii) of Theorem 1, the entries of the matrix W are inversely

proportional to the level of usage of each actuator. Although the user can specify any

desired value wi > 0, one promising choice in the case the level of saturation of the

actuators is different is to make wi =u−2
(i) . Many other criteria, such as the operation cost

of different actuators could also be taken into account.

Remark 7.6

In case the plant state matrix Ap is Hurwitz stable, global stability of the closed loop can

be achieved and the design of K f , E f , Ec can also be realized by solving LMI (7.11) with

G= 0.

7.4.3 Optimization issues

From (7.14), it becomes clear that minimization of γ leads to minimization of the

energy of sat(y f (t)). Therefore, while solving the LMIs in Theorem 7.1 (or in Remark 7.6), we
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can accomplish better results for the allocator by minimizing γ . In case of Theorem 7.1, the

maximization of the ellipsoid ε(P,1) is also of interest. Therefore, a multi-objective optimization

procedure applies. Consider a positive definite matrix P0 and the following matrix inequalityP0 I

? J+J>−P

� 0. (7.16)

Then, minimization of the trace of P0 indirectly leads to minimization of the trace of P and,

therefore, to maximization of the ellipsoid ε(P,1). Consider weighting parameters κ1, κ2. Then

the following optimization procedure takes place in case of Theorem 7.1

min (κ1λ +κ2γ) subject to (7.11), (7.12), (7.16),P0 � λ I (7.17)

In case global asymptotic stability is sought (Remark 7.6), the following optimization

procedure applies

min γ subject to (7.11) with G= 0 (7.18)

7.5 Simulation results

7.5.1 Example 1

Consider the satellite formation flying control problem from Boada et al. (2013),

where the controlled output yp represents the relative position between two satellites in a vertical

axis. Given two satellites, the objective is to cancel the lateral position error between them in the

z−axis. The process can be represented by the following model Ap Bp

Cp Dp

=


0 1 0 0

0 0 m−1
1 −m−1

2

1 0 0 0

 ,
where m−1

1 and m−1
2 are the masses of the two satellites. The plant input is given by up = up1

up2

 =

 F1

F2

, where F1 and F2 are forces that act individually in each satellite. Each

satellite possesses 4 thrusters that jointly produce the force applied in each of them. The

influence matrix is given by M =

 M1 0

0 M2

, with M1 = M2 =

[
1 −1 −1 1

]
. We

assume that each thruster can produce a force between 0 mN and 100 mN, therefore the saturation
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limits are not symmetric. In order to apply the developed conditions, the same symmetrizing

technique of Boada et al. (2013) takes place, consisting of substituting the asymmetric saturation

by a symmetric one with limits ui = 50 mN, i = 1, . . . ,8, followed by addition of the kernel

symmetrizing vector ξ = u. Although Boada et al. (2013) explored the combination of the

static allocator (F = M†) with three different anti-windup strategies, here we focalize on the co-

design of the dynamic allocator (F given by (7.6)) and the anti-windup gain Ec. After choosing

m1 = m2 = 1000 kg, a stabilizing LQG controller is designed using identity matrices for all the

weights. The resulting controller is given by

 Ac Bc

Cc Dc

=


−1.7321 1.0000 1.7321

−1.0014 −0.0532 1.0000

−0.7071 −26.6009 0

0.7071 26.6009 0


.

We then compute M†=0.25diag(M>1 ,M
>
2 ), N = diag(N1,N2), with N1=N2=

1 1 −1

I3

.

We choose W=diag(100,1, . . . ,1) to illustrate the allocator ability, which means that we want

to penalize the use of the first actuator. We use optimization procedure (7.17) with weights

κ1 = 1,κ2 = 0.15, so that regional asymptotic stability can be guaranteed by means of Theorem

7.1. To enlarge the region of stability in the direction of the first plant state, representing the

distance between the satellites, we used a small modification in (7.17) by substitution of P0 � λ I

by
[

1 01×(n−1)

]
P0

[
1 01×(n−1)

]>
� λ . The obtained anti-windup and allocator matrices for

this example are given by

 Ec

E f

=



0.0019 −0.0000 0.0394 −0.0193 0.0325 −0.0411 −0.0411 0.0411

−0.0002 −0.0047 0.0142 −0.0043 0.0118 −0.0160 −0.0160 0.0160

1.2781 0.0144 0.1663 −0.0741 0.1006 0.1297 0.1297 −0.1297

−0.6243 −0.0044 −0.0738 0.3141 0.2881 −0.0918 −0.0918 0.0918

0.7725 0.0088 0.0736 0.2114 0.3749 0.0720 0.0720 −0.0720

−0.9763 −0.0119 0.0949 −0.0674 0.0721 0.9519 −0.3357 0.3357

−0.9763 −0.0119 0.0949 −0.0674 0.0721 −0.3357 0.9519 0.3357

0.9763 0.0119 −0.0949 0.0674 −0.0721 0.3357 0.3357 0.9519



,
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K f =



−1.1684 0.6813 −0.4766 0.0034 0.0034 −0.0034

0.7282 −1.0438 −0.3054 0.0249 0.0249 −0.0249

−0.4528 −0.3418 −0.8017 0.0284 0.0284 −0.0284

−0.0200 0.0792 0.0584 −0.8628 0.1381 −0.1381

−0.0200 0.0792 0.0584 0.1381 −0.8628 −0.1381

0.0200 −0.0792 −0.0584 −0.1381 −0.1381 −0.8628


.

We simulate the system response for an initial condition of xp(0) =
[
−0.25 0

]>
, with

xc(0) = 0 and x f (0) = 0. Figure 37 shows the obtained results. To better illustrate the ability of

the dynamic allocator, two cases are plotted: dynamic allocator (F defined in (7.6)) plus anti-

windup gain (Ec) and static allocator (F = M†) plus anti-windup gain (Ec). Both strategies are

able to stabilize the system, however it can be observed that the dynamic allocation successfully

reduces the usage of the penalized actuator.

Figure 37 – Example 1: Output and actuators .
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Source: The author.
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For better assessment of the results, the value of
∫ 180
0 sat(y f (τ))

>Wsat(y f (τ))dτ

for the simulation in Figure 37 was computed to serve as a measure of performance, being

equal to 0.781 in the case of the dynamic allocator and 3.634 for the static allocator, thus

further illustrating the ability of the proposed strategy to minimize the energy of the usage of the

actuators.

7.5.2 Example 2

In this example we consider the exponentially stable plant from Zaccarian (2009),

where the saturation limits are given by u=
[

1 0.01 0.02

]>
. The plant is defined by the

following data:

 Ap Bp

Cp Dp

=


−0.157 −0.094 0.87 0.253 0.743

−0.416 −0.45 0.39 0.354 0.65

0 1 0 0 0

 .
There is no loss of generality in considering this example since Dp = 0. To control the system

and guarantee asymptotic tracking of constant references in the absence of saturation, Zaccarian

(2009) inserts an integrator and designs a stabilizing LQG controller1 which purposefully only

uses the first two input channels. The resulting controller is given by

 Ac Bc

Cc Dc

=



−1.57 0.5767 0.822 −0.65 0

−0.9 −0.501 −0.94 0.802 0

0 1 −1.61 1.614 0

0 0 0 0 −1

1.81 −1.2 −0.46 0 0

−0.62 1.47 0.89 0 0

0 0 0 0 0


.

For this example, ma = mc and M = I. We select then N as the Kernel of Bp, resulting in

N =

[
−0.4726 −1.3143 1

]>
. The entries of matrix W are chosen as wi =u−2

(i) . In this case,

we utilize optimization procedure (7.18) which allows to establish global asymptotic stability
1 Although LQG controllers allow to penalize the desired control effort yc in their design phase this does not

imply a penalization of the use of the actuators y f .
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results (Remark 7.6). We obtain, thus K f =−0.2006 and matrices Ec, E f given by

 Ec

E f

=



−0.9453 −0.4282 −0.7295

−0.2943 −0.2793 −0.6308

−0.3130 0.9045 0.1361

−0.4013 0.4583 0.2161

−0.1567 0.9386 −0.3464


.

The parameters of the strategy from Zaccarian (2009) can be found therein. We simulate the

system response for an initial condition xp(0) =
[

0 1

]>
, with xc(0) = 0 and x f (0) = 0.

Figure 38 shows the output response, the computed control signal and the plant input for both

the proposed strategy and the one from Zaccarian (2009). The fundamental difference in the

results relies in the fact that for the proposed strategy the plant input signals (up) converge to the

origin, thus avoiding waste of energy in the actuators.

Figure 38 – Example 2: Plant output, controller output and plant input signals.
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7.6 Discussion

In this chapter, we proposed the co-design of dynamic allocation functions along with

anti-windup gains to deal with over actuated/input redundant systems with saturating actuators.

The novelty of the work relied upon the extension of the ideas in Zaccarian (2009) to a more

general scenario, including the ability to deal with a much broader spectrum of cases and inserting

optimization criteria that allow both to minimize energy consumption in the actuators and to

maximize estimations on the region of attraction. The application of the developed conditions in

the examples effectively showed the advantages of the proposed scheme. Future work could deal

with many other cases, as the consideration of other nonlinearities affecting the actuator and the

event-triggered control.
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GENERAL CONCLUSIONS

In this thesis, we dealt with the control of input saturated systems in conjunction

with the problems of time delays and control allocation. The main novelties were presented

throughout Parts II and III, more specifically in Chapters 5, 6 and 7. Herein, we will make an

effort to draw some general conclusions and perspectives from this work.

In Part II of the thesis, we focused on the analysis, control and anti-windup problems

related to systems with input and output time delays controlled by DTC structures. The core

contributions of this part were split among two chapters.

• In Chapter 5, we developed a model-based controller and anti-windup strategy for input-

saturated linear systems with constant input delays. Differently from most strategies

regarding this type of system, we dealt with practical aspects, such that set-point tracking,

disturbance rejection and modelling uncertainties were taken into account. The considera-

tion of these practical aspects was made easier by employing a decoupled structure that

split the system into linear and nonlinear loops. It was shown that the simplified tuning of

the linear loop could take into account aspects that are important to the control engineer

in the industry. On the other hand, modern mathematical tools were used for developing

conditions that aid relief the undesired aspects of the saturation nonlinearity by means of

the LMI-based design of an anti-windup filter. Moreover, one big novelty from this chapter

was the possibility to deal with both time-delayed and delay-free systems in a unified

manner, which was made possible by means of simple modifications in the structure of the

base DTC controller. In order to provide more degrees of freedom for the designer, the

concept of D-stability was used so that the poles of the anti-windup conditioning filter were

allocated within a desired region of the complex plane, thus adjusting system response to

saturation events.

• In Chapter 6, we went back to the original structure of the Simplified Dead-time Compen-

sator (SDTC) in order to solve some of the problems left open by the previous chapter. The

model of the saturation is added to the predictor path in its implementation structure so

that prediction is correctly updated. In order that the system could be analysed as a whole

and no longer split into two loops, we rewrote the closed loop as a system augmented

of the plant and predictor states, resulting in a state-delayed equivalent system. In this

case, we considered stability of the closed loop in the presence of output time-varying

measurement delays, input saturation, and input disturbances of limited energy. Due to
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the state-delayed representation, we were able to use a Lyapunov-Krasovskii functional

along with generalized sector conditions to provide stability analysis and relate the tuning

of DTC controllers to upper bounds on the time-varying delay, the bound on the energy of

input disturbances, and the sizes of estimations on the region of attraction. Since DTCs

are model-based controllers, care was taken in order to find conditions expressed in the

form of LMIs that did not numerically suffer from the high dimensionality of the closed

loop. Furthermore, it was shown that, similarly to the linear case, the DTC can also be

tuned to improve system robustness with respect to time-varying delays and the saturation

condition. Additionally, we proposed a new strategy for the characterization of the region

of attraction by means of the augmented LKF that can be applied in any work dealing with

state-delayed discrete-time systems and therefore is a contribution not necessarily linked

with DTCs.

Since we explored regional stability of the saturated closed loops, the developed

strategies in Part II are suitable to deal with open-loop stable, integrative and unstable SISO

processes. Due to their simplified tuning and discrete-time nature, implementation of the

proposed schemes is supposed to be straight forward and should present great potential if applied

to commercial applications.

In the much shorter Part III, we addressed the design problem of allocation functions

and anti-windup for over-actuated systems. Following a general introduction on the subject of

control allocation, the contributions reported in Chapter 7 are related to the proposal of convex

conditions for the co-design of a dynamic allocation function and static anti-windup gains that

act both on the controller and in the allocator. The proposed solution presented many advantages

compared with previous ones in the control allocation literature:

• The co-design of the dynamic allocator and anti-windup is realized by means of convex

optimization procedures expressed in the form of LMIs, which are computationally easy

to solve.

• The proposed strategy allows the designer to choose how much to individually penalize

the use of each actuator. This allows, for example, to establish a rule that forces actuators

with a larger capacity to be more employed than others.

• The allocator is optimal in terms of energy usage of the actuators since the allocator states

are guaranteed to converge to the origin.

• The proposal is more general and can deal with a broader range of cases than previous
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formulations dealing with dynamic allocation.

• The design conditions are always feasible under the assumption that the controller stabilizes

the linear plant-controller interconnection.

Furthermore, the proposal is suitable to deal with unstable plants, since we provide conditions

for regional stabilization with estimations on the region of attraction. Unlike the contributions in

the time-delay part of the thesis, the allocation strategy is useful for dealing with multiple-input

multiple-output (MIMO) plants.

Therefore, the contributions reported in this thesis are mainly concerned with the

presence of actuator saturation in control loops. Nonetheless, the specific situations considered

were those of time-delayed and over-actuated systems. The results in the time-delay part were

developed in the discrete-time domain since they deal with the so-called DTCs, which are model-

based controllers that require digital implementation. Their discrete-time nature should provide

control engineers with safe implementation and operation in commercial applications. It is also

important to remark that although the chapters in Part II were mainly focused on the so-called

SDTC, all the proposed methods could be easily extended to other members of the classical

family of DTC controllers. Regarding control allocation, we decided to explore formulations

in the continuous-time domain, since the developed strategies did not involve prediction and

therefore do not require digital implementation. Thus, we have dealt with both discrete-time

and continuous-time strategies, which enlarges the possible range of applications for the studies

presented in the thesis. Finally, it is worth to remind that all the proposals were effectively

validated through either simulation case studies or experimental results, in which the application

to the temperature control of neonatal incubators deserves to be mentioned.

Perspectives

The results reported in this thesis leave room for many possible future extensions,

which are shortlisted below:

• Although the design of the anti-windup conditioning filter M(z) in Chapter 5 was shown

to be effective by considering the nominal nonlinear loop, LMIs for the uncertain case

deserve to be investigated and should be developed as well. Regarding this, perhaps a

straightforward manner to obtain convex design conditions would be to consider the plant

matrices to contain polytopic uncertainties, thus leading to polytopic LMIs.

• Other D-stability regions, as disk and conic regions could be explored for pole placement
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of the conditioning filter M(z) in Chapter 5. Moreover, a deeper study on the relation

between the anti-windup performance and location of the poles would be of interest.

• Regarding Chapter 6, a straightforward continuation would be the development of a DTC

strategy that could be stabilized via LMIs synthesis conditions. Nonetheless, translation of

all the steps for their design into LMIs is not an easy task due to the nonlinearities that

arise when one tries to respect all the characteristics of the SDTC controller, especially the

ability to design the robustness filter to cancel the unstable poles of the plant model. As an

alternative, the LMI synthesis of observer-predictive structures, which do not need pole

cancellation to guarantee a stable implementation, could be a much more interesting step

going forward. In fact, a work consisting of this idea is already in developments. Another

possibility concerning Chapter 6 is to include an anti-windup strategy to further improve

the closed-loop characteristics of the DTC in the presence of the saturation. Additionally,

the development of works in the sampled-data framework where the discretization of the

plant is avoided and the sample and hold effects are modelled by a time-varying delay

would be a very interesting step going forward with the SDTC strategy.

• Finally, concerning Chapter 7, the control allocation technique can potentially be extended

in several directions. For example, other nonlinearities such as rate saturation and cone-

bounded ones could be considered in the actuator model. Also, we could deal with the

case of event-trigger, which is a recent trend in control. The case of allocation in systems

with delays is also a direction of great interest.
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